1
|
Wang XL, He X, Gao T, Zhou X, Cruz-Monserrate Z, Tsung A, Ma J, Cai C. MG53 suppresses tumor growth via transcriptional inhibition of KIF11 in pancreatic cancer. Transl Oncol 2024; 50:102118. [PMID: 39265509 PMCID: PMC11416540 DOI: 10.1016/j.tranon.2024.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a formidable challenge in oncology due to its limited treatment options and poor long-term survival rates. Our previous work identified MG53, a member of the tripartite motif family protein (TRIM72), as a key player in tissue repair with potential applications in regenerative medicine. Despite the focus on MG53's cytosolic functions, its nuclear role in suppressing pancreatic cancer remains unknown. Through orthotopic and subcutaneous transplantation studies in mice, we observed enhanced tumor growth in MG53-deficient mice compared to wild-type counterparts. The overexpression of KIF11, a motor protein crucial for cell mitosis regulation, has been linked to the aggressive proliferation of pancreatic cancer cells. Confocal imaging confirmed MG53's presence in the nucleus of human pancreatic cancer cells, while functional assays demonstrated its impact on KIF11 expression and subsequent cell proliferation. Mechanistically, we revealed MG53's transcriptional control over KIF11, leading to cell cycle arrest. Our findings position MG53 as a promising tumor suppressor in PDAC, offering a novel avenue for therapeutic intervention by regulating KIF11 expression.
Collapse
Affiliation(s)
- Xiao-Liang Wang
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Xiangfei He
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tong Gao
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA
| | - Xinyu Zhou
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zobeida Cruz-Monserrate
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, and The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Allan Tsung
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| | - Chuanxi Cai
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, VA 22903, USA; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Jia H, Zhou LC, Chen YF, Zhang W, Qi W, Wang P, Huang X, Guo JW, Hou WF, Zhang RR, Zhou JJ, Zhang DW. Mitochondria-encoded peptide MOTS-c participates in plasma membrane repair by facilitating the translocation of TRIM72 to membrane. Theranostics 2024; 14:5001-5021. [PMID: 39267782 PMCID: PMC11388074 DOI: 10.7150/thno.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Rationale: An impairment of plasma membrane repair has been implicated in various diseases such as muscular dystrophy and ischemia/reperfusion injury. MOTS-c, a short peptide encoded by mitochondria, has been shown to pass through the plasma membrane into the bloodstream. This study determined whether this biological behavior was involved in membrane repair and its underlying mechanism. Methods and Results: In human participants, the level of MOTS-c was positively correlated with the abundance of mitochondria, and the membrane repair molecule TRIM72. In contrast to high-intensity eccentric exercise, moderate-intensity exercise improved sarcolemma integrity and physical performance, accompanied by an increase of mitochondria beneath the damaged sarcolemma and secretion of MOTS-c. Furthermore, moderate-intensity exercise increased the interaction between MOTS-c and TRIM72, and MOTS-c facilitated the trafficking of TRIM72 to the sarcolemma. In vitro studies demonstrated that MOTS-c attenuated membrane damage induced by hypotonic solution, which could be blocked by siRNA-TRIM72, but not AMPK inhibitor. Co-immunoprecipitation study showed that MOTS-c interacted with TRIM72 C-terminus, but not N-terminus. The dynamic membrane repair assay revealed that MOTS-c boosted the trafficking of TRIM72 to the injured membrane. However, MOTS-c itself had negligible effects on membrane repair, which was recapitulated in TRIM72-/- mice. Unexpectedly, MOTS-c still increased the fusion of vesicles with the membrane in TRIM72-/- mice, and dot blot analysis revealed an interaction between MOTS-c and phosphatidylinositol (4,5) bisphosphate [PtdIns (4,5) P2]. Finally, MOTS-c blunted ischemia/reperfusion-induced membrane disruption, and preserved heart function. Conclusions: MOTS-c/TRIM72-mediated membrane integrity improvement participates in mitochondria-triggered membrane repair. An interaction between MOTS-c and plasma lipid contributes to the fusion of vesicles with membrane. Our data provide a novel therapeutic strategy for rescuing organ function by facilitating membrane repair with MOTS-c.
Collapse
Affiliation(s)
- Hong Jia
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Western Theater Command Center for Disease Control and Prevention, Lanzhou 730020, China
| | - Lyu-Chen Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yong-Feng Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Qi
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao Huang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jian-Wei Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wai-Fang Hou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ran-Ran Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jing-Jun Zhou
- Department of Physiology, Southwest Medical University, Luzhou 646000, China
| | - Da-Wei Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
3
|
Wu J, Feng Y, Wang Y, He X, Chen Z, Lan D, Wu X, Wen J, Tsung A, Wang X, Ma J, Wu Y. MG53 binding to CAV3 facilitates activation of eNOS/NO signaling pathway to enhance the therapeutic benefits of bone marrow-derived mesenchymal stem cells in diabetic wound healing. Int Immunopharmacol 2024; 136:112410. [PMID: 38843641 DOI: 10.1016/j.intimp.2024.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/17/2024]
Abstract
Impaired wound healing in diabetes results from a complex interplay of factors that disrupt epithelialization and wound closure. MG53, a tripartite motif (TRIM) family protein, plays a key role in repairing cell membrane damage and facilitating tissue regeneration. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) were transduced with lentiviral vectors overexpressing MG53 to investigate their efficacy in diabetic wound healing. Using a db/db mouse wound model, we observed that BMSCs-MG53 significantly enhanced diabetic wound healing. This improvement was associated with marked increase in re-epithelialization and vascularization. BMSCs-MG53 promoted recruitment and survival of BMSCs, as evidenced by an increase in MG53/Ki67-positive BMSCs and their improved response to scratch wounding. The combination therapy also promoted angiogenesis in diabetic wound tissues by upregulating the expression of angiogenic growth factors. MG53 overexpression accelerated the differentiation of BMSCs into endothelial cells, manifested as the formation of mature vascular network structure and a remarkable increase in DiI-Ac-LDL uptake. Our mechanistic investigation revealed that MG53 binds to caveolin-3 (CAV3) and subsequently increases phosphorylation of eNOS, thereby activating eNOS/NO signaling. Notably, CAV3 knockdown reversed the promoting effects of MG53 on BMSCs endothelial differentiation. Overall, our findings support the notion that MG53 binds to CAV3, activates eNOS/NO signaling pathway, and accelerates the therapeutic effect of BMSCs in the context of diabetic wound healing. These insights hold promise for the development of innovative strategies for treating diabetic-related impairments in wound healing.
Collapse
Affiliation(s)
- Junwei Wu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiyuan Feng
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangfei He
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zheyu Chen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongyang Lan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinchao Wu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianguo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Allan Tsung
- Division of Surgical Sciences, Department of Surgery, University of Virginia, VA, USA
| | - Xinxin Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia, VA, USA.
| | - Yudong Wu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Gouchoe DA, Yi T, Kim JL, Lee YG, Black SM, Breuer C, Ma J, Whitson BA. MG53 mitigates warm ischemic lung injury in a murine model of transplantation. J Thorac Cardiovasc Surg 2024; 168:e13-e26. [PMID: 37925138 DOI: 10.1016/j.jtcvs.2023.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVES Lung transplant warm ischemia-reperfusion injury (IRI) results in cellular injury, inflammation, and poor graft function. Mitsugumin 53 (MG53) is an endogenous protein with cell membrane repair properties and the ability to modulate the inflammasome. We hypothesize that the absence of circulating MG53 protein in the recipient increases IRI, and higher levels of circulating MG53 protein mitigate IRI associated with lung transplantation. METHODS To demonstrate protection, wild-type (wt) lung donor allografts were transplanted into a wt background, a MG53 knockout (mg53-/-), or a constitutively overexpressed MG53 (tissue plasminogen activator-MG53) recipient mouse after 1 hour of warm ischemic injury. Mice survived for 5 days after transplantation. Bronchioalveolar lavage, serum, and tissue were collected at sacrifice. Bronchioalveolar lavage, serum, and tissue markers of apoptosis and a biometric profile of lung health were analyzed. RESULTS mg53-/- mice had significantly greater levels of markers of overall cell lysis and endothelial cell injury. Overexpression of MG53 resulted in a signature similar to that of wt controls. At the time of explant, tissue plasminogen activator-MG53 recipient tissue expressed significantly greater levels of MG53, measured by immunohistochemistry, compared with mg53-/-, demonstrating uptake of endogenous overexpressed MG53 into donor tissue. CONCLUSIONS In a warm IRI model of lung transplantation, the absence of MG53 resulted in increased cell injury and inflammation. Endogenous overexpression of MG53 in the recipient results in protection in the wt donor. Together, these data suggest that MG53 is a potential therapeutic agent for use in lung transplantation to mitigate IRI.
Collapse
Affiliation(s)
- Doug A Gouchoe
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; 88th Surgical Operations Squadron, Wright-Patterson Medical Center, Wright-Patterson AFB, Ohio
| | - Tai Yi
- Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Jung-Lye Kim
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yong Gyu Lee
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sylvester M Black
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Transplantation, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, Va
| | - Bryan A Whitson
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical, College of Medicine, Columbus, Ohio.
| |
Collapse
|
5
|
Li X, Ji R, Duan L, Hao Z, Su Y, Wang H, Guan F, Ma S. MG53/GMs/HA-Dex neural scaffold promotes the functional recovery of spinal cord injury by alleviating neuroinflammation. Int J Biol Macromol 2024; 267:131520. [PMID: 38615859 DOI: 10.1016/j.ijbiomac.2024.131520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
The adverse microenvironment, including neuroinflammation, hinders the recovery of spinal cord injury (SCI). Regulating microglial polarization to alleviate neuroinflammation at the injury site is an effective strategy for SCI recovery. MG53 protein exerts obvious repair ability on multiple tissues damage, but with short half-life. In this study, we composited an innovative MG53/GMs/HA-Dex neural scaffold using gelatin microspheres (GMs), hyaluronic acid (HA), and dextran (Dex) loaded with MG53 protein. This novel neural scaffold could respond to MMP-2/9 protein and stably release MG53 protein with good physicochemical properties and biocompatibility. In addition, it significantly improved the motor function of SCI mice, suppressed M1 polarization of microglia and neuroinflammation, and promoted neurogenesis and axon regeneration. Further mechanistic experiments demonstrated that MG53/GMs/HA-Dex hydrogel inhibited the JAK2/STAT3 signaling pathway. Thus, this MG53/GMs/HA-Dex neural scaffold promotes the functional recovery of SCI mice by alleviating neuroinflammation, which provides a new intervention strategy for the neural regeneration and functional repair of SCI.
Collapse
Affiliation(s)
- Xingfan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Rong Ji
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Linyan Duan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhizhong Hao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yujing Su
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hao Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
6
|
Wang YF, An ZY, Li JW, Dong ZK, Jin WL. MG53/TRIM72: multi-organ repair protein and beyond. Front Physiol 2024; 15:1377025. [PMID: 38681139 PMCID: PMC11046001 DOI: 10.3389/fphys.2024.1377025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
MG53, a member of the tripartite motif protein family, possesses multiple functionalities due to its classic membrane repair function, anti-inflammatory ability, and E3 ubiquitin ligase properties. Initially recognized for its crucial role in membrane repair, the therapeutic potential of MG53 has been extensively explored in various diseases including muscle injury, myocardial damage, acute lung injury, and acute kidney injury. However, further research has revealed that the E3 ubiquitin ligase characteristics of MG53 also contribute to the pathogenesis of certain conditions such as diabetic cardiomyopathy, insulin resistance, and metabolic syndrome. Moreover, recent studies have highlighted the anti-tumor effects of MG53 in different types of cancer, such as small cell lung cancer, liver cancer, and colorectal cancer; these effects are closely associated with their E3 ubiquitin ligase activities. In summary, MG53 is a multifunctional protein that participates in important physiological and pathological processes of multiple organs and is a promising therapeutic target for various human diseases. MG53 plays a multi-organ protective role due to its membrane repair function and its exertion of anti-tumor effects due to its E3 ubiquitin ligase properties. In addition, the controversial aspect of MG53's E3 ubiquitin ligase properties potentially causing insulin resistance and metabolic syndrome necessitates further cross-validation for clarity.
