1
|
Hitt EM. Rozanolixizumab: A New Therapy in the Treatment of Myasthenia Gravis. Ann Pharmacother 2024; 58:1140-1148. [PMID: 38533739 DOI: 10.1177/10600280241239048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVE The aims of this article are to review the clinical aspects of rozanolixizumab, to describe clinical trial results that led to the drug's approval, and to examine the impact on patient care to aid clinical decision making. DATA SOURCES A PubMed search was conducted using the terms Rystiggo™, rozanolixizumab, rozanolixizumab therapy, and myasthenia gravis. The most recent prescribing information was also used for information relating to the drug and for identification of pertinent studies. STUDY SELECTION/DATA EXTRACTION Phase I, II, and III randomized controlled trials were all eligible for inclusion. Meeting abstracts and articles focusing on the use of rozanolixizumab or any indication other than generalized myasthenia gravis were excluded from this article. DATA SYNTHESIS Food and Drug Administration approval of rozanolixizumab is based on the phase III MycarinG study in patients with generalized myasthenia gravis. A phase II trial explored initial clinical efficacy and safety pertaining to the dose and frequency of rozanolixizumab across 2 treatment periods in patients with moderate to severe myasthenia gravis. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON TO EXISTING AGENTS Rozanolixizumab is the first therapy approved to treat patients positive for both types of antibodies, anti-acetylcholine receptor or anti-muscle-specific tyrosine kinase, in generalized myasthenia gravis. CONCLUSION/RELEVANCE The approval of rozanolixizumab represents an advancement in therapy for generalized myasthenia gravis. The provision of individualized, targeted, and well-tolerated treatment is valuable for the patients whose myasthenia gravis is not well controlled and who are seeking a medication with a rapid onset of action to improve their symptoms and overall quality of life.
Collapse
Affiliation(s)
- Emily M Hitt
- Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, USA
| |
Collapse
|
2
|
Ramdas S, Painho T, Vanegas MI, Famili DT, Lim MJ, Jungbluth H. Targeted Treatments for Myasthenia Gravis in Children and Adolescents. Paediatr Drugs 2024; 26:719-740. [PMID: 39198371 DOI: 10.1007/s40272-024-00649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 09/01/2024]
Abstract
Myasthenia gravis (MG) is an antibody-mediated disorder of the neuromuscular junction affecting children and adults. MG is a treatable condition with most patients requiring immunosuppression for disease control and/or remission. Juvenile myasthenia gravis (JMG) is rare in comparison with adult-onset MG but given the same underlying pathophysiology, treatment strategies are similar to those in adults. Until recently, there were only a few randomised controlled trials (RCTs) for MG treatments in adults and none in children, and management strategies were primarily based on expert consensus. In addition, treatment options for refractory MG cases have been severely limited, resulting in poor long-term quality of life in such patients due to the significant disease burden. Recently, there have been several RCTs focussing on novel therapeutic strategies with potentially promising outcomes, suggesting a change in MG management over the coming years and access to more effective and faster-acting drugs for MG patients. This paper will review current and new MG treatments including efgartigimod, eculizumab, rozanolixizumab, ravulizumab, and zilucoplan, with a focus on juvenile myasthenia gravis.
Collapse
Affiliation(s)
- Sithara Ramdas
- Department of Paediatrics, MDUK Neuromuscular Centre, University of Oxford, Oxford, UK
- Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Teresa Painho
- Department of Paediatrics, MDUK Neuromuscular Centre, University of Oxford, Oxford, UK
- Neurology Unit, Hospital Dona Estefânia, Unidade Local de Saúde São José, Centro Clínico Académico de Lisboa, Lisbon, Portugal
| | - Maria I Vanegas
- Department of Paediatric Neurology, Evelina London Children's Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, Children's Neurosciences Centre, F02-Becket House, Lambeth Palace Road, London, SE1 7EU, UK
| | - Dennis T Famili
- Department of Paediatric Neurology, Evelina London Children's Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, Children's Neurosciences Centre, F02-Becket House, Lambeth Palace Road, London, SE1 7EU, UK
| | - Ming J Lim
- Department of Paediatric Neurology, Evelina London Children's Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, Children's Neurosciences Centre, F02-Becket House, Lambeth Palace Road, London, SE1 7EU, UK
- Women and Children's Health, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Evelina London Children's Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, Children's Neurosciences Centre, F02-Becket House, Lambeth Palace Road, London, SE1 7EU, UK.
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK.
| |
Collapse
|
3
|
Attarian S. New treatment strategies in Myasthenia gravis. Rev Neurol (Paris) 2024; 180:971-981. [PMID: 39379218 DOI: 10.1016/j.neurol.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024]
Abstract
Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder characterized by muscle weakness and fatigue. The disease is primarily caused by antibodies targeting acetylcholine receptors (AChR) and muscle-specific kinase (MuSK) proteins at the neuromuscular junction. Traditional treatments for MG, such as acetylcholinesterase inhibitors, corticosteroids, and immunosuppressants, have shown efficacy but are often associated with significant long-term side effects and variable patient response rates. Notably, approximately 15% of patients exhibit inadequate responses to these standard therapies. Recent advancements in molecular therapies, including monoclonal antibodies, B cell-depleting agents, complement inhibitors, Fc receptor antagonists, and chimeric antigen receptor (CAR) T cell-based therapies, have introduced promising alternatives for MG treatment. These novel therapeutic approaches offer potential improvements in targeting specific immune pathways involved in MG pathogenesis. This review highlights the progress and challenges in developing and implementing these molecular therapies. It discusses their mechanisms, efficacy, and the potential for personalized medicine in managing MG. The integration of new molecular therapies into clinical practice could significantly transform the treatment landscape of MG, offering more effective and tailored therapeutic options for patients who do not respond adequately to traditional treatments. These innovations underscore the importance of ongoing research and clinical trials to optimize therapeutic strategies and improve the quality of life for individuals with MG.
Collapse
Affiliation(s)
- S Attarian
- Referral center for Neuromuscular disorders, Timone Hospital University, AIX-Marseille Université, Marseille, France; Filnemus, ERN NMD, Marseille, France.
| |
Collapse
|
4
|
Jing S, Zhang Y, Lin Y, Gu X, Liu J, Guglietta A, Noukens J, Van Bragt T, Wang L, Chen J, Reinhart H, Pu X. Pharmacokinetics, Pharmacodynamics, and Safety of Intravenous Efgartigimod and Subcutaneous Efgartigimod PH20 in Healthy Chinese Participants. Drugs R D 2024:10.1007/s40268-024-00490-6. [PMID: 39368043 DOI: 10.1007/s40268-024-00490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Efgartigimod, a human immunoglobulin G (IgG)1-derived Fc fragment targeting the neonatal Fc receptor, has been developed into intravenous (IV) and subcutaneous (SC) formulations for treating generalized myasthenia gravis (gMG) and other autoimmune diseases. Data in the Chinese population were not available to date, and while both formulations have been approved in the USA, the EU, Japan and China for the treatment of gMG. OBJECTIVE We present the pharmacokinetic, pharmacodynamic, and safety of IV and SC PH20 efgartigimod in healthy Chinese participants. METHODS In two independent, double-blinded, placebo-controlled, phase I studies of the IV and SC formulations of efgartigimod, healthy Chinese adults were randomized 3:1 to receive active treatment or matching placebo once every 7 days for four doses. Primary endpoints were pharmacokinetic parameters. RESULTS After the fourth IV infusion, a mean maximum observed concentration (Cmax) of 194 µg/mL was reached at the end of the 1 h infusion; the mean area under concentration-time curve from time zero to 168 h (AUC0-168h) was 5300 µg × h/mL. After the fourth SC injection, a mean Cmax of 42.1 µg/mL was achieved with a median Tmax of 47.74 h; the mean AUC0-168h was 4790 µg × h/mL. Maximal mean reductions from baseline in total IgG levels were reached approximately 24 days after the first dose (60.7%, IV formulation; 66.4%, SC formulation). Treatment-related adverse events (TRAEs) were reported in seven (58.3%) participants receiving SC efgartigimod, mostly injection-site reactions. No TRAEs or AEs of special interest were reported in the IV study. CONCLUSIONS The efgartigimod IV and SC pharmacokinetic, pharmacodynamic, and safety profiles in Chinese participants were similar to the known profiles in non-Chinese participants. Both formulations effectively reduced total IgG levels by a similar percentage. CLINICAL TRIAL REGISTRATION CTR20211952 and CTR20211805.
Collapse
Affiliation(s)
- Shan Jing
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Lin
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaowen Gu
- Zai Lab (Shanghai) Co., Ltd, Shanghai, China
| | - Jing Liu
- Zai Lab (Shanghai) Co., Ltd, Shanghai, China
| | | | - Jan Noukens
- Curare Consulting B.V., Liempde, the Netherlands
| | | | - Lina Wang
- Zai Lab (Shanghai) Co., Ltd, Shanghai, China
| | - Jiajia Chen
- Zai Lab (Shanghai) Co., Ltd, Shanghai, China
| | | | - Xia Pu
- Zai Lab (US) LLC, Cambridge, MA, USA.
| |
Collapse
|
5
|
Mair D, Madi H, Eftimov F, Lunn MP, Keddie S. Novel therapies in CIDP. J Neurol Neurosurg Psychiatry 2024:jnnp-2024-334165. [PMID: 39358011 DOI: 10.1136/jnnp-2024-334165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a heterogeneous but clinically well-described disease within circumscribed parameters. It is immunologically mediated through several poorly understood mechanisms. First-line therapies with steroids, intravenous immunoglobulin (IVIG) or plasma exchange are each effective in about two-thirds of patients. These treatments are seldom associated with complete resolution or cure, and often pose considerable practical, financial and medical implications.Our understanding of many of the key pathological processes in autoimmune diseases is expanding, and novel targeted therapeutics are being developed with promise in several autoimmune neurological disorders.This narrative review looks first at detailing key pathogenic mechanisms of disease in CIDP, followed by an in-depth description of potential novel therapies and the current evidence of their application in clinical practice.
Collapse
Affiliation(s)
- Devan Mair
- Barts Health NHS Trust, London, UK
- Barts and The London School of Medicine and Dentistry, London, UK
| | | | - Filip Eftimov
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| | - Michael P Lunn
- MRC Centre for Neuromuscular Disease and Department of Molecular Neuroscience, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
- Neuroimmunology and CSF laboratory, Institute of Neurology, University College London Hospitals NHS Foundation Trust, London, UK
| | | |
Collapse
|
6
|
Bialer M, Johannessen SI, Koepp MJ, Perucca E, Perucca P, Tomson T, White HS. Progress report on new medications for seizures and epilepsy: A summary of the 17th Eilat Conference on New Antiepileptic Drugs and Devices (EILAT XVII). I. Drugs in preclinical and early clinical development. Epilepsia 2024; 65:2831-2857. [PMID: 39008349 DOI: 10.1111/epi.18056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024]
Abstract
For >30 years, the Eilat Conference on New Antiepileptic Drugs and Devices has provided a forum for the discussion of advances in the development of new therapies for seizures and epilepsy. The EILAT XVII conference took place in Madrid, Spain, on May 5-8, 2024. Participants included basic scientists and clinical investigators from industry and academia, other health care professionals, and representatives from lay organizations. We summarize in this article information on treatments in preclinical and in early clinical development discussed at the conference. These include AMT-260, a gene therapy designed to downregulate the expression of Glu2K subunits of kainate receptors, in development for the treatment of drug-resistant seizures associated with mesial temporal sclerosis; BHV-7000, a selective activator of heteromeric Kv7.2/7.3 potassium channels, in development for the treatment of focal epilepsy; ETX101, a recombinant adeno-associated virus serotype 9 designed to increase NaV1.1 channel density in inhibitory γ-aminobutyric acidergic (GABAergic) neurons, in development for the treatment of SCN1A-positive Dravet syndrome; GAO-3-02, a compound structurally related to synaptamide, which exerts antiseizure activity at least in part through an action on cannabinoid type 2 receptors; LRP-661, a structural analogue of cannabidiol, in development for the treatment of seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex; OV329, a selective inactivator of GABA aminotransferase, in development for the treatment of drug-resistant seizures; PRAX-628, a functionally selective potent sodium channel modulator with preference for the hyperexcitable state of sodium channels, in development for the treatment of focal seizures; RAP-219, a selective negative allosteric modulator of transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor regulatory protein γ-8, in development for the treatment of focal seizures; and rozanolixizumab, a humanized anti-neonatal Fc receptor monoclonal antibody, in development for the treatment of LGI1 autoimmune encephalitis. Treatments in more advanced development are summarized in Part II of this report.
