1
|
Bazsó A, Szodoray P, Shoenfeld Y, Kiss E. Biomarkers reflecting the pathogenesis, clinical manifestations, and guide therapeutic approach in systemic sclerosis: a narrative review. Clin Rheumatol 2024; 43:3055-3072. [PMID: 39210206 PMCID: PMC11442557 DOI: 10.1007/s10067-024-07123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Systemic sclerosis (SSc) is a progressive autoimmune disorder that mainly affects the skin. There are other clinical manifestations as renal, pulmonary, cardiovascular, and gastrointestinal tract involvements. Based on the skin involvement there are two subtypes of SSc, as limited cutaneous SSc (lSSc) which involves the acral part of the body and diffuse cutaneous SSc (dSSc) resulting in significant skin thickening of the body. Despite of the extensive research the pathomechanism is not fully clarified, how Ssc develops, moreover identifying biomarkers to predict the clinical outcome and prognosis still remains challenging. Circulating biomarkers can be crucial to define the diagnosis, to predict the prognosis and monitor the clinical course. However, only some patients are responsive to the therapy in SSc, and there is a need to reach the ideal therapy for any individual to prevent or slow down the progression in early stages of the disease. In this narrative review, our purpose was to summarize the potential biomarkers in Ssc, describe their role in the diagnosis, pathomechanism, clinical course, organ manifestations, as well as the response to the therapy. Biomarkers assessment aids in the evaluation of disease progression, and disease outcome.
Collapse
Affiliation(s)
- Anna Bazsó
- Department of Clinical Immunology, Adult and Paediatric Rheumatology, National Institute of Locomotor System Disorders and Disabilities, Budapest, Hungary.
| | - Péter Szodoray
- Department of Immunology, Oslo University Hospital, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Yehuda Shoenfeld
- Reichmann University, Herzelia, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, 5265601, Tel-Hashomer, Israel
| | - Emese Kiss
- Department of Clinical Immunology, Adult and Paediatric Rheumatology, National Institute of Locomotor System Disorders and Disabilities, Budapest, Hungary
- Division of Locomotor System and Rheumatology Prevention, Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Li Z, Ma J, Wang X, Zhu L, Gan Y, Dai B. The role of immune cells in the pathogenesis of connective tissue diseases-associated pulmonary arterial hypertension. Front Immunol 2024; 15:1464762. [PMID: 39355239 PMCID: PMC11442293 DOI: 10.3389/fimmu.2024.1464762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Connective tissue diseases-related pulmonary arterial hypertension (CTD-PAH) is a disease characterized by an elevated pulmonary artery pressure that arises as a complication of connective tissue diseases. The number of patients with CTD-PAH accounts for 25.3% of all PAH patients. The main pathological features of CTD-PAH are thickening of intima, media and adventitia of pulmonary arterioles, increased pulmonary vascular resistance, autoimmune activation and inflammatory reaction. It is worth noting that abnormal immune activation will produce autoantibodies and release cytokines, and abnormal immune cell recruitment will promote inflammatory environment and vascular remodeling. Therefore, almost all forms of connective tissue diseases are related to PAH. In addition to general therapy and targeted drug therapy for PAH, high-dose glucocorticoid combined with immunosuppressant can quickly alleviate and stabilize the basic CTD-PAH disease. Given this, the development of therapeutic approaches targeting immune dysregulation and heightened inflammation is recognized as a promising strategy to prevent or reverse the progression of CTD-PAH. This review explores the potential mechanisms by which immune cells contribute to the development of CTD-PAH and examines the clinical application of immunosuppressive therapies in managing CTD-PAH.
Collapse
Affiliation(s)
- Zhe Li
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Juan Ma
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Xuejing Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, China
| | - Liquan Zhu
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Yu Gan
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Baoquan Dai
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| |
Collapse
|
3
|
Shi Y, Ma J, Li S, Liu C, Liu Y, Chen J, Liu N, Liu S, Huang H. Sex difference in human diseases: mechanistic insights and clinical implications. Signal Transduct Target Ther 2024; 9:238. [PMID: 39256355 PMCID: PMC11387494 DOI: 10.1038/s41392-024-01929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024] Open
Abstract
Sex characteristics exhibit significant disparities in various human diseases, including prevalent cardiovascular diseases, cancers, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Risk profiles and pathological manifestations of these diseases exhibit notable variations between sexes. The underlying reasons for these sex disparities encompass multifactorial elements, such as physiology, genetics, and environment. Recent studies have shown that human body systems demonstrate sex-specific gene expression during critical developmental stages and gene editing processes. These genes, differentially expressed based on different sex, may be regulated by androgen or estrogen-responsive elements, thereby influencing the incidence and presentation of cardiovascular, oncological, metabolic, immune, and neurological diseases across sexes. However, despite the existence of sex differences in patients with human diseases, treatment guidelines predominantly rely on male data due to the underrepresentation of women in clinical trials. At present, there exists a substantial knowledge gap concerning sex-specific mechanisms and clinical treatments for diverse diseases. Therefore, this review aims to elucidate the advances of sex differences on human diseases by examining epidemiological factors, pathogenesis, and innovative progress of clinical treatments in accordance with the distinctive risk characteristics of each disease and provide a new theoretical and practical basis for further optimizing individualized treatment and improving patient prognosis.
Collapse
Affiliation(s)
- Yuncong Shi
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jianshuai Ma
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Sijin Li
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Chao Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yuning Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Ngo C, Garrec C, Tomasello E, Dalod M. The role of plasmacytoid dendritic cells (pDCs) in immunity during viral infections and beyond. Cell Mol Immunol 2024; 21:1008-1035. [PMID: 38777879 PMCID: PMC11364676 DOI: 10.1038/s41423-024-01167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Type I and III interferons (IFNs) are essential for antiviral immunity and act through two different but complimentary pathways. First, IFNs activate intracellular antimicrobial programs by triggering the upregulation of a broad repertoire of viral restriction factors. Second, IFNs activate innate and adaptive immunity. Dysregulation of IFN production can lead to severe immune system dysfunction. It is thus crucial to identify and characterize the cellular sources of IFNs, their effects, and their regulation to promote their beneficial effects and limit their detrimental effects, which can depend on the nature of the infected or diseased tissues, as we will discuss. Plasmacytoid dendritic cells (pDCs) can produce large amounts of all IFN subtypes during viral infection. pDCs are resistant to infection by many different viruses, thus inhibiting the immune evasion mechanisms of viruses that target IFN production or their downstream responses. Therefore, pDCs are considered essential for the control of viral infections and the establishment of protective immunity. A thorough bibliographical survey showed that, in most viral infections, despite being major IFN producers, pDCs are actually dispensable for host resistance, which is achieved by multiple IFN sources depending on the tissue. Moreover, primary innate and adaptive antiviral immune responses are only transiently affected in the absence of pDCs. More surprisingly, pDCs and their IFNs can be detrimental in some viral infections or autoimmune diseases. This makes the conservation of pDCs during vertebrate evolution an enigma and thus raises outstanding questions about their role not only in viral infections but also in other diseases and under physiological conditions.
Collapse
Affiliation(s)
- Clémence Ngo
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Clémence Garrec
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| | - Marc Dalod
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France.
| |
Collapse
|
5
|
Ehlers C, Thiele T, Biermann H, Traidl S, Bruns L, Ziegler A, Schefzyk M, Bartsch LM, Kalinke U, Witte T, Graalmann T. Toll-Like Receptor 8 is Expressed in Monocytes in Contrast to Plasmacytoid Dendritic Cells and Mediates Aberrant Interleukin-10 Responses in Patients With Systemic Sclerosis. Arthritis Rheumatol 2024. [PMID: 39112920 DOI: 10.1002/art.42964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a severe rheumatic disease causing fibrotic tissue rearrangement. Aberrant toll-like receptor (TLR) 8 transcripts in plasmacytoid dendritic cells (pDCs) were recently linked to SSc pathogenesis, which is at least partially mediated by increased type I interferon (IFN-I) responses. Here, we addressed the functional role of TLR8 signaling in different immune cell subsets of patients with SSc. METHODS Monocytes, conventional dendritic cells (cDCs), and pDCs from the blood and skin of patients with SSc were analyzed for TLR8 protein expression. To assess TLR function, cytokine responses upon TLR7 and TLR8 stimulation were studied. To identify relevant alterations specific for patients with SSc (n = 16), patients with primary Sjögren disease (pSS; n = 10) and healthy controls (HCs; n = 13) were included into the study. RESULTS In all individuals, TLR8 was expressed in monocytes and cDCs but not in pDCs. The TLR8 expression levels were overall similar in patients with SSc and pSS and HCs. Additionally, in all study participants, TLR8 stimulation of pDCs did not induce IFN-I expression. In contrast, monocytes from patients with SSc revealed increased interleukin (IL)-10 responses upon TLR8 (patients with SSc vs HCs, P = 0.0126) and TLR7/8 stimulation (patients with SSc vs HCs, P = 0.0170). CONCLUSION TLR8 protein is not expressed in pDCs of patients with SSc. Accordingly, they do not respond to TLR8 stimulation. In contrast, monocytes of patients with SSc respond to TLR8 stimulation with increased IL-10 responses. Therefore, TLR8 signaling in monocytes participates in SSc pathogenesis by conferring aberrant IL-10 expression.
Collapse
Affiliation(s)
- Christine Ehlers
- Junior Research Group for Translational Immunology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany; Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Thea Thiele
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Hannah Biermann
- Junior Research Group for Translational Immunology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department for Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Luzia Bruns
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Annett Ziegler
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Matthias Schefzyk
- Department for Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Lea M Bartsch
- Department for Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Theresa Graalmann
- Junior Research Group for Translational Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany, Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany, and Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Kamiya M, Carter H, Espindola MS, Doyle TJ, Lee JS, Merriam LT, Zhang F, Kawano-Dourado L, Sparks JA, Hogaboam CM, Moore BB, Oldham WM, Kim EY. Immune mechanisms in fibrotic interstitial lung disease. Cell 2024; 187:3506-3530. [PMID: 38996486 PMCID: PMC11246539 DOI: 10.1016/j.cell.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 07/14/2024]
Abstract
Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.
