1
|
Miao C, Huang Y, Zhang C, Wang X, Wang B, Zhou X, Song Y, Wu P, Chen ZS, Feng Y. Post-translational modifications in drug resistance. Drug Resist Updat 2025; 78:101173. [PMID: 39612546 DOI: 10.1016/j.drup.2024.101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/24/2024] [Accepted: 11/16/2024] [Indexed: 12/01/2024]
Abstract
Resistance to antitumor drugs, antimicrobial drugs, and antiviral drugs severely limits treatment effectiveness and cure rate of diseases. Protein post-translational modifications (PTMs) represented by glycosylation, ubiquitination, SUMOylation, acetylation, phosphorylation, palmitoylation, and lactylation are closely related to drug resistance. PTMs are typically achieved by adding sugar chains (glycosylation), small proteins (ubiquitination), lipids (palmitoylation), or functional groups (lactylation) to amino acid residues. These covalent additions are usually the results of signaling cascades and could be reversible, with the triggering mechanisms depending on the type of modifications. PTMs are involved in antitumor drug resistance, not only as inducers of drug resistance but also as targets for reversing drug resistance. Bacteria exhibit multiple PTMs-mediated antimicrobial drug resistance. PTMs allow viral proteins and host cell proteins to form complex interaction networks, inducing complex antiviral drug resistance. This review summarizes the important roles of PTMs in drug resistance, providing new ideas for exploring drug resistance mechanisms, developing new drug targets, and guiding treatment plans.
Collapse
Affiliation(s)
- Chenggui Miao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yurong Huang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital, Jilin University, Changchun 130021, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Bing Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yingqiu Song
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Peng Wu
- Department of Anatomy, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhe-Sheng Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
2
|
Goel R, Tomar A, Bawari S. Insights to the role of phytoconstituents in aiding multi drug resistance - Tuberculosis treatment strategies. Microb Pathog 2025; 198:107116. [PMID: 39536840 DOI: 10.1016/j.micpath.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Multidrug resistant tuberculosis (MDR-TB) have emerged as a global challenge. There are several underlying mechanisms which are involved in causing mycobacterial resistance towards antitubercular agents including post translational modifications, efflux pumps and gene mutations. This resistance necessitates the investigation of complementary therapeutic options including the use of bioactive compounds from plants. Recent studies have focused on recognising and isolating the characteristics of these compounds to assess their potential against MDR-TB. Phytoconstituents such as alkaloids, flavonoids, terpenoids, glycosides, and essential oils have shown promising antimicrobial activity against Mycobacterium tuberculosis. These compounds can either directly kill or inhibit the growth of M. tuberculosis or enhance the immune system's ability to fight against the infection. Some studies suggest that combining phytoconstituents with standard antitubercular medications works synergistically by enhancing the efficacy of drug, potentially lowering the associated risk of side effects and eventually combating resistance development. This review attempts to elucidate the potential of phytoconstituents in combating resistance in MDR-TB which hold a promise to change the course of treatment strategies in tuberculosis.
Collapse
Affiliation(s)
- Richi Goel
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Anush Tomar
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, Lake Nona, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India.
| |
Collapse
|
3
|
Su Z, Zhang W, Shi Y, Cui T, Xu Y, Yang R, Huang M, Zhou C, Zhang H, Lu T, Qu J, He ZG, Gan J, Feng Y. A bacterial methyltransferase that initiates biotin synthesis, an attractive anti-ESKAPE druggable pathway. SCIENCE ADVANCES 2024; 10:eadp3954. [PMID: 39705367 DOI: 10.1126/sciadv.adp3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/14/2024] [Indexed: 12/22/2024]
Abstract
The covalently attached cofactor biotin plays pivotal roles in central metabolism. The top-priority ESKAPE-type pathogens, Acinetobacter baumannii and Klebsiella pneumoniae, constitute a public health challenge of global concern. Despite the fact that the late step of biotin synthesis is a validated anti-ESKAPE drug target, the primary stage remains fragmentarily understood. We report the functional definition of two BioC isoenzymes (AbBioC for A. baumannii and KpBioC for K. pneumoniae) that act as malonyl-ACP methyltransferase and initiate biotin synthesis. The physiological requirement of biotin is diverse within ESKAPE pathogens. CRISPR-Cas9-based inactivation of bioC rendered A. baumannii and K. pneumoniae biotin auxotrophic. The availability of soluble AbBioC enabled the in vitro reconstitution of DTB/biotin synthesis. We solved two crystal structures of AbBioC bound to SAM cofactor (2.54 angstroms) and sinefungin (SIN) inhibitor (1.72 angstroms). Structural and functional study provided molecular basis for SIN inhibition of BioC. We demonstrated that BioC methyltransferase plays dual roles in K. pneumoniae infection and A. baumannii colistin resistance.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Weizhen Zhang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Yu Shi
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tao Cui
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongchang Xu
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Runshi Yang
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Man Huang
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Zhou
- Department of Toxicology, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
| | - Zheng-Guo He
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
- Taikang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, Hubei 430071, China
| | - Jianhua Gan