Collapse
Affiliation(s)
- Meir Bialer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine and David R. Bloom Center for Pharmacy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Svein I Johannessen
- National Center for Epilepsy, Sandvika, Norway
- Member of European Reference Network EpiCARE, Oslo University Hospital, Oslo, Norway
- Section for Clinical Pharmacology, Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, University College London (UCL), Queen Square Institute of Neurology, London, UK
| | - Emilio Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, Victoria, Australia
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Torbjörn Tomson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - H Steve White
- Center for Epilepsy Drug Discovery, Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Martins AC, Oshiro MY, Albericio F, de la Torre BG. Food and Drug Administration (FDA) Approvals of Biological Drugs in 2023. Biomedicines 2024; 12:1992. [PMID: 39335511 PMCID: PMC11428688 DOI: 10.3390/biomedicines12091992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
An increase in total drug (small molecules and biologics) approvals by the Food and Drug Administration (FDA) was seen in 2023 compared with the previous year. Cancer remained the disease most targeted by monoclonal antibodies (mAbs), followed by autoimmune conditions. Our data reveal the prevalence of approvals for biologics even during years when the total number of authorizations was low, such as in 2022. Over half the drugs that received the green light in 2023 benefited from expedited programs, as the incidence of many diseases increased. In addition, over half of the biologics approved received Orphan Drug Designation from the FDA. This narrative review delves into details of the most significant approvals in 2023, including mAbs, enzymes, and proteins, explaining their mechanisms of action, differences from previous drugs, placebo, and standards of care, and outcomes in clinical trials. Given the varying number of drugs authorized annually by the U.S. health authority, this review also examines the limits of external influences over the FDA's decisions and independence regarding drug approvals and withdrawals.
Collapse
Affiliation(s)
- Alexander C Martins
- School of Health Sciences, UAM, Universidade Anhembi-Morumbi, São Paulo 03101-001, Brazil
- Medical Information Department, Thermo Fisher Scientific, São Paulo 4542011, Brazil
| | - Mariana Y Oshiro
- School of Health Sciences, UAM, Universidade Anhembi-Morumbi, São Paulo 03101-001, Brazil
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Beatriz G de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
8
|
Yang Y, Shen Z, Shi F, Wang F, Wen N. Efgartigimod as a novel FcRn inhibitor for autoimmune disease. Neurol Sci 2024; 45:4229-4241. [PMID: 38644454 DOI: 10.1007/s10072-024-07460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
Immunoglobulin G (IgG) autoantibodies can lead to the formation of autoimmune diseases through Fab and/or Fc-mediated interactions with host molecules as well as activated T cells. The neonatal Fc receptor (FcRn) binds at acidic pH IgG and albumin, and the mechanism for prolonging serum IgG half-life is making IgG re-entry into circulation by prompting it not to be degraded by lysosomes and back to the cell surface. Given the FcRn receptor's essential role in IgG homeostasis, one of the strategies to promote the quick degradation of endogenous IgG is to suppress the function of FcRn, which is beneficial to the treatment of IgG-driven autoimmune disorders like myasthenia gravis (MG), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), stiff person syndrome, and immune thrombocytopenia (ITP). We elaborately read the literature about efgartigimod and systematically reviewed the research progress and clinical application of this novel FcRn inhibitor in autoimmune diseases. Efgartigimod is the firstly FcRn antagonist developed and was approved on 17 December 2021 by the United States for the therapy of acetylcholine receptor-positive MG. In January 2022, efgartigimod received its second regulatory approval in Japan. In addition, the market authorization application in Europe was submitted and validated in August 2021. China's National Medical Products Administration officially accepted the marketing application of efgartigimod on July 13, 2022. To suppress the function of FcRn, which is beneficial to the treatment of IgG-driven autoimmune disorders like MG, CIDP, ITP, and stiff person syndrome. We review the rationale, clinical evidence, and future perspectives of efgartigimod for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Yun Yang
- Department of Stomatology, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China
| | - Zhengxuan Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, 310000, China
| | - Fan Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Shan'xi, Xi'an, 710000, China
| | - Fei Wang
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, China.
| | - Ning Wen
- Department of Orthodontics, Hangzhou Dental Hospital, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
9
|
Querol L, De Sèze J, Dysgaard T, Levine T, Rao TH, Rivner M, Hartung HP, Kiessling P, Shimizu S, Marmol D, Bozorg A, Colson AO, Massow U, Eftimov F. Efficacy, safety and tolerability of rozanolixizumab in patients with chronic inflammatory demyelinating polyradiculoneuropathy: a randomised, subject-blind, investigator-blind, placebo-controlled, phase 2a trial and open-label extension study. J Neurol Neurosurg Psychiatry 2024; 95:845-854. [PMID: 38729747 PMCID: PMC11347201 DOI: 10.1136/jnnp-2023-333112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/13/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a peripheral nerve disorder characterised by weakness and sensory loss. We assessed the neonatal Fc receptor inhibitor rozanolixizumab for CIDP management. METHODS CIDP01 (NCT03861481) was a randomised, subject-blind, investigator-blind, placebo-controlled, phase 2a study. Adults with definite or probable CIDP receiving subcutaneous or intravenous immunoglobulin maintenance therapy were randomised 1:1 to 12 once-weekly subcutaneous infusions of rozanolixizumab 10 mg/kg or placebo, stratified according to previous immunoglobulin administration route. Investigators administering treatment and assessing efficacy, and patients, were blinded. The primary outcome was a change from baseline (CFB) to day 85 in inflammatory Rasch-built Overall Disability Scale (iRODS) score. Eligible patients who completed CIDP01 entered the open-label extension CIDP04 (NCT04051944). RESULTS In CIDP01, between 26 March 2019 and 31 March 2021, 34 patients were randomised to rozanolixizumab or placebo (17 (50%) each). No significant difference in CFB to day 85 in iRODS centile score was observed between rozanolixizumab (least squares mean 2.0 (SE 3.2)) and placebo (3.4 (2.6); difference -1.5 (90% CI -7.5 to 4.5)). Overall, 14 (82%) patients receiving rozanolixizumab and 13 (76%) receiving placebo experienced a treatment-emergent adverse event during the treatment period. Across CIDP01 and CIDP04, rozanolixizumab was well tolerated over up to 614 days; no clinically meaningful efficacy results were seen. No deaths occurred. CONCLUSIONS Rozanolixizumab did not show efficacy in patients with CIDP in this study, although this could be due to a relatively high placebo stability rate. Rozanolixizumab was well tolerated over medium-to-long-term weekly use, with an acceptable safety profile.
Collapse
Affiliation(s)
- Luis Querol
- Neuromuscular Diseases Unit - Neurology Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
- Center for Network Research in Rare Diseases - CIBERER, Madrid, Spain
| | - Jérôme De Sèze
- Department of Neurology, Clinical Investigation Centre, University Hospital of Strasbourg, Strasbourg, France
| | - Tina Dysgaard
- Department of Neurology, Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Todd Levine
- Honor Health Neurology, Bob Bové Neuroscience Institute, Scottsdale, Arizona, USA
| | - T Hemanth Rao
- The Neurological Institute, PA, Charlotte, North Carolina, USA
| | - Michael Rivner
- Department of Neurology, Augusta University, Augusta, Atlanta, Georgia, USA
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Brain and Mind Center, Medical Faculty, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Palacký University, Olomouc, Czech Republic
| | | | | | | | - Ali Bozorg
- UCB Pharma, Morrisville, North Carolina, USA
| | | | | | - Filip Eftimov
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Matsushima N, Shibata S, Leu JH, Vermeulen A, Duffner J, Ling LE, Schwartz LB, Harigae H. Pharmacokinetics and Pharmacodynamics of Nipocalimab, a Neonatal Fc Receptor Blocker, in Healthy Japanese Volunteers. Clin Drug Investig 2024; 44:587-599. [PMID: 39073504 PMCID: PMC11339140 DOI: 10.1007/s40261-024-01380-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND OBJECTIVES Nipocalimab is a high-affinity, fully human, effectorless immunoglobulin G1 monoclonal antibody targeting the neonatal Fc receptor and is currently under evaluation for the treatment of rare and prevalent immunoglobulin G autoantibody-mediated and alloantibody-mediated diseases. This phase I, randomized, double-blind, placebo-controlled, single-dose escalation study in healthy Japanese volunteers (N = 24) assessed the safety, pharmacokinetics, and effect on the serum immunoglobulin G level of single doses of nipocalimab. METHODS Volunteers were grouped into three cohorts and received intravenous nipocalimab at 10, 30, or 60 mg/kg or placebo. To complement the study, genetic variation in the Fcγ receptor and transporter subunit of the neonatal Fc receptor was analyzed in Japanese and diverse populations. RESULTS Nipocalimab was generally safe and well tolerated at all dose levels, with three (12.5% [3/24]) volunteers experiencing treatment-emergent adverse events across all nipocalimab doses. Mean serum immunoglobulin G levels decreased in a dose-dependent manner from baseline with nipocalimab treatment compared with placebo. Maximum serum nipocalimab concentrations demonstrated proportional increases with dose, while the area under the concentration-time curve was dose dependent and demonstrated non-linear increases with dose. Mean observed half-life was longer as the dose increased. Analysis of genetic variation in Fcγ receptor and transporter identified no unique Japanese variants or variants that alter amino acid sequences in or near the neonatal Fc receptor immunoglobulin G binding site targeted by nipocalimab. CONCLUSIONS The comparable pharmacokinetic/pharmacodynamic profiles and highly conserved neonatal Fc receptor structure among diverse populations further support the clinical development of nipocalimab for the treatment of various immunoglobulin G autoantibody-mediated and alloantibody-mediated diseases across global sites and populations, including the Japanese population.
