1
|
Shahhosseini R, Pakmehr S, Elhami A, Shakir MN, Alzahrani AA, Al-Hamdani MM, Abosoda M, Alsalamy A, Mohammadi-Dehcheshmeh M, Maleki TE, Saffarfar H, Ali-Khiavi P. Current biological implications and clinical relevance of metastatic circulating tumor cells. Clin Exp Med 2024; 25:7. [PMID: 39546080 PMCID: PMC11567993 DOI: 10.1007/s10238-024-01518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Metastatic disease and cancer recurrence are the primary causes of cancer-related deaths. Circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) are the driving forces behind the spread of cancer cells. The emergence and development of liquid biopsy using rare CTCs as a minimally invasive strategy for early-stage tumor detection and improved tumor management is a promising advancement in recent years. However, before blood sample analysis and clinical translation, precise isolation of CTCs from patients' blood based on their biophysical properties, followed by molecular identification of CTCs using single-cell multi-omics technologies is necessary to understand tumor heterogeneity and provide effective diagnosis and monitoring of cancer progression. Additionally, understanding the origin, morphological variation, and interaction between CTCs and the primary and metastatic tumor niche, as well as and regulatory immune cells, will offer new insights into the development of CTC-based advanced tumor targeting in the future clinical trials.
Collapse
Affiliation(s)
| | - SeyedAbbas Pakmehr
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Ahvaz Jundishapur University of Medical Sciences Ahvaz, Ahvaz, Iran
| | - Anis Elhami
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | | | - Munther Abosoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Pharmacy, Imam Ja'afar Al-Sadiq University, Al-Samawa, Al-Muthanna, 66002, Iraq
| | | | | | - Hossein Saffarfar
- Cardiovascular Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Payam Ali-Khiavi
- Medical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Linke JA, Munn LL, Jain RK. Compressive stresses in cancer: characterization and implications for tumour progression and treatment. Nat Rev Cancer 2024; 24:768-791. [PMID: 39390249 DOI: 10.1038/s41568-024-00745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Beyond their many well-established biological aberrations, solid tumours create an abnormal physical microenvironment that fuels cancer progression and confers treatment resistance. Mechanical forces impact tumours across a range of biological sizes and timescales, from rapid events at the molecular level involved in their sensing and transmission, to slower and larger-scale events, including clonal selection, epigenetic changes, cell invasion, metastasis and immune response. Owing to challenges with studying these dynamic stimuli in biological systems, the mechanistic understanding of the effects and pathways triggered by abnormally elevated mechanical forces remains elusive, despite clear correlations with cancer pathophysiology, aggressiveness and therapeutic resistance. In this Review, we examine the emerging and diverse roles of physical forces in solid tumours and provide a comprehensive framework for understanding solid stress mechanobiology. We first review the physiological importance of mechanical forces, especially compressive stresses, and discuss their defining characteristics, biological context and relative magnitudes. We then explain how abnormal compressive stresses emerge in tumours and describe the experimental challenges in investigating these mechanically induced processes. Finally, we discuss the clinical translation of mechanotherapeutics that alleviate solid stresses and their potential to synergize with chemotherapy, radiotherapy and immunotherapies.
Collapse
Affiliation(s)
- Julia A Linke
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Baran Z, Çetinkaya M, Baran Y. Mesenchymal Stem Cells in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39470980 DOI: 10.1007/5584_2024_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
Collapse
Affiliation(s)
- Züleyha Baran
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Melisa Çetinkaya
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Baran
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
4
|
Melrose J, Guilak F. Diverse and multifunctional roles for perlecan ( HSPG2) in repair of the intervertebral disc. JOR Spine 2024; 7:e1362. [PMID: 39081381 PMCID: PMC11286675 DOI: 10.1002/jsp2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Perlecan is a widely distributed, modular, and multifunctional heparan sulfate proteoglycan, which facilitates cellular communication with the extracellular environment to promote tissue development, tissue homeostasis, and optimization of biomechanical tissue functions. Perlecan-mediated osmotic mechanotransduction serves to regulate the metabolic activity of cells in tissues subjected to tension, compression, or shear. Perlecan interacts with a vast array of extracellular matrix (ECM) proteins through which it stabilizes tissues and regulates the proliferation or differentiation of resident cell populations. Here we examine the roles of the HS-proteoglycan perlecan in the normal and destabilized intervertebral disc. The intervertebral disc cell has evolved to survive in a hostile weight bearing, acidic, low oxygen tension, and low nutrition environment, and perlecan provides cytoprotection, shields disc cells from excessive compressive forces, and sequesters a range of growth factors in the disc cell environment where they aid in cellular survival, proliferation, and differentiation. The cells in mechanically destabilized connective tissues attempt to re-establish optimal tissue composition and tissue functional properties by changing the properties of their ECM, in the process of chondroid metaplasia. We explore the possibility that perlecan assists in these cell-mediated tissue remodeling responses by regulating disc cell anabolism. Perlecan's mechano-osmotic transductive property may be of potential therapeutic application.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling InstituteNorthern Sydney Local Health DistrictSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
- Sydney Medical School, NorthernThe University of SydneySt. LeonardsNew South WalesAustralia
- Faculty of Medicine and HealthThe University of Sydney, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - Farshid Guilak
- Department of Orthopaedic SurgeryWashington UniversitySt. LouisMissouriUSA
- Department of OrthopaedicsShriners Hospitals for ChildrenSt. LouisMissouriUSA
| |
Collapse
|
5
|
Huang J, Fussenegger M. Programming mammalian cell behaviors by physical cues. Trends Biotechnol 2024:S0167-7799(24)00208-7. [PMID: 39179464 DOI: 10.1016/j.tibtech.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 48, CH-4056 Basel, Switzerland.
| |
Collapse
|
6
|
Kanmalar M, Kamal R, Abdul Sani SF, Pathmanathan D, Bm Said NA, Paramanantham Y, Abd Jamil AH, Mun KS, Kuppusamy S, Almugren KS, Almajid HF, Bradley DA. Spectroscopic diagnosis and metabolite characterization of cisplatin resistance regulated by FDFT1 in bladder cancer tissue. Appl Radiat Isot 2024; 210:111372. [PMID: 38810354 DOI: 10.1016/j.apradiso.2024.111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/21/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
As is the case for most solid tumours, chemotherapy remains the backbone in the management of metastatic disease. However, the occurrence of chemotherapy resistance is a cause to worry, especially in bladder cancer. Extensive evidence indicates molecular changes in bladder cancer cells to be the underlying cause of chemotherapy resistance, including the reduced expression of farnesyl-diphosphate farnesyltransferase 1 (FDFT1) - a gene involved in cholesterol biosynthesis. This can likely be a hallmark in examining the resistance and sensitivity of chemotherapy drugs. This work performs spectroscopic analysis and metabolite characterization on resistant, sensitive, stable-disease and healthy bladder tissues. Raman spectroscopy has detected peaks at around 1003 cm-1 (squalene), 1178 cm-1 (cholesterol), 1258 cm-1 (cholesteryl ester), 1343 cm-1 (collagen), 1525 cm-1 (carotenoid), 1575 cm-1 (DNA bases) and 1608 cm-1 (cytosine). The peak parameters were examined, and statistical analysis was performed on the peak features, attaining significant differences between the sample groups. Small-angle x-ray scattering (SAXS) measurements observed the triglyceride peak together with 6th, 7th and 8th - order collagen peaks; peak parameters were also determined. Neutron activation analysis (NAA) detected seven trace elements. Carbon (Ca), magnesium (Mg), chlorine (Cl) and sodium (Na) have been found to have the greatest concentration in the sample groups, suggestive of a role as a biomarker for cisplatin resistance studies. Results from the present research are suggested to provide an important insight into understanding the development of drug resistance in bladder cancer, opening up the possibility of novel avenues for treatment through personalised interventions.