- Shanghai Sci-Tech Inno Center for Infection & Immunity, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Youjun Feng
- Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong 518112, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Qu D, Ge P, Botella L, Park SW, Lee HN, Thornton N, Bean JM, Krieger IV, Sacchettini JC, Ehrt S, Aldrich CC, Schnappinger D. Mycobacterial biotin synthases require an auxiliary protein to convert dethiobiotin into biotin. Nat Commun 2024; 15:4161. [PMID: 38755122 PMCID: PMC11099021 DOI: 10.1038/s41467-024-48448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Lipid biosynthesis in the pathogen Mycobacterium tuberculosis depends on biotin for posttranslational modification of key enzymes. However, the mycobacterial biotin synthetic pathway is not fully understood. Here, we show that rv1590, a gene of previously unknown function, is required by M. tuberculosis to synthesize biotin. Chemical-generic interaction experiments mapped the function of rv1590 to the conversion of dethiobiotin to biotin, which is catalyzed by biotin synthases (BioB). Biochemical studies confirmed that in contrast to BioB of Escherichia coli, BioB of M. tuberculosis requires Rv1590 (which we named "biotin synthase auxiliary protein" or BsaP), for activity. We found homologs of bsaP associated with bioB in many actinobacterial genomes, and confirmed that BioB of Mycobacterium smegmatis also requires BsaP. Structural comparisons of BsaP-associated biotin synthases with BsaP-independent biotin synthases suggest that the need for BsaP is determined by the [2Fe-2S] cluster that inserts sulfur into dethiobiotin. Our findings open new opportunities to seek BioB inhibitors to treat infections with M. tuberculosis and other pathogens.
Collapse
Affiliation(s)
- Di Qu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Peng Ge
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Laure Botella
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Natalie Thornton
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - James M Bean
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Inna V Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Carfrae LA, Brown ED. Nutrient stress is a target for new antibiotics. Trends Microbiol 2023; 31:571-585. [PMID: 36709096 DOI: 10.1016/j.tim.2023.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
Novel approaches are required to address the looming threat of pan-resistant Gram-negative pathogens and forestall the rise of untreatable infections. Unconventional targets that are uniquely important during infection and tractable to high-throughput drug discovery methods hold high potential for innovation in antibiotic discovery programs. In this context, inhibitors of bacterial nutrient stress are particularly exciting candidates for future antibiotic development. Amino acid, nucleotide, and vitamin biosynthesis pathways are critical for bacterial growth in nutrient-limiting conditions in the laboratory and the host. Although historically dismissed as dispensable for pathogens, a wealth of transposon mutagenesis and single-mutant studies have emerged which demonstrate that several such pathways are critical for infection. Indeed, high-throughput screens of diverse synthetic compounds and natural products have uncovered inhibitors of nutrient biosynthesis. Herein, we review bacterial nutrient biosynthesis and its role during host infection. Further, we explore screening platforms developed to search for inhibitors of these targets and highlight successes among these. Finally, we feature important and sometimes surprising connections between bacterial nutrient biosynthesis, antibiotic activity, and antibiotic resistance.
Collapse
Affiliation(s)
- Lindsey A Carfrae
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Eric D Brown
- Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4L8, Canada; Present address: Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4L8, Canada.
| |
Collapse
|
6
|
Shi Y, Cao Q, Sun J, Hu X, Su Z, Xu Y, Zhang H, Lan L, Feng Y. The opportunistic pathogen Pseudomonas aeruginosa exploits bacterial biotin synthesis pathway to benefit its infectivity. PLoS Pathog 2023; 19:e1011110. [PMID: 36689471 PMCID: PMC9894557 DOI: 10.1371/journal.ppat.1011110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that predominantly causes nosocomial and community-acquired lung infections. As a member of ESKAPE pathogens, carbapenem-resistant P. aeruginosa (CRPA) compromises the limited therapeutic options, raising an urgent demand for the development of lead compounds against previously-unrecognized drug targets. Biotin is an important cofactor, of which the de novo synthesis is an attractive antimicrobial target in certain recalcitrant infections. Here we report genetic and biochemical definition of P. aeruginosa BioH (PA0502) that functions as a gatekeeper enzyme allowing the product pimeloyl-ACP to exit from fatty acid synthesis cycle and to enter the late stage of biotin synthesis pathway. In relative to Escherichia coli, P. aeruginosa physiologically requires 3-fold higher level of cytosolic biotin, which can be attributed to the occurrence of multiple biotinylated enzymes. The BioH protein enables the in vitro reconstitution of biotin synthesis. The repertoire of biotin abundance is assigned to different mouse tissues and/or organ contents, and the plasma biotin level of mouse is around 6-fold higher than that of human. Removal of bioH renders P. aeruginosa biotin auxotrophic and impairs its intra-phagosome persistence. Based on a model of CD-1 mice mimicking the human environment, lung challenge combined with systemic infection suggested that BioH is necessary for the full virulence of P. aeruginosa. As expected, the biotin synthesis inhibitor MAC13772 is capable of dampening the viability of CRPA. Notably, MAC13772 interferes the production of pyocyanin, an important virulence factor of P. aeruginosa. Our data expands our understanding of P. aeruginosa biotin synthesis relevant to bacterial infectivity. In particular, this study represents the first example of an extracellular pathogen P. aeruginosa that exploits biotin cofactor as a fitness determinant, raising the possibility of biotin synthesis as an anti-CRPA target.