Collapse
Affiliation(s)
- Nobuko Matsushima
- Janssen Pharmaceutical KK, 5-2 Nishi-kanda 3-chome, Chiyoda-ku, Tokyo, 101-0065, Japan.
| | - Sayori Shibata
- Janssen Pharmaceutical KK, 5-2 Nishi-kanda 3-chome, Chiyoda-ku, Tokyo, 101-0065, Japan
| | - Jocelyn H Leu
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - An Vermeulen
- Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jay Duffner
- Janssen Research & Development, LLC, Cambridge, MA, USA
| | - Leona E Ling
- Janssen Research & Development, LLC, Cambridge, MA, USA
| | - Lisa B Schwartz
- Janssen Pharmaceutical Companies of Johnson & Johnson, Raritan, NJ, USA
| | - Hideo Harigae
- Department of Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Jarius S, Ringelstein M, Schanda K, Ruprecht K, Korporal-Kuhnke M, Viehöver A, Hümmert MW, Schindler P, Endmayr V, Gastaldi M, Trebst C, Franciotta D, Aktas O, Höftberger R, Haas J, Komorowski L, Paul F, Reindl M, Wildemann B. Improving the sensitivity of myelin oligodendrocyte glycoprotein-antibody testing: exclusive or predominant MOG-IgG3 seropositivity-a potential diagnostic pitfall in patients with MOG-EM/MOGAD. J Neurol 2024; 271:4660-4671. [PMID: 38609667 PMCID: PMC11233316 DOI: 10.1007/s00415-024-12285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein antibody-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD) is the most important differential diagnosis of both multiple sclerosis and neuromyelitis optica spectrum disorders. A recent proposal for new diagnostic criteria for MOG-EM/MOGAD explicitly recommends the use of immunoglobulin G subclass 1 (IgG1)- or IgG crystallizable fragment (Fc) region-specific assays and allows the use of heavy-and-light-chain-(H+L) specific assays for detecting MOG-IgG. By contrast, the utility of MOG-IgG3-specific testing has not been systematically evaluated. OBJECTIVE To assess whether the use of MOG-IgG3-specific testing can improve the sensitivity of MOG-IgG testing. METHODS Re-testing of 22 patients with a definite diagnosis of MOG-EM/MOGAD and clearly positive MOG-IgG status initially but negative or equivocal results in H+L- or Fc-specific routine assays later in the disease course (i.e. patients with spontaneous or treatment-driven seroreversion). RESULTS In accordance with previous studies that had used MOG-IgG1-specific assays, IgG subclass-specific testing yielded a higher sensitivity than testing by non-subclass-specific assays. Using subclass-specific secondary antibodies, 26/27 supposedly seroreverted samples were still clearly positive for MOG-IgG, with MOG-IgG1 being the most frequently detected subclass (25/27 [93%] samples). However, also MOG-IgG3 was detected in 14/27 (52%) samples (from 12/22 [55%] patients). Most strikingly, MOG-IgG3 was the predominant subclass in 8/27 (30%) samples (from 7/22 [32%] patients), with no unequivocal MOG-IgG1 signal in 2 and only a very weak concomitant MOG-IgG1 signal in the other six samples. By contrast, no significant MOG-IgG3 reactivity was seen in 60 control samples (from 42 healthy individuals and 18 patients with MS). Of note, MOG-IgG3 was also detected in the only patient in our cohort previously diagnosed with MOG-IgA+/IgG- MOG-EM/MOGAD, a recently described new disease subvariant. MOG-IgA and MOG-IgM were negative in all other patients tested. CONCLUSIONS In some patients with MOG-EM/MOGAD, MOG-IgG is either exclusively or predominantly MOG-IgG3. Thus, the use of IgG1-specific assays might only partly overcome the current limitations of MOG-IgG testing and-just like H+L- and Fcγ-specific testing-might overlook some genuinely seropositive patients. This would have potentially significant consequences for the management of patients with MOG-EM/MOGAD. Given that IgG3 chiefly detects proteins and is a strong activator of complement and other effector mechanisms, MOG-IgG3 may be involved in the immunopathogenesis of MOG-EM/MOGAD. Studies on the frequency and dynamics as well as the clinical and therapeutic significance of MOG-IgG3 seropositivity are warranted.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - M Ringelstein
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - K Schanda
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - K Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - M Korporal-Kuhnke
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - A Viehöver
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - M W Hümmert
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - P Schindler
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - V Endmayr
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - M Gastaldi
- Neuroimmunology Laboratory and Neuroimmunology Research Unit, IRCCS Mondino Foundation National Neurological Institute, Pavia, Italy
| | - C Trebst
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - D Franciotta
- Neuroimmunology Laboratory and Neuroimmunology Research Unit, IRCCS Mondino Foundation National Neurological Institute, Pavia, Italy
| | - O Aktas
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| | - R Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - J Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - L Komorowski
- Institute of Experimental Neuroimmunology, affiliated to Euroimmun AG, Lübeck, Germany
| | - F Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
12
|
Alfaidi N, Karmastaji S, Matic A, Bril V. FcRn Inhibitor Therapies in Neurologic Diseases. CNS Drugs 2024; 38:425-441. [PMID: 38724842 DOI: 10.1007/s40263-024-01090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
In the last decade, the landscape of treating autoimmune diseases has evolved with the emergence and approval of novel targeted therapies. Several new biological agents offer selective and target-specific immunotherapy and therefore fewer side effects, such as neonatal Fc receptor (FcRn)-targeting therapy. Neonatal Fc receptor-targeted therapies are engineered to selectively target FcRn through various methods, such as Fc fragments or monoclonal anti-FcRn antibodies. These approaches enhance the breakdown of autoantibodies by blocking the immunoglobulin G recycling pathway. This mechanism reduces overall plasma immunoglobulin levels, including the levels of pathogenic autoantibodies, without affecting the other immunoglobulin class immunoglobulin A, immunoglobulin E, immunoglobulin M, and immunoglobulin D levels. Drugs that inhibit FcRn include efgartigimod, rozanolixizumab, batoclimab, and nipocalimab. These medications can be administered either intravenously or subcutaneously. Numerous clinical trials are currently underway to investigate their effectiveness, safety, and tolerability in various neurological conditions, including myasthenia gravis and other neurological disorders such as chronic inflammatory demyelinating polyneuropathy, myositis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. Positive results from clinical trials of efgartigimod and rozanolixizumab led to their approval for the treatment of generalized myasthenia gravis. Additional clinical trials are still ongoing. Neonatal Fc receptor inhibitor agents seem to be well tolerated. Reported adverse events include headache (most commonly observed with efgartigimod and rozanolixizumab), upper respiratory tract infection, urinary tract infection, diarrhea, pyrexia, and nausea. Additionally, some of these agents may cause transient hypoalbuminemia and hypercholesterolemia notably reported with batoclimab and nipocalimab. In this review, we discuss the available clinical data for FcRN inhibitor agents in treating different neurological autoimmune diseases.
Collapse
Affiliation(s)
- Nouf Alfaidi
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, 5EC-309, TGH 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada
| | - Salama Karmastaji
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, 5EC-309, TGH 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada
| | - Alexandria Matic
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, 5EC-309, TGH 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, 5EC-309, TGH 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
13
|
Ma G, Crowley AR, Heyndrickx L, Rogiers I, Parthoens E, Van Santbergen J, Ober RJ, Bobkov V, de Haard H, Ulrichts P, Hofman E, Louagie E, Balbino B, Ward ES. Differential effects of FcRn antagonists on the subcellular trafficking of FcRn and albumin. JCI Insight 2024; 9:e176166. [PMID: 38713534 PMCID: PMC11141909 DOI: 10.1172/jci.insight.176166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/10/2024] [Indexed: 05/09/2024] Open
Abstract
The homeostasis of IgG is maintained by the neonatal Fc receptor, FcRn. Consequently, antagonism of FcRn to reduce endogenous IgG levels is an emerging strategy for treating antibody-mediated autoimmune disorders using either FcRn-specific antibodies or an engineered Fc fragment. For certain FcRn-specific antibodies, this approach has resulted in reductions in the levels of serum albumin, the other major ligand transported by FcRn. Cellular and molecular analyses of a panel of FcRn antagonists have been carried out to elucidate the mechanisms leading to their differential effects on albumin homeostasis. These analyses have identified 2 processes underlying decreases in albumin levels during FcRn blockade: increased degradation of FcRn and competition between antagonist and albumin for FcRn binding. These findings have potential implications for the design of drugs to modulate FcRn function.
Collapse
Affiliation(s)
- Guanglong Ma
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Andrew R. Crowley
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | - Eef Parthoens
- VIB BioImaging Core, Center for Inflammation Research, Ghent, Belgium
| | | | - Raimund J. Ober
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | | - E. Sally Ward
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
14
|
Li J, Wu X, Chu T, Tan X, Wang S, Qu R, Chen Z, Wang Z. The efficacy and safety of FcRn inhibitors in patients with myasthenia gravis: a systematic review and meta-analysis. J Neurol 2024; 271:2298-2308. [PMID: 38431900 DOI: 10.1007/s00415-024-12247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune disease that causes local or generalized muscle weakness. Complement inhibitors and targeting of the neonatal Fc receptor (FcRn) to block IgG cycling are two novel and successful mechanisms. METHODS PubMed, EMBASE, the Cochrane Library, and ClinicalTrials.gov were systematically searched to identify relevant studies published before May 18, 2023. Review Manager 5.3 software was used to assess the data. RESULTS We pooled 532 participants from six randomized controlled trials (RCTs). Compared to the placebo, the FcRn inhibitors were more efficacy in Myasthenia Gravis Activities of Daily Living (MG-ADL) (MD = - 1.69 [- 2.35, - 1.03], P < 0.00001), MG-ADL responder (RR = 2.01 [1.62, 2.48], P < 0.00001), Quantitative Myasthenia Gravis (QMG) (MD = - 2.45 [- 4.35, - 0.55], P = 0.01), Myasthenia Gravis Composite (MGC) (MD = - 2.97 [- 4.27, - 1.67], P < 0.00001), 15-item revised version of the Myasthenia Gravis Quality of Life (MGQoL15r) (MD = - 2.52 [- 3.54, - 1.50], P < 0.00001), without increasing the risk of safety. The subgroup analysis showed that efgartigimod was more effective than placebo in MG-ADL responders. Rozanolixizumab was more effective than the placebo except in QMG, and batoclimab was more effective than the placebo except in MG-ADL responder. Nipocalizumab did not show satisfactory efficacy in all outcomes. With the exception of rozanolixizumab, all drugs showed non-inferior safety profiles to placebo. CONCLUSION FcRn inhibitors have good efficacy and safety in patients with MG. Among them, efgartigimod and nipocalimab were effective without causing an increased safety risk. Rozanolixizumab, despite its superior efficacy, caused an increased incidence of adverse events. Current evidence does not suggest that nipocalimab is effective in patients with MG.
Collapse
Affiliation(s)
- Jiaxuan Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xin Wu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Tianchen Chu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xin Tan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu Province, China
| | - Shixin Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Ruisi Qu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhouqing Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
15
|
Kim H, Taslakjian B, Kim S, Tirrell MV, Guler MO. Therapeutic Peptides, Proteins and their Nanostructures for Drug Delivery and Precision Medicine. Chembiochem 2024; 25:e202300831. [PMID: 38408302 DOI: 10.1002/cbic.202300831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Peptide and protein nanostructures with tunable structural features, multifunctionality, biocompatibility and biomolecular recognition capacity enable development of efficient targeted drug delivery tools for precision medicine applications. In this review article, we present various techniques employed for the synthesis and self-assembly of peptides and proteins into nanostructures. We discuss design strategies utilized to enhance their stability, drug-loading capacity, and controlled release properties, in addition to the mechanisms by which peptide nanostructures interact with target cells, including receptor-mediated endocytosis and cell-penetrating capabilities. We also explore the potential of peptide and protein nanostructures for precision medicine, focusing on applications in personalized therapies and disease-specific targeting for diagnostics and therapeutics in diseases such as cancer.
Collapse
Affiliation(s)
- HaRam Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Boghos Taslakjian
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Sarah Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Matthew V Tirrell
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| |
Collapse
|
16
|
Iorio R. Myasthenia gravis: the changing treatment landscape in the era of molecular therapies. Nat Rev Neurol 2024; 20:84-98. [PMID: 38191918 DOI: 10.1038/s41582-023-00916-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder that affects the neuromuscular junction, leading to muscle weakness and fatigue. MG is caused by antibodies against the acetylcholine receptor (AChR), the muscle-specific kinase (MuSK) or other AChR-related proteins that are expressed in the postsynaptic muscle membrane. The standard therapeutic approach for MG has relied on acetylcholinesterase inhibitors, corticosteroids and immunosuppressants, which have shown good efficacy in improving MG-related symptoms in most people with the disease; however, these therapies can carry a considerable burden of long-term adverse effects. Moreover, up to 15% of individuals with MG exhibit limited or no response to these standard therapies. The emergence of molecular therapies, including monoclonal antibodies, B cell-depleting agents and chimeric antigen receptor T cell-based therapies, has the potential to revolutionize the MG treatment landscape. This Review provides a comprehensive overview of the progress achieved in molecular therapies for MG associated with AChR antibodies and MuSK antibodies, elucidating both the challenges and the opportunities these therapies present to the field. The latest developments in MG treatment are described, exploring the potential for personalized medicine approaches.