Collapse
Affiliation(s)
- M Kanmalar
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Raihan Kamal
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S F Abdul Sani
- Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Dharini Pathmanathan
- Department of Mathematic, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nur Akmarina Bm Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - K S Mun
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - S Kuppusamy
- Department of Surgery, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - K S Almugren
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia.
| | - Hadeel F Almajid
- Medicine College, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - D A Bradley
- Sunway University, Centre for Applied Physics and Radiation Technologies, Jalan Universiti, 46150, PJ, Malaysia; School of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
7
|
Liu Y, Okesola BO, Osuna de la Peña D, Li W, Lin M, Trabulo S, Tatari M, Lawlor RT, Scarpa A, Wang W, Knight M, Loessner D, Heeschen C, Mata A, Pearce OMT. A Self-Assembled 3D Model Demonstrates How Stiffness Educates Tumor Cell Phenotypes and Therapy Resistance in Pancreatic Cancer. Adv Healthc Mater 2024; 13:e2301941. [PMID: 38471128 PMCID: PMC11468796 DOI: 10.1002/adhm.202301941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Indexed: 03/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) contributes to aggressiveness, a three-dimensional (3D) self-assembling hydrogel disease model is developed based on peptide amphiphiles (PAs, PA-E3Y) designed to tailor stiffness. The model displays nanofibrous architectures reminiscent of native TME and enables the study of the invasive behavior of PDAC cells. Enhanced tuneability of stiffness is demonstrated by interacting thermally annealed aqueous solutions of PA-E3Y (PA-E3Yh) with divalent cations to create hydrogels with mechanical properties and ultrastructure similar to native tumor ECM. It is shown that stiffening of PA-E3Yh hydrogels to levels found in PDAC induces ECM deposition, promotes epithelial-to-mesenchymal transition (EMT), enriches CD133+/CXCR4+ cancer stem cells (CSCs), and subsequently enhances drug resistance. The findings reveal how a stiff 3D environment renders PDAC cells more aggressive and therefore more faithfully recapitulates in vivo tumors.
Collapse
Affiliation(s)
- Ying Liu
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Babatunde O. Okesola
- School of Life SciencesFaculty of Medicine and Health SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - David Osuna de la Peña
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Weiqi Li
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Meng‐Lay Lin
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Sara Trabulo
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Marianthi Tatari
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Rita T. Lawlor
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Wen Wang
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Martin Knight
- Centre for BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Centre for Predictive in vitro ModelsQueen Mary University of LondonLondonE1 4NSUK
| | - Daniela Loessner
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- Department of Chemical and Biological EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Materials Science and EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Anatomy and Developmental BiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourneVIC3800Australia
| | - Christopher Heeschen
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSCandiolo (TO)10060Italy
| | - Alvaro Mata
- School of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Biodiscovery InstituteUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Department of Chemical and Environmental EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | | |
Collapse
|
8
|
Gao G, Li L, Li C, Liu D, Wang Y, Li C. Mesenchymal stem cells: Guardians of women's health. Regen Ther 2024; 26:1087-1098. [PMID: 39582803 PMCID: PMC11585475 DOI: 10.1016/j.reth.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have attracted more and more attention because of their multidirectional differentiation potential, immune regulatory abilities and self-renewal capacity. In recent years, their use has become prominent in the domains of regenerative medicine and tissue engineering. MSCs have shown promise in therapeutic studies for a variety of diseases and have become a new source of innovative solutions for the treatment of some obstetric and gynecological diseases. This review systematically presents the latest research on the use of MSCs in the treatment of obstetrics- and gynecology-related diseases. Specifically, this review encompasses the latest findings related to the role of MSCs in premature ovarian failure, polycystic ovary syndrome, ovarian cancer, fallopian tube-related diseases, uterine adhesions, endometriosis, cesarean scar defects, postmenopausal osteoporosis, and pelvic floor dysfunction. The shortcomings and challenges of the future use of MSCs in disease treatment are also discussed, with the intent to motivate improvements in MSC applications in clinical therapy. It is believed that with further research, MSCs will play a more important role in the treatment of obstetrics- and gynecology-related diseases.
Collapse
Affiliation(s)
- Guanwen Gao
- Peking University Shenzhen Clinical Institute of Shantou University Medical College, Shenzhen, 518036, China
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| | - Li Li
- Department of Internal Medicine, Jinan Central Hospital Affiliated to Shandong University, Ji Nan, 250000, China
| | - Changling Li
- Department of Obstetrics and Gynecology, Pingyi People's Hospital, Linyi City, Shandong Province, 276000, China
| | - Degao Liu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| | - Yunfei Wang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| | - Changzhong Li
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, 518036, China
| |
Collapse
|
9
|
Liang L, Song X, Zhao H, Lim CT. Insights into the mechanobiology of cancer metastasis via microfluidic technologies. APL Bioeng 2024; 8:021506. [PMID: 38841688 PMCID: PMC11151435 DOI: 10.1063/5.0195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
During cancer metastasis, cancer cells will encounter various microenvironments with diverse physical characteristics. Changes in these physical characteristics such as tension, stiffness, viscosity, compression, and fluid shear can generate biomechanical cues that affect cancer cells, dynamically influencing numerous pathophysiological mechanisms. For example, a dense extracellular matrix drives cancer cells to reorganize their cytoskeleton structures, facilitating confined migration, while this dense and restricted space also acts as a physical barrier that potentially results in nuclear rupture. Identifying these pathophysiological processes and understanding their underlying mechanobiological mechanisms can aid in the development of more effective therapeutics targeted to cancer metastasis. In this review, we outline the advances of engineering microfluidic devices in vitro and their role in replicating tumor microenvironment to mimic in vivo settings. We highlight the potential cellular mechanisms that mediate their ability to adapt to different microenvironments. Meanwhile, we also discuss some important mechanical cues that still remain challenging to replicate in current microfluidic devices in future direction. While much remains to be explored about cancer mechanobiology, we believe the developments of microfluidic devices will reveal how these physical cues impact the behaviors of cancer cells. It will be crucial in the understanding of cancer metastasis, and potentially contributing to better drug development and cancer therapy.