Collapse
Affiliation(s)
- Yu Shi
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qin Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jingdu Sun
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofang Hu
- Fuzhou Medical College of Nanchang University, Fuzhou, Jiangxi, China
| | - Zhi Su
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yongchang Xu
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- * E-mail: (LL); (YF)
| | - Youjun Feng
- Department of Microbiology, and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- * E-mail: (LL); (YF)
| |
Collapse
|
7
|
Xu Y, Yang J, Li W, Song S, Shi Y, Wu L, Sun J, Hou M, Wang J, Jia X, Zhang H, Huang M, Lu T, Gan J, Feng Y. Three enigmatic BioH isoenzymes are programmed in the early stage of mycobacterial biotin synthesis, an attractive anti-TB drug target. PLoS Pathog 2022; 18:e1010615. [PMID: 35816546 PMCID: PMC9302846 DOI: 10.1371/journal.ppat.1010615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) is one of the leading infectious diseases of global concern, and one quarter of the world’s population are TB carriers. Biotin metabolism appears to be an attractive anti-TB drug target. However, the first-stage of mycobacterial biotin synthesis is fragmentarily understood. Here we report that three evolutionarily-distinct BioH isoenzymes (BioH1 to BioH3) are programmed in biotin synthesis of Mycobacterium smegmatis. Expression of an individual bioH isoform is sufficient to allow the growth of an Escherichia coli ΔbioH mutant on the non-permissive condition lacking biotin. The enzymatic activity in vitro combined with biotin bioassay in vivo reveals that BioH2 and BioH3 are capable of removing methyl moiety from pimeloyl-ACP methyl ester to give pimeloyl-ACP, a cognate precursor for biotin synthesis. In particular, we determine the crystal structure of dimeric BioH3 at 2.27Å, featuring a unique lid domain. Apart from its catalytic triad, we also dissect the substrate recognition of BioH3 by pimeloyl-ACP methyl ester. The removal of triple bioH isoforms (ΔbioH1/2/3) renders M. smegmatis biotin auxotrophic. Along with the newly-identified Tam/BioC, the discovery of three unusual BioH isoforms defines an atypical ‘BioC-BioH(3)’ paradigm for the first-stage of mycobacterial biotin synthesis. This study solves a long-standing puzzle in mycobacterial nutritional immunity, providing an alternative anti-TB drug target.
Collapse
Affiliation(s)
- Yongchang Xu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jie Yang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, The People’s Republic of China
| | - Shuaijie Song
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Yu Shi
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Lihan Wu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jingdu Sun
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
| | - Mengyun Hou
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jinzi Wang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources & Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, The People’s Republic of China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Man Huang
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
- * E-mail: (JG); (YF)
| | - Youjun Feng
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
- * E-mail: (JG); (YF)
| |
Collapse
|
8
|
Yang Y, Xu Y, Yue Y, Wang H, Cui Y, Pan M, Zhang X, Zhang L, Li H, Xu M, Tang Y, Chen S. Investigate Natural Product Indolmycin and the Synthetically Improved Analogue Toward Antimycobacterial Agents. ACS Chem Biol 2022; 17:39-53. [PMID: 34908399 DOI: 10.1021/acschembio.1c00394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Indolmycin (IND) is a microbial natural product that selectively inhibits bacterial tryptophanyl-tRNA synthetase (TrpRS). The tryptophan biosynthesis pathway was recently shown to be an important target for developing new antibacterial agents against Mycobacterium tuberculosis (Mtb). We investigated the antibacterial activity of IND against several mycobacterial model strains. A TrpRS biochemical assay was developed to analyze a library of synthetic IND analogues. The 4″-methylated IND compound, Y-13, showed improved anti-Mtb activity with a minimum inhibitory concentration (MIC) of 1.88 μM (∼0.5 μg/mL). The MIC increased significantly when overexpression of TrpRS was induced in the genetically engineered surrogate M. bovis BCG. The cocrystal structure of Mtb TrpRS complexed with IND and ATP has revealed that the amino acid pocket is in a state between the open form of apo protein and the closed complex with the reaction intermediate. In whole-cell-based experiments, we studied the combination effect of Y-13 paired with different antibacterial agents. We evaluated the killing kinetics, the frequency of resistance to INDs, and the mode of resistance of IND-resistant mycobacteria by genome sequencing. The synergistic interaction of Y-13 with the TrpE allosteric inhibitor, indole propionic acid, suggests that prospective IND analogues could shut down tryptophan biosynthesis and protein biosynthesis in pathogens, leading to a new class of antibiotics. Finally, we discuss a strategy to expand the genome mining of antibiotic-producing microbes specifically for antimycobacterial development.