Collapse
Affiliation(s)
- Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zi-Yi An
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jian-Wen Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Zhao Q, Zhang Q, Zhao X, Tian Z, Sun M, He L. MG53: A new protagonist in the precise treatment of cardiomyopathies. Biochem Pharmacol 2024; 222:116057. [PMID: 38367817 DOI: 10.1016/j.bcp.2024.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Cardiomyopathies (CMs) are highly heterogeneous progressive heart diseases characterised by structural and functional abnormalities of the heart, whose intricate pathogenesis has resulted in a lack of effective treatment options. Mitsugumin 53 (MG53), also known as Tripartite motif protein 72 (TRIM72), is a tripartite motif family protein from the immuno-proteomic library expressed primarily in the heart and skeletal muscle. Recent studies have identified MG53 as a potential cardioprotective protein that may play a crucial role in CMs. Therefore, the objective of this review is to comprehensively examine the underlying mechanisms mediated by MG53 responsible for myocardial protection, elucidate the potential role of MG53 in various CMs as well as its dominant status in the diagnosis and prognosis of human myocardial injury, and evaluate the potential therapeutic value of recombinant human MG53 (rhMG53) in CMs. It is expected to yield novel perspectives regarding the clinical diagnosis and therapeutic treatment of CMs.
Collapse
Affiliation(s)
- Qianru Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Qingya Zhang
- Innovation Institute, China Medical University, Shenyang 110122, Liaoning, PR China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Zheng Tian
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, Liaoning, PR China.
| | - Lian He
- Department of Pathology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, Liaoning, PR China.
| |
Collapse
|
8
|
Gouchoe DA, Lee YG, Kim JL, Zhang Z, Marshall JM, Ganapathi A, Zhu H, Black SM, Ma J, Whitson BA. Mitsugumin 53 mitigation of ischemia-reperfusion injury in a mouse model. J Thorac Cardiovasc Surg 2024; 167:e48-e58. [PMID: 37562677 DOI: 10.1016/j.jtcvs.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE Primary graft dysfunction is often attributed to ischemia-reperfusion injury, and prevention would be a therapeutic approach to mitigate injury. Mitsugumin 53, a myokine, is a component of the endogenous cell membrane repair machinery. Previously, exogenous administration of recombinant human (recombinant human mitsugumin 53) protein has been shown to mitigate acute lung injury. In this study, we aimed to quantify a therapeutic benefit of recombinant human mitsugumin 53 to mitigate a transplant-relevant model of ischemia-reperfusion injury. METHODS C57BL/6J mice were subjected to 1 hour of ischemia (via left lung hilar clamp), followed by 24 hours of reperfusion. mg53-/- mice were administered exogenous recombinant human mitsugumin 53 or saline before reperfusion. Tissue, bronchoalveolar lavage, and blood samples were collected at death and used to quantify the extent of lung injury via histology and biochemical assays. RESULTS Administration of recombinant human mitsugumin 53 showed a significant decrease in an established biometric profile of lung injury as measured by lactate dehydrogenase and endothelin-1 in the bronchoalveolar lavage and plasma. Biochemical markers of apoptosis and pyroptosis (interleukin-1β and tumor necrosis factor-α) were also significantly mitigated, overall demonstrating recombinant human mitsugumin 53's ability to decrease the inflammatory response of ischemia-reperfusion injury. Exogenous recombinant human mitsugumin 53 administration showed a trend toward decreasing overall cellular infiltrate and neutrophil response. Fluorescent colocalization imaging revealed recombinant human mitsugumin 53 was effectively delivered to the endothelium. CONCLUSIONS These data demonstrate that recombinant human mitsugumin 53 has the potential to prevent or reverse ischemia-reperfusion injury-mediated lung damage. Although additional studies are needed in wild-type mice to demonstrate efficacy, this work serves as proof-of-concept to indicate the potential therapeutic benefit of mitsugumin 53 administration to mitigate ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Doug A Gouchoe
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; 88th Surgical Operations Squadron, Wright-Patterson Medical Center, WPAFB, Ohio
| | - Yong Gyu Lee
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jung Lye Kim
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Zhentao Zhang
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Joanna M Marshall
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Asvin Ganapathi
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Hua Zhu
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sylvester M Black
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Transplantation, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, Va
| | - Bryan A Whitson
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; The Davis Heart and Lung Research Institute at The Ohio State University Wexner Medical, College of Medicine, Columbus, Ohio.
| |
Collapse
|
9
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
10
|
Liu SM, Zhao Q, Li WJ, Zhao JQ. Advances in the Study of MG53 in Cardiovascular Disease. Int J Gen Med 2023; 16:6073-6082. [PMID: 38152078 PMCID: PMC10752033 DOI: 10.2147/ijgm.s435030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Cardiovascular diseases represent a global health crisis, and understanding the intricate molecular mechanisms underlying cardiac pathology is crucial for developing effective diagnostic and therapeutic strategies. Mitsugumin-53 (MG53) plays a pivotal role in cell membrane repair, has emerged as a multifaceted player in cardiovascular health. MG53, also known as TRIM72, is primarily expressed in cardiac and skeletal muscle and actively participates in membrane repair processes essential for maintaining cardiomyocyte viability. It promotes k-ion currents, ensuring action potential integrity, and actively engages in repairing myocardial and mitochondrial membranes, preserving cardiac function in the face of oxidative stress. This study discusses the dual impact of MG53 on cardiac health, highlighting its cardioprotective role during ischemia/reperfusion injury, its modulation of cardiac arrhythmias, and its influence on cardiomyopathy. MG53's regulation of metabolic pathways, such as lipid metabolism, underlines its role in diabetic cardiomyopathy, while its potential to mitigate the effects of various cardiac disorders, including those induced by antipsychotic medications and alcohol consumption, warrants further exploration. Furthermore, we examine MG53's diagnostic potential as a biomarker for cardiac injury. Research has shown that MG53 levels correlate with cardiomyocyte damage and may predict major adverse cardiovascular events, highlighting its value as a biomarker. Additionally, exogenous recombinant human MG53 (rhMG53) emerges as a promising therapeutic option, demonstrating its ability to reduce infarct size, inhibit apoptosis, and attenuate fibrotic responses. In summary, MG53's diagnostic and therapeutic potential in cardiovascular diseases presents an exciting avenue for improved patient care and outcomes.
Collapse
Affiliation(s)
- Shan-Mei Liu
- Bayannur Hospital Department of Cardiology, Bayannur City, Inner Mongolia, 015000, People’s Republic of China
| | - Qin Zhao
- Bayannur Hospital Department of Cardiology, Bayannur City, Inner Mongolia, 015000, People’s Republic of China
| | - Wen-Jun Li
- Tangshan Central Hospital, Tangshan, Hebei, 063008, People’s Republic of China
| | - Jian-Quan Zhao
- Bayannur Hospital Department of Cardiology, Bayannur City, Inner Mongolia, 015000, People’s Republic of China
| |
Collapse
|
11
|
Zha D, Wang S, Monaghan-Nichols P, Qian Y, Sampath V, Fu M. Mechanisms of Endothelial Cell Membrane Repair: Progress and Perspectives. Cells 2023; 12:2648. [PMID: 37998383 PMCID: PMC10670313 DOI: 10.3390/cells12222648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Endothelial cells are the crucial inner lining of blood vessels, which are pivotal in vascular homeostasis and integrity. However, these cells are perpetually subjected to a myriad of mechanical, chemical, and biological stresses that can compromise their plasma membranes. A sophisticated repair system involving key molecules, such as calcium, annexins, dysferlin, and MG53, is essential for maintaining endothelial viability. These components orchestrate complex mechanisms, including exocytosis and endocytosis, to repair membrane disruptions. Dysfunctions in this repair machinery, often exacerbated by aging, are linked to endothelial cell death, subsequently contributing to the onset of atherosclerosis and the progression of cardiovascular diseases (CVD) and stroke, major causes of mortality in the United States. Thus, identifying the core machinery for endothelial cell membrane repair is critically important for understanding the pathogenesis of CVD and stroke and developing novel therapeutic strategies for combating CVD and stroke. This review summarizes the recent advances in understanding the mechanisms of endothelial cell membrane repair. The future directions of this research area are also highlighted.
Collapse
Affiliation(s)
- Duoduo Zha
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang 330031, China;
| | - Shizhen Wang
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA;
| | - Paula Monaghan-Nichols
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
| | - Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, 1299 Xuefu Rd, Honggu District, Nanchang 330031, China;
| | - Venkatesh Sampath
- Department of Pediatric, Children’s Mercy Hospital, Children’s Mercy Research Institute, Kansas City, MO 64108, USA;
| | - Mingui Fu
- Department of Biomedical Science, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA; (D.Z.); (P.M.-N.)
| |
Collapse
|
12
|
Du Y, Li T, Yi M. Is MG53 a potential therapeutic target for cancer? Front Endocrinol (Lausanne) 2023; 14:1295349. [PMID: 38033997 PMCID: PMC10684902 DOI: 10.3389/fendo.2023.1295349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Cancer treatment still encounters challenges, such as side effects and drug resistance. The tripartite-motif (TRIM) protein family is widely involved in regulation of the occurrence, development, and drug resistance of tumors. MG53, a member of the TRIM protein family, shows strong potential in cancer therapy, primarily due to its E3 ubiquitin ligase properties. The classic membrane repair function and anti-inflammatory capacity of MG53 may also be beneficial for cancer prevention and treatment. However, MG53 appears to be a key regulatory factor in impaired glucose metabolism and a negative regulatory mechanism in muscle regeneration that may have a negative effect on cancer treatment. Developing MG53 mutants that balance the pros and cons may be the key to solving the problem. This article aims to summarize the role and mechanism of MG53 in the occurrence, progression, and invasion of cancer, focusing on the potential impact of the biological function of MG53 on cancer therapy.
Collapse
Affiliation(s)
- Yunyu Du
- School of Sports Science, Beijing Sport University, Beijing, China
- National Institute of Sports Medicine, Beijing, China
| | - Tieying Li
- National Institute of Sports Medicine, Beijing, China
| | - Muqing Yi
- National Institute of Sports Medicine, Beijing, China
| |
Collapse
|
13
|
Park SH, Han J, Jeong BC, Song JH, Jang SH, Jeong H, Kim BH, Ko YG, Park ZY, Lee KE, Hyun J, Song HK. Structure and activation of the RING E3 ubiquitin ligase TRIM72 on the membrane. Nat Struct Mol Biol 2023; 30:1695-1706. [PMID: 37770719 PMCID: PMC10643145 DOI: 10.1038/s41594-023-01111-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/16/2023] [Indexed: 09/30/2023]
Abstract
Defects in plasma membrane repair can lead to muscle and heart diseases in humans. Tripartite motif-containing protein (TRIM)72 (mitsugumin 53; MG53) has been determined to rapidly nucleate vesicles at the site of membrane damage, but the underlying molecular mechanisms remain poorly understood. Here we present the structure of Mus musculus TRIM72, a complete model of a TRIM E3 ubiquitin ligase. We demonstrated that the interaction between TRIM72 and phosphatidylserine-enriched membranes is necessary for its oligomeric assembly and ubiquitination activity. Using cryogenic electron tomography and subtomogram averaging, we elucidated a higher-order model of TRIM72 assembly on the phospholipid bilayer. Combining structural and biochemical techniques, we developed a working molecular model of TRIM72, providing insights into the regulation of RING-type E3 ligases through the cooperation of multiple domains in higher-order assemblies. Our findings establish a fundamental basis for the study of TRIM E3 ligases and have therapeutic implications for diseases associated with membrane repair.