Collapse
Affiliation(s)
- Mari Kamiya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Carter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milena S Espindola
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tracy J Doyle
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joyce S Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fan Zhang
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Leticia Kawano-Dourado
- Hcor Research Institute, Hcor Hospital, Sao Paulo - SP 04004-030, Brazil; Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, São Paulo - SP 05403-900, Brazil
| | - Jeffrey A Sparks
- Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Wang C, Oishi K, Kobayashi T, Fujii K, Horii M, Fushida N, Kitano T, Maeda S, Ikawa Y, Komuro A, Hamaguchi Y, Matsushita T. The Role of TLR7 and TLR9 in the Pathogenesis of Systemic Sclerosis. Int J Mol Sci 2024; 25:6133. [PMID: 38892317 PMCID: PMC11172923 DOI: 10.3390/ijms25116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The bleomycin-induced scleroderma model is a well-established and dependable method for creating a mouse model of SSc (systemic sclerosis). In the field of skin connective tissue diseases, increasing evidence from clinical and animal experiments suggests that TLRs (Toll-like receptors) play an important role in several diseases. This study aimed to determine the role of TLR7 (Toll-like receptor 7) and TLR9 (Toll-like receptor 9) in the mechanisms of immune abnormalities and fibrosis in SSc. This study used TLR7-KO mice (TLR7-knockout mice with a balb/c background) and TLR9-KO mice (TLR9-knockout mice with a balb/c background) as well as WT mice (wild-type balb/c mice). All three kinds of mice were induced by BLM (bleomycin) in a scleroderma model as the experimental group; meanwhile, WT mice treated with PBS (phosphate-buffered saline) were used as the control group. We analyzed the fibrotic phenotype and the immunological abnormality phenotype of TLR7-deficient and TLR9-deficient mice in the SSc disease model using flow cytometry, RT-PCR (reverse transcription-polymerase chain reaction), a histological examination, and IHC (immunohistochemical staining). In a mouse model of SSc disease, the deletion of TLR7 attenuated skin and lung fibrosis, while the deletion of TLR9 exacerbated skin and lung fibrosis. The deletion of TLR7 resulted in a relative decrease in the infiltration and expression of various pro-inflammatory and fibrotic cells and cytokines in the skin. On the other hand, the deletion of TLR9 resulted in a relative increase in the infiltration and expression of various pro-inflammatory and cytokine-inhibiting cells and cytokines in the skin. Under the influence of pDCs (plasmacytoid dendritic cells), the balances of Beff/Breg (IL-6 + CD19 + B cell/IL-10 + CD19 + B cell), Th17/Treg (IL-17A + CD4 + T cell/Foxp3 + CD25 + CD4 + T cell), M1/M2 (CD86 + macrophage/CD206 + macrophage), and Th1/Th2 (TNFα + CD3 + CD4 + T cell/IL-4 + CD3 + CD4 + T cell) were biased towards the suppression of inflammation and fibrosis as a result of the TLR7 deletion. Comparatively, the balance was biased towards promoting inflammation and fibrosis due to the TLR9 deletion. In the SSc model, TLR7 promoted inflammation and fibrosis progression, while TLR9 played a protective role. These results suggest that TLR7 and TLR9 play opposite roles in triggering SSc to produce immune system abnormalities and skin fibrosis.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Kyosuke Oishi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tadahiro Kobayashi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Ko Fujii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Motoki Horii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Natsumi Fushida
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tasuku Kitano
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Shintaro Maeda
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Yuichi Ikawa
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Akito Komuro
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Takashi Matsushita
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| |
Collapse
|
8
|
Garreau A, Santa P, Dubois M, Brisou D, Levionnois É, Laurent P, Ferriere A, Roubertie A, Loizon S, Duluc D, Blanco P, Contin-Bordes C, Truchetet ME, Sisirak V. The deficiency of DNASE1L3 does not affect systemic sclerosis pathogenesis in two inducible murine models of the disease. Eur J Immunol 2024; 54:e2350903. [PMID: 38576111 DOI: 10.1002/eji.202350903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
We induced systemic sclerosis (SSc)-like disease in both wild-type and Dnase1l3-deficient mice using two distinct approaches involving bleomycin and hypochlorous acid injections. Our observations revealed that the deficiency in DNASE1L3 did not affect tissue fibrosis or inflammation caused by these treatments. Despite the association of single nucleotide polymorphisms in humans with SSc pathogenesis, our study demonstrates that DNASE1L3 is dispensable in two inducible murine models of SSc-like pathogenesis.
Collapse
Affiliation(s)
- Anne Garreau
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Pauline Santa
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Maxime Dubois
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Damien Brisou
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | | | - Paôline Laurent
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | | | - Anaïs Roubertie
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Séverine Loizon
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Dorothée Duluc
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
| | - Cécile Contin-Bordes
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
| | - Marie-Elise Truchetet
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Department of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
- Department of Rheumatology, Bordeaux University Hospital, Bordeaux, France
| | - Vanja Sisirak
- CNRS-UMR 5164, ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
9
|
Drougkas K, Skarlis C, Mavragani C. Type I Interferons in Systemic Autoimmune Rheumatic Diseases: Pathogenesis, Clinical Features and Treatment Options. Mediterr J Rheumatol 2024; 35:365-380. [PMID: 39193187 PMCID: PMC11345602 DOI: 10.31138/mjr.270324.tis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 08/29/2024] Open
Abstract
Type I interferon (IFN) pathway dysregulation plays a crucial role in the pathogenesis of several systemic autoimmune rheumatic diseases (SARDs), including systemic lupus erythematosus (SLE), Sjögren's disease (SjD), systemic sclerosis (SSc), dermatomyositis (DM) and rheumatoid arthritis (RA). Genetic and epigenetic alterations have been involved in dysregulated type I IFN responses in systemic autoimmune disorders. Aberrant type I IFN production and secretion have been associated with distinct clinical phenotypes, disease activity, and severity as well as differentiated treatment responses among SARDs. In this review, we provide an overview of the role of type I IFNs in systemic autoimmune diseases including SLE, RA, SjD, SSc, and DM focusing on pathophysiological, clinical, and therapeutical aspects.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Foti R, Zeppieri M, Foti R, Visalli E, Amato G, Amato R, Dammino E, D’Esposito F, Gagliano C. Retinal Vascular Abnormalities and Clinical Parameters in Systemic Sclerosis. J Clin Med 2024; 13:2738. [PMID: 38792282 PMCID: PMC11122651 DOI: 10.3390/jcm13102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Background: Systemic sclerosis is a complex autoimmune disease characterized by vasculopathy, fibrosis, and immune dysregulation. Ocular manifestations in these patients are increasingly recognized, suggesting potential correlations between systemic vascular abnormalities and ocular microvascular changes. Advancements in molecular immunology and imaging technology using ocular coherence tomography (OCT) have unveiled intricate pathways underlying possible disease pathogenesis. Understanding the interplay between retinal vascular abnormalities and molecular immunology parameters could provide insights into disease mechanisms and potential biomarkers. Purpose: The aim of this study was to investigate vascular abnormalities, detected with optical coherence tomography angiography (OCT-A), in systemic sclerosis patients and to find correlations between the severity of the disease detected with molecular immunology findings and OCT-A parameters. Methods: A group of 32 systemic sclerosis patients were compared with 9 healthy controls. Ganglion cell complex thickness (GCC), retina thickness of the fovea and parafovea, nerve fiber layer thickness (RNFL) and cup/disc area ratio were investigated using OCT. Vessel density (VD) of the superficial (SCP) and deep capillary plexus (DCP) of the whole macular area and ETDRS grid, size of the foveal avascular zone (FAZ) and vessel density of the radial peripapillary capillary plexus (RPCP) were evaluated using OCT-A. Modified Rodnan skin score (mRSS), capillaroscopy and disease duration were used to stage disease severity. Results: There was a statistically significant reduction in retina thickness of the fovea and parafovea, VD of the whole DCP, VD of the SCP and DCP in ETDRS grid in the patient group compared to controls (p < 0.001). The patients presented a significant enlargement of the FAZ (p 0.005). No significant correlation between OCT and OCT-A parameters and disease severity scores was found. Conclusions: OCT-A could represent a non-invasive tool to detect retinal microvascular damage in systemic sclerosis.
Collapse
Affiliation(s)
- Rosario Foti
- Rheumatology Unit, Policlinico San Marco Hospital, 95121 Catania, Italy; (R.F.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Roberta Foti
- Rheumatology Unit, Policlinico San Marco Hospital, 95121 Catania, Italy; (R.F.)
| | - Elisa Visalli
- Rheumatology Unit, Policlinico San Marco Hospital, 95121 Catania, Italy; (R.F.)
| | - Giorgio Amato
- Rheumatology Unit, Policlinico San Marco Hospital, 95121 Catania, Italy; (R.F.)
| | - Roberta Amato
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy (C.G.)
| | - Edoardo Dammino
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy (C.G.)
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Caterina Gagliano
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy (C.G.)
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
| |
Collapse
|
11
|
Kong X, Jiang S, He Q, Shi X, Pu W, Huang Y, Ma Y, Liu Q, Sun D, Huang D, Wu F, Li P, Tu W, Zhao Y, Wang L, Chen Y, Wu W, Tang Y, Zhao X, Zhu Q, Gao J, Xu W, Shui X, Qian F, Wang J. TLR8 aggravates skin inflammation and fibrosis by activating skin fibroblasts in systemic sclerosis. Rheumatology (Oxford) 2024; 63:1710-1719. [PMID: 37665747 DOI: 10.1093/rheumatology/kead456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/28/2023] [Accepted: 06/08/2023] [Indexed: 09/06/2023] Open
Abstract
OBJECTIVES Innate immunity significantly contributes to SSc pathogenesis. TLR8 is an important innate immune mediator that is implicated in autoimmunity and fibrosis. However, the expression, mechanism of action, and pathogenic role of TLR8 in SSc remain unclear. The aim of this study was to explore the roles and underlying mechanisms of TLR8 in SSc. METHODS The expression of TLR8 was analysed, based on a public dataset, and then verified in skin tissues and skin fibroblasts of SSc patients. The role of TLR8 in inflammation and fibrosis was investigated using a TLR8-overexpression vector, activator (VTX-2337), inhibitor (cu-cpt-8m), and TLR8 siRNA in skin fibroblasts. The pathogenic role of TLR8 in skin inflammation and fibrosis was further validated in a bleomycin (BLM)-induced mouse skin inflammation and fibrosis model. RESULTS TLR8 levels were significantly elevated in SSc skin tissues and myofibroblasts, along with significant activation of the TLR8 pathway. In vitro studies showed that overexpression or activation of TLR8 by a recombinant plasmid or VTX-2337 upregulated IL-6, IL-1β, COL I, COL III and α-SMA in skin fibroblasts. Consistently, both TLR8-siRNA and cu-cpt-8m reversed the phenotypes observed in TLR8-activating fibroblasts. Mechanistically, TLR8 induces skin fibrosis and inflammation in a manner dependent on the MAPK, NF-κB and SMAD2/3 pathways. Subcutaneous injection of cu-cpt-8m significantly alleviated BLM-induced skin inflammation and fibrosis in vivo. CONCLUSION TLR8 might be a promising therapeutic target for improving the treatment strategy for skin inflammation and fibrosis in SSc.
Collapse
Affiliation(s)
- Xiangzhen Kong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuai Jiang
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, China
| | - Qiuyu He
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiangguang Shi
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Weilin Pu
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- Institute for Six-sector Economy, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Dayan Sun
- Department of Neonatal Surgery, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Delin Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Fei Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Pengcheng Li
- Department of Pancreatic Surgery, Fudan University Cancer Hospital, Shanghai, China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Yinhuan Zhao
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Lei Wang
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Yuanyuan Chen
- Division of Rheumatology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yulong Tang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiansheng Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Zhu
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Zhangjiang Fudan International Innovation Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| | - Weihong Xu
- Laboratory Department of Tongren Hospital Affiliated to Medical College of Shanghai Jiaotong University, Shanghai, China
| | - Xiaochuan Shui
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary Anthropology, Zhangjiang Fudan International Innovation Center, Human Phenome Institute and School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China
- Institute of Rheumatology, Immunology, and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Ah Kioon MD, Laurent P, Chaudhary V, Du Y, Crow MK, Barrat FJ. Modulation of plasmacytoid dendritic cells response in inflammation and autoimmunity. Immunol Rev 2024; 323:241-256. [PMID: 38553621 DOI: 10.1111/imr.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases. In this review, we describe recent data characterizing the role of platelets and NA-binding chemokines in modulation of TLR signaling in pDCs, as well as implications for how the IFN-I products of pDCs contribute to the generation of inflammation and wound healing responses by monocyte/macrophages. Chemokine modulators of TLR-mediated B cell tolerance mechanisms and interactions between TLR signaling and metabolic pathways are also considered. The modulators of TLR signaling and their contribution to the pathogenesis of systemic autoimmune diseases suggest new opportunities for identification of novel therapeutic targets.