Collapse
Affiliation(s)
- Lanfeng Liang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xiao Song
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | | |
Collapse
|
10
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Mechanotransduction Circuits in Human Pathobiology. Int J Mol Sci 2024; 25:3816. [PMID: 38612628 PMCID: PMC11011732 DOI: 10.3390/ijms25073816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
It is widely acknowledged that mechanical forces exerted throughout the human body are critical for cellular and tissue homeostasis [...].
Collapse
Affiliation(s)
- Antonios N. Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Kostas A. Papavassiliou
- ‘Sotiria’ Hospital, Medical School, First University Department of Respiratory Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Borzone FR, Giorello MB, Sanmartin MC, Yannarelli G, Martinez LM, Chasseing NA. Mesenchymal stem cells and cancer-associated fibroblasts as a therapeutic strategy for breast cancer. Br J Pharmacol 2024; 181:238-256. [PMID: 35485850 DOI: 10.1111/bph.15861] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 04/22/2022] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is the most common type of cancer and the leading cause of death among women. Recent evidence suggests that mesenchymal stromal/stem cells and cancer-associated fibroblasts (CAFs) have an essential role in cancer progression, invasion and therapy resistance. Therefore, they are considered as highly promising future therapeutic targets against breast cancer. The intrinsic tumour tropism and immunomodulatory capacities of mesenchymal stromal/stem cells are of special relevance for developing mesenchymal stromal/stem cells-based anti-tumour therapies that suppress primary tumour growth and metastasis. In addition, the utilization of therapies that target the stromal components of the tumour microenvironment in combination with standard drugs is an innovative tool that could improve patients' response to therapies and their survival. In this review, we discuss the currently available information regarding the possible use of mesenchymal stromal/stem cells-derived anti-tumour therapies, as well as the utilization of therapies that target CAFs in breast cancer microenvironment. Finally, these data can serve as a guide map for future research in this field, ultimately aiding the effective transition of these results into the clinic. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Francisco Raúl Borzone
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Belén Giorello
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Cecilia Sanmartin
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Leandro Marcelo Martinez
- Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Norma Alejandra Chasseing
- Laboratorio de Inmunohematología, Instituto de Biología y Medicina Experimental (IBYME) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Fazel M, Jazani S, Scipioni L, Vallmitjana A, Zhu S, Gratton E, Digman MA, Pressé S. Building Fluorescence Lifetime Maps Photon-by-Photon by Leveraging Spatial Correlations. ACS PHOTONICS 2023; 10:3558-3569. [PMID: 38406580 PMCID: PMC10890823 DOI: 10.1021/acsphotonics.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has become a standard tool in the quantitative characterization of subcellular environments. However, quantitative FLIM analyses face several challenges. First, spatial correlations between pixels are often ignored as signal from individual pixels is analyzed independently thereby limiting spatial resolution. Second, existing methods deduce photon ratios instead of absolute lifetime maps. Next, the number of fluorophore species contributing to the signal is unknown, while excited state lifetimes with <1 ns difference are difficult to discriminate. Finally, existing analyses require high photon budgets and often cannot rigorously propagate experimental uncertainty into values over lifetime maps and number of species involved. To overcome all of these challenges simultaneously and self-consistently at once, we propose the first doubly nonparametric framework. That is, we learn the number of species (using Beta-Bernoulli process priors) and absolute maps of these fluorophore species (using Gaussian process priors) by leveraging information from pulses not leading to observed photon. We benchmark our framework using a broad range of synthetic and experimental data and demonstrate its robustness across a number of scenarios including cases where we recover lifetime differences between species as small as 0.3 ns with merely 1000 photons.
Collapse
Affiliation(s)
- Mohamadreza Fazel
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Sina Jazani
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Lorenzo Scipioni
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Alexander Vallmitjana
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Songning Zhu
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Enrico Gratton
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States; Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, California 92697, United States
| | - Steve Pressé
- Center for Biological Physics and Department of Physics, Arizona State University, Tempe, Arizona 85287, United States; School of Molecular Science, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
14
|
Sloas DC, Tran JC, Marzilli AM, Ngo JT. Tension-tuned receptors for synthetic mechanotransduction and intercellular force detection. Nat Biotechnol 2023; 41:1287-1295. [PMID: 36646932 PMCID: PMC10499187 DOI: 10.1038/s41587-022-01638-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/08/2022] [Indexed: 01/18/2023]
Abstract
Cells interpret mechanical stimuli from their environments and neighbors, but the ability to engineer customized mechanosensing capabilities has remained a synthetic and mechanobiology challenge. Here we introduce tension-tuned synthetic Notch (SynNotch) receptors to convert extracellular and intercellular forces into specifiable gene expression changes. By elevating the tension requirements of SynNotch activation, in combination with structure-guided mutagenesis, we designed a set of receptors with mechanical sensitivities spanning the physiologically relevant picoNewton range. Cells expressing these receptors can distinguish between varying tensile forces and respond by enacting customizable transcriptional programs. We applied these tools to design a decision-making circuit, through which fibroblasts differentiate into myoblasts upon stimulation with distinct tension magnitudes. We also characterize cell-generated forces transmitted between cells during Notch signaling. Overall, this work provides insight into how mechanically induced changes in protein structure can be used to transduce physical forces into biochemical signals. The system should facilitate the further programming and dissection of force-related phenomena in biological systems.
Collapse
Affiliation(s)
- D Christopher Sloas
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Jeremy C Tran
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - Alexander M Marzilli
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA
| | - John T Ngo
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, USA.