Collapse
Affiliation(s)
- Si Hoon Park
- Department of Life Sciences, Korea University, Seoul, South Korea
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Juhyun Han
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Byung-Cheon Jeong
- Department of Life Sciences, Korea University, Seoul, South Korea
- CSL Seqirus, Waltham, MA, USA
| | - Ju Han Song
- Department of Life Sciences, Korea University, Seoul, South Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Hyeongseop Jeong
- Center for Electron Microscopy Research, Korea Basic Science Institute, Cheongju-si, South Korea
| | - Bong Heon Kim
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Young-Gyu Ko
- Department of Life Sciences, Korea University, Seoul, South Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jaekyung Hyun
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, South Korea.
| |
Collapse
|
14
|
Park KH, He X, Jiang L, Zhu H, Liang J, Wang Y, Ma J. Activation of MG53 Enhances Cell Survival and Engraftment of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Injured Hearts. Stem Cell Rev Rep 2023; 19:2420-2428. [PMID: 37477774 PMCID: PMC10579131 DOI: 10.1007/s12015-023-10596-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Our previous studies demonstrated that MG53 protein can protect the myocardium, but its use as a therapeutic is challenging due to its short half-life in blood circulation. This study aimed to investigate the cardioprotective role of MG53 on human induced pluripotent stem cell-derived cardiomyocytes (HiPSC-CMs) in the context of myocardial ischemia/reperfusion (I/R). METHODS In vitro: HiPSC-CMs were transfected with adenoviral MG53 (HiPSC-CMsMG53), in which the expression of MG53 can be controlled by doxycycline (Dox), and the cells were then exposed to H2O2 to mimic ischemia/reperfusion injury. In vivo: HiPSC-CMsMG53 were transplanted into the peri-infarct region in NSG™ mice after I/R. After surgery, mice were treated with Dox (+ Dox) to activate MG53 expression (sucrose as a control of -Dox) and then assessed by echocardiography and immunohistochemistry. RESULTS MG53 can be expressed in HiPSC-CMMG53 and released into the culture medium after adding Dox. The cell survival rate of HiPSC-CMMG53 was improved by Dox under the H2O2 condition. After 14 and 28 days of ischemia/reperfusion (I/R), transplanted HiPSC-CMsMG53 + Dox significantly improved heart function, including ejection fraction (EF) and fractional shortening (FS) in mice, compared to HiPSC-CMsMG53-Dox, and reduced the size of the infarction. Additionally, HiPSC-CMMG53 + Dox mice demonstrated significant engraftment in the myocardium as shown by staining human nuclei-positive cells. In addition, the cell survival-related AKT signaling was found to be more active in HiPSC-CMMG53 + Dox transplanted mice's myocardium compared to the HiPSC-CMMG53-Dox group. Notably, the Dox treatment did not cause harm to other organs. CONCLUSION Inducible MG53 expression is a promising approach to enhance cell survival and engraftment of HiPSC-CMs for cardiac repair.
Collapse
Affiliation(s)
- Ki Ho Park
- Division of Surgical Sciences, Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Xingyu He
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Hua Zhu
- Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Li H, Li Z, Li X, Cai C, Zhao SL, Merritt RE, Zhou X, Tan T, Bergdall V, Ma J. MG53 Mitigates Nitrogen Mustard-Induced Skin Injury. Cells 2023; 12:1915. [PMID: 37508578 PMCID: PMC10378386 DOI: 10.3390/cells12141915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Sulfur mustard (SM) and nitrogen mustard (NM) are vesicant agents that cause skin injury and blistering through complicated cellular events, involving DNA damage, free radical formation, and lipid peroxidation. The development of therapeutic approaches targeting the multi-cellular process of tissue injury repair can potentially provide effective countermeasures to combat vesicant-induced dermal lesions. MG53 is a vital component of cell membrane repair. Previous studies have demonstrated that topical application of recombinant human MG53 (rhMG53) protein has the potential to promote wound healing. In this study, we further investigate the role of MG53 in NM-induced skin injury. Compared with wild-type mice, mg53-/- mice are more susceptible to NM-induced dermal injuries, whereas mice with sustained elevation of MG53 in circulation are resistant to dermal exposure of NM. Exposure of keratinocytes and human follicle stem cells to NM causes elevation of oxidative stress and intracellular aggregation of MG53, thus compromising MG53's intrinsic cell membrane repair function. Topical rhMG53 application mitigates NM-induced dermal injury in mice. Histologic examination reveals the therapeutic benefits of rhMG53 are associated with the preservation of epidermal integrity and hair follicle structure in mice with dermal NM exposure. Overall, these findings identify MG53 as a potential therapeutic agent to mitigate vesicant-induced skin injuries.
Collapse
Affiliation(s)
- Haichang Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Zhongguang Li
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Xiuchun Li
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Chuanxi Cai
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Serena Li Zhao
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Robert E Merritt
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Xinyu Zhou
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Tao Tan
- TRIM-Edicine, Inc., 1275 Kinnear Road, Columbus, OH 43212, USA
| | - Valerie Bergdall
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Fang M, Wu HK, Pei Y, Zhang Y, Gao X, He Y, Chen G, Lv F, Jiang P, Li Y, Li W, Jiang P, Wang L, Ji J, Hu X, Xiao RP. E3 ligase MG53 suppresses tumor growth by degrading cyclin D1. Signal Transduct Target Ther 2023; 8:263. [PMID: 37414783 PMCID: PMC10326024 DOI: 10.1038/s41392-023-01458-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/09/2023] [Accepted: 04/22/2023] [Indexed: 07/08/2023] Open
Abstract
Due to the essential role of cyclin D1 in regulating transition from G1 to S phase in cell cycle, aberrant cyclin D1 expression is a major oncogenic event in many types of cancers. In particular, the dysregulation of ubiquitination-dependent degradation of cyclin D1 contributes to not only the pathogenesis of malignancies but also the refractory to cancer treatment regiments with CDK4/6 inhibitors. Here we show that in colorectal and gastric cancer patients, MG53 is downregulated in more than 80% of tumors compared to the normal gastrointestinal tissues from the same patient, and the reduced MG53 expression is correlated with increased cyclin D1 abundance and inferior survival. Mechanistically, MG53 catalyzes the K48-linked ubiquitination and subsequent degradation of cyclin D1. Thus, increased expression of MG53 leads to cell cycle arrest at G1, and thereby markedly suppresses cancer cell proliferation in vitro as well as tumor growth in mice with xenograft tumors or AOM/DSS induced-colorectal cancer. Consistently, MG53 deficiency results in accumulation of cyclin D1 protein and accelerates cancer cell growth both in culture and in animal models. These findings define MG53 as a tumor suppressor via facilitating cyclin D1 degradation, highlighting the therapeutic potential of targeting MG53 in treating cancers with dysregulated cyclin D1 turnover.
Collapse
Affiliation(s)
- Meng Fang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Hong-Kun Wu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, 310003, Hangzhou, China
| | - Yumeng Pei
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Tumor Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China
| | - Yanyun He
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Gengjia Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Peng Jiang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Yumei Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Wenwen Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Tumor Center, Peking University Cancer Hospital & Institute, 100142, Beijing, China.
| | - Xinli Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, 100871, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China.
- Beijing City Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.
| |
Collapse
|
17
|
Bulgart HR, Goncalves I, Weisleder N. Leveraging Plasma Membrane Repair Therapeutics for Treating Neurodegenerative Diseases. Cells 2023; 12:1660. [PMID: 37371130 DOI: 10.3390/cells12121660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Plasma membrane repair is an essential cellular mechanism that reseals membrane disruptions after a variety of insults, and compromised repair capacity can contribute to the progression of many diseases. Neurodegenerative diseases are marked by membrane damage from many sources, reduced membrane integrity, elevated intracellular calcium concentrations, enhanced reactive oxygen species production, mitochondrial dysfunction, and widespread neuronal death. While the toxic intracellular effects of these changes in cellular physiology have been defined, the specific mechanism of neuronal death in certain neurodegenerative diseases remains unclear. An abundance of recent evidence indicates that neuronal membrane damage and pore formation in the membrane are key contributors to neurodegenerative disease pathogenesis. In this review, we have outlined evidence supporting the hypothesis that membrane damage is a contributor to neurodegenerative diseases and that therapeutically enhancing membrane repair can potentially combat neuronal death.
Collapse
Affiliation(s)
- Hannah R Bulgart
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Isabella Goncalves
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Noah Weisleder
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Wu B, Shi L, Wu Y. PTEN Inhibitor Treatment Lowers Muscle Plasma Membrane Damage and Enhances Muscle ECM Homeostasis after High-Intensity Eccentric Exercise in Mice. Int J Mol Sci 2023; 24:9954. [PMID: 37373102 DOI: 10.3390/ijms24129954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Exercise-induced muscle damage (EIMD) is a common occurrence in athletes and can lead to delayed onset muscle soreness, reduced athletic performance, and an increased risk of secondary injury. EIMD is a complex process involving oxidative stress, inflammation, and various cellular signaling pathways. Timely and effective repair of the extracellular matrix (ECM) and plasma membrane (PM) damage is critical for recovery from EIMD. Recent studies have shown that the targeted inhibition of phosphatase and tension homolog (PTEN) in skeletal muscles can enhance the ECM environment and reduce membrane damage in Duchenne muscular dystrophy (DMD) mice. However, the effects of PTEN inhibition on EIMD are unknown. Therefore, the present study aimed to investigate the potential therapeutic effects of VO-OHpic (VO), a PTEN inhibitor, on EIMD symptoms and underlying mechanisms. Our findings indicate that VO treatment effectively enhances skeletal muscle function and reduces strength loss during EIMD by upregulating membrane repair signals related to MG53 and ECM repair signals related to the tissue inhibitor of metalloproteinases (TIMPs) and matrix metalloproteinase (MMPs). These results highlight the potential of pharmacological PTEN inhibition as a promising therapeutic approach for EIMD.