Collapse
Affiliation(s)
| | - Paôline Laurent
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Vidyanath Chaudhary
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Yong Du
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Mary K Crow
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Franck J Barrat
- HSS Research Institute, Hospital for Special Surgery, New York, New York, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, New York, USA
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
13
|
Song X, Xia B, Gao X, Liu X, Lv H, Wang S, Xiao Q, Luo H. Related cellular signaling and consequent pathophysiological outcomes of ubiquitin specific protease 24. Life Sci 2024; 342:122512. [PMID: 38395384 DOI: 10.1016/j.lfs.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Ubiquitin-specific protease 24 (USP24) is an essential member of the deubiquitinating protease family found in eukaryotes. It engages in interactions with multiple proteins, including p53, MCL-1, E2F4, and FTH1, among others. Through these interactions, USP24 plays a critical role in regulating vital cellular processes such as cell cycle control, DNA damage response, cellular iron autophagy, and apoptosis. Increased levels of USP24 have been observed in various cancer types, including bladder cancer, lung cancer, myeloma, hepatocellular carcinoma, and gastric cancer. However, in certain tumors like kidney cancer, USP24 is significantly downregulated, and the specific mechanism behind this remains unclear. Currently, there are no officially approved USP24 inhibitors available for clinical use. Some existing inhibitors targeting USP24 have shown promising effects in treating malignancies; however, their precise mode of action and information regarding binding sites are not well understood. Moreover, further optimization is required to enhance the selectivity and efficacy of these inhibitors. This review aims to provide a comprehensive overview of recent advancements in understanding the cellular functions of USP24, its association with various diseases, and the development of small-molecule inhibitors that target this protein. In conclusion, USP24 represents a promising therapeutic target for various diseases, and ongoing research will contribute to validating its role and facilitating the development of effective treatments.
Collapse
Affiliation(s)
- Xiaoyang Song
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Boyu Xia
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinrong Gao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Xinying Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hongyuan Lv
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Shiwei Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Qinpei Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hao Luo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
14
|
Cui Sun M, Otálora-Alcaraz A, Prenderville JA, Downer EJ. Toll-like receptor signalling as a cannabinoid target. Biochem Pharmacol 2024; 222:116082. [PMID: 38438052 DOI: 10.1016/j.bcp.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Toll-like receptors (TLRs) have become a focus in biomedicine and biomedical research given the roles of this unique family of innate immune proteins in immune activation, infection, and autoimmunity. It is evident that TLR dysregulation, and subsequent alterations in TLR-mediated inflammatory signalling, can contribute to disease pathogenesis, and TLR targeted therapies are in development. This review highlights evidence that cannabinoids are key regulators of TLR signalling. Cannabinoids include component of the plant Cannabis sativa L. (C. sativa), synthetic and endogenous ligands, and overall represent a class of compounds whose therapeutic potential and mechanism of action continues to be elucidated. Cannabinoid-based medicines are in the clinic, and are furthermore under intense investigation for broad clinical development to manage symptoms of a range of disorders. In this review, we present an overview of research evidence that signalling linked to a range of TLRs is targeted by cannabinoids, and such cannabinoid mediated effects represent therapeutic avenues for further investigation. First, we provide an overview of TLRs, adaptors and key signalling events, alongside a summary of evidence that TLRs are linked to disease pathologies. Next, we discuss the cannabinoids system and the development of cannabinoid-based therapeutics. Finally, for the bulk of this review, we systematically outline the evidence that cannabinoids (plant-derived cannabinoids, synthetic cannabinoids, and endogenous cannabinoid ligands) can cross-talk with innate immune signalling governed by TLRs, focusing specifically on each member of the TLR family. Cannabinoids should be considered as key regulators of signalling controlled by TLRs, and such regulation should be a major focus in terms of the anti-inflammatory propensity of the cannabinoid system.
Collapse
Affiliation(s)
- Melody Cui Sun
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Almudena Otálora-Alcaraz
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jack A Prenderville
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Transpharmation Ireland Limited, Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
15
|
Frasca L, Mennella A, Palazzo R. New, Old, and Shared Antibody Specificities in Autoimmune Diseases. Antibodies (Basel) 2024; 13:23. [PMID: 38534212 DOI: 10.3390/antib13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Autoantibodies represent a primary characteristic of many systemic autoimmune diseases [...].
Collapse
Affiliation(s)
- Loredana Frasca
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Anna Mennella
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Raffaella Palazzo
- National Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
16
|
Lee AM, Laurent P, Nathan CF, Barrat FJ. Neutrophil-plasmacytoid dendritic cell interaction leads to production of type I IFN in response to Mycobacterium tuberculosis. Eur J Immunol 2024; 54:e2350666. [PMID: 38161237 DOI: 10.1002/eji.202350666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Mycobacterium tuberculosis (Mtb) can cause a latent infection that sometimes progresses to clinically active tuberculosis (TB). Type I interferons (IFN-I) have been implicated in initiating the progression from latency to active TB, in part because IFN-I stimulated genes are the earliest genes to be upregulated in patients as they advance to active TB. Plasmacytoid dendritic cells (pDCs) are major producers of IFN-I during viral infections and in response to autoimmune-induced neutrophil extracellular traps. pDCs have also been suggested to be the major producers of IFN-I during Mtb infection of mice and nonhuman primates, but direct evidence has been lacking. Here, we found that Mtb did not stimulate isolated human pDCs to produce IFN-I, but human neutrophils infected with Mtb-activated co-cultured pDCs to do so. Mtb-infected neutrophils produced neutrophil extracellular traps, whose exposed DNA is a well-known mechanism to activate pDCs to secrete IFN-I. We conclude that pDCs contribute to the IFN-I response during Mtb infection by interacting with infected neutrophils which may then promote Mtb pathogenesis.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Paôline Laurent
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA
- Hospital for Special Surgery, HSS Research Institute, New York, New York, USA
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Franck J Barrat
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York, USA
- Immunology & Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
- Hospital for Special Surgery, HSS Research Institute, New York, New York, USA
| |
Collapse
|
17
|
Xiao Y, Vazquez-Padron RI, Martinez L, Singer HA, Woltmann D, Salman LH. Role of platelet factor 4 in arteriovenous fistula maturation failure: What do we know so far? J Vasc Access 2024; 25:390-406. [PMID: 35751379 PMCID: PMC9974241 DOI: 10.1177/11297298221085458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The rate of arteriovenous fistula (AVF) maturation failure remains unacceptably high despite continuous efforts on technique improvement and careful pre-surgery planning. In fact, half of all newly created AVFs are unable to be used for hemodialysis (HD) without a salvage procedure. While vascular stenosis in the venous limb of the access is the culprit, the underlying factors leading to vascular narrowing and AVF maturation failure are yet to be determined. We have recently demonstrated that AVF non-maturation is associated with post-operative medial fibrosis and fibrotic stenosis, and post-operative intimal hyperplasia (IH) exacerbates the situation. Multiple pathological processes and signaling pathways are underlying the stenotic remodeling of the AVF. Our group has recently indicated that a pro-inflammatory cytokine platelet factor 4 (PF4/CXCL4) is upregulated in veins that fail to mature after AVF creation. Platelet factor 4 is a fibrosis marker and can be detected in vascular stenosis tissue, suggesting that it may contribute to AVF maturation failure through stimulation of fibrosis and development of fibrotic stenosis. Here, we present an overview of the how PF4-mediated fibrosis determines AVF maturation failure.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Daniel Woltmann
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Loay H Salman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology and Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
18
|
Sakkas LI, Chikanza IC. Sex bias in immune response: it is time to include the sex variable in studies of autoimmune rheumatic diseases. Rheumatol Int 2024; 44:203-209. [PMID: 37716925 DOI: 10.1007/s00296-023-05446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Healthy females and males differ in their immune cell composition and function and females generally mount stronger immune response than males and are much more susceptible to autoimmune rheumatic diseases. Females differ from males in sex hormones, and X-chromosome genes. Sex hormones affect immune cells and responses, and may induce epigenetic DNA changes. The importance of X-chromosome genes is exemplified in men with the Klinefelter syndrome (47,XXY) who have an additional X-chromosome and develop systemic lupus erythematosus(SLE) as frequently as women. X-chromosome contains genes critical for the immune response, such as FOXP3, toll-like receptor(TLR)7, TLR8, CD40 Ligand, IL2RG, IL9R, BTK, and others. Whereas one X-chromosome in females is randomly inactivated early in embryonic development, around 25% of X-linked genes escape inactivation and result in more X-linked gene dosage in females. We use two key female-biased autoimmune rheumatic diseases, SLE and systemic sclerosis, to review differences in immune response, and clinical manifestations between females and males. The inclusion of sex variable in research will facilitate precision medicine and optimal patient outcome.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
- Division of Rheumatology, IASO Thessalias General Hospital, Larissa, Greece.
| | - Ian C Chikanza
- Professor in Rheumatology and Immunology, Paediatrics Department, Catholic University, University of Zimbabwe, Harare, Zimbabwe
- International Arthritis and Hypermobility Centre, Harley Street Clinic, London, UK
| |
Collapse
|
19
|
Zheng L, Wu Q, Chen S, Wen J, Dong F, Meng N, Zeng W, Zhao C, Zhong X. Development and validation of a new diagnostic prediction model of ENHO and NOX4 for early diagnosis of systemic sclerosis. Front Immunol 2024; 15:1273559. [PMID: 38348042 PMCID: PMC10859860 DOI: 10.3389/fimmu.2024.1273559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Objective Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by fibrosis. The challenge of early diagnosis, along with the lack of effective treatments for fibrosis, contribute to poor therapeutic outcomes and high mortality of SSc. Therefore, there is an urgent need to identify suitable biomarkers for early diagnosis of SSc. Methods Three skin gene expression datasets of SSc patients and healthy controls were downloaded from Gene Expression Omnibus (GEO) database (GSE130955, GSE58095, and GSE181549). GSE130955 (48 early diffuse cutaneous SSc and 33 controls) were utilized to screen differentially expressed genes (DEGs) between SSc and normal skin samples. Least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) were performed to identify diagnostic genes and construct a diagnostic prediction model. The results were further validated in GSE58095 (61 SSc and 36 controls) and GSE181549 (113 SSc and 44 controls) datasets. Receiver operating characteristic (ROC) curves were applied for assessing the level of diagnostic ability. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to verify the diagnostic genes in skin tissues of out cohort (10 SSc and 5 controls). Immune infiltration analysis were performed using CIBERSORT algorithm. Results A total of 200 DEGs were identified between SSc and normal skin samples. Functional enrichment analysis revealed that these DEGs may be involved in the pathogenesis of SSc, such as extracellular matrix remodeling, cell-cell interactions, and metabolism. Subsequently, two critical genes (ENHO and NOX4) were identified by LASSO and SVM-RFE. ENHO was found down-regulated while NOX4 was up-regulated in skin of SSc patients and their expression levels were validated by above three datasets and our cohort. Notably, these differential expressions were more pronounced in patients with diffuse cutaneous SSc than in those with limited cutaneous SSc. Next, we developed a novel diagnostic model for SSc using ENHO and NOX4, which demonstrated strong predictive power in above three cohorts and in our own cohort. Furthermore, immune infiltration analysis revealed dysregulated levels of various immune cell subtypes within early SSc skin specimens, and a negative correlation was observed between the levels of ENHO and Macrophages M1 and M2, while a positive correlation was observed between the levels of NOX4 and Macrophages M1 and M2. Conclusion This study identified ENHO and NOX4 as novel biomarkers that can be serve as a diagnostic prediction model for early detection of SSc and play a potential role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Leting Zheng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shuyuan Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Wen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Dong
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ningqin Meng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen Zeng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Zhao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Ni H, Wang Y, Yao K, Wang L, Huang J, Xiao Y, Chen H, Liu B, Yang CY, Zhao J. Cyclical palmitoylation regulates TLR9 signalling and systemic autoimmunity in mice. Nat Commun 2024; 15:1. [PMID: 38169466 PMCID: PMC10762000 DOI: 10.1038/s41467-023-43650-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes self-DNA and plays intricate roles in systemic lupus erythematosus (SLE). However, the molecular mechanism regulating the endosomal TLR9 response is incompletely understood. Here, we report that palmitoyl-protein thioesterase 1 (PPT1) regulates systemic autoimmunity by removing S-palmitoylation from TLR9 in lysosomes. PPT1 promotes the secretion of IFNα by plasmacytoid dendritic cells (pDCs) and TNF by macrophages. Genetic deficiency in or chemical inhibition of PPT1 reduces anti-nuclear antibody levels and attenuates nephritis in B6.Sle1yaa mice. In healthy volunteers and patients with SLE, the PPT1 inhibitor, HDSF, reduces IFNα production ex vivo. Mechanistically, biochemical and mass spectrometry analyses demonstrated that TLR9 is S-palmitoylated at C258 and C265. Moreover, the protein acyltransferase, DHHC3, palmitoylates TLR9 in the Golgi, and regulates TLR9 trafficking to endosomes. Subsequent depalmitoylation by PPT1 facilitates the release of TLR9 from UNC93B1. Our results reveal a posttranslational modification cycle that controls TLR9 response and autoimmunity.