| |
Collapse
|
15
|
Safaei S, Sajed R, Shariftabrizi A, Dorafshan S, Saeednejad Zanjani L, Dehghan Manshadi M, Madjd Z, Ghods R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int 2023; 23:143. [PMID: 37468874 PMCID: PMC10357884 DOI: 10.1186/s12935-023-02992-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Matrix stiffness is a mechanical characteristic of the extracellular matrix (ECM) that increases from the tumor core to the tumor periphery in a gradient pattern in a variety of solid tumors and can promote proliferation, invasion, metastasis, drug resistance, and recurrence. Cancer stem cells (CSCs) are a rare subpopulation of tumor cells with self-renewal, asymmetric cell division, and differentiation capabilities. CSCs are thought to be responsible for metastasis, tumor recurrence, chemotherapy resistance, and consequently poor clinical outcomes. Evidence suggests that matrix stiffness can activate receptors and mechanosensor/mechanoregulator proteins such as integrin, FAK, and YAP, modulating the characteristics of tumor cells as well as CSCs through different molecular signaling pathways. A deeper understanding of the effect of matrix stiffness on CSCs characteristics could lead to development of innovative cancer therapies. In this review, we discuss how the stiffness of the ECM is sensed by the cells and how the cells respond to this environmental change as well as the effect of matrix stiffness on CSCs characteristics and also the key malignant processes such as proliferation and EMT. Then, we specifically focus on how increased matrix stiffness affects CSCs in breast, lung, liver, pancreatic, and colorectal cancers. We also discuss how the molecules responsible for increased matrix stiffness and the signaling pathways activated by the enhanced stiffness can be manipulated as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Ahmad Shariftabrizi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Division of Nuclear Medicine, Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| |
Collapse
|
16
|
Zhao P, Sun T, Lyu C, Du Y. Response to a Comment on "Scar-Degrading Endothelial Cells as a Treatment for Advanced Liver Fibrosis". ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301330. [PMID: 37119442 DOI: 10.1002/advs.202301330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 06/15/2023]
Affiliation(s)
- Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
17
|
Meli VS, Veerasubramanian PK, Downing TL, Wang W, Liu WF. Mechanosensation to inflammation: Roles for YAP/TAZ in innate immune cells. Sci Signal 2023; 16:eadc9656. [PMID: 37130167 PMCID: PMC10625748 DOI: 10.1126/scisignal.adc9656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Innate immune cells are responsible for eliminating foreign infectious agents and cellular debris, and their ability to perceive, respond to, and integrate biochemical and mechanical cues from their microenvironment eventually determines their behavior. In response to tissue injury, pathogen invasion, or a biomaterial implant, immune cells activate many pathways to initiate inflammation in the tissue. In addition to common inflammatory pathways, studies have demonstrated the role of the mechanosensitive proteins and transcriptional coactivators YAP and TAZ (YAP/TAZ) in inflammation and immunity. We review our knowledge of YAP/TAZ in controlling inflammation and immunity in innate immune cells. Furthermore, we discuss the roles of YAP/TAZ in inflammatory diseases, wound healing, and tissue regeneration and how they integrate mechanical cues with biochemical signaling during disease progression. Last, we comment on possible approaches that can be exploited to harness the therapeutic potential of YAP/TAZ in inflammatory diseases.
Collapse
Affiliation(s)
- Vijaykumar S. Meli
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, (CIRC), University of California Irvine, CA 92697
| | - Praveen Krishna Veerasubramanian
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, (CIRC), University of California Irvine, CA 92697
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, (CIRC), University of California Irvine, CA 92697
- NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, CA 92697
- Department of Microbiology and Molecular Genetics, University of California Irvine, CA 92697
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California Irvine, CA 92697
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California Irvine, CA 92697
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, (CIRC), University of California Irvine, CA 92697
- Department of Chemical and Biomolecular Engineering, University of California Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California Irvine, CA 92697
- Institute for Immunology, University of California Irvine, CA 92697
| |
Collapse
|
18
|
Liu X, Ye Y, Zhu L, Xiao X, Zhou B, Gu Y, Si H, Liang H, Liu M, Li J, Jiang Q, Li J, Yu S, Ma R, Su S, Liao JY, Zhao Q. Niche stiffness sustains cancer stemness via TAZ and NANOG phase separation. Nat Commun 2023; 14:238. [PMID: 36646707 PMCID: PMC9842735 DOI: 10.1038/s41467-023-35856-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Emerging evidence shows that the biomechanical environment is required to support cancer stem cells (CSCs), which play a crucial role in drug resistance. However, how mechanotransduction signals regulate CSCs and its clinical significance has remained unclear. Using clinical-practice ultrasound elastography for patients' lesions and atomic force microscopy for surgical samples, we reveal that increased matrix stiffness is associated with poor responses to neoadjuvant chemotherapy, worse prognosis, and CSC enrichment in patients with breast cancer. Mechanically, TAZ activated by biomechanics enhances CSC properties via phase separation with NANOG. TAZ-NANOG phase separation, which is dependent on acidic residues in the N-terminal activation domain of NANOG, promotes the transcription of SOX2 and OCT4. Therapeutically, targeting NANOG or TAZ reduces CSCs and enhances the chemosensitivity in vivo. Collectively, this study demonstrated that the phase separation of a pluripotency transcription factor links mechanical cues in the niche to the fate of CSCs.
Collapse
Affiliation(s)
- Xinwei Liu
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Department of Breast Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China.,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yingying Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liling Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoyun Xiao
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuanting Gu
- Department of Breast Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Hang Si
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huixin Liang
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingzhu Liu
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiongchao Jiang
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shubin Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruiying Ma
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Shicheng Su
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China. .,Department of Breast Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China. .,Guangdong Key Laboratory of Liver Disease Research, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
19
|
Li X, Wu F. Mesenchymal stem cell-derived extracellular vesicles transfer miR-598 to inhibit the growth and metastasis of non-small-cell lung cancer by targeting THBS2. Cell Death Dis 2023; 9:3. [PMID: 36609437 PMCID: PMC9822924 DOI: 10.1038/s41420-022-01283-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is the subtype of lung cancer, which accounts for about 85% of diagnosed lung cancer cases, and is without any effective therapy. Emerging evidence has revealed microRNA-598 (miR-598) as potential therapeutic target and diagnostic marker of NSCLC. In the present study, we sought to define the role of mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) containing miR-598 in NSCLC. Co-culture experiments were conducted to examine the secretion of miR-598 by MSCs and the uptake of EVs by NSCLC cells. The expression of miR-598 in NSCLC cell lines, tissues, and MSC-derived EVs was detected by the RT-qPCR. After treatment with MSCs-EVs, CCK-8 and Transwell assays were adopted to evaluate the effects of miR-598 on proliferation, migration, and invasion capacities of NSCLC cells. Finally, the effects of miR-598 on tumor growth and metastasis were further validated in vivo through subcutaneous tumorigenesis and experimental pulmonary metastasis in nude mice. We found that MSCs-derived EVs could deliver miR-598 into NSCLC cells, where miR-598 specifically targeted and bound with mRNA of THBS2 to inhibit its translational process. By suppressing the promoting effects of THBS2 on the proliferation, migration, and invasion of NSCLC cells, the EV treatment reduced the progression of NSCLC. Notably, these inhibitory effects were reversed by concomitantly overexpressing THBS2. Overall, we find that MSCs-derived EVs containing miR-598 targets THBS2 to inhibit the proliferation and migration of NSCLC cells in vivo and in vitro.