Collapse
Affiliation(s)
- Yuhong Yang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Xu
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Yuan Yue
- Ministry of Education Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Heng Wang
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Yumeng Cui
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Miaomiao Pan
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Xi Zhang
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Lin Zhang
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Haitao Li
- Ministry of Education Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Min Xu
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shawn Chen
- Global Health Drug Discovery Institute, Haidian, Beijing 100192, China
| |
Collapse
|
9
|
Perveen S, Sharma R. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery. Biochem Pharmacol 2022; 197:114906. [PMID: 34990594 DOI: 10.1016/j.bcp.2021.114906] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease, infecting a quarter of world's population. Drug resistant TB further exacerbates the grim scenario of the drying TB drug discovery pipeline. The limited arsenal to fight TB presses the need for thorough efforts for identifying promising hits to combat the disease. The review highlights the efforts in the field of tuberculosis drug discovery, with an emphasis on massive drug screening campaigns for identifying novel hits against Mtb in both industry and academia. As an intracellular pathogen, mycobacteria reside in a complicated intracellular environment with multiple factors at play. Here, we outline various strategies employed in an effort to mimic the intracellular milieu for bringing the screening models closer to the actual settings. The review also focuses on the novel targets and pathways that could aid in target-based drug discovery in TB. The recent high throughput screening efforts resulting in the identification of potent hits against Mtb has been summarized in this article. There is a pressing need for effective screening strategies and approaches employing innovative tools and recent technologies; including nanotechnology, gene-editing tools such as CRISPR-cas system, host-directed bacterial killing and high content screening to augment the TB drug discovery pipeline with safer and shorter drug regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Su H, Lin K, Tiwari D, Healy C, Trujillo C, Liu Y, Ioerger TR, Schnappinger D, Ehrt S. Genetic models of latent tuberculosis in mice reveal differential influence of adaptive immunity. J Exp Med 2021; 218:e20210332. [PMID: 34269789 PMCID: PMC8289691 DOI: 10.1084/jem.20210332] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 01/29/2023] Open
Abstract
Studying latent Mycobacterium tuberculosis (Mtb) infection has been limited by the lack of a suitable mouse model. We discovered that transient depletion of biotin protein ligase (BPL) and thioredoxin reductase (TrxB2) results in latent infections during which Mtb cannot be detected but that relapse in a subset of mice. The immune requirements for Mtb control during latency, and the frequency of relapse, were strikingly different depending on how latency was established. TrxB2 depletion resulted in a latent infection that required adaptive immunity for control and reactivated with high frequency, whereas latent infection after BPL depletion was independent of adaptive immunity and rarely reactivated. We identified immune signatures of T cells indicative of relapse and demonstrated that BCG vaccination failed to protect mice from TB relapse. These reproducible genetic latency models allow investigation of the host immunological determinants that control the latent state and offer opportunities to evaluate therapeutic strategies in settings that mimic aspects of latency and TB relapse in humans.
Collapse
Affiliation(s)
- Hongwei Su
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Kan Lin
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Divya Tiwari
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Claire Healy
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Carolina Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Yao Liu
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
11
|
Aldridge BB, Barros-Aguirre D, Barry CE, Bates RH, Berthel SJ, Boshoff HI, Chibale K, Chu XJ, Cooper CB, Dartois V, Duncan K, Fotouhi N, Gusovsky F, Hipskind PA, Kempf DJ, Lelièvre J, Lenaerts AJ, McNamara CW, Mizrahi V, Nathan C, Olsen DB, Parish T, Petrassi HM, Pym A, Rhee KY, Robertson GT, Rock JM, Rubin EJ, Russell B, Russell DG, Sacchettini JC, Schnappinger D, Schrimpf M, Upton AM, Warner P, Wyatt PG, Yuan Y. The Tuberculosis Drug Accelerator at year 10: what have we learned? Nat Med 2021; 27:1333-1337. [PMID: 34226736 PMCID: PMC10478072 DOI: 10.1038/s41591-021-01442-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Tuberculosis Drug Accelerator, an experiment designed to facilitate collaboration in TB drug discovery by breaking down barriers among competing labs and institutions, has reached the 10-year landmark. We review the consortium’s achievements, advantages and limitations and advocate for application of similar models to other diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xin-Jie Chu
- Global Health Drug Discovery Institute, Beijing, China
| | | | - Véronique Dartois
- Hackensack Meridian Health Center for Discovery & Innovation, Nutley, NJ, USA
| | - Ken Duncan
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Nader Fotouhi
- Global Alliance for TB Drug Development, New York, NY, USA
| | | | | | | | | | | | - Case W McNamara
- Calibr, a division of the Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | - Tanya Parish
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Kyu Y Rhee
- Weill Cornell Medicine, New York, NY, USA
| | | | | | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Betsy Russell
- Bill & Melinda Gates Medical Research Institute, Boston, MA, USA
| | | | | | | | | | | | - Peter Warner
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Ying Yuan
- Global Health Drug Discovery Institute, Beijing, China
| |
Collapse
|
12
|
Das M, Dewan A, Shee S, Singh A. The Multifaceted Bacterial Cysteine Desulfurases: From Metabolism to Pathogenesis. Antioxidants (Basel) 2021; 10:997. [PMID: 34201508 PMCID: PMC8300815 DOI: 10.3390/antiox10070997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/02/2022] Open
Abstract
Living cells have developed a relay system to efficiently transfer sulfur (S) from cysteine to various thio-cofactors (iron-sulfur (Fe-S) clusters, thiamine, molybdopterin, lipoic acid, and biotin) and thiolated tRNA. The presence of such a transit route involves multiple protein components that allow the flux of S to be precisely regulated as a function of environmental cues to avoid the unnecessary accumulation of toxic concentrations of soluble sulfide (S2-). The first enzyme in this relay system is cysteine desulfurase (CSD). CSD catalyzes the release of sulfane S from L-cysteine by converting it to L-alanine by forming an enzyme-linked persulfide intermediate on its conserved cysteine residue. The persulfide S is then transferred to diverse acceptor proteins for its incorporation into the thio-cofactors. The thio-cofactor binding-proteins participate in essential and diverse cellular processes, including DNA repair, respiration, intermediary metabolism, gene regulation, and redox sensing. Additionally, CSD modulates pathogenesis, antibiotic susceptibility, metabolism, and survival of several pathogenic microbes within their hosts. In this review, we aim to comprehensively illustrate the impact of CSD on bacterial core metabolic processes and its requirement to combat redox stresses and antibiotics. Targeting CSD in human pathogens can be a potential therapy for better treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Amit Singh
- Centre for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; (M.D.); (A.D.); (S.S.)