Collapse
Affiliation(s)
- Hai Ni
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinuo Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Yao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiancheng Huang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongfang Xiao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyao Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Huashen Institute of Microbes and Infections, Shanghai, China.
| | - Cliff Y Yang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Jijun Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Yin H, Distler O, Shen L, Xu X, Yuan Y, Li R, Liu B, Li Q, Huang Q, Xie F, Zhang Z, Liang R, Dai X, Chen X, Li B, Yan Q, Lu L. Endothelial Response to Type I Interferon Contributes to Vasculopathy and Fibrosis and Predicts Disease Progression of Systemic Sclerosis. Arthritis Rheumatol 2024; 76:78-91. [PMID: 37488975 DOI: 10.1002/art.42662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVE Interferon (IFN)-1 signatures are a hallmark of patients with systemic sclerosis (SSc). However, its significance in clinical stratification and contribution to deterioration still need to be better understood. METHODS For hypothesis generation, we performed single-cell RNA sequencing (scRNA-seq) on skin biopsies (four patients with SSc and two controls) using the BD Rhapsody platform. Two publicly available data sets of skin scRNA-seq were used for validation (GSE138669: 12 patients with diffuse cutaneous SSc [dcSSc] and 10 controls; GSE195452: 52 patients with dcSSc and 41 patients with limited cutaneous SSc [lcSSc] and 54 controls). The IFN-1 signature was mapped, functionally investigated in a bleomycin plus IFNα-2 adenovirus-associated virus (AAV)-induced model and verified in an SSc cohort (n = 61). RESULTS The discovery and validation data sets showed similar findings. Endothelial cells (ECs) had the most prominent IFN-1 signature among dermal nonimmune cells. The EC IFN-1 signature was increased both in patients with SSc versus controls and in patients with dcSSc versus those with lcSSc. Among EC subclusters, the IFN-1 signature was statistically higher in the capillary ECs of patients with dcSSc, which was higher than those in patients with lcSSc, which in turn was higher than those in healthy controls (HCs). Endothelial-to-mesenchymal transition (EndoMT) scores increased in parallel. Deteriorated bleomycin-induced dermal fibrosis, EndoMT, and perivascular fibrosis and caused blood vessel loss with EC apoptosis. Vascular myxovirus resistance (MX) 1, an IFN-1 response protein, was significantly increased both in total SSc versus HC skin and in dcSSc versus lcSSc skin. Baseline vascular MX1 performed similarly to skin score in predicting disease progression over 6 to 34 months in total SSc and was superior in the dcSSc subpopulation. CONCLUSION The EC IFN-1 signature distinguished SSc skin subtypes and disease progression and may contribute to vasculopathy and fibrosis.
Collapse
Affiliation(s)
- Hanlin Yin
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lichong Shen
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ye Yuan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China
| | - Rui Li
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Liu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Li
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianru Huang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Xie
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiliang Zhang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Aesthetic Surgery, Ningbo Hangzhou Bay Hospital, Zhejiang, China
| | - Rui Liang
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueyu Dai
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiang Chen
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Rheumatology, Nantong Hospital of Renji Hospital Affiliated to Shanghai Jiao Tong Universuty School of Medicine, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, 226006, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Thoracic Surgery of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingran Yan
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Zhang Y, Maskan Bermudez N, Sa B, Maderal AD, Jimenez JJ. Epigenetic mechanisms driving the pathogenesis of systemic lupus erythematosus, systemic sclerosis and dermatomyositis. Exp Dermatol 2024; 33:e14986. [PMID: 38059632 DOI: 10.1111/exd.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune connective tissue disorders, including systemic lupus erythematosus, systemic sclerosis (SSc) and dermatomyositis (DM), often manifest with debilitating cutaneous lesions and can result in systemic organ damage that may be life-threatening. Despite recent therapeutic advancements, many patients still experience low rates of sustained remission and significant treatment toxicity. While genetic predisposition plays a role in these connective tissue disorders, the relatively low concordance rates among monozygotic twins (ranging from approximately 4% for SSc to about 11%-50% for SLE) have prompted increased scrutiny of the epigenetic factors contributing to these diseases. In this review, we explore some seminal studies and key findings to provide a comprehensive understanding of how dysregulated epigenetic mechanisms can contribute to the development of SLE, SSc and DM.
Collapse
Affiliation(s)
- Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Narges Maskan Bermudez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brianna Sa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
23
|
Çakan E, Ah Kioon MD, Garcia-Carmona Y, Glauzy S, Oliver D, Yamakawa N, Vega Loza A, Du Y, Schickel JN, Boeckers JM, Yang C, Baldo A, Ivashkiv LB, Young RM, Staudt LM, Moody KL, Nündel K, Marshak-Rothstein A, van der Made CI, Hoischen A, Hayward A, Rossato M, Radstake TR, Cunningham-Rundles C, Ryu C, Herzog EL, Barrat FJ, Meffre E. TLR9 ligand sequestration by chemokine CXCL4 negatively affects central B cell tolerance. J Exp Med 2023; 220:e20230944. [PMID: 37773045 PMCID: PMC10541333 DOI: 10.1084/jem.20230944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
Central B cell tolerance is believed to be regulated by B cell receptor signaling induced by the recognition of self-antigens in immature B cells. Using humanized mice with defective MyD88, TLR7, or TLR9 expression, we demonstrate that TLR9/MYD88 are required for central B cell tolerance and the removal of developing autoreactive clones. We also show that CXCL4, a chemokine involved in systemic sclerosis (SSc), abrogates TLR9 function in B cells by sequestering TLR9 ligands away from the endosomal compartments where this receptor resides. The in vivo production of CXCL4 thereby impedes both TLR9 responses in B cells and the establishment of central B cell tolerance. We conclude that TLR9 plays an essential early tolerogenic function required for the establishment of central B cell tolerance and that correcting defective TLR9 function in B cells from SSc patients may represent a novel therapeutic strategy to restore B cell tolerance.
Collapse
Affiliation(s)
- Elif Çakan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Yolanda Garcia-Carmona
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Salomé Glauzy
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David Oliver
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Natsuko Yamakawa
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Andrea Vega Loza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yong Du
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | | | - Joshua M. Boeckers
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Chao Yang
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Alessia Baldo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Lionel B. Ivashkiv
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Ryan M. Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Krishna L. Moody
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Kerstin Nündel
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Ann Marshak-Rothstein
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Caspar I. van der Made
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anthony Hayward
- Warren Alper School of Medicine, Brown University, Providence, RI, USA
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Timothy R.D.J. Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Cunningham-Rundles
- Department of Clinical Immunology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changwan Ryu
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Erica L. Herzog
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Alluri K, Srinivas B, Belmadani S, Matrougui K. Plasmacytoid dendritic cells contribute to vascular endothelial dysfunction in type 2 diabetes. Front Cardiovasc Med 2023; 10:1222243. [PMID: 38094119 PMCID: PMC10716216 DOI: 10.3389/fcvm.2023.1222243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/09/2023] [Indexed: 02/01/2024] Open
Abstract
Objective Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease due to macro- and microvascular dysfunction. This study aimed to investigate the potential involvement of plasmacytoid dendritic cells (pDCs) in T2D-related vascular dysfunction. Approach and results pDCs were isolated from db/db and control mice. It was found that pDCs from db/db mice impaired endothelial cell eNOS phosphorylation in response to ATP and decreased vascular endothelium-dependent relaxation compared to pDCs from control mice. Moreover, isolated CD4+ cells from control mice, when stimulated overnight with high glucose and lipids, and isolated pDCs from db/db mice, display elevated levels of ER stress, inflammation, and apoptosis markers. Flow cytometry revealed that pDC frequency was higher in db/db mice than in controls. In vivo, the reduction of pDCs using anti-PDCA-1 antibodies in male and female db/db mice for 4 weeks significantly improved vascular endothelial function and eNOS phosphorylation. Conclusion pDCs may contribute to vascular dysfunction in T2D by impairing endothelial cell function. Targeting pDCs with anti-PDCA-1 antibodies may represent a promising therapeutic strategy for improving vascular endothelial function in T2D patients. This study provides new insights into the pathogenesis of T2D-related vascular dysfunction and highlights the potential of immunomodulatory therapies for treating this complication. Further studies are warranted to explore the clinical potential of this approach.
Collapse
Affiliation(s)
| | | | | | - K. Matrougui
- Department of Physiological Sciences, EVMS, Norfolk, VA, United States
| |
Collapse
|
25
|
Yang C, Yuan R, Brauner C, Du Y, Ah Kioon MD, Barrat FJ, Ivashkiv LB. Dichotomous roles of RIPK3 in regulating the IFN response and NLRP3 inflammasome in human monocytes. J Leukoc Biol 2023; 114:615-629. [PMID: 37648661 PMCID: PMC10723620 DOI: 10.1093/jleuko/qiad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Regulation of the profile and magnitude of toll-like receptor (TLR) responses is important for effective host defense against infections while minimizing inflammatory toxicity. The chemokine CXCL4 regulates the TLR8 response to amplify inflammatory gene and inflammasome activation while attenuating the interferon (IFN) response in primary monocytes. In this study, we describe an unexpected role for the kinase RIPK3 in suppressing the CXCL4 + TLR8-induced IFN response and providing signal 2 to activate the NLRP3 inflammasome and interleukin (IL)-1 production in primary human monocytes. RIPK3 also amplifies induction of inflammatory genes such as TNF, IL6, and IL1B while suppressing IL12B. Mechanistically, RIPK3 inhibits STAT1 activation and activates PI3K-Akt-dependent and XBP1- and NRF2-mediated stress responses to regulate downstream genes in a dichotomous manner. These findings identify new functions for RIPK3 in modulating TLR responses and provide potential mechanisms by which RIPK3 plays roles in inflammatory diseases and suggest targeting RIPK3 and XBP1- and NRF2-mediated stress responses as therapeutic strategies to suppress inflammation while preserving the IFN response for host defense.