Collapse
Affiliation(s)
- Xuebo Li
- grid.412644.10000 0004 5909 0696Department of General Medicine, The Fourth Affiliated Hospital of China Medical University, 110032 Shenyang, P. R. China
| | - Fan Wu
- grid.412644.10000 0004 5909 0696Department of Psychiatry, The Fourth Affiliated Hospital of China Medical University, 110032 Shenyang, P. R. China
| |
Collapse
|
20
|
Zakaria MA, Aziz J, Rajab NF, Chua EW, Masre SF. Tissue Rigidity Increased during Carcinogenesis of NTCU-Induced Lung Squamous Cell Carcinoma In Vivo. Biomedicines 2022; 10:biomedicines10102382. [PMID: 36289644 PMCID: PMC9598693 DOI: 10.3390/biomedicines10102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 01/18/2023] Open
Abstract
Increased tissue rigidity is an emerging hallmark of cancer as it plays a critical role in promoting cancer growth. However, the field lacks a defined characterization of tissue rigidity in dual-stage carcinogenesis of lung squamous cell carcinoma (SCC) in vivo. Pre-malignant and malignant lung SCC was developed in BALB/c mice using N-nitroso-tris-chloroethylurea (NTCU). Picro sirius red staining and atomic force microscopy were performed to measure collagen content and collagen (diameter and rigidity), respectively. Then, the expression of tenascin C (TNC) protein was determined using immunohistochemistry staining. Briefly, all tissue rigidity parameters were found to be increased in the Cancer group as compared with the Vehicle group. Importantly, collagen content (33.63 ± 2.39%) and TNC expression (7.97 ± 2.04%) were found to be significantly higher (p < 0.05) in the Malignant Cancer group, as compared with the collagen content (18.08 ± 1.75%) and TNC expression (0.45 ± 0.53%) in the Pre-malignant Cancer group, indicating increased tissue rigidity during carcinogenesis of lung SCC. Overall, tissue rigidity of lung SCC was suggested to be increased during carcinogenesis as indicated by the overexpression of collagen and TNC protein, which may warrant further research as novel therapeutic targets to treat lung SCC effectively.
Collapse
Affiliation(s)
- Muhammad Asyaari Zakaria
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Jazli Aziz
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nor Fadilah Rajab
- Centre for Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Siti Fathiah Masre
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Correspondence: ; Tel.: +60-137-442-907
| |
Collapse
|
21
|
Arafa KK, Ibrahim A, Mergawy R, El-Sherbiny IM, Febbraio F, Hassan RYA. Advances in Cancer Diagnosis: Bio-Electrochemical and Biophysical Characterizations of Cancer Cells. MICROMACHINES 2022; 13:mi13091401. [PMID: 36144024 PMCID: PMC9504238 DOI: 10.3390/mi13091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 05/09/2023]
Abstract
Cancer is a worldwide leading cause of death, and it is projected that newly diagnosed cases globally will reach 27.5 million each year by 2040. Cancers (malignant tumors), unlike benign tumors are characterized by structural and functional dedifferentiation (anaplasia), breaching of the basement membrane, spreading to adjacent tissues (invasiveness), and the capability to spread to distant sites (metastasis). In the cancer biology research field, understanding and characterizing cancer metastasis as well as features of cell death (apoptosis) is considered a technically challenging subject of study and clinically is very critical and necessary. Therefore, in addition to the cytochemical methods traditionally used, novel biophysical and bioelectrochemical techniques (e.g., cyclic voltammetry and electrochemical impedance spectroscopy), atomic force microscopy, and electron microscopic methods are increasingly being deployed to better understand these processes. Implementing those methods at the preclinical level enables the rapid screening of new anticancer drugs with understanding of their central mechanism for cancer therapy. In this review, principles and basic concepts of new techniques suggested for metastasis, and apoptosis examinations for research purposes are introduced, along with examples of each technique. From our recommendations, the privilege of combining the bio-electrochemical and biosensing techniques with the conventional cytochemical methods either for research or for biomedical diagnosis should be emphasized.
Collapse
Affiliation(s)
- Kholoud K. Arafa
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Alaa Ibrahim
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Reem Mergawy
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ibrahim M. El-Sherbiny
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Rabeay Y. A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, Giza 12578, Egypt
- Correspondence: ; Tel.: +20-1129216152
| |
Collapse
|
22
|
Guo T, He C, Venado A, Zhou Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr Physiol 2022; 12:3523-3558. [PMID: 35766837 PMCID: PMC10088466 DOI: 10.1002/cphy.c210032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) provides structural support and imparts a wide variety of environmental cues to cells. In the past decade, a growing body of work revealed that the mechanical properties of the ECM, commonly known as matrix stiffness, regulate the fundamental cellular processes of the lung. There is growing appreciation that mechanical interplays between cells and associated ECM are essential to maintain lung homeostasis. Dysregulation of ECM-derived mechanical signaling via altered mechanosensing and mechanotransduction pathways is associated with many common lung diseases. Matrix stiffening is a hallmark of lung fibrosis. The stiffened ECM is not merely a sequelae of lung fibrosis but can actively drive the progression of fibrotic lung disease. In this article, we provide a comprehensive view on the role of matrix stiffness in lung health and disease. We begin by summarizing the effects of matrix stiffness on the function and behavior of various lung cell types and on regulation of biomolecule activity and key physiological processes, including host immune response and cellular metabolism. We discuss the potential mechanisms by which cells probe matrix stiffness and convert mechanical signals to regulate gene expression. We highlight the factors that govern matrix stiffness and outline the role of matrix stiffness in lung development and the pathogenesis of pulmonary fibrosis, pulmonary hypertension, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. We envision targeting of deleterious matrix mechanical cues for treatment of fibrotic lung disease. Advances in technologies for matrix stiffness measurements and design of stiffness-tunable matrix substrates are also explored. © 2022 American Physiological Society. Compr Physiol 12:3523-3558, 2022.
Collapse
Affiliation(s)
- Ting Guo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA.,Department of Respiratory Medicine, the Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Chao He
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| | - Aida Venado
- Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
23
|
Mesenchymal stem cells: A living carrier for active tumor-targeted delivery. Adv Drug Deliv Rev 2022; 185:114300. [PMID: 35447165 DOI: 10.1016/j.addr.2022.114300] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/22/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
The strategy of using mesenchymal stem cells (MSCs) as a living carrier for active delivery of therapeutic agents targeting tumor sites has been attempted in a wide range of studies to validate the feasibility and efficacy for tumor treatment. This approach reveals powerful tumor targeting and tumor penetration. In addition, MSCs have been confirmed to actively participate in immunomodulation of the tumor microenvironment. Thus, MSCs are not inert delivery vehicles but have a strong impact on the fate of tumor cells. In this review, these active properties of MSCs are addressed to highlight the advantages and challenges of using MSCs for tumor-targeted delivery. In addition, some of the latest examples of using MSCs to carry a variety of anti-tumor agents for tumor-targeted therapy are summarized. Recent technologies to improve the performance and safety of this delivery strategy will be introduced. The advances, applications, and challenges summarized in this review will provide a general understanding of this promising strategy for actively delivering drugs to tumor tissues.