Collapse
Affiliation(s)
- Baile Wu
- Department of Exercise Physiology, School of Sports Science, Beijing Sport University, Beijing 100084, China
- Key Laboratory of Sports and Physical Health of the Ministry of Education, Beijing Sport University, Beijing 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, School of Sports Science, Beijing Sport University, Beijing 100084, China
| | - Ying Wu
- Department of Exercise Physiology, School of Sports Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
19
|
Zhu XZ, Wang JQ, Wu YH. MG53 ameliorates nerve injury induced neuropathic pain through the regulation of Nrf2/HO-1 signaling in rats. Behav Brain Res 2023; 449:114489. [PMID: 37169128 DOI: 10.1016/j.bbr.2023.114489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Neuropathic pain is one of the most common types of chronic pain, and it arises as a direct consequence of a lesion or disease that affects the somatosensory system. Mitsugumin53 (MG53), which is a member of the TRIM family of proteins and is known as TRIM72, exerts protective effects on muscle, lung, kidney, brain, and other cells or tissues. Recently, increasing evidence has indicated that MG53 plays a vital role in regulating neuroinflammation and oxidative stress. However, the relationship between MG53 and neuropathic pain is unclear. In this study, we aimed to explore the role of MG3 in neuropathic pain after chronic constriction injury (CCI) to the sciatic nerve in rats. To explore the mechanism of MG53 regulating the development of neuropathic pain, the rats was injected (intrathecal injection) of recombinant human MG53 (rhMG53) protein and/or nuclear factor erythroid 2-related factor 2 (Nrf2) siRNA after CCI. Mechanical allodynia or thermal hyperalgesia was assessed by the 50% paw withdrawal threshold (PWT) or the paw withdrawal latency (PWL). The target molecules was detected using western blotting (WB), immunofluorescence (IF), quantitative real-time polymerase chain reaction (qPCR), enzyme-linked immunosorbent assay (ELISA), biochemical evaluations, and Dihydroethidium (DHE) staining. The results indicated that the expression level of MG53 in the spinal cord was increased after CCI in rats. Moreover, intrathecal injection with rhMG53 protein notably alleviated CCI-induced mechanical allodynia, thermal hyperalgesia, neuroinflammation,oxidative stress and the increased level of reactive oxygen species (ROS) via activation of the Nrf2/heme oxygenase-1 (HO-1) signaling pathway. However, administration of Nrf2 siRNA abrogated the analgesic, anti-inflammatory and antioxidant effects of rhMG53 in CCI model rats. Our study demonstrated that MG53 improved neuropathic pain, neuroinflammation, and oxidative stress via activation of the Nrf2/HO-1 signaling pathway in the spinal cord of CCI model rats, which suggested that MG53 may serve as a new target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xuan-Zhi Zhu
- HuangGang Central hospital of Yangtze University, HuangGang, Hubei province, China
| | - Jing-Qiong Wang
- HuangGang Central hospital of Yangtze University, HuangGang, Hubei province, China
| | - Yao-Hua Wu
- HuangGang Central hospital of Yangtze University, HuangGang, Hubei province, China.
| |
Collapse
|
20
|
Ma Y, Ding L, Li Z, Zhou C. Structural basis for TRIM72 oligomerization during membrane damage repair. Nat Commun 2023; 14:1555. [PMID: 36944613 PMCID: PMC10030467 DOI: 10.1038/s41467-023-37198-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Tripartite Motif Protein 72 (TRIM72, also named MG53) mediates membrane damage repair through membrane fusion and exocytosis. During injury, TRIM72 molecules form intermolecular disulfide bonds in response to the oxidative environment and TRIM72 oligomers are proposed to connect vesicles to the plasma membrane and promote membrane fusion in conjunction with other partners like dysferlin and caveolin. However, the detailed mechanism of TRIM72 oligomerization and action remains unclear. Here we present the crystal structure of TRIM72 B-box-coiled-coil-SPRY domains (BCC-SPRY), revealing the molecular basis of TRIM72 oligomerization, which is closely linked to disulfide bond formation. Through structure-guided mutagenesis, we have identified and characterized key residues that are important for the membrane repair function of TRIM72. Our results also demonstrate that TRIM72 interacts with several kinds of negatively charged lipids in addition to phosphatidylserine. Our work provides a structural foundation for further mechanistic studies as well as the clinical application of TRIM72.
Collapse
Affiliation(s)
- Yuemin Ma
- School of Public Health, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Lei Ding
- School of Public Health, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Zhenhai Li
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200072, China
| | - Chun Zhou
- School of Public Health, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
21
|
Yang M, Su B, Ma Z, Zheng X, Liu Y, Li Y, Ren J, Lu L, Yang B, Yu X. Renal-friendly Li +-doped carbonized polymer dots activate Schwann cell autophagy for promoting peripheral nerve regeneration. Acta Biomater 2023; 159:353-366. [PMID: 36669552 DOI: 10.1016/j.actbio.2023.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Activation of autophagy in Schwann cells (SCs) has emerged as a powerful trigger for peripheral nerve injury (PNI) repair. Lithium ion (Li+) is a classical autophagy activator that plays an important role in promoting axonal extension and remyelination. However, the therapeutic window of existing lithium drugs is extremely narrow, and the adverse side effects, especially nephrotoxicity, severely limit their therapeutic value. Herein, Li+-doped carbonized polymer dots (Li-CPDs) was synthesized for the first time to change the pharmacokinetics of Li+ from occupying epithelial sodium channels to lipid raft-mediated endocytosis. The in-vivo results confirmed that Li-CPDs could accelerate the removal of myelin debris and promote nerve regeneration via activating autophagy of SCs. Moreover, Li-CPDs exhibited almost no renal toxicity compared to that of raw lithium drugs. Thus, Li-CPDs could serve as a promising Li+-based nanomedicine for PNI regeneration with improved biosafety. STATEMENT OF SIGNIFICANCE: Regardless of the fact that lithium drugs have been used in treatment of mental illness such as manic depression, the systemic side effects and renal metabolic toxicity still seriously restrict their clinical application. Since Li+ and Na+ compete for ion channels of cell membrane, the cell entry efficiency is extremely low and easily affected by body fluctuations, which seems to be an unsolvable problem. Herein, we rationally exploited the endocytotic features of CPDs to develop Li-CPDs. The Li-CPDs improved the entry pathway, greatly reduced nephrotoxicity, and inherited the biological function of Li+ to activate autophagy for promoting peripheral nerve regeneration. Due to the BBB-crossing property of Li-CPDs, it also showed application prospects in future research on central nervous system diseases.
Collapse
Affiliation(s)
- Mingxi Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Bang Su
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin 130031, PR China
| | - Xiaotian Zheng
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Yan Liu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Yangfan Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China
| | - Jingyan Ren
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Laijin Lu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China.
| | - Bai Yang
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Xin Yu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, PR China.
| |
Collapse
|
22
|
Ke B, Shen W, Song J, Fang X. MG53: A potential therapeutic target for kidney disease. Pharmacol Res Perspect 2023; 11:e01049. [PMID: 36583464 PMCID: PMC9801490 DOI: 10.1002/prp2.1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Ensuring cell survival and tissue regeneration by maintaining cellular integrity is important to the pathophysiology of many human diseases, including kidney disease. Mitsugumin 53 (MG53) is a member of the tripartite motif-containing (TRIM) protein family that plays an essential role in repairing cell membrane injury and improving tissue regeneration. In recent years, an increasing number of studies have demonstrated that MG53 plays a renoprotective role in kidney diseases. Moreover, with the beneficial effects of the recombinant human MG53 (rhMG53) protein in the treatment of kidney diseases in different animal models, rhMG53 shows significant therapeutic potential in kidney disease. In this review, we elucidate the role of MG53 and its molecular mechanism in kidney disease to provide new approaches to the treatment of kidney disease.
Collapse
Affiliation(s)
- Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital to Nanchang University, Nanchang, China
| | - Jianling Song
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Hall DD, Shi Q, Song LS. Prohibiting MG53 Phosphorylation Optimizes its Therapeutic Potential in Diabetes. Circ Res 2022; 131:977-979. [PMID: 36454851 PMCID: PMC9718506 DOI: 10.1161/circresaha.122.322132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Duane D Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa
| | - Qian Shi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa
| |
Collapse
|
24
|
Niu H, Li H, Guan Y, Zhou X, Li Z, Zhao SL, Chen P, Tan T, Zhu H, Bergdall V, Xu X, Ma J, Guan J. Sustained delivery of rhMG53 promotes diabetic wound healing and hair follicle development. Bioact Mater 2022; 18:104-115. [PMID: 35387169 PMCID: PMC8961467 DOI: 10.1016/j.bioactmat.2022.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
MG53 is an essential component of the cell membrane repair machinery, participating in the healing of dermal wounds. Here we develop a novel delivery system using recombinant human MG53 (rhMG53) protein and a reactive oxygen species (ROS)-scavenging gel to treat diabetic wounds. Mice with ablation of MG53 display defective hair follicle structure, and topical application of rhMG53 can promote hair growth in the mg53 -/- mice. Cell lineage tracing studies reveal a physiological function of MG53 in modulating the proliferation of hair follicle stem cells (HFSCs). We find that rhMG53 protects HFSCs from oxidative stress-induced apoptosis and stimulates differentiation of HSFCs into keratinocytes. The cytoprotective function of MG53 is mediated by STATs and MAPK signaling in HFSCs. The thermosensitive ROS-scavenging gel encapsulated with rhMG53 allows for sustained release of rhMG53 and promotes healing of chronic cutaneous wounds and hair follicle development in the db/db mice. These findings support the potential therapeutic value of using rhMG53 in combination with ROS-scavenging gel to treat diabetic wounds.
Collapse
Affiliation(s)
- Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Haichang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Xin Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA.,Laboratory of Cell Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Zhongguang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Serana Li Zhao
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Peng Chen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Valerie Bergdall
- Department of Veterinary Preventive Medicine, University Laboratory Animals Resources, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuehong Xu
- Laboratory of Cell Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
25
|
Xu B, Wang C, Chen H, Zhang L, Gong L, Zhong L, Yang J. Protective role of MG53 against ischemia/reperfusion injury on multiple organs: A narrative review. Front Physiol 2022; 13:1018971. [PMID: 36479346 PMCID: PMC9720843 DOI: 10.3389/fphys.2022.1018971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 12/19/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common clinical problem after coronary angioplasty, cardiopulmonary resuscitation, and organ transplantation, which can lead to cell damage and death. Mitsugumin 53 (MG53), also known as Trim72, is a conservative member of the TRIM family and is highly expressed in mouse skeletal and cardiac muscle, with minimal amounts in humans. MG53 has been proven to be involved in repairing cell membrane damage. It has a protective effect on I/R injury in multiple oxygen-dependent organs, such as the heart, brain, lung, kidney, and liver. Recombinant human MG53 also plays a unique role in I/R, sepsis, and other aspects, which is expected to provide new ideas for related treatment. This article briefly reviews the pathophysiology of I/R injury and how MG53 mitigates multi-organ I/R injury.
Collapse
Affiliation(s)
- Bowen Xu
- The 2nd Medical College of Binzhou Medical University, Yantai, Shandong, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hongping Chen
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lihui Zhang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Medical Department of Qingdao University, Qingdao, Shandong, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
26
|
Li A, Yi J, Li X, Dong L, Ostrow LW, Ma J, Zhou J. Deficient Sarcolemma Repair in ALS: A Novel Mechanism with Therapeutic Potential. Cells 2022; 11:cells11203263. [PMID: 36291129 PMCID: PMC9600524 DOI: 10.3390/cells11203263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane (sarcolemma) of skeletal muscle myofibers is susceptible to injury caused by physical and chemical stresses during normal daily movement and/or under disease conditions. These acute plasma membrane disruptions are normally compensated by an intrinsic membrane resealing process involving interactions of multiple intracellular proteins including dysferlin, annexin, caveolin, and Mitsugumin 53 (MG53)/TRIM72. There is new evidence for compromised muscle sarcolemma repair mechanisms in Amyotrophic Lateral Sclerosis (ALS). Mitochondrial dysfunction in proximity to neuromuscular junctions (NMJs) increases oxidative stress, triggering MG53 aggregation and loss of its function. Compromised membrane repair further worsens sarcolemma fragility and amplifies oxidative stress in a vicious cycle. This article is to review existing literature supporting the concept that ALS is a disease of oxidative-stress induced disruption of muscle membrane repair that compromise the integrity of the NMJs and hence augmenting muscle membrane repair mechanisms could represent a viable therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Li Dong
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Lyle W. Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jianjie Ma
- Department of Surgery, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: (L.W.O.); (J.M.); (J.Z.)
| |
Collapse
|
27
|
Cryo-EM structure of human MG53 homodimer. Biochem J 2022; 479:1909-1916. [PMID: 36053137 DOI: 10.1042/bcj20220385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
MG53 is a tripartite motif (TRIM) family E3 ligase and plays important biological functions. Here we present the cryo-EM structure of human MG53, showing that MG53 is a homodimer consisting of a "body" and two "wings". Intermolecular interactions are mainly distributed in the "body" which is relatively stable, while two "wings" are more dynamic. The overall architecture of MG53 is distinct from those of TRIM20 and TRIM25, illustrating the broad structural diversity of this protein family.