Collapse
Affiliation(s)
- Chao Yang
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Ruoxi Yuan
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Caroline Brauner
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Yong Du
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, NY 10065, United States
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, Box 62, New York, NY 10065, United States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, 1300 York Avenue, Box 65, New York, NY 10065, United States
| | - Lionel B. Ivashkiv
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, United States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, 1300 York Avenue, Box 65, New York, NY 10065, United States
- Department of Medicine, Weill Cornell Medicine, 530 East 70th Street, M-522, New York, NY 10021, United States
| |
Collapse
|
26
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
27
|
Odell ID, Agrawal K, Sefik E, Odell AV, Caves E, Kirkiles-Smith NC, Horsley V, Hinchcliff M, Pober JS, Kluger Y, Flavell RA. IL-6 trans-signaling in a humanized mouse model of scleroderma. Proc Natl Acad Sci U S A 2023; 120:e2306965120. [PMID: 37669366 PMCID: PMC10500188 DOI: 10.1073/pnas.2306965120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Fibrosis is regulated by interactions between immune and mesenchymal cells. However, the capacity of cell types to modulate human fibrosis pathology is poorly understood due to lack of a fully humanized model system. MISTRG6 mice were engineered by homologous mouse/human gene replacement to develop an immune system like humans when engrafted with human hematopoietic stem cells (HSCs). We utilized MISTRG6 mice to model scleroderma by transplantation of healthy or scleroderma skin from a patient with pansclerotic morphea to humanized mice engrafted with unmatched allogeneic HSC. We identified that scleroderma skin grafts contained both skin and bone marrow-derived human CD4 and CD8 T cells along with human endothelial cells and pericytes. Unlike healthy skin, fibroblasts in scleroderma skin were depleted and replaced by mouse fibroblasts. Furthermore, HSC engraftment alleviated multiple signatures of fibrosis, including expression of collagen and interferon genes, and proliferation and activation of human T cells. Fibrosis improvement correlated with reduced markers of T cell activation and expression of human IL-6 by mesenchymal cells. Mechanistic studies supported a model whereby IL-6 trans-signaling driven by CD4 T cell-derived soluble IL-6 receptor complexed with fibroblast-derived IL-6 promoted excess extracellular matrix gene expression. Thus, MISTRG6 mice transplanted with scleroderma skin demonstrated multiple fibrotic responses centered around human IL-6 signaling, which was improved by the presence of healthy bone marrow-derived immune cells. Our results highlight the importance of IL-6 trans-signaling in pathogenesis of scleroderma and the ability of healthy bone marrow-derived immune cells to mitigate disease.
Collapse
Affiliation(s)
- Ian D. Odell
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
| | - Kriti Agrawal
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT06511
- Program in Applied Mathematics, Yale University, New Haven, CT06511
| | - Esen Sefik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
| | - Anahi V. Odell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
| | - Elizabeth Caves
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06520
| | | | - Valerie Horsley
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT06520
| | - Monique Hinchcliff
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, New Haven, CT06520
| | - Jordan S. Pober
- Department of Dermatology, Yale University School of Medicine, New Haven, CT06520
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
- Department of Pathology, Yale University, New Haven, CT06511
| | - Yuval Kluger
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT06511
- Program in Applied Mathematics, Yale University, New Haven, CT06511
- Department of Pathology, Yale University, New Haven, CT06511
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT06520
- HHMI, Chevy Chase, MD20815
| |
Collapse
|
28
|
Londe AC, Fernandez-Ruiz R, Julio PR, Appenzeller S, Niewold TB. Type I Interferons in Autoimmunity: Implications in Clinical Phenotypes and Treatment Response. J Rheumatol 2023; 50:1103-1113. [PMID: 37399470 DOI: 10.3899/jrheum.2022-0827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 07/05/2023]
Abstract
Type I interferon (IFN-I) is thought to play a role in many systemic autoimmune diseases. IFN-I pathway activation is associated with pathogenic features, including the presence of autoantibodies and clinical phenotypes such as more severe disease with increased disease activity and damage. We will review the role and potential drivers of IFN-I dysregulation in 5 prototypic autoimmune diseases: systemic lupus erythematosus, dermatomyositis, rheumatoid arthritis, primary Sjögren syndrome, and systemic sclerosis. We will also discuss current therapeutic strategies that directly or indirectly target the IFN-I system.
Collapse
Affiliation(s)
- Ana Carolina Londe
- A.C. Londe, MSc, Autoimmunity Lab, and Graduate Program in Physiopathology, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ruth Fernandez-Ruiz
- R. Fernandez-Ruiz, MD, Department of Medicine, Hospital for Special Surgery, New York, New York, USA
| | - Paulo Rogério Julio
- P. Rogério Julio, MSc, Autoimmunity Lab, and Graduate Program of Child and Adolescent Health, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Simone Appenzeller
- S. Appenzeller, MD, PhD, Autoimmunity Lab, and Rheumatology Unit, Department of Medicine, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Timothy B Niewold
- T.B. Niewold, MD, Department of Medicine, Hospital for Special Surgery, New York, New York, USA.
| |
Collapse
|
29
|
Zhang S, Audiger C, Chopin M, Nutt SL. Transcriptional regulation of dendritic cell development and function. Front Immunol 2023; 14:1182553. [PMID: 37520521 PMCID: PMC10382230 DOI: 10.3389/fimmu.2023.1182553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Dendritic cells (DCs) are sentinel immune cells that form a critical bridge linking the innate and adaptive immune systems. Extensive research addressing the cellular origin and heterogeneity of the DC network has revealed the essential role played by the spatiotemporal activity of key transcription factors. In response to environmental signals DC mature but it is only following the sensing of environmental signals that DC can induce an antigen specific T cell response. Thus, whilst the coordinate action of transcription factors governs DC differentiation, sensing of environmental signals by DC is instrumental in shaping their functional properties. In this review, we provide an overview that focuses on recent advances in understanding the transcriptional networks that regulate the development of the reported DC subsets, shedding light on the function of different DC subsets. Specifically, we discuss the emerging knowledge on the heterogeneity of cDC2s, the ontogeny of pDCs, and the newly described DC subset, DC3. Additionally, we examine critical transcription factors such as IRF8, PU.1, and E2-2 and their regulatory mechanisms and downstream targets. We highlight the complex interplay between these transcription factors, which shape the DC transcriptome and influence their function in response to environmental stimuli. The information presented in this review provides essential insights into the regulation of DC development and function, which might have implications for developing novel therapeutic strategies for immune-related diseases.
Collapse
Affiliation(s)
- Shengbo Zhang
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cindy Audiger
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Michaël Chopin
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
30
|
Gronke K, Nguyen M, Santamaria N, Schumacher J, Yang Y, Sonnert N, Leopold S, Martin AL, Hallet R, Richter K, Schubert DA, Daniel GM, Dylus D, Forkel M, Vieira SM, Schwinge D, Schramm C, Lassen KG, Piali L, Palm NW, Bieniossek C, Kriegel MA. Human Th17- and IgG3-associated autoimmunity induced by a translocating gut pathobiont. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546430. [PMID: 37425769 PMCID: PMC10327010 DOI: 10.1101/2023.06.29.546430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Extraintestinal autoimmune diseases are multifactorial with translocating gut pathobionts implicated as instigators and perpetuators in mice. However, the microbial contributions to autoimmunity in humans remain largely unclear, including whether specific pathological human adaptive immune responses are triggered by such pathobionts. We show here that the translocating pathobiont Enterococcus gallinarum induces human IFNγ + Th17 differentiation and IgG3 subclass switch of anti- E. gallinarum RNA and correlating anti-human RNA autoantibody responses in patients with systemic lupus erythematosus and autoimmune hepatitis. Human Th17 induction by E. gallinarum is cell-contact dependent and involves TLR8-mediated human monocyte activation. In murine gnotobiotic lupus models, E. gallinarum translocation triggers IgG3 anti-RNA autoantibody titers that correlate with renal autoimmune pathophysiology and with disease activity in patients. Overall, we define cellular mechanisms of how a translocating pathobiont induces human T- and B-cell-dependent autoimmune responses, providing a framework for developing host- and microbiota-derived biomarkers and targeted therapies in extraintestinal autoimmune diseases. One Sentence Summary Translocating pathobiont Enterococcus gallinarum promotes human Th17 and IgG3 autoantibody responses linked to disease activity in autoimmune patients.
Collapse
|
31
|
Sisto M, Lisi S. Immune and Non-Immune Inflammatory Cells Involved in Autoimmune Fibrosis: New Discoveries. J Clin Med 2023; 12:jcm12113801. [PMID: 37297996 DOI: 10.3390/jcm12113801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Fibrosis is an important health problem and its pathogenetic activation is still largely unknown. It can develop either spontaneously or, more frequently, as a consequence of various underlying diseases, such as chronic inflammatory autoimmune diseases. Fibrotic tissue is always characterized by mononuclear immune cells infiltration. The cytokine profile of these cells shows clear proinflammatory and profibrotic characteristics. Furthermore, the production of inflammatory mediators by non-immune cells, in response to several stimuli, can be involved in the fibrotic process. It is now established that defects in the abilities of non-immune cells to mediate immune regulation may be involved in the pathogenicity of a series of inflammatory diseases. The convergence of several, not yet well identified, factors results in the aberrant activation of non-immune cells, such as epithelial cells, endothelial cells, and fibroblasts, that, by producing pro-inflammatory molecules, exacerbate the inflammatory condition leading to the excessive and chaotic secretion of extracellular matrix proteins. However, the precise cellular mechanisms involved in this process have not yet been fully elucidated. In this review, we explore the latest discoveries on the mechanisms that initiate and perpetuate the vicious circle of abnormal communications between immune and non-immune cells, responsible for fibrotic evolution of inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
32
|
Hawtin S, André C, Collignon-Zipfel G, Appenzeller S, Bannert B, Baumgartner L, Beck D, Betschart C, Boulay T, Brunner HI, Ceci M, Deane J, Feifel R, Ferrero E, Kyburz D, Lafossas F, Loetscher P, Merz-Stoeckle C, Michellys P, Nuesslein-Hildesheim B, Raulf F, Rush JS, Ruzzante G, Stein T, Zaharevitz S, Wieczorek G, Siegel R, Gergely P, Shisha T, Junt T. Preclinical characterization of the Toll-like receptor 7/8 antagonist MHV370 for lupus therapy. Cell Rep Med 2023; 4:101036. [PMID: 37196635 DOI: 10.1016/j.xcrm.2023.101036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/17/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
Genetic and in vivo evidence suggests that aberrant recognition of RNA-containing autoantigens by Toll-like receptors (TLRs) 7 and 8 drives autoimmune diseases. Here we report on the preclinical characterization of MHV370, a selective oral TLR7/8 inhibitor. In vitro, MHV370 inhibits TLR7/8-dependent production of cytokines in human and mouse cells, notably interferon-α, a clinically validated driver of autoimmune diseases. Moreover, MHV370 abrogates B cell, plasmacytoid dendritic cell, monocyte, and neutrophil responses downstream of TLR7/8. In vivo, prophylactic or therapeutic administration of MHV370 blocks secretion of TLR7 responses, including cytokine secretion, B cell activation, and gene expression of, e.g., interferon-stimulated genes. In the NZB/W F1 mouse model of lupus, MHV370 halts disease. Unlike hydroxychloroquine, MHV370 potently blocks interferon responses triggered by specific immune complexes from systemic lupus erythematosus patient sera, suggesting differentiation from clinical standard of care. These data support advancement of MHV370 to an ongoing phase 2 clinical trial.