Collapse
Affiliation(s)
- Raffaele Iorio
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
- Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
17
|
Qureshi OS, Sutton EJ, Bithell RF, West SM, Cutler RM, McCluskey G, Craggs G, Maroof A, Barnes NM, Humphreys DP, Rapecki S, Smith BJ, Shock A. Interactions of the anti-FcRn monoclonal antibody, rozanolixizumab, with Fcγ receptors and functional impact on immune cells in vitro. MAbs 2024; 16:2300155. [PMID: 38241085 PMCID: PMC10802195 DOI: 10.1080/19420862.2023.2300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
Rozanolixizumab is a humanized anti-neonatal Fc receptor (FcRn) monoclonal antibody (mAb) of the immunoglobulin G4 (IgG4) sub-class, currently in clinical development for the treatment of IgG autoantibody-driven diseases. This format is frequently used for therapeutic mAbs due to its intrinsic lower affinity for Fc gamma receptors (FcγR) and lack of C1q engagement. However, with growing evidence suggesting that no Fc-containing agent is truly "silent" in this respect, we explored the engagement of FcγRs and potential functional consequences with rozanolixizumab. In the study presented here, rozanolixizumab was shown to bind to FcγRs in both protein-protein and cell-based assays, and the kinetic data were broadly as expected based on published data for an IgG4 mAb. Rozanolixizumab was also able to mediate antibody bipolar bridging (ABB), a phenomenon that led to a reduction of labeled FcγRI from the surface of human macrophages in an FcRn-dependent manner. However, the presence of exogenous human IgG, even at low concentrations, was able to prevent both binding and ABB events. Furthermore, data from in vitro experiments using relevant human cell types that express both FcRn and FcγRI indicated no evidence for functional sequelae in relation to cellular activation events (e.g., intracellular signaling, cytokine production) upon either FcRn or FcγR binding of rozanolixizumab. These data raise important questions about whether therapeutic antagonistic mAbs like rozanolixizumab would necessarily engage FcγRs at doses typically administered to patients in the clinic, and hence challenge the relevance and interpretation of in vitro assays performed in the absence of competing IgG.
Collapse
|
18
|
Carpenter MC, Souter SC, Zipkin RJ, Ackerman ME. Current Insights Into K-associated Fetal Anemia and Potential Treatment Strategies for Sensitized Pregnancies. Transfus Med Rev 2024; 38:150779. [PMID: 37926651 PMCID: PMC10856777 DOI: 10.1016/j.tmrv.2023.150779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
K-associated anemic disease of the fetus and newborn (K-ADFN) is a rare but life-threatening disease in which maternal alloantibodies cross the placenta and can mediate an immune attack on fetal red blood cells expressing the K antigen. A considerably more common disease, D-associated hemolytic disease of the fetus and newborn (D-HDFN), can be prophylactically treated using polyclonal α-D antibody preparations. Currently, no such prophylactic treatment exists for K-associated fetal anemia, and disease is usually treated with intrauterine blood transfusions. Here we review current understanding of the biology of K-associated fetal anemia, how the maternal immune system is sensitized to fetal red blood cells, and what is understood about potential mechanisms of prophylactic HDFN interventions. Given the apparent challenges associated with preventing alloimmunization, we highlight novel strategies for treating sensitized mothers to prevent fetal anemia that may hold promise not only for K-mediated disease, but also for other pathogenic alloantibody responses.
Collapse
Affiliation(s)
| | | | | | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
19
|
Mina-Osorio P, Tran MH, Habib AA. Therapeutic Plasma Exchange Versus FcRn Inhibition in Autoimmune Disease. Transfus Med Rev 2024; 38:150767. [PMID: 37867088 DOI: 10.1016/j.tmrv.2023.150767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023]
Abstract
Therapeutic plasma exchange (TPE or PLEX) is used in a broad range of autoimmune diseases, with the goal of removing autoantibodies from the circulation. A newer approach for the selective removal of immunoglobulin G (IgG) antibodies is the use of therapeutic molecules targeting the neonatal Fc receptor (FcRn). FcRn regulates IgG recycling, and its inhibition results in a marked decrease in circulating autoantibodies of the IgG subtype. The difference between FcRn inhibition and PLEX is often questioned. With anti-FcRn monoclonal antibodies (mAbs) and fragments only recently entering this space, limited data are available regarding long-term efficacy and safety. However, the biology of FcRn is well understood, and mounting evidence regarding the efficacy, safety, and potential differences among compounds in development is available, allowing us to compare against nonselective plasma protein depletion methods such as PLEX. FcRn inhibitors may have distinct advantages and disadvantages over PLEX in certain scenarios. Use of PLEX is preferred over FcRn inhibition where removal of antibodies other than IgG or when concomitant repletion of missing plasma proteins is needed for therapeutic benefit. Also, FcRn targeting has not yet been studied for use in acute flares or crisis states of IgG-mediated diseases. Compared with PLEX, FcRn inhibition is associated with less invasive access requirements, more specific removal of IgG versus other immunoglobulins without a broad impact on circulating proteins, and any impacts on other therapeutic drug levels are restricted to other mAbs. In addition, the degree of IgG reduction is similar with FcRn inhibitors compared with that afforded by PLEX. Here we describe the scientific literature regarding the use of PLEX and FcRn inhibitors in autoimmune diseases and provide an expert discussion around the potential benefits of these options in varying clinical conditions and scenarios.
Collapse
Affiliation(s)
| | - Minh-Ha Tran
- Department of Pathology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ali A Habib
- Department of Neurology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
20
|
Crisafulli S, Boccanegra B, Carollo M, Bottani E, Mantuano P, Trifirò G, De Luca A. Myasthenia Gravis Treatment: From Old Drugs to Innovative Therapies with a Glimpse into the Future. CNS Drugs 2024; 38:15-32. [PMID: 38212553 DOI: 10.1007/s40263-023-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease that causes debilitating muscle weakness due to impaired neuromuscular transmission. Since most (about 80-90%) MG patients present autoantibodies against the acetylcholine receptor, standard medical therapy consists of symptomatic treatment with acetylcholinesterase inhibitors (e.g., pyridostigmine). In addition, considering the autoimmune basis of MG, standard therapy includes immunomodulating agents, such as corticosteroids, azathioprine, cyclosporine A, and cyclophosphamide. New strategies have been proposed for the treatment of MG and include complement blockade (i.e., eculizumab, ravulizumab, and zilucoplan) and neonatal Fc receptor antagonism (i.e., efgartigimod and rozanolixizumab). The aim of this review is to provide a detailed overview of the pre- and post-marketing evidence on the five pharmacological treatments most recently approved for the treatment of MG, by identifying both preclinical and clinical studies registered in clinicaltrials.gov. A description of the molecules currently under evaluation for the treatment of MG is also provided.
Collapse
Affiliation(s)
| | - Brigida Boccanegra
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Massimo Carollo
- Department of Diagnostics and Public Health, University of Verona, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - Paola Mantuano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluca Trifirò
- Department of Diagnostics and Public Health, University of Verona, P.le L.A. Scuro 10, 37124, Verona, Italy.
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
21
|
Zhang X, Zhao Q, Li B. Current and promising therapies based on the pathogenesis of Graves' ophthalmopathy. Front Pharmacol 2023; 14:1217253. [PMID: 38035032 PMCID: PMC10687425 DOI: 10.3389/fphar.2023.1217253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is a hyperthyroidism-related and immune-mediated disease that poses a significant threat to human health. The pathogenesis of GO primarily involves T cells, B cells, and fibroblasts, suggesting a pivotal role for the thyrotropin-antibody-immunocyte-fibroblast axis. Traditional treatment approaches for Graves' disease (GD) or GO encompass antithyroid drugs (ATDs), radioactive iodine, and beta-blockers. However, despite decades of treatment, there has been limited improvement in the global incidence of GO. In recent years, promising therapies, including immunotherapy, have emerged as leading contenders, demonstrating substantial benefits in clinical trials by inhibiting the activation of immune cells like Th1 and B cells. Furthermore, the impact of diet, gut microbiota, and metabolites on GO regulation has been recognized, suggesting the potential of non-pharmaceutical interventions. Moreover, as traditional Chinese medicine (TCM) components have been extensively explored and have shown effective results in treating autoimmune diseases, remarkable progress has been achieved in managing GO with TCM. In this review, we elucidate the pathogenesis of GO, summarize current and prospective therapies for GO, and delve into the mechanisms and prospects of TCM in its treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bei Li
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
22
|
Al-Samkari H, Neufeld EJ. Novel therapeutics and future directions for refractory immune thrombocytopenia. Br J Haematol 2023; 203:65-78. [PMID: 37735554 PMCID: PMC11101754 DOI: 10.1111/bjh.19078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder affecting approximately 1 in 20 000 people. While most patients with ITP are successfully managed with the current set of standard and approved therapeutics, patients who cannot be adequately managed with these therapies, considered to have refractory ITP, are not uncommon. Therefore, there remains an ongoing need for novel therapeutics and drug development in ITP. Several agents exploiting novel targets and mechanisms in ITP are presently under clinical development, with trials primarily recruiting heavily pretreated patients and those with otherwise refractory disease. Such agents include the neonatal Fc receptor antagonist efgartigimod, the Bruton tyrosine kinase inhibitor rilzabrutinib, the complement inhibitors sutimlimab and iptacopan and anti-CD38 monoclonal antibodies such as daratumumab and mezagitamab, among others. Each of these agents exploits therapeutic targets or other aspects of ITP pathophysiology currently not targeted by the existing approved agents (thrombopoietin receptor agonists and fostamatinib). This manuscript offers an in-depth review of the current available data for novel therapeutics in ITP presently undergoing phase 2 or 3 studies in patients with heavily pretreated or refractory ITP. It additionally highlights the future directions for drug development in refractory ITP, including discussion of innovative clinical trial designs, health-related quality of life as an indispensable clinical trial end-point and balancing potential toxicities of drugs with their potential benefits in a bleeding disorder in which few patients suffer life-threatening bleeding.
Collapse
Affiliation(s)
- Hanny Al-Samkari
- Division of Hematology Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ellis J. Neufeld
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
23
|
Abstract
Rozanolixizumab (rozanolixizumab-noli; RYSTIGGO®) is a high affinity humanized immunoglobulin G4 monoclonal antibody directed against human neonatal Fc receptor (FcRn). Administered subcutaneously, it is being developed by UCB Pharma for the treatment of autoimmune diseases and received its first approval on 27 June 2023 in the USA for the treatment of generalized myasthenia gravis (gMG) in adults who are anti-acetylcholine receptor (AChR) or anti-muscle-specific kinase (MuSK) antibody positive. Rozanolixizumab is the first agent to be approved in the USA for both anti-AChR and anti-MuSK antibody-positive gMG. A regulatory assessment of rozanolixizumab for the treatment of gMG is currently underway in the EU and Japan. Clinical development is ongoing for the treatment of leucine-rich glioma-inactivated 1 autoimmune encephalitis, myelin oligodendrocyte glycoprotein (MOG) antibody disease and severe fibromyalgia syndrome. This article summarizes the milestones in the development of rozanolixizumab leading to this first approval for the treatment of gMG in adults who are anti-AChR or anti-MuSK antibody positive.
Collapse
Affiliation(s)
- Sheridan M Hoy
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
24
|
Bhandari V, Bril V. FcRN receptor antagonists in the management of myasthenia gravis. Front Neurol 2023; 14:1229112. [PMID: 37602255 PMCID: PMC10439012 DOI: 10.3389/fneur.2023.1229112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disorder characterized by autoantibodies specifically directed against proteins located within the postsynaptic membrane of the neuromuscular junction. These pathogenic autoantibodies can be reduced by therapies such as plasma exchange, IVIG infusions and other immunosuppressive agents. However, there are significant side effects associated with most of these therapies. Since there is a better understanding of the molecular structure and the biological properties of the neonatal Fc receptors (FcRn), it possesses an attractive profile in treating myasthenia gravis. FcRn receptors prevent the catabolism of IgG by impeding their lysosomal degradation and facilitating their extracellular release at physiological pH, consequently extending the IgG half-life. Thus, the catabolism of IgG can be enhanced by blocking the FcRn, leading to outcomes similar to those achieved through plasma exchange with no significant safety concerns. The available studies suggest that FcRn holds promise as a versatile therapeutic intervention, capable of delivering beneficial outcomes in patients with distinct characteristics and varying degrees of MG severity. Efgartigimod is already approved for the treatment of generalized MG, rozanolixizumab is under review by health authorities, and phase 3 trials of nipocalimab and batoclimab are underway. Here, we will review the available data on FcRn therapeutic agents in the management of MG.