Collapse
|
24
|
Li N, Wang B. Suppressive effects of umbilical cord mesenchymal stem cell-derived exosomal miR-15a-5p on the progression of cholangiocarcinoma by inhibiting CHEK1 expression. Cell Death Dis 2022; 8:205. [PMID: 35428780 PMCID: PMC9012823 DOI: 10.1038/s41420-022-00932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/04/2022]
Abstract
Currently, surgical extraction is the main therapy for cholangiocarcinoma (CCA) patients, but it’s highly susceptible to postsurgical complications and recurrence rate. Thus, we identified the suppressing roles of exosomal miR-15a-5p from umbilical cord mesenchymal stem cells (UCMSCs) in the EMT and metastasis of CCA. The microarray dataset GSE265566 was employed to determine the expression of CHEK1 in CCA tissues. The relationship of miR-15a-5p with CHEK1 was analyzed using bioinformatics tools and dual-luciferase reporter assay. The particle size of HUCMSCs-exo was detected by scanning electron microscopy and nanoparticle tracking analysis. The cellular and tumorous phenotypes were assessed through flow cytometry, CCK-8 assay, Transwell assay and the in vivo tumor xenograft experiments. CHEK1 was predicated to be markedly elevated in CCA. miR-15a-5p targeted CHEK1 and downregulated the expression of CHEK1. HUCMSCs-exo activated cell apoptosis but repressed the proliferative, invasive, and migratory potentials of CCA cells. After miR-15a-5p was silenced, HUCMSCs-exo presented an opposite effect in regulating CCA. Overexpression of miR-15a-5p promoted apoptosis but suppressed malignancy and tumorigenicity of CCA cells as well as EMT through downregulating CHEK1. Our data suggested that miR-15a-5p in HUCMSCs-exo suppresses EMT and metastasis of CCA through targeting downregulation of CHEK1.
Collapse
|
25
|
Almagro J, Messal HA, Elosegui-Artola A, van Rheenen J, Behrens A. Tissue architecture in tumor initiation and progression. Trends Cancer 2022; 8:494-505. [PMID: 35300951 DOI: 10.1016/j.trecan.2022.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/13/2023]
Abstract
The 3D architecture of tissues bearing tumors impacts on the mechanical microenvironment of cancer, the accessibility of stromal cells, and the routes of invasion. A myriad of intrinsic and extrinsic forces exerted by the cancer cells, the host tissue, and the molecular and cellular microenvironment modulate the morphology of the tumor and its malignant potential through mechanical, biochemical, genetic, and epigenetic cues. Recent studies have investigated how tissue architecture influences cancer biology from tumor initiation and progression to distant metastatic seeding and response to therapy. With a focus on carcinoma, the most common type of cancer, this review discusses the latest discoveries on how tumor architecture is built and how tissue morphology affects the biology and progression of cancer cells.
Collapse
Affiliation(s)
- Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Hendrik A Messal
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK; Department of Physics, King's College London, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK; Convergence Science Centre, Imperial College London, London, UK; Division of Cancer, Imperial College London, London, UK.
| |
Collapse
|
26
|
Sharma V, Letson J, Furuta S. Fibrous stroma: Driver and passenger in cancer development. Sci Signal 2022; 15:eabg3449. [PMID: 35258999 DOI: 10.1126/scisignal.abg3449] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cumulative evidence shows that fibrogenic stroma and stiff extracellular matrix (ECM) not only result from tumor growth but also play pivotal roles in cellular transformation and tumor initiation. This emerging concept may largely account for the increased cancer risk associated with environmental fibrogenic agents, such as asbestos and silica, and with chronic conditions that are fibrogenic, such as obesity and diabetes. It may also contribute to poor outcomes in patients treated with certain chemotherapeutics that can promote fibrosis, such as bleomycin and methotrexate. Although the mechanistic details of this phenomenon are still being unraveled, we provide an overview of the experimental evidence linking fibrogenic stroma and tumor initiation. In this Review, we will summarize the causes and consequences of fibrous stroma and how this stromal cue is transmitted to the nuclei of parenchymal cells through a physical continuum from the ECM to chromatin, as well as ECM-dependent biochemical signaling that contributes to cellular transformation.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| |
Collapse
|
27
|
Yu W, Sharma S, Rao E, Rowat AC, Gimzewski JK, Han D, Rao J. Cancer cell mechanobiology: a new frontier for cancer research. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:10-17. [PMID: 39035217 PMCID: PMC11256617 DOI: 10.1016/j.jncc.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022] Open
Abstract
The study of physical and mechanical features of cancer cells, or cancer cell mechanobiology, is a new frontier in cancer research. Such studies may enhance our understanding of the disease process, especially mechanisms associated with cancer cell invasion and metastasis, and may help the effort of developing diagnostic biomarkers and therapeutic drug targets. Cancer cell mechanobiological changes are associated with the complex interplay of activation/inactivation of multiple signaling pathways, which can occur at both the genetic and epigenetic levels, and the interactions with the cancer microenvironment. It has been shown that metastatic tumor cells are more compliant than morphologically similar benign cells in actual human samples. Subsequent studies from us and others further demonstrated that cell mechanical properties are strongly associated with cancer cell invasive and metastatic potential, and thus may serve as a diagnostic marker of detecting cancer cells in human body fluid samples. In this review, we provide a brief narrative of the molecular mechanisms underlying cancer cell mechanobiology, the technological platforms utilized to study cancer cell mechanobiology, the status of cancer cell mechanobiological studies in various cancer types, and the potential clinical applications of cancer cell mechanobiological study in cancer early detection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Weibo Yu
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Elizabeth Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| | - Amy C. Rowat
- Department of Integrative Biology and Physiology, University of California at Los Angeles, California, USA
| | - James K. Gimzewski
- Department of Chemistry and Biochemistry, University of California at Los Angeles, California, USA
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, China
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, California, USA
| |
Collapse
|
28
|
Nims RJ, Pferdehirt L, Guilak F. Mechanogenetics: harnessing mechanobiology for cellular engineering. Curr Opin Biotechnol 2022; 73:374-379. [PMID: 34735987 PMCID: PMC10061441 DOI: 10.1016/j.copbio.2021.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/28/2023]
Abstract
'Mechanogenetics,' a new field at the convergence of mechanobiology and synthetic biology, presents an innovative strategy to treat, repair, or restore diseased cells and tissues by harnessing mechanical signal transduction pathways to control gene expression. While the role of mechanical forces in regulating development, homeostasis, and disease is well established, only recently have we identified the specific mechanosensors and downstream signaling pathways involved in these processes. Simultaneously, synthetic biological systems are developing increasingly sophisticated approaches of controlling mammalian cellular responses. Continued mechanistic refinement and identification of how cellular mechanosensors respond to homeostatic and pathological mechanical forces, combined with synthetic tools to integrate and respond to these inputs, promises to extend the development of new therapeutic approaches for treating disease.