Collapse
Affiliation(s)
- Stuart Hawtin
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Cédric André
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | | | - Simone Appenzeller
- Department of Orthopedics, Rheumatology, and Traumatology, School of Medical Science, University of Campinas (UNICAMP), Campinas, 13083-887 São Paulo, Brazil
| | - Bettina Bannert
- Department of Rheumatology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Lea Baumgartner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Damian Beck
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Claudia Betschart
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Thomas Boulay
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Hermine I Brunner
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melanie Ceci
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Jonathan Deane
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | - Roland Feifel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Enrico Ferrero
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Diego Kyburz
- Department of Rheumatology, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Frederique Lafossas
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Pius Loetscher
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | | | - Pierre Michellys
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | | | - Friedrich Raulf
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - James S Rush
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Giulia Ruzzante
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Thomas Stein
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Samantha Zaharevitz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, La Jolla, CA 92121, USA
| | - Grazyna Wieczorek
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Richard Siegel
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Peter Gergely
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Tamas Shisha
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Tobias Junt
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, 4056 Basel, Switzerland.
| |
Collapse
|
33
|
Molecular Mechanisms Behind the Role of Plasmacytoid Dendritic Cells in Systemic Sclerosis. BIOLOGY 2023; 12:biology12020285. [PMID: 36829561 PMCID: PMC9953616 DOI: 10.3390/biology12020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Systemic sclerosis (SSc) is a debilitating autoimmune disease that affects multiple systems. It is characterized by immunological deregulation, functional and structural abnormalities of small blood vessels, and fibrosis of the skin, and, in some cases, internal organs. Fibrosis has a devastating impact on a patient's life and lung fibrosis is associated with high morbimortality. Several immune populations contribute to the progression of SSc, and plasmacytoid dendritic cells (pDCs) have been identified as crucial mediators of fibrosis. Research on murine models of lung and skin fibrosis has shown that pDCs are essential in the development of fibrosis, and that removing pDCs improves fibrosis. pDCs are a subset of dendritic cells (DCs) that are specialized in anti-viral responses and are also involved in autoimmune diseases, such as SSc, systemic lupus erythematosus (SLE) and psoriasis, mostly due to their capacity to produce type I interferon (IFN). A type I IFN signature and high levels of CXCL4, both derived from pDCs, have been associated with poor prognosis in patients with SSc and are correlated with fibrosis. This review will examine the recent research on the molecular mechanisms through which pDCs impact SSc.
Collapse
|
34
|
O'Reilly S. Toll-like receptor triggering in systemic sclerosis: time to target. Rheumatology (Oxford) 2023; 62:SI12-SI19. [PMID: 35863054 DOI: 10.1093/rheumatology/keac421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
SSc is an autoimmune disease that has features of vascular abnormalities, inflammation and skin and lung fibrosis. Toll-like receptors (TLRs) are sentinel receptors that serve to recognize pathogens or internal danger signals leading to downstream signalling pathways that ultimately lead to inflammation and modification of adaptive immunity. Inflammation and fibrosis appear intricately connected in this disease and TLR ligation on fibroblasts can directly activate these cells to produce copious amounts of collagen, a hallmark of disease. The presence of damage-associated molecular patterns in association with fibrosis has been highlighted. Given their prominent role in disease, this review discusses the evidence of their expression and role in disease pathogenesis and possible therapeutic intervention to mitigate fibrosis.
Collapse
|
35
|
Duluc D, Sisirak V. Origin, Phenotype, and Function of Mouse Dendritic Cell Subsets. Methods Mol Biol 2023; 2618:3-16. [PMID: 36905505 DOI: 10.1007/978-1-0716-2938-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells are cells of hematopoietic origin that are specialized in antigen presentation and instruction of innate and adaptive immune responses. They are a heterogenous group of cells populating lymphoid organs and most tissues. Dendritic cells are commonly separated in three main subsets that differ in their developmental paths, phenotype, and functions. Most studies on dendritic cells were done primarily in mice; therefore, in this chapter, we propose to summarize the current knowledge and recent progress on mouse dendritic cell subsets' development, phenotype, and functions.
Collapse
Affiliation(s)
- Dorothée Duluc
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France.
| | - Vanja Sisirak
- UMR CNRS 5164 - Immunoconcept, Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
36
|
Kim S, Park HJ, Lee SI. The Microbiome in Systemic Sclerosis: Pathophysiology and Therapeutic Potential. Int J Mol Sci 2022; 23:ijms232416154. [PMID: 36555792 PMCID: PMC9853331 DOI: 10.3390/ijms232416154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disease with unknown etiology characterized by multi-organ fibrosis. Despite substantial investigation on SSc-related cellular and molecular mechanisms, effective therapies are still lacking. The skin, lungs, and gut are the most affected organs in SSc, which act as physical barriers and constantly communicate with colonized microbiota. Recent reports have documented a unique microbiome signature, which may be the pathogenic trigger or driver of SSc. Since gut microbiota influences the efficacy and toxicity of oral drugs, evaluating drug-microbiota interactions has become an area of interest in disease treatment. The existing evidence highlights the potential of the microbial challenge as a novel therapeutic option in SSc. In this review, we have summarized the current knowledge about molecular mechanisms of SSc and highlighted the underlying role of the microbiome in SSc pathogenesis. We have also discussed the latest therapeutic interventions using microbiomes in SSc, including drug-microbiota interactions and animal disease models. This review aims to elucidate the pathophysiological connection and therapeutic potential of the microbiome in SSc. Insights into the microbiome will significantly improve our understanding of etiopathogenesis and developing therapeutics for SSc.
Collapse
|
37
|
Odell ID, Steach H, Gauld SB, Reinke-Breen L, Karman J, Carr TL, Wetter JB, Phillips L, Hinchcliff M, Flavell RA. Epiregulin is a dendritic cell-derived EGFR ligand that maintains skin and lung fibrosis. Sci Immunol 2022; 7:eabq6691. [PMID: 36490328 PMCID: PMC9840167 DOI: 10.1126/sciimmunol.abq6691] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune cells are fundamental regulators of extracellular matrix (ECM) production by fibroblasts and have important roles in determining extent of fibrosis in response to inflammation. Although much is known about fibroblast signaling in fibrosis, the molecular signals between immune cells and fibroblasts that drive its persistence are poorly understood. We therefore analyzed skin and lung samples of patients with diffuse cutaneous systemic sclerosis, an autoimmune disease that causes debilitating fibrosis of the skin and internal organs. Here, we define a critical role of epiregulin-EGFR signaling between dendritic cells and fibroblasts to maintain elevated ECM production and accumulation in fibrotic tissue. We found that epiregulin expression marks an inducible state of DC3 dendritic cells triggered by type I interferon and that DC3-derived epiregulin activates EGFR on fibroblasts, driving a positive feedback loop through NOTCH signaling. In mouse models of skin and lung fibrosis, epiregulin was essential for persistence of fibrosis in both tissues, which could be abrogated by epiregulin genetic deficiency or a neutralizing antibody. Therapeutic administration of epiregulin antibody reversed fibrosis in patient skin and lung explants, identifying it as a previously unexplored biologic drug target. Our findings reveal epiregulin as a crucial immune signal that maintains skin and lung fibrosis in multiple diseases and represents a promising antifibrotic target.
Collapse
Affiliation(s)
- Ian D. Odell
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Holly Steach
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | - Monique Hinchcliff
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
38
|
Palazzo R, Stefanantoni K, Cadar M, Butera A, Riccieri V, Lande R, Frasca L. Heparin-Independent and Heparin-Dependent Anti-CXCL4 Antibodies Have a Reciprocal Expression in a Systemic Sclerosis Patients' Cohort. Antibodies (Basel) 2022; 11:antib11040077. [PMID: 36546902 PMCID: PMC9774936 DOI: 10.3390/antib11040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic disease characterized by skin/internal organ fibrosis, vasculopathy and autoimmunity. Chemokine (C-X-C motif) ligand 4 (CXCL4) is an early SSc biomarker that predicts worse disease outcome. We previously reported that CXCL4 is an autoantigen in SSc, and anti-CXCL4 antibodies correlated with IFN-I and were more abundant in patients with lung fibrosis. However, it is unclear whether antibodies to CXCL4 in SSc are only directed to CXCL4 or recognize complexes formed by CXCL4 and heparin. Here, by analyzing an SSc cohort, we addressed the occurrence of circulating heparin-dependent VS heparin-independent anti-CXCL4 antibodies and their relationship with a few disease parameters. We found that heparin-dependent, like the heparin-independent antibodies, are higher in SSc as compared to healthy donors; they are detectable in 24% and 30% of the SSc patients, respectively, and appear inversely correlated and mutually exclusive. Like the heparin-independent antibodies, heparin-dependent antibodies correlated with digital ulcers. However, in contrast to heparin-independent antibodies, heparin-dependent antibodies did not correlate with IFN-I, but were largely expressed in patients with pulmonary arterial hypertension. This pilot study indicates that heparin-dependent antibodies are worth studying in larger SSc cohorts to address whether they discriminate SSc sub-groups with different pathological characteristics and outcomes.
Collapse
Affiliation(s)
- Raffaella Palazzo
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Katia Stefanantoni
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Marius Cadar
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Alessia Butera
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Valeria Riccieri
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Lande
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Loredana Frasca
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena, 299, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
39
|
Fang D, Chen B, Lescoat A, Khanna D, Mu R. Immune cell dysregulation as a mediator of fibrosis in systemic sclerosis. Nat Rev Rheumatol 2022; 18:683-693. [DOI: 10.1038/s41584-022-00864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
|
40
|
Chaudhary V, Ah Kioon MD, Hwang SM, Mishra B, Lakin K, Kirou KA, Zhang-Sun J, Wiseman RL, Spiera RF, Crow MK, Gordon JK, Cubillos-Ruiz JR, Barrat FJ. Chronic activation of pDCs in autoimmunity is linked to dysregulated ER stress and metabolic responses. J Exp Med 2022; 219:e20221085. [PMID: 36053251 PMCID: PMC9441715 DOI: 10.1084/jem.20221085] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) chronically produce type I interferon (IFN-I) in autoimmune diseases, including systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). We report that the IRE1α-XBP1 branch of the unfolded protein response (UPR) inhibits IFN-α production by TLR7- or TLR9-activated pDCs. In SSc patients, UPR gene expression was reduced in pDCs, which inversely correlated with IFN-I-stimulated gene expression. CXCL4, a chemokine highly secreted in SSc patients, downregulated IRE1α-XBP1-controlled genes and promoted IFN-α production by pDCs. Mechanistically, IRE1α-XBP1 activation rewired glycolysis to serine biosynthesis by inducing phosphoglycerate dehydrogenase (PHGDH) expression. This process reduced pyruvate access to the tricarboxylic acid (TCA) cycle and blunted mitochondrial ATP generation, which are essential for pDC IFN-I responses. Notably, PHGDH expression was reduced in pDCs from patients with SSc and SLE, and pharmacological blockade of TCA cycle reactions inhibited IFN-I responses in pDCs from these patients. Hence, modulating the IRE1α-XBP1-PHGDH axis may represent a hitherto unexplored strategy for alleviating chronic pDC activation in autoimmune disorders.