Collapse
Affiliation(s)
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Kavita U, Sun K, Braun M, Lembke W, Mody H, Kamerud J, Yang TY, Braun IV, Fang X, Gao W, Gupta S, Hofer M, Liao MZ, Loo L, McBlane F, Menochet K, Stubenrauch KG, Upreti VV, Vigil A, Wiethoff CM, Xia CQ, Zhu X, Jawa V, Chemuturi N. PK/PD and Bioanalytical Considerations of AAV-Based Gene Therapies: an IQ Consortium Industry Position Paper. AAPS J 2023; 25:78. [PMID: 37523051 DOI: 10.1208/s12248-023-00842-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Interest and efforts to use recombinant adeno-associated viruses (AAV) as gene therapy delivery tools to treat disease have grown exponentially. However, gaps in understanding of the pharmacokinetics/pharmacodynamics (PK/PD) and disposition of this modality exist. This position paper comes from the Novel Modalities Working Group (WG), part of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ). The pan-industry WG effort focuses on the nonclinical PK and clinical pharmacology aspects of AAV gene therapy and related bioanalytical considerations.Traditional PK concepts are generally not applicable to AAV-based therapies due to the inherent complexity of a transgene-carrying viral vector, and the multiple steps and analytes involved in cell transduction and transgene-derived protein expression. Therefore, we explain PK concepts of biodistribution of AAV-based therapies and place key terminologies related to drug exposure and PD in the proper context. Factors affecting biodistribution are presented in detail, and guidelines are provided to design nonclinical studies to enable a stage-gated progression to Phase 1 testing. The nonclinical and clinical utility of transgene DNA, mRNA, and protein analytes are discussed with bioanalytical strategies to measure these analytes. The pros and cons of qPCR vs. ddPCR technologies for DNA/RNA measurement and qualitative vs. quantitative methods for transgene-derived protein are also presented. Last, best practices and recommendations for use of clinical and nonclinical data to project human dose and response are discussed. Together, the manuscript provides a holistic framework to discuss evolving concepts of PK/PD modeling, bioanalytical technologies, and clinical dose selection in gene therapy.
Collapse
Affiliation(s)
- Uma Kavita
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA.
| | - Kefeng Sun
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA.
| | - Manuela Braun
- Bayer AG, Pharmaceuticals R&D, 13342, Berlin, Germany
| | - Wibke Lembke
- Integrated Biologix GmbH, 4051, Basel, Switzerland
| | - Hardik Mody
- Genentech Inc., South San Francisco, California, USA
| | | | - Tong-Yuan Yang
- Janssen R&D LLC., Spring House, Pennsylvania, 19477, USA
| | | | - Xiaodong Fang
- Asklepios BioPharmaceutical, Inc., Research Triangle, North Carolina, 27709, USA
| | - Wei Gao
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, 01821, USA
| | - Swati Gupta
- AbbVie, 2525 Dupont Drive, Irvine, California, 92612, USA
| | - Magdalena Hofer
- Spark Therapeutics, Inc., Philadelphia, Pennsylvania, 19104, USA
| | | | - LiNa Loo
- Vertex Pharmaceuticals Boston, Boston, Massachusetts, 02210, USA
| | | | | | | | | | - Adam Vigil
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, 06877, USA
| | | | - Cindy Q Xia
- ReNAgade Therapeutics, Cambridge, Massachusetts, 02142, USA
| | - Xu Zhu
- AstraZeneca, Waltham, Massachusetts, 02451, USA
| | - Vibha Jawa
- Bristol Myers Squibb, Lawrence Township, New Jersey, 08648, USA
| | - Nagendra Chemuturi
- Takeda Development Center Americas Inc., 125 Binney St, Cambridge, Massachusetts, 02142, USA
| |
Collapse
|
26
|
Vakrakou AG, Karachaliou E, Chroni E, Zouvelou V, Tzanetakos D, Salakou S, Papadopoulou M, Tzartos S, Voumvourakis K, Kilidireas C, Giannopoulos S, Tsivgoulis G, Tzartos J. Immunotherapies in MuSK-positive Myasthenia Gravis; an IgG4 antibody-mediated disease. Front Immunol 2023; 14:1212757. [PMID: 37564637 PMCID: PMC10410455 DOI: 10.3389/fimmu.2023.1212757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle-specific kinase (MuSK) Myasthenia Gravis (MG) represents a prototypical antibody-mediated disease characterized by predominantly focal muscle weakness (neck, facial, and bulbar muscles) and fatigability. The pathogenic antibodies mostly belong to the immunoglobulin subclass (Ig)G4, a feature which attributes them their specific properties and pathogenic profile. On the other hand, acetylcholine receptor (AChR) MG, the most prevalent form of MG, is characterized by immunoglobulin (Ig)G1 and IgG3 antibodies to the AChR. IgG4 class autoantibodies are impotent to fix complement and only weakly bind Fc-receptors expressed on immune cells and exert their pathogenicity via interfering with the interaction between their targets and binding partners (e.g. between MuSK and LRP4). Cardinal differences between AChR and MuSK-MG are the thymus involvement (not prominent in MuSK-MG), the distinct HLA alleles, and core immunopathological patterns of pathology in neuromuscular junction, structure, and function. In MuSK-MG, classical treatment options are usually less effective (e.g. IVIG) with the need for prolonged and high doses of steroids difficult to be tapered to control symptoms. Exceptional clinical response to plasmapheresis and rituximab has been particularly observed in these patients. Reduction of antibody titers follows the clinical efficacy of anti-CD20 therapies, a feature implying the role of short-lived plasma cells (SLPB) in autoantibody production. Novel therapeutic monoclonal against B cells at different stages of their maturation (like plasmablasts), or against molecules involved in B cell activation, represent promising therapeutic targets. A revolution in autoantibody-mediated diseases is pharmacological interference with the neonatal Fc receptor, leading to a rapid reduction of circulating IgGs (including autoantibodies), an approach already suitable for AChR-MG and promising for MuSK-MG. New precision medicine approaches involve Chimeric autoantibody receptor T (CAAR-T) cells that are engineered to target antigen-specific B cells in MuSK-MG and represent a milestone in the development of targeted immunotherapies. This review aims to provide a detailed update on the pathomechanisms involved in MuSK-MG (cellular and humoral aberrations), fostering the understanding of the latest indications regarding the efficacy of different treatment strategies.
Collapse
Affiliation(s)
- Aigli G. Vakrakou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Karachaliou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Tzartos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
27
|
Matic A, Alfaidi N, Bril V. An evaluation of rozanolixizumab-noli for the treatment of anti-AChR and anti-MuSK antibody-positive generalized myasthenia gravis. Expert Opin Biol Ther 2023; 23:1163-1171. [PMID: 38099334 DOI: 10.1080/14712598.2023.2296126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Myasthenia gravis (MG) is an auto-immune disease characterized by fluctuating symptoms of muscle weakness and fatigue. Corticosteroids and corticosteroid-sparing broad-spectrum immunosuppression play a great role in the treatment of myasthenia gravis. However, debilitating side effects and long time to treatment effect highlight the need for development of novel target-specific medications. Rozanolixizumab is a highly specific neonatal Fc receptor (FcRn) inhibitor that acts on immunoglobulin G (IgG) homeostasis. Results from the MycarinG Phase III randomized controlled trial demonstrated significant efficacy of rozanolixizumab in generalized MG in terms of primary outcome and all secondary endpoints, tolerability, and safety compared to placebo. AREAS COVERED We included different trials on myasthenia gravis and rozanolixizumab which include Phase II (NCT03052751) and Phase III MycarinG (NCT03971422) studies. EXPERT OPINION Clinical trials have demonstrated that rozanolixizumab has strong efficacy with a 78% reduction in pathogenic IgG like plasma exchange (PLEX) and has therapeutic benefits comparable with PLEX and IVIG. It has less treatment adverse events and is easily accessible through subcutaneous infusion. The safety and effectiveness of rozanolixizumab need to be assessed further in the real-world context in post-marketing studies. If current trial information holds true, rozanolixizumab may become a medication of choice for MG in succeeding years.
Collapse
Affiliation(s)
- Alexandria Matic
- The Ellen & Martin Prosserman Centre for Neuromuscular Diseases, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Nouf Alfaidi
- The Ellen & Martin Prosserman Centre for Neuromuscular Diseases, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Vera Bril
- The Ellen & Martin Prosserman Centre for Neuromuscular Diseases, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Pyzik M, Kozicky LK, Gandhi AK, Blumberg RS. The therapeutic age of the neonatal Fc receptor. Nat Rev Immunol 2023; 23:415-432. [PMID: 36726033 PMCID: PMC9891766 DOI: 10.1038/s41577-022-00821-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 02/03/2023]
Abstract
IgGs are essential soluble components of the adaptive immune response that evolved to protect the body from infection. Compared with other immunoglobulins, the role of IgGs is distinguished and enhanced by their high circulating levels, long half-life and ability to transfer from mother to offspring, properties that are conferred by interactions with neonatal Fc receptor (FcRn). FcRn binds to the Fc portion of IgGs in a pH-dependent manner and protects them from intracellular degradation. It also allows their transport across polarized cells that separate tissue compartments, such as the endothelium and epithelium. Further, it is becoming apparent that FcRn functions to potentiate cellular immune responses when IgGs, bound to their antigens, form IgG immune complexes. Besides the protective role of IgG, IgG autoantibodies are associated with numerous pathological conditions. As such, FcRn blockade is a novel and effective strategy to reduce circulating levels of pathogenic IgG autoantibodies and curtail IgG-mediated diseases, with several FcRn-blocking strategies on the path to therapeutic use. Here, we describe the current state of knowledge of FcRn-IgG immunobiology, with an emphasis on the functional and pathological aspects, and an overview of FcRn-targeted therapy development.
Collapse
Affiliation(s)
- Michal Pyzik
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lisa K Kozicky
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amit K Gandhi
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Digestive Diseases Center, Boston, MA, USA.
| |
Collapse
|
29
|
Hahn PA, Martins MA. Adeno-associated virus-vectored delivery of HIV biologics: the promise of a "single-shot" functional cure for HIV infection. J Virus Erad 2023; 9:100316. [PMID: 36915910 PMCID: PMC10005911 DOI: 10.1016/j.jve.2023.100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The ability of immunoglobulin-based HIV biologics (Ig-HIV), including broadly neutralizing antibodies, to suppress viral replication in pre-clinical and clinical studies illustrates how these molecules can serve as alternatives or adjuncts to antiretroviral therapy for treating HIV infection. However, the current paradigm for delivering Ig-HIVs requires repeated passive infusions, which faces both logistical and economic challenges to broad-scale implementation. One promising way to overcome these obstacles and achieve sustained expression of Ig-HIVs in vivo involves the transfer of Ig-HIV genes to host cells utilizing adeno-associated virus (AAV) vectors. Because AAV vectors are non-pathogenic and their genomes persist in the cell nucleus as episomes, transgene expression can last for as long as the AAV-transduced cell lives. Given the long lifespan of myocytes, skeletal muscle is a preferred tissue for AAV-based immunotherapies aimed at achieving persistent delivery of Ig-HIVs. Consistent with this idea, recent studies suggest that lifelong immunity against HIV can be achieved from a one-time intramuscular dose of AAV/Ig-HIV vectors. However, realizing the promise of this approach faces significant hurdles, including the potential of AAV-delivered Ig-HIVs to induce anti-drug antibodies and the high AAV seroprevalence in the human population. Here we describe how these host immune responses can hinder AAV/Ig-HIV therapies and review current strategies for overcoming these barriers. Given the potential of AAV/Ig-HIV therapy to maintain ART-free virologic suppression and prevent HIV reinfection in people living with HIV, optimizing this strategy should become a greater priority in HIV/AIDS research.