| |
Collapse
|
13
|
Swain SS, Sharma D, Hussain T, Pati S. Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerg Microbes Infect 2021; 9:1651-1663. [PMID: 32573374 PMCID: PMC7473167 DOI: 10.1080/22221751.2020.1785334] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nowadays, drug-resistant tuberculosis (DR-TB) and co-infected tuberculosis (CI-TB) strains are the leading cause for the enhancement of long-term morbidity and unpredicted mortality rates from this ghoulish acid fast-bacterium infection, globally. Unfortunately, the lack of/ample lethargic towards the development of compelling anti-TB regimens with a large-scale prevalence rate is a great challenge towards control of the pandemic situation. Indeed, the recent improvement in genomic studies for early diagnosis and understanding the mechanisms of drug resistance, as well as the identification of newer drug targets is quite remarkable and promising. Mainly, identification of such genetic factors, chromosomal mutations and associated pathways gives new ray of hope in current anti-TB drug discovery. This focused review provides molecular insights into the updated drug resistance mechanisms with encoded bacilli genetic factors as a novel target and potential source of development with screened-out newer anti-TB agents towards the control of MDR-TB soon.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Divakar Sharma
- CRF, Mass Spectrometry Laboratory, Kusuma School of Biological Sciences (KSBS), Indian Institute of Technology-Delhi (IIT-D), Delhi, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Sanghamitra Pati
- Division of Public Health and Research, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
14
|
Sirithanakorn C, Cronan JE. Biotin, a universal and essential cofactor: Synthesis, ligation and regulation. FEMS Microbiol Rev 2021; 45:6081095. [PMID: 33428728 DOI: 10.1093/femsre/fuab003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
Biotin is a covalently attached enzyme cofactor required for intermediary metabolism in all three domains of life. Several important human pathogens (e.g. Mycobacterium tuberculosis) require biotin synthesis for pathogenesis. Humans lack a biotin synthetic pathway hence bacterial biotin synthesis is a prime target for new therapeutic agents. The biotin synthetic pathway is readily divided into early and late segments. Although pimelate, a seven carbon α,ω-dicarboxylic acid that contributes seven of the ten biotin carbons atoms, was long known to be a biotin precursor, its biosynthetic pathway was a mystery until the E. coli pathway was discovered in 2010. Since then, diverse bacteria encode evolutionarily distinct enzymes that replace enzymes in the E. coli pathway. Two new bacterial pimelate synthesis pathways have been elucidated. In contrast to the early pathway the late pathway, assembly of the fused rings of the cofactor, was long thought settled. However, a new enzyme that bypasses a canonical enzyme was recently discovered as well as homologs of another canonical enzyme that functions in synthesis of another protein-bound coenzyme, lipoic acid. Most bacteria tightly regulate transcription of the biotin synthetic genes in a biotin-responsive manner. The bifunctional biotin ligases which catalyze attachment of biotin to its cognate enzymes and repress biotin gene transcription are best understood regulatory system.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.,Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Arora G, Bothra A, Prosser G, Arora K, Sajid A. Role of post-translational modifications in the acquisition of drug resistance in Mycobacterium tuberculosis. FEBS J 2020; 288:3375-3393. [PMID: 33021056 DOI: 10.1111/febs.15582] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) is one of the primary causes of deaths due to infectious diseases. The current TB regimen is long and complex, failing of which leads to relapse and/or the emergence of drug resistance. There is a critical need to understand the mechanisms of resistance development. With increasing drug pressure, Mycobacterium tuberculosis (Mtb) activates various pathways to counter drug-related toxicity. Signaling modules steer the evolution of Mtb to a variant that can survive, persist, adapt, and emerge as a form that is resistant to one or more drugs. Recent studies reveal that about 1/3rd of the annotated Mtb proteome is modified post-translationally, with a large number of these proteins being essential for mycobacterial survival. Post-translational modifications (PTMs) such as phosphorylation, acetylation, and pupylation play a salient role in mycobacterial virulence, pathogenesis, and metabolism. The role of many other PTMs is still emerging. Understanding the signaling pathways and PTMs may assist clinical strategies and drug development for Mtb. In this review, we explore the contribution of PTMs to mycobacterial physiology, describe the related cellular processes, and discuss how these processes are linked to drug resistance. A significant number of drug targets, InhA, RpoB, EmbR, and KatG, are modified at multiple residues via PTMs. A better understanding of drug-resistance regulons and associated PTMs will aid in developing effective drugs against TB.