Collapse
|
28
|
MG53 preserves mitochondrial integrity of cardiomyocytes during ischemia reperfusion-induced oxidative stress. Redox Biol 2022; 54:102357. [PMID: 35679798 PMCID: PMC9178477 DOI: 10.1016/j.redox.2022.102357] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022] Open
Abstract
Ischemic injury to the heart induces mitochondrial dysfunction due to increasing oxidative stress. MG53, also known as TRIM72, is highly expressed in striated muscle, is secreted as a myokine after exercise, and is essential for repairing damaged plasma membrane of many tissues by interacting with the membrane lipid phosphatidylserine (PS). We hypothesized MG53 could preserve mitochondrial integrity after an ischemic event by binding to the mitochondrial-specific lipid, cardiolipin (CL), for mitochondria protection to prevent mitophagy. Fluorescent imaging and Western blotting experiments showed recombinant human MG53 (rhMG53) translocated to the mitochondria after ischemic injury in vivo and in vitro. Fluorescent imaging indicated rhMG53 treatment reduced superoxide generation in ex vivo and in vitro models. Lipid-binding assay indicated MG53 binds to CL. Transfecting cardiomyocytes with the mitochondria-targeted mt-mKeima showed inhibition of mitophagy after MG53 treatment. Overall, we show that rhMG53 treatment may preserve cardiac function by preserving mitochondria in cardiomyocytes. These findings suggest MG53's interactions with mitochondria could be an attractive avenue for developing MG53 as a targeted protein therapy for cardioprotection.
Collapse
|
29
|
Wang Z, Li H, Wang H, Li X, Zhang Q, Wang H, Li K, Qiu Y. TRIM72 exerts antitumor effects in breast cancer and modulates lactate production and MCT4 promoter activity by interacting with PPP3CA. Anticancer Drugs 2022; 33:489-501. [PMID: 35324524 PMCID: PMC8997701 DOI: 10.1097/cad.0000000000001304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022]
Abstract
A hypoxic tumor microenvironment (TME) promotes cancer progression, yet its value as a therapeutic target remains underexploited. Tripartite motif-containing 72 (TRIM72) may protect cells against various stresses including hypoxia. Recently, low TRIM72 expression has been implicated in cancer progression. However, the biological role and molecular mechanism of TRIM72 in breast cancer (BC) remain unclear. Herein, we analyzed the TRIM72 expression in BC tissue and cell lines by western blot (WB) and quantitative reverse transcription-PCR. We established the overexpression of TRIM72 using plasmids and lentiviral-mediated upregulation, as well as downregulation of protein phosphatase 3 catalytic subunit alpha (PPP3CA) by siRNA. The tumor-suppressive roles of TRIM72 were assessed on BT549 and MDA-MB-231 cells by MTS, Transwell, and flow cytometry assays in vitro and in xenografted tumors in vivo. The molecular mechanism of TRIM72 was investigated by luciferase reporter and co-immunoprecipitation (Co-IP) assay. Lactate production was measured by ELISA under hypoxic environments induced by CoCl2. Moreover, the expression of PI3K/Akt/mTOR pathway-associated proteins was detected by WB in BC cells. Results showed that TRIM72 was downregulated in BC. Overexpression of TRIM72 inhibited tumor proliferation and invasion in vitro and in a xenograft tumor model. Mechanistically, PPP3CA altered the inhibitory effects of TRIM72 on hypoxia-induced lactate production and monocarboxylate transporter 4-promoter activity, as well as the effect of the PI3K/Akt/mTOR signaling pathway. Our study suggests that TRIM72 modulates the TME and plays tumor-suppressive roles in BC progression. Therefore, TRIM72 may serve as a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Zheng Wang
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong
| | - Haixia Li
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
| | - Hongxia Wang
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
| | - Xin Li
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
| | - Qiong Zhang
- Clinic Laboratory, Zhuzhou Central Hospital, Zhuzhou, Hunan
| | - Haifang Wang
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
| | - Kui Li
- Huayin Medical Laboratory Center Co., Ltd, Guangzhou, Guangdong, China
| | - Yurong Qiu
- Laboratory Medicine Center, The First School of Clinical Medicine, Southern Medical University
- Huayin Medical Laboratory Center Co., Ltd, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Wang Q, Park KH, Geng B, Chen P, Yang C, Jiang Q, Yi F, Tan T, Zhou X, Bian Z, Ma J, Zhu H. MG53 Inhibits Necroptosis Through Ubiquitination-Dependent RIPK1 Degradation for Cardiac Protection Following Ischemia/Reperfusion Injury. Front Cardiovasc Med 2022; 9:868632. [PMID: 35711363 PMCID: PMC9193967 DOI: 10.3389/fcvm.2022.868632] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
RationaleWhile reactive oxygen species (ROS) has been recognized as one of the main causes of cardiac injury following myocardial infarction, the clinical application of antioxidants has shown limited effects on protecting hearts against ischemia–reperfusion (I/R) injury. Thus, the precise role of ROS following cardiac injury remains to be fully elucidated.ObjectiveWe investigated the role of mitsugumin 53 (MG53) in regulating necroptosis following I/R injury to the hearts and the involvement of ROS in MG53-mediated cardioprotection.Methods and ResultsAntioxidants were used to test the role of ROS in MG53-mediated cardioprotection in the mouse model of I/R injury and induced human pluripotent stem cells (hiPSCs)-derived cardiomyocytes subjected to hypoxia or re-oxygenation (H/R) injury. Western blotting and co-immunoprecipitation were used to identify potential cell death pathways that MG53 was involved in. CRISPR/Cas 9-mediated genome editing and mutagenesis assays were performed to further identify specific interaction amino acids between MG53 and its ubiquitin E3 ligase substrate. We found that MG53 could protect myocardial injury via inhibiting the necroptosis pathway. Upon injury, the generation of ROS in the infarct zone of the hearts promoted interaction between MG53 and receptor-interacting protein kinase 1 (RIPK1). As an E3 ubiquitin ligase, MG53 added multiple ubiquitin chains to RIPK1 at the sites of K316, K604, and K627 for proteasome-mediated RIPK1 degradation and inhibited necroptosis. The application of N-acetyl cysteine (NAC) disrupted the interaction between MG53 and RIPK1 and abolished MG53-mediated cardioprotective effects.ConclusionsTaken together, this study provided a molecular mechanism of a potential beneficial role of ROS following acute myocardial infarction. Thus, fine-tuning ROS levels might be critical for cardioprotection.
Collapse
|
31
|
Paleo BJ, McElhanon KE, Bulgart HR, Banford KK, Beck EX, Sattler KM, Goines BN, Ratcliff SL, Crowe KE, Weisleder N. Reduced Sarcolemmal Membrane Repair Exacerbates Striated Muscle Pathology in a Mouse Model of Duchenne Muscular Dystrophy. Cells 2022; 11:1417. [PMID: 35563723 PMCID: PMC9100510 DOI: 10.3390/cells11091417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a common X-linked degenerative muscle disorder that involves mutations in the DMD gene that frequently reduce the expression of the dystrophin protein, compromising the structural integrity of the sarcolemmal membrane and leaving it vulnerable to injury during cycles of muscle contraction and relaxation. This results in an increased frequency of sarcolemma disruptions that can compromise the barrier function of the membrane and lead to death of the myocyte. Sarcolemmal membrane repair processes can potentially compensate for increased membrane disruptions in DMD myocytes. Previous studies demonstrated that TRIM72, a muscle-enriched tripartite motif (TRIM) family protein also known as mitsugumin 53 (MG53), is a component of the cell membrane repair machinery in striated muscle. To test the importance of membrane repair in striated muscle in compensating for the membrane fragility in DMD, we crossed TRIM72/MG53 knockout mice into the mdx mouse model of DMD. These double knockout (DKO) mice showed compromised sarcolemmal membrane integrity compared to mdx mice, as measured by immunoglobulin G staining and ex vivo muscle laser microscopy wounding assays. We also found a significant decrease in muscle ex vivo contractile function as compared to mdx mice at both 6 weeks and 1.5 years of age. As the DKO mice aged, they developed more extensive fibrosis in skeletal muscles compared to mdx. Our findings indicate that TRIM72/MG53-mediated membrane repair can partially compensate for the sarcolemmal fragility associated with DMD and that the loss of membrane repair results in increased pathology in the DKO mice.
Collapse
Affiliation(s)
- Brian J. Paleo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kevin E. McElhanon
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Hannah R. Bulgart
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kassidy K. Banford
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Eric X Beck
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| | - Kristina M. Sattler
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Briana N. Goines
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Shelby L. Ratcliff
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Kelly E. Crowe
- Department of Biology, School of Behavioral & Natural Sciences, Mount St. Joseph University, Cincinnati, OH 45233, USA; (K.M.S.); (B.N.G.); (S.L.R.); (K.E.C.)
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (B.J.P.); (K.E.M.); (H.R.B.); (K.K.B.); (E.X.B.)
| |
Collapse
|
32
|
Cui KM, Hu ZP, Wang YL. MG53 represses high glucose-induced inflammation and angiogenesis in human retinal endothelial cells by repressing the EGR1/STAT3 axis. Immunopharmacol Immunotoxicol 2022; 44:484-491. [PMID: 35438597 DOI: 10.1080/08923973.2022.2054426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a vascular complication of diabetes mellitus that leads to visual injury and blindness. Both angiogenesis and inflammation play an important role in the pathogenesis of DR. Here we aimed to explore the mechanisms of mitsugumin 53 (MG53) in ameliorating the dysfunction induced by high glucose (HG) in humans retinal microvascular endothelial cells (HRECs). METHODS HRECs were subjected to HG in the presence or absence of MG53 overexpression. The effect of MG53 on cell viability and inflammatory response in HG-treated HRECs was measured using the Cell Counting Kit-8 and ELISAs, respectively. Expression of MG53, EGR1, p-STAT3, FGF2, TGFB1, and Angiopoietin-1 in HG-treated HRECs was quantified by western blot or quantitative real-time polymerase chain reaction. RESULTS HG significantly downregulated MG53 in HRECs, which reduced cell viability while inducing angiogenesis and inflammatory response. Upregulation of MG53 reversed these effects of HG. MG53 directly interacted with EGR1 and repressed its expression, which decreased phosphorylation of STAT3 and downregulated FGF2, TGFB1, and Angiopoietin-1. EGR1 up-regulation or STAT3 activation antagonized the protective effects of MG53. CONCLUSION MG53 alleviates HG-induced dysfunction in HRECs by repressing EGR1/STAT3 signaling. Thereby MG53 may have therapeutic potential in DR.