Collapse
Affiliation(s)
- Patricia A. Hahn
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Mauricio A. Martins
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
30
|
Flammer J, Neziraj T, Rüegg S, Pröbstel AK. Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes. Drugs 2023; 83:135-158. [PMID: 36696027 PMCID: PMC9875200 DOI: 10.1007/s40265-022-01826-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Seizures and epilepsy can result from various aetiologies, yet the underlying cause of several epileptic syndromes remains unclear. In that regard, autoimmune-mediated pathophysiological mechanisms have been gaining attention in the past years and were included as one of the six aetiologies of seizures in the most recent classification of the International League Against Epilepsy. The increasing number of anti-neuronal antibodies identified in patients with encephalitic disorders has contributed to the establishment of an immune-mediated pathophysiology in many cases of unclear aetiology of epileptic syndromes. Yet only a small number of patients with autoimmune encephalitis develop epilepsy in the proper sense where the brain transforms into a state where it will acquire the enduring propensity to produce seizures if it is not hindered by interventions. Hence, the term autoimmune epilepsy is often wrongfully used in the context of autoimmune encephalitis since most of the seizures are acute encephalitis-associated and will abate as soon as the encephalitis is in remission. Given the overlapping clinical presentation of immune-mediated seizures originating from different aetiologies, a clear distinction among the aetiological entities is crucial when it comes to discussing pathophysiological mechanisms, therapeutic options, and long-term prognosis of patients. Moreover, a rapid and accurate identification of patients with immune-mediated epilepsy syndromes is required to ensure an early targeted treatment and, thereby, improve clinical outcome. In this article, we review our current understanding of pathogenesis and critically discuss current and potential novel treatment options for seizures and epilepsy syndromes of underlying or suspected immune-mediated origin. We further outline the challenges in proper terminology.
Collapse
Affiliation(s)
- Julia Flammer
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tradite Neziraj
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland. .,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
31
|
Cable J, Saphire EO, Hayday AC, Wiltshire TD, Mousa JJ, Humphreys DP, Breij ECW, Bruhns P, Broketa M, Furuya G, Hauser BM, Mahévas M, Carfi A, Cantaert T, Kwong PD, Tripathi P, Davis JH, Brewis N, Keyt BA, Fennemann FL, Dussupt V, Sivasubramanian A, Kim PM, Rawi R, Richardson E, Leventhal D, Wolters RM, Geuijen CAW, Sleeman MA, Pengo N, Donnellan FR. Antibodies as drugs-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1519:153-166. [PMID: 36382536 PMCID: PMC10103175 DOI: 10.1111/nyas.14915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.
Collapse
Affiliation(s)
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College London, London, UK.,Cancer Research UK Cancer Immunotherapy Accelerator, London, UK.,Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | | | - Jarrod J Mousa
- Department of Infectious Diseases and Center for Vaccines and Immunology, College of Veterinary Medicine, Athens, Georgia, USA.,Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA.,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Esther C W Breij
- Translational Research and Precision Medicine, Genmab BV, Utrecht, the Netherlands
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Matteo Broketa
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Genta Furuya
- Department of Preventive Medicine and Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Matthieu Mahévas
- Service de Médecine Interne, Centre de Référence des Cytopénies Auto-immunes de l'adulte, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Andrea Carfi
- Moderna Inc., Cambridge, Massachusetts, USA.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Prabhanshu Tripathi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Bruce A Keyt
- IGM Biosciences, Inc., Mountainview, California, USA
| | | | - Vincent Dussupt
- Emerging Infectious Diseases Branch, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | - Philip M Kim
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eve Richardson
- Department of Statistics, University of Oxford, Oxford, UK
| | | | - Rachael M Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
32
|
Haraya K, Tachibana T. Translational Approach for Predicting Human Pharmacokinetics of Engineered Therapeutic Monoclonal Antibodies with Increased FcRn-Binding Mutations. BioDrugs 2023; 37:99-108. [PMID: 36449140 PMCID: PMC9709760 DOI: 10.1007/s40259-022-00566-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Recently, increasing FcRn binding by Fc engineering has become a promising approach for prolonging the half-life of therapeutic monoclonal antibodies (mAbs). This study is the first to investigate the optimization of an allometric scaling approach for engineered mAbs based on cynomolgus monkey data to predict human pharmacokinetics. METHODS Linear two-compartmental model parameters (clearance [CL]; volume of distribution in the central compartment [Vc]; inter-compartmental clearance [Q]; volume of distribution in the peripheral compartment [Vp]) after the intravenous (IV) injection of engineered mAbs (M252Y/S254T/T256E or M428L/N434S mutations) in cynomolgus monkeys and humans were collected from published data. We explored the optimal exponent for allometric scaling to predict parameters in humans based on cynomolgus monkey data. Moreover, the plasma concentration-time profile of engineered mAbs after IV injection in humans was predicted using parameters estimated based on an optimized exponent. RESULTS For engineered mAbs, a significant positive correlation between cynomolgus monkeys and humans was observed for CL, but not for other parameters. Whereas conventional exponents (CL: 0.8, Q: 0.75, Vc: 1.0, Vp: 0.95) previously established for normal mAbs showed poor prediction accuracy for CL and Q of engineered mAbs, the newly optimized exponents (CL: 0.55, Q: 0.6, Vc: 0.95, Vp: 0.95) achieved superior predictability for engineered mAbs. Moreover, the optimized exponents accurately predicted plasma mAb concentration-time profiles after IV injection of engineered mAbs in humans. CONCLUSIONS We found that engineered mAbs require specially optimized exponents to accurately predict pharmacokinetic parameters and plasma concentration-time profiles after IV injections in humans based on cynomolgus monkey data. This optimized approach can contribute to a more accurate prediction of human pharmacokinetics in the development of engineered mAbs.
Collapse
Affiliation(s)
- Kenta Haraya
- Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| | - Tatsuhiko Tachibana
- Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| |
Collapse
|
33
|
Briani C, Cocito D, Campagnolo M, Doneddu PE, Nobile-Orazio E. Update on therapy of chronic immune-mediated neuropathies. Neurol Sci 2022; 43:605-614. [PMID: 33452933 DOI: 10.1007/s10072-020-04998-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/12/2020] [Indexed: 12/27/2022]
Abstract
Chronic immune-mediated neuropathies, including chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), neuropathies associated with monoclonal gammopathy, and multifocal motor neuropathy (MMN), are a group of disorders deemed to be caused by an immune response against peripheral nerve antigens. Several immune therapies have been reported to be variably effective in these neuropathies including steroids, plasma exchange, and high-dose intravenous (IVIg) or subcutaneous (SCIg) immunoglobulins. These therapies are however far from being invariably effective and may be associated with a number of side effects leading to the use of immunosuppressive agents whose efficacy has not been so far confirmed in randomized trials. More recently, new biological agents, such as rituximab, have proved to be effective in patients with neuropathy associated with IgM monoclonal gammopathy and are currently tested in CIDP.
Collapse
Affiliation(s)
- Chiara Briani
- Neurology Unit, Department of Neuroscience, University of Padova, Via Giustiniani, 5, 35128, Padova, Italy.
| | - Dario Cocito
- Istituti Clinici Scientifici Maugeri, Torino, Italy
| | - Marta Campagnolo
- Neurology Unit, Department of Neuroscience, University of Padova, Via Giustiniani, 5, 35128, Padova, Italy
| | - Pietro Emiliano Doneddu
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical and Research Institute, Rozzano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Milan University, Milan, Italy
| |
Collapse
|
34
|
Liyanage G, Brilot F. Targeting B cell dysregulation with emerging therapies in autoimmune demyelinating disorders. Curr Opin Neurobiol 2022; 77:102643. [PMID: 36244128 DOI: 10.1016/j.conb.2022.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 01/10/2023]
Abstract
The depletion of B cells has proven to be beneficial in the treatment of autoimmune demyelinating disorders. The high efficacy of these therapies has highlighted the importance of B cells in autoimmunity and prompted investigations into specific B cell subsets that may be aberrant. Recently, a rise in the trialling of alternative B cell-targeting therapies that inhibit targets such as Bruton's tyrosine kinase, interleukin-6 receptor and fragment crystallisable neonatal receptor has also been observed. These agents interfere with specific dysregulated functions of B cells in contrast to the broad removal of many B cell subsets with depletion agents. The therapeutic benefit of these emerging agents will help delineate the contributions of B cells in demyelinating disorders and holds great potential for future treatment.
Collapse
Affiliation(s)
- Ganesha Liyanage
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia. https://twitter.com/@Ganesha_Li
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
35
|
Sand KMK, Gruber MM, Sandlie I, Mathiesen L, Andersen JT, Wadsack C. Contribution of the ex vivo placental perfusion model in understanding transplacental immunoglobulin G transfer. Placenta 2022; 127:77-87. [PMID: 35981406 DOI: 10.1016/j.placenta.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/07/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The acquisition of humoral immunity in utero is essential for the fetus. The crucial protein, which is responsible for this part of immunity, is immunoglobulin-G (IgG). Immune functions of IgGs are mediated via the interaction of the crystallizable fragment (Fc) region of IgG with specific Fc γ receptors (FcγRs). However, an atypical FcγR, the neonatal Fc receptor (FcRn), is a key regulator of IgG transfer across the human placenta. During the last four decades ex vivo placental perfusion studies have contributed significantly to the study of mechanisms of IgG transfer across the multicellular placental barrier. METHOD A PubMed search was conducted by using specific keywords: placenta, perfusion and IgG to review manuscripts using human placental perfusion to study the transplacental transfer of IgG. Relevant studies found in reference lists of these manuscripts were also added to the review, and references were included that supported or gave nuance to the discussion of the mechanisms of IgG kinetics in the placenta. RESULTS AND DISCUSSION We found twenty publications on the study of transplacental transfer of IgG using human ex vivo placental perfusion, by research groups with partly different settings. This review summarizes knowledge about placental IgG transfer, with a strong focus on the contributions from ex vivo placental perfusion studies.
Collapse
Affiliation(s)
- Kine Marita Knudsen Sand
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, 0424, Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Michael M Gruber
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036, Graz, Austria
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, 0371, Oslo, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, 0424, Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Line Mathiesen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, 0424, Oslo, Norway; Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, 0424, Oslo, Norway
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, 8036, Graz, Austria; BioTechMed-Graz, Austria
| |
Collapse
|
36
|
Lv Y, Shi H, Liu H, Zhou L. Current therapeutic strategies and perspectives in refractory ITP: What have we learned recently? Front Immunol 2022; 13:953716. [PMID: 36003388 PMCID: PMC9393521 DOI: 10.3389/fimmu.2022.953716] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder featured by increased platelet destruction and deficient megakaryocyte maturation. First-line treatments include corticosteroids, intravenous immunoglobulin and intravenous anti-D immunoglobulin. Second-line treatments consist of rituximab, thrombopoietin receptor agonists and splenectomy. Although most patients benefit from these treatments, an individualized treatment approach is warranted due to the large heterogeneity among ITP patients. In addition, ITP patients may relapse and there remains a subset of patients who become refractory to treatments. The management of these refractory patients is still a challenge. This review aims to summarize emerging therapeutic approaches for refractory ITP in several categories according to their different targets, including macrophages, platelets/megakaryocytes, T cells, B cells, and endothelial cells. Moreover, current management strategies and combination regimens of refractory ITP are also discussed.