Collapse
Affiliation(s)
- Robert J Nims
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lara Pferdehirt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63105, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63105, USA.
| |
Collapse
|
29
|
Li H, Sun Y, Li Q, Luo Q, Song G. Matrix Stiffness Potentiates Stemness of Liver Cancer Stem Cells Possibly via the Yes-Associated Protein Signal. ACS Biomater Sci Eng 2022; 8:598-609. [PMID: 35084830 DOI: 10.1021/acsbiomaterials.1c00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A hepatocellular carcinoma tissue has mechanical heterogeneity, where the stiffness gradually increases from the core to the invasion front. Furthermore, there is evidence that stem cells from liver cancer (LCSCs) preferentially enrich the invasion front, exhibiting the stiffest modulus in the tumor. LCSCs have the features of stem/progenitor cells and play a vital part in liver cancer development. However, whether matrix stiffness affects LCSC stemness remains unclear. Here, we established a three-dimensional hydrogel for culturing LCSCs to simulate the stiffness of the core and the invasion front of a liver cancer tissue. The results showed that a stiffer matrix (72.2 ± 0.90 kPa) significantly potentiated LCSC stemness as compared with a soft matrix (7.7 ± 0.41 kPa). Moreover, Yes-associated protein signaling might mediate this promotion. Together, our findings illustrate the relationship between matrix stiffness and LCSC stemness, which may aid the production of novel treatment approaches against liver cancer.
Collapse
Affiliation(s)
- Hong Li
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Yuchuan Sun
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Qing Li
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Qing Luo
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| | - Guanbin Song
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P.R. China
| |
Collapse
|
30
|
Leveraging cellular mechano-responsiveness for cancer therapy. Trends Mol Med 2021; 28:155-169. [PMID: 34973934 DOI: 10.1016/j.molmed.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022]
Abstract
Cells sense the biophysical properties of the tumor microenvironment (TME) and adopt these signals in their development, progression, and metastatic dissemination. Recent work highlights the mechano-responsiveness of cells in tumors and the underlying mechanisms. Furthermore, approaches to mechano-modulating diverse types of cell have emerged aiming to inhibit tumor growth and metastasis. These include targeting mechanosensitive machineries in cancer cells to induce apoptosis, intervening matrix stiffening incurred by cancer-associated fibroblasts (CAFs) in both primary and metastatic tumor sites, and modulating matrix mechanics to improve immune cell therapeutic efficacy. This review is envisaged to help scientists and clinicians in cancer research to advance understanding of the cellular mechano-responsiveness in TME, and to harness these concepts for cancer mechanotherapies.
Collapse
|
31
|
Xu D, Su Y, Xu Q, Huang T, Chen Z, Zhang T. Uniform iron oxide nanoparticles reduce the required amount of polyethylenimine in the gene delivery to mesenchymal stem cells. NANOTECHNOLOGY 2021; 33:125101. [PMID: 34874301 DOI: 10.1088/1361-6528/ac4066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 06/13/2023]
Abstract
Cationic polyethylenimine (PEI) is regarded as the 'golden standard' of non-viral gene vectors. However, the superiority of PEI with high positive charge density also induces its major drawback of cytotoxicity, which restricts its application for an effective and safe gene delivery to stem cells. To redress this shortcoming, herein, a magnetic gene complex containing uniform iron oxide nanoparticles (UIONPs), plasmid DNA, and free PEI is prepared through electrostatic interactions for the gene delivery to bone marrow-derived mesenchymal stem cells (BM-MSCs). Results show that UIONPs dramatically promote the gene delivery to BM-MSCs using the assistance of magnetic force. In addition, decreasing the free PEI nitrogen to DNA phosphate (N/P) ratio from 10 to 6 has little adverse impact on the transgene expression levels (over 300 times than that of PEI alone at the N/P ratio of 6) and significantly reduces the cytotoxicity to BM-MSCs. Further investigations confirmed that the decrease of free PEI has little influence on the cellular uptake after applying external magnetic forces, but that the reduced positive charge density decreases the cytotoxicity. The present study demonstrates that magnetic gene delivery not only contributes to the enhanced gene expression but also helps to reduce the required amount of PEI, providing a potential strategy for an efficient and safe gene delivery to stem cells.
Collapse
Affiliation(s)
- Donghang Xu
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Qianhao Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhilan Chen
- Department of Pharmacy, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
32
|
Long Y, Niu Y, Liang K, Du Y. Mechanical communication in fibrosis progression. Trends Cell Biol 2021; 32:70-90. [PMID: 34810063 DOI: 10.1016/j.tcb.2021.10.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
Mechanical hallmarks of fibrotic microenvironments are both outcomes and causes of fibrosis progression. Understanding how cells sense and transmit mechanical cues in the interplay with extracellular matrix (ECM) and hemodynamic forces is a significant challenge. Recent advances highlight the evolvement of intracellular mechanotransduction pathways responding to ECM remodeling and abnormal hemodynamics (i.e., low and disturbed shear stress, pathological stretch, and increased pressure), which are prevalent biomechanical characteristics of fibrosis in multiple organs (e.g., liver, lung, and heart). Here, we envisage the mechanical communication in cell-ECM, cell-hemodynamics and cell-ECM-cell crosstalk (namely paratensile signaling) during fibrosis expansion. We also provide a comprehensive overview of in vitro and in silico engineering systems for disease modeling that will aid the identification and prediction of mechano-based therapeutic targets to ameliorate fibrosis progression.
Collapse
Affiliation(s)
- Yi Long
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, 100084, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
33
|
Abstract
The multipotent mesenchymal stem/stromal cells (MSCs), initially discovered from bone marrow in 1976, have been identified in nearly all tissues of human body now. The multipotency of MSCs allows them to give rise to osteocytes, chondrocytes, adipocytes, and other lineages. Moreover, armed with the immunomodulation capacity and tumor-homing property, MSCs are of special relevance for cell-based therapies in the treatment of cancer. However, hampered by lack of knowledge about the controversial roles that MSC plays in the crosstalk with tumors, limited progress has been made with regard to translational medicine. Therefore, in this review, we discuss the prospects of MSC-associated anticancer strategies in light of therapeutic mechanisms and signal transduction pathways. In addition, the clinical trials designed to appraise the efficacy and safety of MSC-based anticancer therapies will be assessed according to published data.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
34
|
Zhang C, Zhu H, Ren X, Gao B, Cheng B, Liu S, Sha B, Li Z, Zhang Z, Lv Y, Wang H, Guo H, Lu TJ, Xu F, Genin GM, Lin M. Mechanics-driven nuclear localization of YAP can be reversed by N-cadherin ligation in mesenchymal stem cells. Nat Commun 2021; 12:6229. [PMID: 34711824 PMCID: PMC8553821 DOI: 10.1038/s41467-021-26454-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cells adopt differentiation pathways based upon cumulative effects of mechanosensing. A cell's mechanical microenvironment changes substantially over the course of development, beginning from the early stages in which cells are typically surrounded by other cells and continuing through later stages in which cells are typically surrounded by extracellular matrix. How cells erase the memory of some of these mechanical microenvironments while locking in memory of others is unknown. Here, we develop a material and culture system for modifying and measuring the degree to which cells retain cumulative effects of mechanosensing. Using this system, we discover that effects of the RGD adhesive motif of fibronectin (representative of extracellular matrix), known to impart what is often termed "mechanical memory" in mesenchymal stem cells via nuclear YAP localization, are erased by the HAVDI adhesive motif of the N-cadherin (representative of cell-cell contacts). These effects can be explained by a motor clutch model that relates cellular traction force, nuclear deformation, and resulting nuclear YAP re-localization. Results demonstrate that controlled storage and removal of proteins associated with mechanical memory in mesenchymal stem cells is possible through defined and programmable material systems.