Collapse
Affiliation(s)
- Vidyanath Chaudhary
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
| | - Sung-Min Hwang
- Sandra and Edward Meyer Cancer Center and Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
| | - Bikash Mishra
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
| | - Kimberly Lakin
- Department of Medicine, Division of Rheumatology and Scleroderma and Vasculitis Center, Hospital for Special Surgery, New York, NY
| | - Kyriakos A. Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY
| | - Jeffrey Zhang-Sun
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Robert F. Spiera
- Department of Medicine, Division of Rheumatology and Scleroderma and Vasculitis Center, Hospital for Special Surgery, New York, NY
| | - Mary K. Crow
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Jessica K. Gordon
- Department of Medicine, Division of Rheumatology and Scleroderma and Vasculitis Center, Hospital for Special Surgery, New York, NY
| | - Juan R. Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center and Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| |
Collapse
|
41
|
Stergioti EM, Manolakou T, Boumpas DT, Banos A. Antiviral Innate Immune Responses in Autoimmunity: Receptors, Pathways, and Therapeutic Targeting. Biomedicines 2022; 10:2820. [PMID: 36359340 PMCID: PMC9687478 DOI: 10.3390/biomedicines10112820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Innate immune receptors sense nucleic acids derived from viral pathogens or self-constituents and initiate an immune response, which involves, among other things, the secretion of cytokines including interferon (IFN) and the activation of IFN-stimulated genes (ISGs). This robust and well-coordinated immune response is mediated by the innate immune cells and is critical to preserving and restoring homeostasis. Like an antiviral response, during an autoimmune disease, aberrations of immune tolerance promote inflammatory responses to self-components, such as nucleic acids and immune complexes (ICs), leading to the secretion of cytokines, inflammation, and tissue damage. The aberrant immune response within the inflammatory milieu of the autoimmune diseases may lead to defective viral responses, predispose to autoimmunity, or precipitate a flare of an existing autoimmune disease. Herein, we review the literature on the crosstalk between innate antiviral immune responses and autoimmune responses and discuss the pitfalls and challenges regarding the therapeutic targeting of the mechanisms involved.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Dimitrios T. Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, 124 62 Athens, Greece
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| |
Collapse
|
42
|
Kakkar V, Assassi S, Allanore Y, Kuwana M, Denton CP, Khanna D, Del Galdo F. Type 1 interferon activation in systemic sclerosis: a biomarker, a target or the culprit. Curr Opin Rheumatol 2022; 34:357-364. [PMID: 36125916 PMCID: PMC9594133 DOI: 10.1097/bor.0000000000000907] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
PURPOSE OF REVIEW Activation of the type 1 interferon (T1 IFN) pathway has been implicated in the pathogenesis of systemic sclerosis (SSc) by an increasing number of studies, most of which share key findings with similar studies in systemic lupus erythematosus (SLE). Here we will focus on the evidence for T1 IFN activation and dysregulation in SSc, and the rationale behind targeting the pathway going forward. RECENT FINDINGS An increased expression and activation of T1 IFN-regulated genes has been shown to be present in a significant proportion of SSc patients. TI IFN activation markers have been found to predict and correlate with response to immunosuppressive treatment as well as severity of organ involvement. As inhibition of the IFN-α receptor has been proven to be effective in active SLE, benefit may be seen in targeting the IFN pathway in SSc. SUMMARY The role played by T1 IFN and its regulatory genes in SSc is becoming increasingly evident and strikingly similar to the role observed in SLE. This observation, together with the benefit of type 1 IFN targeting in SLE, supports the notion of a potential therapeutic benefit in targeting T1 IFN in SSc.
Collapse
Affiliation(s)
- Vishal Kakkar
- Department of Rheumatology, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center at Houston, Texas, USA
| | - Yannick Allanore
- INSERM U1016 UMR 8104, Université Paris Cité, Hôpital Cochin, Paris, France
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
| | | | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, Michigan, USA
| | - Francesco Del Galdo
- Department of Rheumatology, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
43
|
Choreño-Parra JA, Cervantes-Rosete D, Jiménez-Alvarez LA, Ramírez-Martínez G, Márquez-García JE, Cruz-Lagunas A, Magaña-Sanchez AY, Lima G, López-Maldonado H, Gaytán-Guzmán E, Caballero A, Fernández-Plata R, Furuzawa-Carballeda J, Mendoza-Milla C, Navarro-González MDC, Llorente L, Zuniga J, Rodriguez-Reyna TS. Dendritic cells drive profibrotic inflammation and aberrant T cell polarization in systemic sclerosis. Rheumatology (Oxford) 2022; 62:1687-1698. [PMID: 36063053 PMCID: PMC10070068 DOI: 10.1093/rheumatology/keac489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/08/2022] [Accepted: 08/13/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Systemic sclerosis (SSc) is a devastating autoimmune disease characterized by fibrosis and obliterative vasculopathy affecting the skin and visceral organs. While the processes mediating excessive extracellular matrix (EM) deposition and fibroblast proliferation are clear, the exact link between autoimmunity and fibrosis remains elusive. Th17 cells have been proposed as critical drivers of profibrotic inflammation during SSc, but little is known about the immune components supporting their pathogenic role. METHODS Dendritic cells (DCs) activate and shape T cell differentiation by producing polarizing cytokines. Hence, we investigated the cytokine responses of monocyte-derived DCs (Mo-DCs) from patients with limited cutaneous SSc (lcSSc), diffuse cutaneous SSc (dcSSc), and healthy controls (HC) after stimulation with toll-like receptor (TLR) agonists. Also, using co-culture assays, we analyzed T cell subpopulations after contact with autologous TLR-activated Mo-DCs. RESULTS In general, we observed an increased production of Th17 related cytokines like IL-1β, IL-17F, IL-21, IL-22 by SSc compared with HC Mo-DCs, with variations between lcSSc vs. dcSSc and early- vs. late-stage subgroups. Noticeably, we found a significant increment in IL-33 production by Mo-DCs in all SSc cases regardless of their clinical phenotype. Strikingly, T cells displayed Th2, Th17, and dual Th2/Th17 phenotypes after exposure to autologous TLR-stimulated Mo-DCs from SSc patients but not HC. These changes were pronounced in individuals with early-stage dcSSc and less significant in the late-stage lcSSc subgroup. CONCLUSIONS Our findings suggest that functional alterations of DCs subsidize the immune mechanisms favoring the aberrant T cell polarization and profibrotic inflammation behind the clinical SSc heterogeneity.
Collapse
Affiliation(s)
- Jose Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz. De Tlalpan 4502, Col. Sección XVI., Tlalpan, 14080. Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México, 64849
| | - Diana Cervantes-Rosete
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga, 15. Col. Belisario Dominguez Sección XVI. Tlalpan, 14080, Mexico City, Mexico
| | - Luis Armando Jiménez-Alvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz. De Tlalpan 4502, Col. Sección XVI., Tlalpan, 14080. Mexico City, Mexico
| | - Gustavo Ramírez-Martínez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz. De Tlalpan 4502, Col. Sección XVI., Tlalpan, 14080. Mexico City, Mexico
| | - Jose Eduardo Márquez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz. De Tlalpan 4502, Col. Sección XVI., Tlalpan, 14080. Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz. De Tlalpan 4502, Col. Sección XVI., Tlalpan, 14080. Mexico City, Mexico
| | - Ana Yelli Magaña-Sanchez
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco, de Quiroga, 15. Col. Belisario Dominguez Sección XVI. Tlalpan, 14080, Mexico City, Mexico
| | - Guadalupe Lima
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco, de Quiroga, 15. Col. Belisario Dominguez Sección XVI. Tlalpan, 14080, Mexico City, Mexico
| | - Humberto López-Maldonado
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco, de Quiroga, 15. Col. Belisario Dominguez Sección XVI. Tlalpan, 14080, Mexico City, Mexico
| | - Emanuel Gaytán-Guzmán
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco, de Quiroga, 15. Col. Belisario Dominguez Sección XVI. Tlalpan, 14080, Mexico City, Mexico
| | - Adrian Caballero
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco, de Quiroga, 15. Col. Belisario Dominguez Sección XVI. Tlalpan, 14080, Mexico City, Mexico
| | - Rosario Fernández-Plata
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz. De Tlalpan 4502, Col. Sección XVI., Tlalpan, 14080. Mexico City, Mexico
| | - Janette Furuzawa-Carballeda
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco, de Quiroga, 15. Col. Belisario Dominguez Sección XVI. Tlalpan, 14080, Mexico City, Mexico
| | - Criselda Mendoza-Milla
- Laboratorio de Transducción de Señales, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz. De Tlalpan, 4502, Col. Sección XVI. Tlalpan, 14080. Mexico City, Mexico
| | - Maria Del Carmen Navarro-González
- Laboratorio de Investigación en Enfermedades Reumáticas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz. De Tlalpan, 4502, Col. Sección XVI. Tlalpan, 14080, . Mexico City, Mexico
| | - Luis Llorente
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México, 64849
| | - Joaquin Zuniga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calz. De Tlalpan 4502, Col. Sección XVI., Tlalpan, 14080. Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México, 64849
| | - Tatiana Sofia Rodriguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco, de Quiroga, 15. Col. Belisario Dominguez Sección XVI. Tlalpan, 14080, Mexico City, Mexico
| |
Collapse
|
44
|
Kawashima-Vasconcelos MY, Santana-Gonçalves M, Zanin-Silva DC, Malmegrim KCR, Oliveira MC. Reconstitution of the immune system and clinical correlates after stem cell transplantation for systemic sclerosis. Front Immunol 2022; 13:941011. [PMID: 36032076 PMCID: PMC9403547 DOI: 10.3389/fimmu.2022.941011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease that includes fibrosis, diffuse vasculopathy, inflammation, and autoimmunity. Autologous hematopoietic stem cell transplantation (auto-HSCT) is considered for patients with severe and progressive SSc. In recent decades, knowledge about patient management and clinical outcomes after auto-HSCT has significantly improved. Mechanistic studies have contributed to increasing the comprehension of how profound and long-lasting are the modifications to the immune system induced by transplantation. This review revisits the immune monitoring studies after auto-HSCT for SSc patients and how they relate to clinical outcomes. This understanding is essential to further improve clinical applications of auto-HSCT and enhance patient outcomes.
Collapse
Affiliation(s)
- Marianna Y. Kawashima-Vasconcelos
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Internal Medicine Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maynara Santana-Gonçalves
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Oncology, Stem Cell and Cell-Therapy Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Djúlio C. Zanin-Silva
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Basic and Applied Immunology Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C. R. Malmegrim
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
45
|
Chae CS, Sandoval TA, Hwang SM, Park ES, Giovanelli P, Awasthi D, Salvagno C, Emmanuelli A, Tan C, Chaudhary V, Casado J, Kossenkov AV, Song M, Barrat FJ, Holcomb K, Romero-Sandoval EA, Zamarin D, Pépin D, D’Andrea AD, Färkkilä A, Cubillos-Ruiz JR. Tumor-Derived Lysophosphatidic Acid Blunts Protective Type I Interferon Responses in Ovarian Cancer. Cancer Discov 2022; 12:1904-1921. [PMID: 35552618 PMCID: PMC9357054 DOI: 10.1158/2159-8290.cd-21-1181] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid enriched in the tumor microenvironment of immunosuppressive malignancies such as ovarian cancer. Although LPA enhances the tumorigenic attributes of cancer cells, the immunomodulatory activity of this phospholipid messenger remains largely unexplored. Here, we report that LPA operates as a negative regulator of type I interferon (IFN) responses in ovarian cancer. Ablation of the LPA-generating enzyme autotaxin (ATX) in ovarian cancer cells reprogrammed the tumor immune microenvironment, extended host survival, and improved the effects of therapies that elicit protective responses driven by type I IFN. Mechanistically, LPA sensing by dendritic cells triggered PGE2 biosynthesis that suppressed type I IFN signaling via autocrine EP4 engagement. Moreover, we identified an LPA-controlled, immune-derived gene signature associated with poor responses to combined PARP inhibition and PD-1 blockade in patients with ovarian cancer. Controlling LPA production or sensing in tumors may therefore be useful to improve cancer immunotherapies that rely on robust induction of type I IFN. SIGNIFICANCE This study uncovers that ATX-LPA is a central immunosuppressive pathway in the ovarian tumor microenvironment. Ablating this axis sensitizes ovarian cancer hosts to various immunotherapies by unleashing protective type I IFN responses. Understanding the immunoregulatory programs induced by LPA could lead to new biomarkers predicting resistance to immunotherapy in patients with cancer. See related commentary by Conejo-Garcia and Curiel, p. 1841. This article is highlighted in the In This Issue feature, p. 1825.