Collapse
Affiliation(s)
- Yue Lv
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Huiping Shi
- Soochow University Medical College, Suzhou, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| |
Collapse
|
37
|
Halloran PF, Madill‐Thomsen KS, Pon S, Sikosana MLN, Böhmig GA, Bromberg J, Einecke G, Eskandary F, Gupta G, Hidalgo LG, Myslak M, Viklicky O, Perkowska‐Ptasinska A. Molecular diagnosis of ABMR with or without donor-specific antibody in kidney transplant biopsies: Differences in timing and intensity but similar mechanisms and outcomes. Am J Transplant 2022; 22:1976-1991. [PMID: 35575435 PMCID: PMC9540308 DOI: 10.1111/ajt.17092] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We studied the clinical, histologic, and molecular features distinguishing DSA-negative from DSA-positive molecularly defined antibody-mediated rejection (mABMR). We analyzed mABMR biopsies with available DSA assessments from the INTERCOMEX study: 148 DSA-negative versus 248 DSA-positive, compared with 864 no rejection (excluding TCMR and Mixed). DSA-positivity varied with mABMR stage: early-stage (EABMR) 56%; fully developed (FABMR) 70%; and late-stage (LABMR) 58%. DSA-negative patients with mABMR were usually sensitized, 60% being HLA antibody-positive. Compared with DSA-positive mABMR, DSA-negative mABMR was more often C4d-negative; earlier by 1.5 years (average 2.4 vs. 3.9 years); and had lower ABMR activity and earlier stage in molecular and histology features. However, the top ABMR-associated transcripts were identical in DSA-negative versus DSA-positive mABMR, for example, NK-associated (e.g., KLRD1 and GZMB) and IFNG-inducible (e.g., PLA1A). Genome-wide class comparison between DSA-negative and DSA-positive mABMR showed no significant differences in transcript expression except those related to lower intensity and earlier time of DSA-negative ABMR. Three-year graft loss in DSA-negative mABMR was the same as DSA-positive mABMR, even after adjusting for ABMR stage. Thus, compared with DSA-positive mABMR, DSA-negative mABMR is on average earlier, less active, and more often C4d-negative but has similar graft loss, and genome-wide analysis suggests that it involves the same mechanisms. SUMMARY SENTENCE: In 398 kidney transplant biopsies with molecular antibody-mediated rejection, the 150 DSA-negative cases are earlier, less intense, and mostly C4d-negative, but use identical molecular mechanisms and have the same risk of graft loss as the 248 DSA-positive cases.
Collapse
Affiliation(s)
- Philip F. Halloran
- Alberta Transplant Applied Genomics CentreEdmontonAlbertaCanada,Department of Medicine, Division of Nephrology and Transplant ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Shane Pon
- Alberta Transplant Applied Genomics CentreEdmontonAlbertaCanada
| | | | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine IIIMedical University of ViennaViennaAustria
| | | | - Gunilla Einecke
- Department of NephrologyHannover Medical SchoolHannoverGermany
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Gaurav Gupta
- Division of NephrologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Marek Myslak
- Department of Clinical Interventions, Department of Nephrology and Kidney Transplantation SPWSZ HospitalPomeranian Medical UniversitySzczecinPoland
| | - Ondrej Viklicky
- Department of Nephrology and Transplant CenterInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | | | | |
Collapse
|
38
|
Moise KJ, Oepkes D, Lopriore E, Bredius RGM. Targeting neonatal Fc receptor: potential clinical applications in pregnancy. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:167-175. [PMID: 35229965 DOI: 10.1002/uog.24891] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The neonatal Fc receptor (FcRn) plays an important role in the transfer of the immunoglobulin G isotype (IgG) from the mother to the fetus. FcRn expressed on endothelial cells also binds to IgG and albumin, regulating the circulating half-lives of these proteins. Alloimmune and autoimmune IgG antibodies have been implicated in various perinatal immune-mediated diseases. FcRn-mediated placental transfer of pathogenic antibodies can result in cell and tissue injury in the fetus and neonate, with devastating outcomes. Thus, blockade of FcRn may be an effective treatment strategy in managing these conditions and could additionally reduce the concentration of pathogenic antibodies in the maternal circulation by preventing IgG recycling. In this review, we discuss the biology of FcRn, the rationale and considerations for development of FcRn-blocking agents, and their potential clinical applications in various perinatal immune-mediated diseases. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- K J Moise
- Department of Women's Health, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - D Oepkes
- Department of Obstetrics and Fetal Therapy, Leiden University Medical Center, Leiden, The Netherlands
| | - E Lopriore
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R G M Bredius
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
39
|
Ward ES, Gelinas D, Dreesen E, Van Santbergen J, Andersen JT, Silvestri NJ, Kiss JE, Sleep D, Rader DJ, Kastelein JJP, Louagie E, Vidarsson G, Spriet I. Clinical Significance of Serum Albumin and Implications of FcRn Inhibitor Treatment in IgG-Mediated Autoimmune Disorders. Front Immunol 2022; 13:892534. [PMID: 35757719 PMCID: PMC9231186 DOI: 10.3389/fimmu.2022.892534] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
Serum albumin (SA), the most abundant soluble protein in the body, maintains plasma oncotic pressure and regulates the distribution of vascular fluid and has a range of other important functions. The goals of this review are to expand clinical knowledge regarding the functions of SA, elucidate effects of dysregulated SA concentration, and discuss the clinical relevance of hypoalbuminemia resulting from various diseases. We discuss potential repercussions of SA dysregulation on cholesterol levels, liver function, and other processes that rely on its homeostasis, as decreased SA concentration has been shown to be associated with increased risk for cardiovascular disease, hyperlipidemia, and mortality. We describe the anti-inflammatory and antioxidant properties of SA, as well as its ability to bind and transport a plethora of endogenous and exogenous molecules. SA is the primary serum protein involved in binding and transport of drugs and as such has the potential to affect, or be affected by, certain medications. Of current relevance are antibody-based inhibitors of the neonatal Fc receptor (FcRn), several of which are under clinical development to treat immunoglobulin G (IgG)-mediated autoimmune disorders; some have been shown to decrease SA concentration. FcRn acts as a homeostatic regulator of SA by rescuing it, as well as IgG, from intracellular degradation via a common cellular recycling mechanism. Greater clinical understanding of the multifunctional nature of SA and the potential clinical impact of decreased SA are needed; in particular, the potential for certain treatments to reduce SA concentration, which may affect efficacy and toxicity of medications and disease progression.
Collapse
Affiliation(s)
- E Sally Ward
- Cancer Sciences Unit, Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | | | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | - Joseph E Kiss
- Vitalant Northeast Division and Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Daniel J Rader
- Departments of Genetics and Medicine, Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John J P Kastelein
- Department of Vascular Medicine, Genetics of Cardiovascular Disease, Academic Medical Center (AMC) of the University of Amsterdam, Amsterdam, Netherlands
| | | | - Gestur Vidarsson
- Department of Experimental Immunohematology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Isabel Spriet
- Department of Clinical Pharmacology and Pharmacotherapy, KU Leuven, Leuven, Belgium.,Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Novel Therapies to Address Unmet Needs in ITP. Pharmaceuticals (Basel) 2022; 15:ph15070779. [PMID: 35890078 PMCID: PMC9318546 DOI: 10.3390/ph15070779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune disorder that causes low platelet counts and subsequent bleeding risk. Although current corticosteroid-based ITP therapies are able to improve platelet counts, up to 70% of subjects with an ITP diagnosis do not achieve a sustained clinical response in the absence of treatment, thus requiring a second-line therapy option as well as additional care to prevent bleeding. Less than 40% of patients treated with thrombopoietin analogs, 60% of those treated with splenectomy, and 20% or fewer of those treated with rituximab or fostamatinib reach sustained remission in the absence of treatment. Therefore, optimizing therapeutic options for ITP management is mandatory. The pathophysiology of ITP is complex and involves several mechanisms that are apparently unrelated. These include the clearance of autoantibody-coated platelets by splenic macrophages or by the complement system, hepatic desialylated platelet destruction, and the inhibition of platelet production from megakaryocytes. The number of pathways involved may challenge treatment, but, at the same time, offer the possibility of unveiling a variety of new targets as the knowledge of the involved mechanisms progresses. The aim of this work, after revising the limitations of the current treatments, is to perform a thorough review of the mechanisms of action, pharmacokinetics/pharmacodynamics, efficacy, safety, and development stage of the novel ITP therapies under investigation. Hopefully, several of the options included herein may allow us to personalize ITP management according to the needs of each patient in the near future.
Collapse
|
41
|
Menon D, Bril V. Pharmacotherapy of Generalized Myasthenia Gravis with Special Emphasis on Newer Biologicals. Drugs 2022; 82:865-887. [PMID: 35639288 PMCID: PMC9152838 DOI: 10.1007/s40265-022-01726-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/20/2022]
Abstract
Myasthenia gravis (MG) is a chronic, fluctuating, antibody-mediated autoimmune disorder directed against the post-synaptic neuromuscular junctions of skeletal muscles, resulting in a wide spectrum of manifestations ranging from mild to potentially fatal. Given its unique natural course, designing an ideal trial design for MG has been wrought with difficulties and evidence in favour of several of the conventional agents is weak as per current standards. Despite this, acetylcholinesterases and corticosteroids have remained the cornerstones of treatment for several decades with intravenous immunoglobulins (IVIG) and therapeutic plasma exchange (PLEX) offering rapid treatment response, especially in crises. However, the treatment of MG entails long-term immunosuppression and conventional agents are viable options but take longer to act and have a number of class-specific adverse effects. Advances in immunology, translational medicine and drug development have seen the emergence of several newer biological agents which offer selective, target-specific immunotherapy with fewer side effects and rapid onset of action. Eculizumab is one of the newer agents that belong to the class of complement inhibitors and has been approved for the treatment of refractory general MG. Zilucoplan and ravulizumab are other agents in this group in clinical trials. Neisseria meningitis is a concern with all complement inhibitors, mandating vaccination. Neonatal Fc receptor (FcRn) inhibitors prevent immunoglobulin recycling and cause rapid reduction in antibody levels. Efgartigimod is an FcRn inhibitor recently approved for MG treatment, and rozanolixizumab, nipocalimab and batoclimab are other agents in clinical trial development. Although lacking high quality evidence from randomized clinical trials, clinical experience with the use of anti-CD20 rituximab has led to its use in refractory MG. Among novel targets, interleukin 6 (IL6) inhibitors such as satralizumab are promising and currently undergoing evaluation. Cutting-edge therapies include genetically modifying T cells to recognise chimeric antigen receptors (CAR) and chimeric autoantibody receptors (CAAR). These may offer sustained and long-term remissions, but are still in very early stages of evaluation. Hematopoietic stem cell transplantation (HSCT) allows immune resetting and offers sustained remission, but the induction regimens often involve serious systemic toxicity. While MG treatment is moving beyond conventional agents towards target-specific biologicals, lack of knowledge as to the initiation, maintenance, switching, tapering and long-term safety profile necessitates further research. These concerns and the high financial burden of novel agents may hamper widespread clinical use in the near future.
Collapse
Affiliation(s)
- Deepak Menon
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vera Bril
- Ellen and Martin Prosserman Centre for Neuromuscular Diseases, University Health Network, 5EC-309, Toronto General Hospital, University of Toronto, 200 Elizabeth St, Toronto, M5G 2C4, Canada.
| |
Collapse
|
42
|
Ruck T, Nimmerjahn F, Wiendl H, Lünemann JD. Next-generation antibody-based therapies in neurology. Brain 2022; 145:1229-1241. [PMID: 34928330 PMCID: PMC9630709 DOI: 10.1093/brain/awab465] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Antibody-based therapeutics are now standard in the treatment of neuroinflammatory diseases, and the spectrum of neurological diseases targeted by those approaches continues to grow. The efficacy of antibody-based drug platforms is largely determined by the specificity-conferring antigen-binding fragment (Fab) and the crystallizable fragment (Fc) driving antibody function. The latter provides specific instructions to the immune system by interacting with cellular Fc receptors and complement components. Extensive engineering efforts have enabled tuning of Fc functions to modulate effector functions and to prolong or reduce antibody serum half-lives. Technologies that improve bioavailability of antibody-based treatment platforms within the CNS parenchyma are being developed and could invigorate drug discovery for a number of brain diseases for which current therapeutic options are limited. These powerful approaches are currently being tested in clinical trials or have been successfully translated into the clinic. Here, we review recent developments in the design and implementation of antibody-based treatment modalities in neurological diseases.