Collapse
Affiliation(s)
- Kun-Ming Cui
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Zhen-Ping Hu
- Department of Endocrinology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Ya-Li Wang
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
33
|
Han Y, Black S, Gong Z, Chen Z, Ko JK, Zhou Z, Xia T, Fang D, Yang D, Gu D, Zhang Z, Ren H, Duan X, Reader BF, Chen P, Li Y, Kim JL, Li Z, Xu X, Guo L, Zhou X, Haggard E, Zhu H, Tan T, Chen K, Ma J, Zeng C. Membrane-delimited signaling and cytosolic action of MG53 preserve hepatocyte integrity during drug-induced liver injury. J Hepatol 2022; 76:558-567. [PMID: 34736969 DOI: 10.1016/j.jhep.2021.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/20/2021] [Accepted: 10/18/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Drug-induced liver injury (DILI) remains challenging to treat and is still a leading cause of acute liver failure. MG53 is a muscle-derived tissue-repair protein that circulates in the bloodstream and whose physiological role in protection against DILI has not been examined. METHODS Recombinant MG53 protein (rhMG53) was administered exogenously, using mice with deletion of Mg53 or Ripk3. Live-cell imaging, histological, biochemical, and molecular studies were used to investigate the mechanisms that underlie the extracellular and intracellular action of rhMG53 in hepatoprotection. RESULTS Systemic administration of rhMG53 protein, in mice, can prophylactically and therapeutically treat DILI induced through exposure to acetaminophen, tetracycline, concanavalin A, carbon tetrachloride, or thioacetamide. Circulating MG53 protects hepatocytes from injury through direct interaction with MLKL at the plasma membrane. Extracellular MG53 can enter hepatocytes and act as an E3-ligase to mitigate RIPK3-mediated MLKL phosphorylation and membrane translocation. CONCLUSIONS Our data show that the membrane-delimited signaling and cytosolic dual action of MG53 effectively preserves hepatocyte integrity during DILI. rhMG53 may be a potential treatment option for patients with DILI. LAY SUMMARY Interventions to treat drug-induced liver injury and halt its progression into liver failure are of great value to society. The present study reveals that muscle-liver cross talk, with MG53 as a messenger, serves an important role in liver cell protection. Thus, MG53 is a potential treatment option for patients with drug-induced liver injury.
Collapse
Affiliation(s)
- Yu Han
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Sylvester Black
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Zhengfan Gong
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Zhi Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jae-Kyun Ko
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Zhongshu Zhou
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Tianyang Xia
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Dandong Fang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Donghai Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Daqian Gu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Xudong Duan
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Brenda F Reader
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yongsheng Li
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jung-Lye Kim
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Zhongguang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Laboratory of Cell Biology, Genetics and Developmental Biology, Shannxi Normal University College of Life Sciences, Xi'an, China
| | - Xuehong Xu
- Laboratory of Cell Biology, Genetics and Developmental Biology, Shannxi Normal University College of Life Sciences, Xi'an, China
| | - Li Guo
- Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xinyu Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Erin Haggard
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
34
|
Li H, Rosas L, Li Z, Bian Z, Li X, Choi K, Cai C, Zhou X, Tan T, Bergdall V, Whitson B, Davis I, Ma J. MG53 attenuates nitrogen mustard-induced acute lung injury. J Cell Mol Med 2022; 26:1886-1895. [PMID: 35199443 PMCID: PMC8980905 DOI: 10.1111/jcmm.16917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/24/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
Nitrogen mustard (NM) is an alkylating vesicant that causes severe pulmonary injury. Currently, there are no effective means to counteract vesicant‐induced lung injury. MG53 is a vital component of cell membrane repair and lung protection. Here, we show that mice with ablation of MG53 are more susceptible to NM‐induced lung injury than the wild‐type mice. Treatment of wild‐type mice with exogenous recombinant human MG53 (rhMG53) protein ameliorates NM‐induced lung injury by restoring arterial blood oxygen level, by improving dynamic lung compliance and by reducing airway resistance. Exposure of lung epithelial and endothelial cells to NM leads to intracellular oxidative stress that compromises the intrinsic cell membrane repair function of MG53. Exogenous rhMG53 protein applied to the culture medium protects lung epithelial and endothelial cells from NM‐induced membrane injury and oxidative stress, and enhances survival of the cells. Additionally, we show that loss of MG53 leads to increased vulnerability of macrophages to vesicant‐induced cell death. Overall, these findings support the therapeutic potential of rhMG53 to counteract vesicant‐induced lung injury.
Collapse
Affiliation(s)
- Haichang Li
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Lucia Rosas
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Zhongguang Li
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Zehua Bian
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Xiuchun Li
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Kyounghan Choi
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Chuanxi Cai
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Xinyu Zhou
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Tao Tan
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Valerie Bergdall
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bryan Whitson
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Ian Davis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
35
|
Li H, Duann P, Li Z, Zhou X, Ma J, Rovin BH, Lin PH. The cell membrane repair protein MG53 modulates transcription factor NF-κB signaling to control kidney fibrosis. Kidney Int 2022; 101:119-130. [PMID: 34757120 PMCID: PMC8741748 DOI: 10.1016/j.kint.2021.09.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/21/2021] [Accepted: 09/16/2021] [Indexed: 01/03/2023]
Abstract
Kidney fibrosis is associated with the progression of acute kidney injury to chronic kidney disease. MG53, a cell membrane repair protein, has been shown to protect against injury to kidney epithelial cells and acute kidney injury. Here, we evaluated the role of MG53 in modulation of kidney fibrosis in aging mice and in mice with unilateral ureteral obstruction (UUO) a known model of progressive kidney fibrosis. Mice with ablation of MG53 developed more interstitial fibrosis with age than MG53-intact mice of the same age. Similarly, in the absence of MG53, kidney fibrosis was exaggerated compared to mice with intact MG53 in the obstructed kidney compared to the contralateral unobstructed kidney or the kidneys of sham operated mice. The ureteral obstructed kidneys from MG53 deficient mice also showed significantly more inflammation than ureteral obstructed kidneys from MG53 intact mice. In vitro experiments demonstrated that MG53 could enter the nuclei of proximal tubular epithelial cells and directly interact with the p65 component of transcription factor NF-κB, providing a possible explanation of enhanced inflammation in the absence of MG53. To test this, enhanced MG53 expression through engineered cells or direct recombinant protein delivery was given to mice subject to UUO. This reduced NF-κB activation and inflammation and attenuated kidney fibrosis. Thus, MG53 may have a therapeutic role in treating chronic kidney inflammation and thereby provide protection against fibrosis that leads to the chronic kidney disease phenotype.
Collapse
Affiliation(s)
- Haichang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Pu Duann
- Research and Development, Salem Veteran Affairs Medical Center, Salem, VA 24153, USA
| | - Zhongguang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Xinyu Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Brad H. Rovin
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA,Correspondence: Pei-Hui Lin, Ph.D., Tel. (614) 292-2802, ; Brad H. Rovin, M.D., Tel. (614) 293-4997,
| | - Pei-Hui Lin
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210,Correspondence: Pei-Hui Lin, Ph.D., Tel. (614) 292-2802, ; Brad H. Rovin, M.D., Tel. (614) 293-4997,
| |
Collapse
|
36
|
He F, Wu Z, Wang Y, Yin L, Lu S, Dai L. Downregulation of tripartite motif protein 11 attenuates cardiomyocyte apoptosis after ischemia/reperfusion injury via DUSP1-JNK1/2. Cell Biol Int 2021; 46:148-157. [PMID: 34694031 PMCID: PMC9299661 DOI: 10.1002/cbin.11716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 11/11/2022]
Abstract
Currently, the prevention of ischemic diseases such as myocardial infarction associated with ischemia/reperfusion (I/R) injury remains to be a challenge. Thus, this study was designed to explore the effects of tripartite motif protein 11 (TRIM11) on cardiomyocytes I/R injury and its underlying mechanism. Cardiomyocytes AC16 were used to establish an I/R injury cell model. After TRIM11 downregulation in I/R cells, cell proliferation (0, 12, 24, and 48 h) and apoptosis at 48 h as well as the related molecular changes in oxidative stress‐related pathways was detected. Further, after the treatment of TRIM11 overexpression, SP600125, or DUSP1 overexpression, cell proliferation, apoptosis, and related genes were detected again. As per our findings, it was determined that TRIM11 was highly expressed in the cardiomyocytes AC16 after I/R injury. Downregulation of TRIM11 was determined to have significantly reduced I/R‐induced proliferation suppression and apoptosis. Besides, I/R‐activated c‐Jun N‐terminal kinase (JNK) signaling and cleaved caspase 3 and Bax expression were significantly inhibited by TRIM11 downregulation. In addition, the overexpression of TRIM11 significantly promoted apoptosis in AC16 cells, and JNK1/2 inhibition and DUSP1 overexpression potently counteracted the induction of TRIM11 overexpression in AC16 cells. These suggested that the downregulation of TRIM11 attenuates apoptosis in AC16 cells after I/R injury probably through the DUSP1‐JNK1/2 pathways.
Collapse
Affiliation(s)
- Fang He
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Zheqian Wu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Yong Wang
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lili Yin
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Shijie Lu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lihua Dai
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| |
Collapse
|
37
|
Huang Y, Xiao Y, Zhang X, Huang X, Li Y. The Emerging Roles of Tripartite Motif Proteins (TRIMs) in Acute Lung Injury. J Immunol Res 2021; 2021:1007126. [PMID: 34712740 PMCID: PMC8548118 DOI: 10.1155/2021/1007126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) is an inflammatory disorder of the lung that causes high mortality and lacks any pharmacological intervention. Ubiquitination plays a critical role in the pathogenesis of ALI as it regulates the alveolocapillary barrier and the inflammatory response. Tripartite motif (TRIM) proteins are one of the subfamilies of the RING-type E3 ubiquitin ligases, which contains more than 80 distinct members in humans involved in a broad range of biological processes including antivirus innate immunity, development, and tumorigenesis. Recently, some studies have shown that several members of TRIM family proteins play important regulatory roles in inflammation and ALI. Herein, we integrate emerging evidence regarding the roles of TRIMs in ALI. Articles were selected from the searches of PubMed database that had the terms "acute lung injury," "ubiquitin ligases," "tripartite motif protein," "inflammation," and "ubiquitination" using both MeSH terms and keywords. Better understanding of these mechanisms may ultimately lead to novel therapeutic approaches by targeting TRIMs for ALI treatment.