Collapse
Affiliation(s)
- Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eun Sil Park
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Paolo Giovanelli
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA.,Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Vidyanath Chaudhary
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Julia Casado
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Andrew V. Kossenkov
- Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Minkyung Song
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, and Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Franck J. Barrat
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA.,HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - E. Alfonso Romero-Sandoval
- Department of Anesthesiology, Pain Mechanisms Laboratory, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - David Pépin
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Alan D. D’Andrea
- Susan F. Smith Center for Women’s Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Anniina Färkkilä
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065. USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA,Correspondence: Juan R. Cubillos-Ruiz, Ph.D., Associate Professor of Immunology, Weill Cornell Medicine, New York, NY, , Phone: 212-743-1323
| |
Collapse
|
46
|
Kashyap MP, Khan J, Sinha R, Jin L, Atigadda V, Deshane JS, Ahmed AR, Kilic A, Raman C, Mukhtar MS, Elmets CA, Athar M. Advances in molecular pathogenesis of hidradenitis suppurativa: Dysregulated keratins and ECM signaling. Semin Cell Dev Biol 2022; 128:120-129. [PMID: 35131152 PMCID: PMC9232849 DOI: 10.1016/j.semcdb.2022.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022]
Abstract
Hidradenitis suppurativa (HS) is characterized by deep-seated, highly inflamed, and painful lumps/abscesses, fistulae, and sinus tracts that grow extensively deep in the dermis and are highly immunogenic in nature. In about one-third of the HS patients there is strong evidence for the role of γ-secretase mutations along with dysregulated Notch signaling. However, the contribution of dysregulated Notch signaling in HS pathogenesis in relation to hair follicle alterations and hyper-activation of the immune system remains undefined. A genome-wide association study (GWAS), proteomic data and functional investigations of identified sequence variants in HS pathology are not fully revealing. The disease initiation or progression may involve bacterial infection besides intrinsic functional defects in keratinocytes, which may be key to further exacerbate immune cell infiltration and cytokine production in and around the lesional tissue. The absence of a suitable animal model that could fully recapitulate the pathogenesis of HS is a major impediment for proper understanding the underlying mechanisms and development of effective treatments. The presence of extracellular matrix (ECM) degradation products along with dysregulation in keratinocytes and, dermal fibroblasts ultimately affect immune regulation and are various components of HS pathogenesis. Bacterial infection further exacerbates the complexity of the disease progression. While anti-TNFα therapy shows partial efficacy, treatment to cure HS is absent. Multiple clinical trials targeting various cytokines, complement C5a and ECM products are in progress. This review provides state-of-the-art information on these aspects with a focus on dysregulated keratinocyte and immune cells; and role of ECM, and Keratin functions in this regard.
Collapse
Affiliation(s)
- Mahendra Pratap Kashyap
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Jasim Khan
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Rajesh Sinha
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Lin Jin
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Venkatram Atigadda
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Jessy S Deshane
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Ayesha R Ahmed
- Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Ali Kilic
- Division of Plastic Surgery, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Chander Raman
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Craig A Elmets
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA
| | - Mohammad Athar
- UAB Research Center of Excellence in Arsenicals, Department of Dermatology, University of Alabama at Birmingham, Birmingham AL35294, USA.
| |
Collapse
|
47
|
Du Y, Ah Kioon MD, Laurent P, Chaudhary V, Pierides M, Yang C, Oliver D, Ivashkiv LB, Barrat FJ. Chemokines form nanoparticles with DNA and can superinduce TLR-driven immune inflammation. J Exp Med 2022; 219:e20212142. [PMID: 35640018 PMCID: PMC9161158 DOI: 10.1084/jem.20212142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/24/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
Chemokines control the migratory patterns and positioning of immune cells to organize immune responses to pathogens. However, many chemokines have been associated with systemic autoimmune diseases that have chronic IFN signatures. We report that a series of chemokines, including CXCL4, CXCL10, CXCL12, and CCL5, can superinduce type I IFN (IFN-I) by TLR9-activated plasmacytoid DCs (pDCs), independently of their respective known chemokine receptors. Mechanistically, we show that chemokines such as CXCL4 mediate transcriptional and epigenetic changes in pDCs, mostly targeted to the IFN-I pathways. We describe that chemokines physically interact with DNA to form nanoparticles that promote clathrin-mediated cellular uptake and delivery of DNA in the early endosomes of pDCs. Using two separate mouse models of skin inflammation, we observed the presence of CXCL4 associated with DNA in vivo. These data reveal a noncanonical role for chemokines to serve as nucleic acid delivery vectors to modulate TLR signaling, with implications for the chronic presence of IFN-I by pDCs in autoimmune diseases.
Collapse
Affiliation(s)
- Yong Du
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| | | | - Paoline Laurent
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Vidyanath Chaudhary
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
| | - Michael Pierides
- HSS Research Institute, Hospital for Special Surgery, New York, NY
| | - Chao Yang
- HSS Research Institute, Hospital for Special Surgery, New York, NY
| | - David Oliver
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
| | - Lionel B. Ivashkiv
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
- Department of Medicine, Weill Cornell Medical College of Cornell University, New York, NY
| | - Franck J. Barrat
- HSS Research Institute, Hospital for Special Surgery, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY
| |
Collapse
|
48
|
Ricard L, Eshagh D, Siblany L, de Vassoigne F, Malard F, Laurent C, Beurier P, Jachiet V, Rivière S, Fain O, Mohty M, Gaugler B, Mekinian A. 6-sulfo LacNAc monocytes are quantitatively and functionally disturbed in systemic sclerosis patients. Clin Exp Immunol 2022; 209:175-181. [PMID: 35758259 DOI: 10.1093/cei/uxac059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 11/14/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis, microangiopathy and autoantibodies. We previously reported that circulating follicular helper T (cTfh) cells are increased in SSc and induce plasmablast differentiation. However, mechanisms leading to cTfh cell expansion and activation in SSc remain to be established. Tfh cells require IL-12 for their expansion and differentiation. 6-sulfo LacNAc monocytes (slanMo), a subset of monocytes, have a higher capacity to produce IL-12 and to induce CD4 + T cell proliferation in comparison with dendritic cells (DC) or classical monocytes. The aim of this study was to perform a quantitative and functional analysis of monocytes and DC and to correlate them with cTfh cell expansion and clinical manifestations in SSc. Using flow cytometry, we analyzed different monocyte subsets including slanMo and DC from 36 SSc patients and 26 healthy controls (HC). In vitro culture experiments of sorted slanMo were performed for functional analysis and cytokine production. We observed that slanMo, intermediate and non-classical monocytes were increased in SSc in comparison with HC. Furthermore, the increase in slanMo cells was more potent in patients with diffuse SSc. We observed a significant positive correlation between slanMo and cTfh cell levels in SSc patients but not in HC. Other monocyte subsets did not correlate with cTfh cell expansion. In addition, we observed that in vitro, slanMo cells from SSc patients produced less IL-12 than slanMo from HC. SlanMo are increased in SSc and may participate in the activation of cTfh cells in SSc.
Collapse
Affiliation(s)
- Laure Ricard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Déborah Eshagh
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| | - Lama Siblany
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Frédéric de Vassoigne
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Florent Malard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Charlotte Laurent
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| | - Pauline Beurier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France
| | - Vincent Jachiet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| | - Sébastien Rivière
- AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| | - Olivier Fain
- AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie clinique, F-75012, Paris, France
| | - Arsène Mekinian
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.,AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne et de l'Inflammation-(DHU i2B), F-75012, Paris, France
| |
Collapse
|
49
|
Miyake K, Shibata T, Fukui R, Sato R, Saitoh SI, Murakami Y. Nucleic Acid Sensing by Toll-Like Receptors in the Endosomal Compartment. Front Immunol 2022; 13:941931. [PMID: 35812450 PMCID: PMC9259784 DOI: 10.3389/fimmu.2022.941931] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Toll-like receptors (TLRs) respond to pathogen constituents, such as microbial lipids and nucleic acids (NAs). TLRs recognize NAs in endosomal compartments. Structural and functional studies have shown that recognition of NAs by TLRs depends on NA processing by RNases and DNases. DNase II-dependent DNA degradation is required for TLR9 responses to single-stranded DNAs, whereas RNase T2-dependent RNA degradation enables TLR7 and TLR8 to respond to nucleosides and oligoribonucleotides. In contrast, RNases and DNases negatively regulate TLR responses by degrading their ligands. RNase T2 negatively regulates TLR3 responses to degrading the TLR3 ligand double-stranded RNAs. Therefore, NA metabolism in the endosomal compartments affects the endosomal TLR responses. Dysregulation of NA metabolism in the endosomal compartment drives the TLR-dependent pathologies in human diseases.
Collapse
Affiliation(s)
- Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
- *Correspondence: Kensuke Miyake,
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Ryota Sato
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Shin-Ichiroh Saitoh
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
50
|
Yang C, Bachu M, Du Y, Brauner C, Yuan R, Ah Kioon MD, Chesi G, Barrat FJ, Ivashkiv LB. CXCL4 synergizes with TLR8 for TBK1-IRF5 activation, epigenomic remodeling and inflammatory response in human monocytes. Nat Commun 2022; 13:3426. [PMID: 35701499 PMCID: PMC9195402 DOI: 10.1038/s41467-022-31132-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 06/06/2022] [Indexed: 01/11/2023] Open
Abstract
Regulation of endosomal Toll-like receptor (TLR) responses by the chemokine CXCL4 is implicated in inflammatory and fibrotic diseases, with CXCL4 proposed to potentiate TLR responses by binding to nucleic acid TLR ligands and facilitating their endosomal delivery. Here we report that in human monocytes/macrophages, CXCL4 initiates signaling cascades and downstream epigenomic reprogramming that change the profile of the TLR8 response by selectively amplifying inflammatory gene transcription and interleukin (IL)-1β production, while partially attenuating the interferon response. Mechanistically, costimulation by CXCL4 and TLR8 synergistically activates TBK1 and IKKε, repurposes these kinases towards an inflammatory response via coupling with IRF5, and activates the NLRP3 inflammasome. CXCL4 signaling, in a cooperative and synergistic manner with TLR8, induces chromatin remodeling and activates de novo enhancers associated with inflammatory genes. Our findings thus identify new regulatory mechanisms of TLR responses relevant for cytokine storm, and suggest targeting the TBK1-IKKε-IRF5 axis may be beneficial in inflammatory diseases.
Collapse
Affiliation(s)
- Chao Yang
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Mahesh Bachu
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Yong Du
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Caroline Brauner
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Ruoxi Yuan
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Giancarlo Chesi
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Franck J Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Lionel B Ivashkiv
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|