Collapse
Affiliation(s)
- Gunjan Arora
- Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Ankur Bothra
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gareth Prosser
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Kriti Arora
- Proteus Digital Health, Inc., Redwood City, CA, USA
| | - Andaleeb Sajid
- Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Swain SS, Paidesetty SK, Padhy RN, Hussain T. Isoniazid-phytochemical conjugation: A new approach for potent and less toxic anti-TB drug development. Chem Biol Drug Des 2020; 96:714-730. [PMID: 32237023 DOI: 10.1111/cbdd.13685] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/13/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes one of the most grievous pandemic infectious diseases, tuberculosis (TB), with long-term morbidity and high mortality. The emergence of drug-resistant Mtb strains, and the co-infection with human immunodeficiency virus, challenges the current WHO-TB stewardship programs. The first-line anti-TB drugs, isoniazid (INH) and rifampicin (RIF), have become extensively obsolete in TB control from chromosomal mutations during the last decades. However, based on clinical trial statistics, the production of well-tolerated anti-TB drug(s) is miserably low. Alternately, semi-synthesis or structural modifications of first-line obsolete antitubercular drugs remain as the versatile approach for getting some potential medicines. The use of any suitable phytochemicals with INH in a hybrid formulation could be an ideal approach for the development of potent anti-TB drug(s). The primary objective of this review was to highlight and analyze available INH-phytochemical hybrid research works. The utilization of phytochemicals through chemical conjugation is a new trend toward the development of safer/non-toxic anti-TB drugs.
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India.,Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India
| | - Tahziba Hussain
- Division of Microbiology and NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| |
Collapse
|
17
|
Mimicking the human environment in mice reveals that inhibiting biotin biosynthesis is effective against antibiotic-resistant pathogens. Nat Microbiol 2019; 5:93-101. [PMID: 31659298 DOI: 10.1038/s41564-019-0595-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/16/2019] [Indexed: 01/13/2023]
Abstract
To revitalize the antibiotic pipeline, it is critical to identify and validate new antimicrobial targets1. In Mycobacteria tuberculosis and Francisella tularensis, biotin biosynthesis is a key fitness determinant during infection2-5, making it a high-priority target. However, biotin biosynthesis has been overlooked for priority pathogens such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. This can be attributed to the lack of attenuation observed for biotin biosynthesis genes during transposon mutagenesis studies in mouse infection models6-9. Previous studies did not consider the 40-fold higher concentration of biotin in mouse plasma compared to human plasma. Here, we leveraged the unique affinity of streptavidin to develop a mouse infection model with human levels of biotin. Our model suggests that biotin biosynthesis is essential during infection with A. baumannii, K. pneumoniae and P. aeruginosa. Encouragingly, we establish the capacity of our model to uncover in vivo activity for the biotin biosynthesis inhibitor MAC13772. Our model addresses the disconnect in biotin levels between humans and mice, and explains the failure of potent biotin biosynthesis inhibitors in standard mouse infection models.
Collapse
|
18
|
Lee KJ, Tieu W, Blanco-Rodriguez B, Paparella AS, Yu J, Hayes A, Feng J, Marshall AC, Noll B, Milne R, Cini D, Wilce MCJ, Booker GW, Bruning JB, Polyak SW, Abell AD. Sulfonamide-Based Inhibitors of Biotin Protein Ligase as New Antibiotic Leads. ACS Chem Biol 2019; 14:1990-1997. [PMID: 31407891 DOI: 10.1021/acschembio.9b00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report the design, synthesis, and evaluation of a series of inhibitors of Staphylococcus aureus BPL (SaBPL), where the central acyl phosphate of the natural intermediate biotinyl-5'-AMP (1) is replaced by a sulfonamide isostere. Acylsulfamide (6) and amino sulfonylurea (7) showed potent in vitro inhibitory activity (Ki = 0.007 ± 0.003 and 0.065 ± 0.03 μM, respectively) and antibacterial activity against S. aureus ATCC49775 with minimum inhibitory concentrations of 0.25 and 4 μg/mL, respectively. Additionally, the bimolecular interactions between the BPL and inhibitors 6 and 7 were defined by X-ray crystallography and molecular dynamics simulations. The high acidity of the sulfonamide linkers of 6 and 7 likely contributes to the enhanced in vitro inhibitory activities by promoting interaction with SaBPL Lys187. Analogues with alkylsulfamide (8), β-ketosulfonamide (9), and β-hydroxysulfonamide (10) isosteres were devoid of significant activity. Binding free energy estimation using computational methods suggests deprotonated 6 and 7 to be the best binders, which is consistent with enzyme assay results. Compound 6 was unstable in whole blood, leading to poor pharmacokinetics. Importantly, 7 has a vastly improved pharmacokinetic profile compared to that of 6 presumably due to the enhanced metabolic stability of the sulfonamide linker moiety.