Collapse
Affiliation(s)
- Yingjie Huang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Xiao
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xuekang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
38
|
Li W, Tan Y, Gao F, Xiang M. Overexpression of TRIM3 protects against LPS-induced acute kidney injury via repressing IRF3 pathway and NLRP3 inflammasome. Int Urol Nephrol 2021; 54:1331-1342. [PMID: 34643859 DOI: 10.1007/s11255-021-03017-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023]
Abstract
PURPOSE The pathological process of sepsis involves multiple system organs, including kidney. Sepsis-induced acute kidney injury (AKI) has high morbidity and high mortality. Overproduced inflammatory factors contribute to the occurrence and evolvement of AKI. Here, the role and underlying mechanism of tripartite motif containing 3 (TRIM3) and in AKI was explored. METHODS Lipopolysaccharide (LPS) was used for constructing AKI model both in vitro and in vivo. RT-PCR and western blot were performed to detect TRIM3, Interferon regulatory factor 3 (IRF3) and NLRP3-ASC-Caspase1 inflammasome. Upon selectively regulating the TRIM3 or IRF3 expression, the proliferation, apoptosis and inflammatory response were detected. The interaction between TRIM3 and IRF3 was verified by Immunoprecipitation (IP). RESULTS TRIM3 was down-regulated in mediated injury renal tubular epithelial cell line HK-2 treated with LPS. Overexpression of TRIM3 promoted cell viability and reduced apoptosis. In addition, overexpression of TRIM3 inhibited the expression of inflammatory factors (IL-1β, IL-6, TNF-α and IL-18), dampened the phosphorylation of IRF3 and repressed NLRP3 inflammasome activation. Furthermore, TRIM3 overexpression significantly eased the LPS-induced damage on AKI rat model and decreased the serum creatinine and urea nitrogen levels in rat kidney tissues. The results of immunohistochemistry (IHC) and Western blot manifested that TRIM3 was increased dramatically after TRIM3 was overexpressed in the rat kidney tissues, while IRF3 and NLRP3-ASC-Caspase1 inflammasome were significantly repressed following TRIM3 upregulation in the kidney tissues. Mechanistically, TRIM3 interacted with IRF3 and inhibited its phosphorylation. CONCLUSION Overexpression of TRIM3 protected against LPS-induced AKI by inhibiting the IRF3 pathway and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Weiwei Li
- The Central Hospital of ENSHI TUJIA AND MIAO Autonomous Prefecture, 158 Wuyang County Street, Enshi City, 445000, Hubei, China
| | - Yunzhi Tan
- The Central Hospital of ENSHI TUJIA AND MIAO Autonomous Prefecture, 158 Wuyang County Street, Enshi City, 445000, Hubei, China
| | - Feng Gao
- The Central Hospital of ENSHI TUJIA AND MIAO Autonomous Prefecture, 158 Wuyang County Street, Enshi City, 445000, Hubei, China.
| | - Miaomiao Xiang
- The Central Hospital of ENSHI TUJIA AND MIAO Autonomous Prefecture, 158 Wuyang County Street, Enshi City, 445000, Hubei, China
| |
Collapse
|
39
|
Yi J, Li A, Li X, Park K, Zhou X, Yi F, Xiao Y, Yoon D, Tan T, Ostrow LW, Ma J, Zhou J. MG53 Preserves Neuromuscular Junction Integrity and Alleviates ALS Disease Progression. Antioxidants (Basel) 2021; 10:antiox10101522. [PMID: 34679657 PMCID: PMC8532806 DOI: 10.3390/antiox10101522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory failure from progressive respiratory muscle weakness is the most common cause of death in amyotrophic lateral sclerosis (ALS). Defects in neuromuscular junctions (NMJs) and progressive NMJ loss occur at early stages, thus stabilizing and preserving NMJs represents a potential therapeutic strategy to slow ALS disease progression. Here we demonstrate that NMJ damage is repaired by MG53, an intrinsic muscle protein involved in plasma membrane repair. Compromised diaphragm muscle membrane repair and NMJ integrity are early pathological events in ALS. Diaphragm muscles from ALS mouse models show increased susceptibility to injury and intracellular MG53 aggregation, which is also a hallmark of human muscle samples from ALS patients. We show that systemic administration of recombinant human MG53 protein in ALS mice protects against injury to diaphragm muscle, preserves NMJ integrity, and slows ALS disease progression. As MG53 is present in circulation in rodents and humans under physiological conditions, our findings provide proof-of-concept data supporting MG53 as a potentially safe and effective therapy to mitigate ALS progression.
Collapse
Affiliation(s)
- Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Kiho Park
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Xinyu Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Frank Yi
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Yajuan Xiao
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Dosuk Yoon
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
| | - Lyle W. Ostrow
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (K.P.); (X.Z.); (F.Y.); (T.T.)
- Correspondence: (J.M.); (J.Z.)
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA; (J.Y.); (A.L.); (X.L.)
- Department of Physiology, Kansas City University of Medicine and Biosciences, Kansas City, MO 64106, USA; (Y.X.); (D.Y.)
- Correspondence: (J.M.); (J.Z.)
| |
Collapse
|
40
|
Li H, Lin PH, Gupta P, Li X, Zhao SL, Zhou X, Li Z, Wei S, Xu L, Han R, Lu J, Tan T, Yang DH, Chen ZS, Pawlik TM, Merritt RE, Ma J. MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer. Mol Cancer 2021; 20:118. [PMID: 34521423 PMCID: PMC8439062 DOI: 10.1186/s12943-021-01418-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022] Open
Abstract
Background Cancer cells develop resistance to chemotherapeutic intervention by excessive formation of stress granules (SGs), which are modulated by an oncogenic protein G3BP2. Selective control of G3BP2/SG signaling is a potential means to treat non-small cell lung cancer (NSCLC). Methods Co-immunoprecipitation was conducted to identify the interaction of MG53 and G3BP2. Immunohistochemistry and live cell imaging were performed to visualize the subcellular expression or co-localization. We used shRNA to knock-down the expression MG53 or G3BP2 to test the cell migration and colony formation. The expression level of MG53 and G3BP2 in human NSCLC tissues was tested by western blot analysis. The ATO-induced oxidative stress model was used to examine the effect of rhMG53 on SG formation. Moue NSCLC allograft experiments were performed on wild type and transgenic mice with either knockout of MG53, or overexpression of MG53. Human NSCLC xenograft model in mice was used to evaluate the effect of MG53 overexpression on tumorigenesis. Results We show that MG53, a member of the TRIM protein family (TRIM72), modulates G3BP2 activity to control lung cancer progression. Loss of MG53 results in the progressive development of lung cancer in mg53-/- mice. Transgenic mice with sustained elevation of MG53 in the bloodstream demonstrate reduced tumor growth following allograft transplantation of mouse NSCLC cells. Biochemical assay reveals physical interaction between G3BP2 and MG53 through the TRIM domain of MG53. Knockdown of MG53 enhances proliferation and migration of NSCLC cells, whereas reduced tumorigenicity is seen in NSCLC cells with knockdown of G3BP2 expression. The recombinant human MG53 (rhMG53) protein can enter the NSCLC cells to induce nuclear translation of G3BP2 and block arsenic trioxide-induced SG formation. The anti-proliferative effect of rhMG53 on NSCLC cells was abolished with knockout of G3BP2. rhMG53 can enhance sensitivity of NSCLC cells to undergo cell death upon treatment with cisplatin. Tailored induction of MG53 expression in NSCLC cells suppresses lung cancer growth via reduced SG formation in a xenograft model. Conclusion Overall, these findings support the notion that MG53 functions as a tumor suppressor by targeting G3BP2/SG activity in NSCLCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01418-3.
Collapse
Affiliation(s)
- Haichang Li
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| | - Pei-Hui Lin
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xiangguang Li
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Serena Li Zhao
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Xinyu Zhou
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Zhongguang Li
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Shengcai Wei
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Li Xu
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Renzhi Han
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Jing Lu
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Tao Tan
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Robert E Merritt
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
41
|
Whitson BA, Tan T, Gong N, Zhu H, Ma J. Muscle multiorgan crosstalk with MG53 as a myokine for tissue repair and regeneration. Curr Opin Pharmacol 2021; 59:26-32. [PMID: 34052525 PMCID: PMC8513491 DOI: 10.1016/j.coph.2021.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Through stress and injury to tissues, the cell membrane is damaged and can lead to cell death and a cascade of inflammatory events. Soluble factors that mitigate and repair membrane injury are important to normal homeostasis and are a potential therapeutic intervention for regenerative medicine. A myokine is a type of naturally occurring factors that come from muscle and have impact on remote organs. MG53, a tripartite motif-containing family protein, is such a myokine which has protective effects on lungs, kidneys, liver, heart, eye, and brain. Three mechanisms of action for the beneficial regenerative medicine potential of MG53 have been identified and consist of 1) repair of acute injury to the cellular membrane, 2) anti-inflammatory effects associated with chronic injuries, and 3) rejuvenation of stem cells for tissue regeneration. As such, MG53 has the potential to be a novel and effective regeneration medicine therapeutic.
Collapse
Affiliation(s)
- Bryan A Whitson
- Department of Surgery Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tao Tan
- Department of Surgery Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Zhu
- Department of Surgery Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jianjie Ma
- Department of Surgery Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
42
|
Hagan ML, Balayan V, McGee-Lawrence ME. Plasma membrane disruption (PMD) formation and repair in mechanosensitive tissues. Bone 2021; 149:115970. [PMID: 33892174 PMCID: PMC8217198 DOI: 10.1016/j.bone.2021.115970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/17/2021] [Indexed: 01/04/2023]
Abstract
Mammalian cells employ an array of biological mechanisms to detect and respond to mechanical loading in their environment. One such mechanism is the formation of plasma membrane disruptions (PMD), which foster a molecular flux across cell membranes that promotes tissue adaptation. Repair of PMD through an orchestrated activity of molecular machinery is critical for cell survival, and the rate of PMD repair can affect downstream cellular signaling. PMD have been observed to influence the mechanical behavior of skin, alveolar, and gut epithelial cells, aortic endothelial cells, corneal keratocytes and epithelial cells, cardiac and skeletal muscle myocytes, neurons, and most recently, bone cells including osteoblasts, periodontal ligament cells, and osteocytes. PMD are therefore positioned to affect the physiological behavior of a wide range of vertebrate organ systems including skeletal and cardiac muscle, skin, eyes, the gastrointestinal tract, the vasculature, the respiratory system, and the skeleton. The purpose of this review is to describe the processes of PMD formation and repair across these mechanosensitive tissues, with a particular emphasis on comparing and contrasting repair mechanisms and downstream signaling to better understand the role of PMD in skeletal mechanobiology. The implications of PMD-related mechanisms for disease and potential therapeutic applications are also explored.
Collapse
Affiliation(s)
- Mackenzie L Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA
| | - Vanshika Balayan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
43
|
Wang X, Li X, Ong H, Tan T, Park KH, Bian Z, Zou X, Haggard E, Janssen PM, Merritt RE, Pawlik TM, Whitson BA, Mokadam NA, Cao L, Zhu H, Cai C, Ma J. MG53 suppresses NFκB activation to mitigate age-related heart failure. JCI Insight 2021; 6:e148375. [PMID: 34292883 PMCID: PMC8492351 DOI: 10.1172/jci.insight.148375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Aging is associated with chronic oxidative stress and inflammation that impact the tissue repair and regeneration capacity. MG53 is a TRIM family protein that facilitates repair of cell membrane injury in a redox-dependent manner. Here we demonstrate that the expression of MG53 is reduced in failing human heart and aging mouse heart, concomitant with elevated NFκB activation. We evaluate the safety and efficacy of longitudinal, systemic administration of recombinant human MG53 (rhMG53) protein in aged mice. Echocardiography and pressure-volume loop measurements reveal beneficial effects of rhMG53 treatment in improving heart function of aging mice. Biochemical and histological studies demonstrate the cardioprotective effects of rhMG53 are linked to suppression of NFκB-mediated inflammation, reducing apoptotic cell death and oxidative stress in the aged heart. Repetitive administrations of rhMG53 in aged mice do not have adverse effects on major vital organ functions. These findings support the therapeutic value of rhMG53 in treating age-related decline in cardiac function.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Xiuchun Li
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Hannah Ong
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Tao Tan
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Ki Ho Park
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Zehua Bian
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Xunchang Zou
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, United States of America
| | - Erin Haggard
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Paul M Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, United States of America
| | - Robert E Merritt
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Bryan A Whitson
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Nahush A Mokadam
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Lei Cao
- The Ohio State University, Columbus, United States of America
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Chuanxi Cai
- Department of Surgery, The Ohio State University, Columbus, United States of America
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, United States of America
| |
Collapse
|
44
|
Dong J, Zhou H, Li Y, Li R, Chen N, Zheng Y, Deng X, Luo M, Wu J, Wang L. MG53 inhibits angiogenesis through regulating focal adhesion kinase signalling. J Cell Mol Med 2021; 25:7462-7471. [PMID: 34240802 PMCID: PMC8335693 DOI: 10.1111/jcmm.16777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Mitsugumin 53 (MG53), which is expressed predominantly in striated muscle, has been demonstrated to be a myokine/cardiokine secreted from striated muscle under specific conditions. The important roles of MG53 in non-striated muscle tissues have also been examined in multiple disease models. However, no previous study has implicated MG53 in the control of endothelial cell function. In order to explore the effects of MG53 on endothelial cells, human umbilical vein endothelial cells (HUVECs) were stimulated with recombinant human MG53 (rhMG53). Then, rhMG53 uptake, focal adhesion kinase (FAK)/Src/Akt/ERK1/2 signalling pathway activation, cell migration and tube formation were determined in vitro. The efficacy of rhMG53 in regulating angiogenesis was also detected in postnatal mouse retinas. The results demonstrated that rhMG53 directly entered into endothelial cells in a cholesterol-dependent manner. The uptake of rhMG53 directly bound to FAK in endothelial cells, which resulted in a significant decrease in FAK phosphorylation at Y397. Accompanied by the dephosphorylation of FAK, rhMG53 uncoupled FAK-Src interaction and reduced the phosphorylation of Src at Y416. Consequently, the activation of FAK/Src downstream signalling pathways, such as Akt and ERK1/2, was also significantly inhibited by rhMG53. Furthermore, rhMG53 remarkably decreased HUVEC migration and tube formation in vitro and postnatal mouse retinal angiogenesis in vivo. Taken together, these data indicate that rhMG53 inhibits angiogenesis through regulating FAK/Src/Akt/ERK1/2 signalling pathways. This may provide a novel molecular mechanism for the impaired angiogenesis in ischaemic diseases.