Collapse
Affiliation(s)
- Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Falk Nimmerjahn
- Department of Biology, Division of Genetics, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
43
|
Provan D, Newland AC. Investigational drugs for immune thrombocytopenia. Expert Opin Investig Drugs 2022; 31:715-727. [DOI: 10.1080/13543784.2022.2075340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Drew Provan
- Centre for Immunology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London UK
| | - Adrian C Newland
- Centre for Immunology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London UK
| |
Collapse
|
44
|
Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun Rev 2022; 21:103104. [PMID: 35452851 DOI: 10.1016/j.autrev.2022.103104] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.
Collapse
|
45
|
Therapeutic Effects of Batoclimab in Chinese Patients with Generalized Myasthenia Gravis: A Double-Blinded, Randomized, Placebo-Controlled Phase II Study. Neurol Ther 2022; 11:815-834. [PMID: 35412216 PMCID: PMC9095773 DOI: 10.1007/s40120-022-00345-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction We investigated the safety and explore potential efficacy of batoclimab administered subcutaneously in Chinese patients with generalized myasthenia gravis (gMG). Methods A randomized, double-blinded, placebo-controlled, parallel phase II study was conducted. First, in the double-blinded treatment period, eligible patients received batoclimab (680 mg), batoclimab (340 mg), or placebo on days 1, 8, 15, 22, 29, and 36. In the open-label treatment period, patients received batoclimab (340 mg) on days 50, 64, and 78. In the follow-up period, patients were examined on days 92, 106, and 120. The primary endpoint was Myasthenia Gravis Activities of Daily Living (MG-ADL) score change on day 43 from baseline. Results In total, 30 eligible patients were enrolled, with 11, 10, and 9 patients in the batoclimab 680 mg, batoclimab 340 mg, and placebo groups, respectively. MG-ADL score changes from baseline to day 43 were −2.2 ± 0.9, −4.7 ± 0.6, and −4.4 ± 1.0 in the placebo, batoclimab 340 mg, and 680 mg groups, respectively. Similar changes were observed in Quantitative Myasthenia Gravis, Myasthenia Gravis Composite, and 15-item Myasthenia Gravis Quality of Life scores in the placebo, batoclimab 340 mg, and 680 mg groups, respectively. The proportion of patients with clinically significant improvement on day 43 was higher in the batoclimab groups. On day 120, all four scales in the placebo group had more significant improvement compared with the batoclimab groups, with total serum IgG levels reaching a plateau. No death or treatment-emergent adverse events (TEAEs) led to study discontinuation. Conclusion Batoclimab is effective and safe in Chinese patients with gMG. Trial Registration This study was registered at ClinicalTrials.gov (NCT04346888) on 15 April 2020, with the first patient enrolled on 23 July 2020. Supplementary Information The online version contains supplementary material available at 10.1007/s40120-022-00345-9.
Collapse
|
46
|
Gross DA, Tedesco N, Leborgne C, Ronzitti G. Overcoming the Challenges Imposed by Humoral Immunity to AAV Vectors to Achieve Safe and Efficient Gene Transfer in Seropositive Patients. Front Immunol 2022; 13:857276. [PMID: 35464422 PMCID: PMC9022790 DOI: 10.3389/fimmu.2022.857276] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
One of the major goals of in vivo gene transfer is to achieve long-term expression of therapeutic transgenes in terminally differentiated cells. The extensive clinical experience and the recent approval of Luxturna® (Spark Therapeutics, now Roche) and Zolgensma® (AveXis, now Novartis) place vectors derived from adeno-associated viruses (AAV) among the best options for gene transfer in multiple tissues. Despite these successes, limitations remain to the application of this therapeutic modality in a wider population. AAV was originally identified as a promising virus to derive gene therapy vectors because, despite infecting humans, it was not associated with any evident disease. Thee large proportion of AAV infections in the human population is now revealing as a limitation because after exposure to wild-type AAV, anti-AAV antibodies develops and may neutralize the vectors derived from the virus. Injection of AAV in humans is generally well-tolerated although the immune system can activate after the recognition of AAV vectors capsid and genome. The formation of high-titer neutralizing antibodies to AAV after the first injection precludes vector re-administration. Thus, both pre-existing and post-treatment humoral responses to AAV vectors greatly limit a wider application of this gene transfer modality. Different methods were suggested to overcome this limitation. The extensive preclinical data available and the large clinical experience in the control of AAV vectors immunogenicity are key to clinical translation and to demonstrate the safety and efficacy of these methods and ultimately bring a curative treatment to patients.
Collapse
Affiliation(s)
- David-Alexandre Gross
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Novella Tedesco
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Christian Leborgne
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| |
Collapse
|
47
|
Nelke C, Spatola M, Schroeter CB, Wiendl H, Lünemann JD. Neonatal Fc Receptor-Targeted Therapies in Neurology. Neurotherapeutics 2022; 19:729-740. [PMID: 34997443 PMCID: PMC9294083 DOI: 10.1007/s13311-021-01175-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
Autoantibodies are increasingly recognized for their pathogenic potential in a growing number of neurological diseases. While myasthenia gravis represents the prototypic antibody (Ab)-mediated neurological disease, many more disorders characterized by Abs targeting neuronal or glial antigens have been identified over the past two decades. Depletion of humoral immune components including immunoglobulin G (IgG) through plasma exchange or immunoadsorption is a successful therapeutic strategy in most of these disease conditions. The neonatal Fc receptor (FcRn), primarily expressed by endothelial and myeloid cells, facilitates IgG recycling and extends the half-life of IgG molecules. FcRn blockade prevents binding of endogenous IgG to FcRn, which forces these antibodies into lysosomal degradation, leading to IgG depletion. Enhancing the degradation of endogenous IgG by FcRn-targeted therapies proved to be a powerful therapeutic approach in patients with generalized MG and is currently being tested in clinical trials for several other neurological diseases including autoimmune encephalopathies, neuromyelitis optica spectrum disorders, and inflammatory neuropathies. This review illustrates mechanisms of FcRn-targeted therapies and appraises their potential to treat neurological diseases.
Collapse
Affiliation(s)
- Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Marianna Spatola
- MIT and Harvard Medical School, Ragon Institute of MGH, Cambridge, MA, USA
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Munster, Germany
| | - Jan D Lünemann
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Munster, Germany.
| |
Collapse
|
48
|
Remlinger J, Madarasz A, Guse K, Hoepner R, Bagnoud M, Meli I, Feil M, Abegg M, Linington C, Shock A, Boroojerdi B, Kiessling P, Smith B, Enzmann V, Chan A, Salmen A. Antineonatal Fc Receptor Antibody Treatment Ameliorates MOG-IgG-Associated Experimental Autoimmune Encephalomyelitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/2/e1134. [PMID: 35027475 PMCID: PMC8759074 DOI: 10.1212/nxi.0000000000001134] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVES Myelin oligodendrocyte glycoprotein antibody-associated disorder (MOGAD) is a rare, autoimmune demyelinating CNS disorder, distinct from multiple sclerosis and neuromyelitis optica spectrum disorder. Characterized by pathogenic immunoglobulin G (IgG) antibodies against MOG, a potential treatment strategy for MOGAD is to reduce circulating IgG levels, e.g., by interference with the IgG recycling pathway mediated by the neonatal Fc receptor (FcRn). Although the optic nerve is often detrimentally involved in MOGAD, the effect of FcRn blockade on the visual pathway has not been assessed. Our objective was to investigate effects of a monoclonal anti-FcRn antibody in murine MOG-IgG-associated experimental autoimmune encephalomyelitis (EAE). METHODS We induced active MOG35-55 EAE in C57Bl/6 mice followed by the application of a monoclonal MOG-IgG (8-18C5) 10 days postimmunization (dpi). Animals were treated with either a specific monoclonal antibody against FcRn (α-FcRn, 4470) or an isotype-matched control IgG on 7, 10, and 13 dpi. Neurologic disability was scored daily on a 10-point scale. Visual acuity was assessed by optomotor reflex. Histopathologic hallmarks of disease were assessed in the spinal cord, optic nerve, and retina. Immune cell infiltration was visualized by immunohistochemistry, demyelination by Luxol fast blue staining and complement deposition and number of retinal ganglion cells by immunofluorescence. RESULTS In MOG-IgG-augmented MOG35-55 EAE, anti-FcRn treatment significantly attenuated neurologic disability over the course of disease (mean area under the curve and 95% confidence intervals (CIs): α-FcRn [n = 27], 46.02 [37.89-54.15]; isotype IgG [n = 24], 66.75 [59.54-73.96], 3 independent experiments), correlating with reduced amounts of demyelination and macrophage infiltration into the spinal cord. T- and B-cell infiltration and complement deposition remained unchanged. Compared with isotype, anti-FcRn treatment prevented reduction of visual acuity over the course of disease (median cycles/degree and interquartile range: α-FcRn [n = 16], 0.50 [0.48-0.55] to 0.50 [0.48-0.58]; isotype IgG [n = 17], 0.50 [0.49-0.54] to 0.45 [0.39-0.51]). DISCUSSION We show preserved optomotor response and ameliorated course of disease after anti-FcRn treatment in an experimental model using a monoclonal MOG-IgG to mimic MOGAD. Selectively targeting FcRn might represent a promising therapeutic approach in MOGAD.
Collapse
Affiliation(s)
- Jana Remlinger
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Adrian Madarasz
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Kirsten Guse
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Robert Hoepner
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Maud Bagnoud
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Ivo Meli
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Moritz Feil
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Mathias Abegg
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Christopher Linington
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Anthony Shock
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Babak Boroojerdi
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Peter Kiessling
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Bryan Smith
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Volker Enzmann
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Andrew Chan
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany
| | - Anke Salmen
- From the Department of Neurology (J.R., A.M., K.G., R.H., M.B., I.M., A.C., A. Salmen), Inselspital, Bern University Hospital and University of Bern; Department of Biomedical Research (J.R., A.M., K.G., R.H., M.B., I.M., V.E., A.C., A. Salmen), and Graduate School for Cellular and Biomedical Sciences (J.R., A.M., M.B.), University of Bern; Department of Ophthalmology (M.F., M.A., V.E.), Inselspital, Bern University Hospital and University of Bern, Switzerland; Institute of Infection (C.L.), Immunity and Inflammation, University of Glasgow; UCB Pharma (A. Shock, B.S.), Slough, United Kingdom; and UCB Pharma (B.B., P.K.), Monheim-am-Rhein, Germany.
| |
Collapse
|
49
|
Abstract
In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1–2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including eleven sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European hematology research. The 11 EHA Research Roadmap sections include Normal Hematopoiesis; Malignant Lymphoid Diseases; Malignant Myeloid Diseases; Anemias and Related Diseases; Platelet Disorders; Blood Coagulation and Hemostatic Disorders; Transfusion Medicine; Infections in Hematology; Hematopoietic Stem Cell Transplantation; CAR-T and Other Cell-based Immune Therapies; and Gene Therapy.
Collapse
|
50
|
Potential therapeutic strategies in chronic inflammatory demyelinating polyradiculoneuropathy. Clin Exp Rheumatol 2022; 21:103032. [PMID: 34999243 DOI: 10.1016/j.autrev.2022.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/01/2022] [Indexed: 11/23/2022]
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an autoimmune neuropathy involving peripheral nerve and nerve roots. The pathological hallmark of CIDP is macrophage-induced demyelination. Antibodies against nerve fibers, complement decomposition, abnormalities in plasma and cerebrospinal fluid cytokine profile, and changes of peripheral blood cell proportion were also reported in CIDP patients. These findings in immunopathology provide support for the introduction of potential therapeutic options for the treatment of CIDP. In this review, we systematically listed the potential therapeutic strategies targeting different components of the immune system by comparing the treatment of other autoimmune inflammatory diseases of the nervous system. Several ongoing clinical trials will assess the efficacy and safety of potential CIDP treatments.
Collapse
|