Collapse
Affiliation(s)
- Kwang Jun Lee
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| | - William Tieu
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Beatriz Blanco-Rodriguez
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ashleigh S. Paparella
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jingxian Yu
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew Hayes
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jiage Feng
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew C. Marshall
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Benjamin Noll
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Robert Milne
- School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Danielle Cini
- Department of Biochemistry, School of Biomedical Science, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew C. J. Wilce
- Department of Biochemistry, School of Biomedical Science, Monash University, Clayton, Victoria 3800, Australia
| | - Grant W. Booker
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - John B. Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Steven W. Polyak
- Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
19
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
20
|
Bockman MR, Engelhart CA, Cramer JD, Howe MD, Mishra NK, Zimmerman M, Larson P, Alvarez-Cabrera N, Park SW, Boshoff HIM, Bean JM, Young VG, Ferguson DM, Dartois V, Jarrett JT, Schnappinger D, Aldrich CC. Investigation of ( S)-(-)-Acidomycin: A Selective Antimycobacterial Natural Product That Inhibits Biotin Synthase. ACS Infect Dis 2019; 5:598-617. [PMID: 30652474 DOI: 10.1021/acsinfecdis.8b00345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis, absolute stereochemical configuration, complete biological characterization, mechanism of action and resistance, and pharmacokinetic properties of ( S)-(-)-acidomycin are described. Acidomycin possesses promising antitubercular activity against a series of contemporary drug susceptible and drug-resistant M. tuberculosis strains (minimum inhibitory concentrations (MICs) = 0.096-6.2 μM) but is inactive against nontuberculosis mycobacteria and Gram-positive and Gram-negative pathogens (MICs > 1000 μM). Complementation studies with biotin biosynthetic pathway intermediates and subsequent biochemical studies confirmed acidomycin inhibits biotin synthesis with a Ki of approximately 1 μM through the competitive inhibition of biotin synthase (BioB) and also stimulates unproductive cleavage of S-adenosyl-l-methionine (SAM) to generate the toxic metabolite 5'-deoxyadenosine. Cell studies demonstrate acidomycin selectively accumulates in M. tuberculosis providing a mechanistic basis for the observed antibacterial activity. The development of spontaneous resistance by M. tuberculosis to acidomycin was difficult, and only low-level resistance to acidomycin was observed by overexpression of BioB. Collectively, the results provide a foundation to advance acidomycin and highlight BioB as a promising target.
Collapse
Affiliation(s)
- Matthew R. Bockman
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Curtis A. Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Julia D. Cramer
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Michael D. Howe
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Neeraj K. Mishra
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Matthew Zimmerman
- Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Peter Larson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Nadine Alvarez-Cabrera
- Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, 5601 Fishers Lane, Bethesda, Maryland 20892, United States
| | - James M. Bean
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Victor G. Young
- X-Ray Crystallographic Laboratory, LeClaire-Dow Chemical Instrumentation Facility, Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - David M. Ferguson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Veronique Dartois
- Public Health Research Institute, Rutgers, The State University of New Jersey, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Joseph T. Jarrett
- Department of Chemistry, University of Hawaii at Manoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Evans CE, Si Y, Matarlo JS, Yin Y, French JB, Tonge PJ, Tan DS. Structure-Based Design, Synthesis, and Biological Evaluation of Non-Acyl Sulfamate Inhibitors of the Adenylate-Forming Enzyme MenE. Biochemistry 2019; 58:1918-1930. [PMID: 30912442 PMCID: PMC6653581 DOI: 10.1021/acs.biochem.9b00003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
N-Acyl sulfamoyladenosines (acyl-AMS) have been used
extensively to inhibit adenylate-forming enzymes that are involved in a wide
range of biological processes. These acyl-AMS inhibitors are nonhydrolyzable
mimics of the cognate acyl adenylate intermediates that are bound tightly by
adenylate-forming enzymes. However, the anionic acyl sulfamate moiety presents a
pharmacological liability that may be detrimental to cell permeability and
pharmacokinetic profiles. We have previously developed the acyl sulfamate
OSB-AMS (1) as a potent inhibitor of the adenylate-forming enzyme
MenE, an o-succinylbenzoate-CoA (OSB-CoA) synthetase that is
required for bacterial menaquinone biosynthesis. Herein, we report the use of
computational docking to develop novel, non-acyl sulfamate inhibitors of MenE. A
m-phenyl ether-linked analogue (5) was found
to be the most potent inhibitor (IC50 = 8 μM;
Kd = 244 nM), and its X-ray co-crystal structure
was determined to characterize its binding mode in comparison to the
computational prediction. This work provides a framework for the development of
potent non-acyl sulfamate inhibitors of other adenylate-forming enzymes in the
future.