Collapse
Affiliation(s)
- Jinling Dong
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, Laboratory for Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Haiyan Zhou
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, Laboratory for Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yongjie Li
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, Laboratory for Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Rong Li
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, Laboratory for Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ni Chen
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, Laboratory for Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Youkun Zheng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, Laboratory for Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xin Deng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, Laboratory for Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mao Luo
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, Laboratory for Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, Laboratory for Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Liqun Wang
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China.,Department of Pharmacology, Laboratory for Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
45
|
Zhong W, Benissan-Messan DZ, Ma J, Cai C, Lee PHU. Cardiac effects and clinical applications of MG53. Cell Biosci 2021; 11:115. [PMID: 34183055 PMCID: PMC8240287 DOI: 10.1186/s13578-021-00629-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Heart disease remains the leading cause of mortality globally, so further investigation is required to identify its underlying mechanisms and potential targets for treatment and prevention. Mitsugumin 53 (MG53), also known as TRIM72, is a TRIM family protein that was found to be involved in cell membrane repair and primarily found in striated muscle. Its role in skeletal muscle regeneration and myogenesis has been well documented. However, accumulating evidence suggests that MG53 has a potentially protective role in heart tissue, including in ischemia/reperfusion injury of the heart, cardiomyocyte membrane injury repair, and atrial fibrosis. This review summarizes the regulatory role of MG53 in cardiac tissues, current debates regarding MG53 in diabetes and diabetic cardiomyopathy, as well as highlights potential clinical applications of MG53 in treating cardiac pathologies.
Collapse
Affiliation(s)
- Weina Zhong
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | | | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Chuanxi Cai
- Department of Surgery, The Ohio State University, Columbus, OH, USA.
| | - Peter H U Lee
- Department of Surgery, The Ohio State University, Columbus, OH, USA.
- Department of Pathology and Laboratory Medicine, Brown University, Campus Box G-E5, 70 Ship Street, Providence, RI, 02912, USA.
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, USA.
| |
Collapse
|
46
|
Guo O, Ju B, Shawver MH, Geng B, Wei S, Early T, Yi F, Tan T, Chandler HL, Ma J, Zhu H. Recombinant Human MG53 Protein Protects Against Alkaline-Induced Corneal Injuries in Mice. Mil Med 2021; 186:486-490. [PMID: 33499504 DOI: 10.1093/milmed/usaa357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/05/2020] [Accepted: 09/10/2020] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION The current study was designed to test the potential role of recombinant human MG53 (rhMG53) protein on protecting against alkaline-induced corneal injury in mice. MATERIALS AND METHODS A round filter paper with 2-mm diameter was soaked in 1 mol/L of NaOH solution. The mouse alkaline injury was generated by placing the filter paper directly on the cornea for 30 seconds and washed with 30-mL saline; 10 µL of rhMG53 solution (20 µg/mL) or saline control was topically administrated on the mouse corneas (twice per day for 10 days). Re-epithelialization was measured by fluorescein staining and imaged by a slit lamp equipped with a digital camera. Clinical neovascularization and opacity scores were measured every day after injury. Ten days after injury, mice were sacrificed and corneas were dissected out for flat mount staining of CD31 for neovascularization. RESULTS MG53 was present in both dog aqueous humor and human tears. mg53-/- corneas were more susceptible to alkaline-induced corneal injury. Topical treatment of rhMG53 improved re-epithelialization, suppressed neovascularization, and fibrosis induced by alkaline injury. CONCLUSIONS rhMG53 may be an effective means to treat corneal wounding.
Collapse
Affiliation(s)
- Owen Guo
- Dublin Jerome High School, Dublin, OH 43016, USA.,Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Brent Ju
- Upper Arlington High School, Upper Arlington, OH 43221, USA.,Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - McKinley H Shawver
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Bingchuan Geng
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Siqi Wei
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Terriah Early
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Frank Yi
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,TRIM-edicine, Inc, Columbus, OH 43212, USA
| | - Heather L Chandler
- College of Optometry, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,Dublin Jerome High School, Dublin, OH 43016, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,Dublin Jerome High School, Dublin, OH 43016, USA
| |
Collapse
|
47
|
Whitson BA, Mulier K, Li H, Zhou X, Cai C, Black SM, Tan T, Ma J, Beilman GJ. MG53 as a Novel Therapeutic Protein to Treat Acute Lung Injury. Mil Med 2021; 186:339-345. [PMID: 33499468 DOI: 10.1093/milmed/usaa313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 09/01/2020] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Lung injury has several inciting etiologies ranging from trauma (contusion and hemorrhage) to ischemia reperfusion injury. Reflective of the injury, tissue and cellular injury increases proportionally with the injury stress and is an area of potential intervention to mitigate the injury. This study aims to evaluate the therapeutic benefits of recombinant human MG53 (rhMG53) protein in porcine models of acute lung injury (ALI). MATERIALS AND METHODS We utilized live cell imaging to monitor the movement of MG53 in cultured human bronchial epithelial cells following mechanical injury. The in vivo efficacy of rhMG53 was evaluated in a porcine model of hemorrhagic shock/contusive lung injury. Varying doses of rhMG53 (0, 0.2, or 1 mg/kg) were administered intravenously to pigs after induction of hemorrhagic shock/contusive induced ALI. Ex vivo lung perfusion system enabled assessment of the isolated porcine lung after a warm ischemic induced injury with rhMG53 supplementation in the perfusate (1 mg/mL). RESULTS MG53-mediated cell membrane repair is preserved in human bronchial epithelial cells. rhMG53 mitigates lung injury in the porcine model of combined hemorrhagic shock/contusive lung injury. Ex vivo lung perfusion administration of rhMG53 reduces warm ischemia-induced injury to the isolated porcine lung. CONCLUSIONS MG53 is an endogenous protein that circulates in the bloodstream. Therapeutic treatment with exogenous rhMG53 may be part of a strategy to restore (partially or completely) structural morphology and/or functional lung integrity. Systemic administration of rhMG53 constitutes a potential effective therapeutic means to combat ALI.
Collapse
Affiliation(s)
- Bryan A Whitson
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,Department of Surgery, Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kristine Mulier
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Haichang Li
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Xinyu Zhou
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Chuanxi Cai
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Sylvester M Black
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,Department of Surgery, Collaboration for Organ Perfusion, Protection, Engineering and Regeneration (COPPER) Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.,TRIM-edicine, Inc., Columbus, OH 43212, USA
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Greg J Beilman
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
48
|
Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol 2021; 19:71. [PMID: 33849525 PMCID: PMC8042475 DOI: 10.1186/s12915-021-00972-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.
Collapse
Affiliation(s)
- Dustin A Ammendolia
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - William M Bement
- Center for Quantitative Cell Imaging and Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
49
|
Zhu D, Zhao Y, Luo Y, Qian X, Zhang Z, Jiang G, Guo F. Irg1-itaconate axis protects against acute kidney injury via activation of Nrf2. Am J Transl Res 2021; 13:1155-1169. [PMID: 33841646 PMCID: PMC8014393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Acute kidney injury (AKI) is a common clinical implication with increased tissue damage, uncontrolled immune responses, and risk of mortality, in which ischemia-reperfusion injury (IRI) is one of the leading causes. As critical role for metabolic remodeling in inflammation, Irg1-itaconate axis has received much attention for its immunomodulation in the control of the inflammation. However, its role in the AKI and IRI remains unknown. Here, we found that Irg1 expression was negatively correlated with the expression of inflammatory cytokines during ischemia-reperfusion injury. And Irg1 deficiency promotes renal inflammation and ischemia-reperfusion injury in vivo. Itaconate treatment promoted the survival of WT mice from lethal ischemia and protected against renal IRI and systemic inflammation. Mechanistically, dimethyl itaconate protected renal cells from oxidative stress and prevented macrophage activation by enhancing the translocation of Nrf2 into the nuclei. Our study highlighted the importance of the Irg1-itaconate axis in the protecting against ischemia-reperfusion injury and acute kidney injury, providing potential therapeutic targets to control AKI.
Collapse
Affiliation(s)
- Dongdong Zhu
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, PR China
| | - Yuanyu Zhao
- Department of Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, PR China
| | - Yi Luo
- Department of Organ Transplantation, Changzheng Hospital, Navy Medical UniversityShanghai, PR China
| | - Xiaoqian Qian
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, PR China
| | - Zhen Zhang
- Department of Urology, The Linyi People’s HospitalLinyi, Shandong Province, PR China
| | - Gengru Jiang
- Department of Nephrology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, PR China
| | - Fengfu Guo
- Department of Urology, The Linyi People’s HospitalLinyi, Shandong Province, PR China
| |
Collapse
|
50
|
MG53 is not a critical regulator of insulin signaling pathway in skeletal muscle. PLoS One 2021; 16:e0245179. [PMID: 33566837 PMCID: PMC7875368 DOI: 10.1371/journal.pone.0245179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
In type 2 diabetes (T2D), both muscle and liver are severely resistant to insulin action. Muscle insulin resistance accounts for more than 80% of the impairment in total body glucose disposal in T2D patients and is often characterized by an impaired insulin signaling. Mitsugumin 53 (MG53), a muscle-specific TRIM family protein initially identified as a key regulator of cell membrane repair machinery has been suggested to be a critical regulator of muscle insulin signaling pathway by acting as ubiquitin E3 ligase targeting both the insulin receptor and insulin receptor substrate 1 (IRS1). Here, we show using in vitro and in vivo approaches that MG53 is not a critical regulator of insulin signaling and glucose homeostasis. First, MG53 expression is not consistently regulated in skeletal muscle from various preclinical models of insulin resistance. Second, MG53 gene knock-down in muscle cells does not lead to impaired insulin response as measured by Akt phosphorylation on Serine 473 and glucose uptake. Third, recombinant human MG53 does not alter insulin response in both differentiated C2C12 and human skeletal muscle cells. Fourth, ectopic expression of MG53 in HEK293 cells lacking endogenous MG53 expression fails to alter insulin response as measured by Akt phosphorylation. Finally, both male and female mg53 -/- mice were not resistant to high fat induced obesity and glucose intolerance compared to wild-type mice. Taken together, these results strongly suggest that MG53 is not a critical regulator of insulin signaling pathway in skeletal muscle.
Collapse
|