Collapse
|
22
|
Howe MD, Kordus SL, Cole MS, Bauman AA, Aldrich CC, Baughn AD, Minato Y. Methionine Antagonizes para-Aminosalicylic Acid Activity via Affecting Folate Precursor Biosynthesis in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2018; 8:399. [PMID: 30483484 PMCID: PMC6240602 DOI: 10.3389/fcimb.2018.00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/23/2018] [Indexed: 12/23/2022] Open
Abstract
para-Aminosalicylic acid (PAS) is a second-line anti-tubercular drug that is used for the treatment of drug-resistant tuberculosis (TB). PAS efficacy in the treatment of TB is limited by its lower potency against Mycobacterium tuberculosis relative to many other drugs in the TB treatment arsenal. It is known that intrinsic metabolites, such as, para-aminobenzoic acid (PABA) and methionine, antagonize PAS and structurally related anti-folate drugs. While the basis for PABA-mediated antagonism of anti-folates is understood, the mechanism for methionine-based antagonism remains undefined. In the present study, we used both targeted and untargeted approaches to identify factors associated with methionine-mediated antagonism of PAS activity. We found that synthesis of folate precursors as well as a putative amino acid transporter, designated MetM, play crucial roles in this process. Disruption of metM by transposon insertion resulted in a ≥30-fold decrease in uptake of methionine in M. bovis BCG, indicating that metM is the major facilitator of methionine transport. We also discovered that intracellular biotin confers intrinsic PAS resistance in a methionine-independent manner. Collectively, our results demonstrate that methionine-mediated antagonism of anti-folate drugs occurs through sustained production of folate precursors.
Collapse
Affiliation(s)
- Michael D Howe
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Shannon L Kordus
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Malcolm S Cole
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Allison A Bauman
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Yusuke Minato
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
23
|
Monteiro-Maia R, Correa PR, Sousa-Vasconcelos PDS, Pinho RTD, Mendonça-Lima L. Gain of function in Mycobacterium bovis BCG Moreau due to loss of a transcriptional repressor. Mem Inst Oswaldo Cruz 2018; 113:e180267. [PMID: 30328891 PMCID: PMC6180650 DOI: 10.1590/0074-02760180267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022] Open
Abstract
The Bacille Calmette-Guérin (BCG) vaccine comprises a family of genetically different strains derived by the loss of genomic regions (RDs) and other mutations. In BCG Moreau, loss of RD16 inactivates rv3405c* , encoding a transcriptional repressor that negatively regulates the expression of Rv3406, an alkyl sulfatase. To evaluate the impact of this loss on the BCG and host cell viability and the cytokine profile, THP-1 cells were infected with BCG Moreau (harbouring the empty vector) and a complemented strain carrying a functional copy of rv3405c. Viability of the host cells and bacteria as well as the pattern of cytokine secretion were evaluated. Our results show that the viability of BCG Moreau is higher than that of the complemented strain in an axenic medium, suggesting a possible functional gain associated with the constitutive expression of Rv3406. Viability of the host cells did not vary significantly between recombinant strains, but differences in the profiles of the cytokine secretion (IL-1β and IL-6) were observed. Our results suggest an example of a functional gain due to gene loss contributing to the elucidation of the impact of RD16 on the physiology of BCG Moreau.
Collapse
Affiliation(s)
- Renata Monteiro-Maia
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | - Paloma Rezende Correa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| | | | - Rosa Teixeira de Pinho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunologia Clínica, Rio de Janeiro, RJ, Brasil
| | - Leila Mendonça-Lima
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genômica Funcional e Bioinformática, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
24
|
Bockman MR, Engelhart CA, Dawadi S, Larson P, Tiwari D, Ferguson DM, Schnappinger D, Aldrich CC. Avoiding Antibiotic Inactivation in Mycobacterium tuberculosis by Rv3406 through Strategic Nucleoside Modification. ACS Infect Dis 2018; 4:1102-1113. [PMID: 29663798 DOI: 10.1021/acsinfecdis.8b00038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
5'-[ N-(d-biotinoyl)sulfamoyl]amino-5'-deoxyadenosine (Bio-AMS, 1) possesses selective activity against Mycobacterium tuberculosis ( Mtb) and arrests fatty acid and lipid biosynthesis through inhibition of the Mycobacterium tuberculosis biotin protein ligase ( MtBPL). Mtb develops spontaneous resistance to 1 with a frequency of at least 1 × 10-7 by overexpression of Rv3406, a type II sulfatase that enzymatically inactivates 1. In an effort to circumvent this resistance mechanism, we describe herein strategic modification of the nucleoside at the 5'-position to prevent enzymatic inactivation. The new analogues retained subnanomolar potency to MtBPL ( KD = 0.66-0.97 nM), and 5' R- C-methyl derivative 6 exhibited identical antimycobacterial activity toward: Mtb H37Rv, MtBPL overexpression, and an isogenic Rv3406 overexpression strain (minimum inhibitory concentration, MIC = 1.56 μM). Moreover, 6 was not metabolized by recombinant Rv3406 and resistant mutants to 6 could not be isolated (frequency of resistance <1.4 × 10-10) demonstrating it successfully overcame Rv3406-mediated resistance.
Collapse
Affiliation(s)
- Matthew R. Bockman
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Curtis A. Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Peter Larson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Divya Tiwari
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - David M. Ferguson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|