Collapse
Affiliation(s)
- Cheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinru Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, People's Republic of China
| | - Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
| | - Baoyong Sha
- School of Basic Medical Science, Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zhaoqing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Haohua Wang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, People's Republic of China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People's Republic of China
- MOE Key Laboratory of Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, 63130, MO, USA
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, 63130, MO, USA
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
35
|
Uray IP, Uray K. Mechanotransduction at the Plasma Membrane-Cytoskeleton Interface. Int J Mol Sci 2021; 22:11566. [PMID: 34768998 PMCID: PMC8584042 DOI: 10.3390/ijms222111566] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
Mechanical cues are crucial for survival, adaptation, and normal homeostasis in virtually every cell type. The transduction of mechanical messages into intracellular biochemical messages is termed mechanotransduction. While significant advances in biochemical signaling have been made in the last few decades, the role of mechanotransduction in physiological and pathological processes has been largely overlooked until recently. In this review, the role of interactions between the cytoskeleton and cell-cell/cell-matrix adhesions in transducing mechanical signals is discussed. In addition, mechanosensors that reside in the cell membrane and the transduction of mechanical signals to the nucleus are discussed. Finally, we describe two examples in which mechanotransduction plays a significant role in normal physiology and disease development. The first example is the role of mechanotransduction in the proliferation and metastasis of cancerous cells. In this system, the role of mechanotransduction in cellular processes, including proliferation, differentiation, and motility, is described. In the second example, the role of mechanotransduction in a mechanically active organ, the gastrointestinal tract, is described. In the gut, mechanotransduction contributes to normal physiology and the development of motility disorders.
Collapse
Affiliation(s)
- Iván P. Uray
- Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
36
|
Liu S, Nyström NN, Kelly JJ, Hamilton AM, Fu Y, Ronald JA. Molecular Imaging Reveals a High Degree of Cross-Seeding of Spontaneous Metastases in a Novel Mouse Model of Synchronous Bilateral Breast Cancer. Mol Imaging Biol 2021; 24:104-114. [PMID: 34312806 PMCID: PMC8760205 DOI: 10.1007/s11307-021-01630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
Purpose Synchronous bilateral breast cancer (SBBC) patients present with cancer in both breasts at the time of diagnosis or within a short time interval. They show higher rates of metastasis and lower overall survival compared to women with unilateral breast cancer. Here we established the first preclinical SBBC model and used molecular imaging to visualize the patterns of metastasis from each primary tumor. Procedures We engineered human breast cancer cells to express either Akaluc or Antares2 for bioluminescence imaging (BLI) and tdTomato or zsGreen for ex vivo fluorescence microscopy. Both cell populations were implanted into contralateral mammary fat pads of mice (n=10), and dual-BLI was performed weekly for up to day 29 (n=3), 38 (n=4), or 42 (n=3). Primary tumors and lungs were fixed, and ex vivo fluorescence microscopy was used to analyze the cellular makeup of micrometastases. Results Signal from both Antares2 and Akaluc was first detected in the lungs on day 28 and was present in 9 of 10 mice at endpoint. Ex vivo fluorescence microscopy of the lungs revealed that for mice sacrificed on day 38, a significant percentage of micrometastases were composed of cancer cells from both primary tumors (mean 37%; range 27 to 45%), while two mice sacrificed on day 42 showed percentages of 51% and 70%. Conclusions A high degree of metastatic cross-seeding of cancer cells derived from bilateral tumors may contribute to faster metastatic growth and intratumoral heterogeneity. We posit that our work will help understand treatment resistance and optimal planning of SBBC treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01630-z.
Collapse
Affiliation(s)
- Shirley Liu
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Nivin N Nyström
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John J Kelly
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Amanda M Hamilton
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Yanghao Fu
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John A Ronald
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
37
|
Jiang W, Li M, Tan J, Feng M, Zheng J, Chen D, Liu Z, Yan B, Wang G, Xu S, Xiao W, Gao Y, Zhuo S, Yan J. A Nomogram Based on a Collagen Feature Support Vector Machine for Predicting the Treatment Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients. Ann Surg Oncol 2021; 28:6408-6421. [PMID: 34148136 DOI: 10.1245/s10434-021-10218-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The relationship between collagen features (CFs) in the tumor microenvironment and the treatment response to neoadjuvant chemoradiotherapy (nCRT) is still unknown. This study aimed to develop and validate a perdition model based on the CFs and clinicopathological characteristics to predict the treatment response to nCRT among locally advanced rectal cancer (LARC) patients. METHODS In this multicenter, retrospective analysis, 428 patients were included and randomly divided into a training cohort (299 patients) and validation cohort (129 patients) [7:3 ratio]. A total of 11 CFs were extracted from a multiphoton image of pretreatment biopsy, and a support vector machine (SVM) was then used to construct a CFs-SVM classifier. A prediction model was developed and presented with a nomogram using multivariable analysis. Further validation of the nomogram was performed in the validation cohort. RESULTS The CFs-SVM classifier, which integrated collagen area, straightness, and crosslink density, was significantly associated with treatment response. Predictors contained in the nomogram included the CFs-SVM classifier and clinicopathological characteristics by multivariable analysis. The CFs nomogram demonstrated good discrimination, with area under the receiver operating characteristic curves (AUROCs) of 0.834 in the training cohort and 0.854 in the validation cohort. Decision curve analysis indicated that the CFs nomogram was clinically useful. Moreover, compared with the traditional clinicopathological model, the CFs nomogram showed more powerful discrimination in determining the response to nCRT. CONCLUSIONS The CFs-SVM classifier based on CFs in the tumor microenvironment is associated with treatment response, and the CFs nomogram integrating the CFs-SVM classifier and clinicopathological characteristics is useful for individualized prediction of the treatment response to nCRT among LARC patients.
Collapse
Affiliation(s)
- Wei Jiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.,School of Science, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Min Li
- Department of Radiation Oncology, Sun Yat sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jie Tan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Mingyuan Feng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jixiang Zheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Dexin Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhangyuanzhu Liu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Botao Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Guangxing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Shuoyu Xu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.,Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Weiwei Xiao
- Department of Radiation Oncology, Sun Yat sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Yuanhong Gao
- Department of Radiation Oncology, Sun Yat sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, People's Republic of China.
| | - Shuangmu Zhuo
- School of Science, Jimei University, Xiamen, Fujian, People's Republic of China.
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
38
|
Zhu D, Trinh P, Li J, Grant GA, Yang F. Gradient hydrogels for screening stiffness effects on patient-derived glioblastoma xenograft cellfates in 3D. J Biomed Mater Res A 2021; 109:1027-1035. [PMID: 32862485 DOI: 10.1002/jbm.a.37093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
Brain cancer is a devastating disease given its extreme invasiveness and intricate location. Glioblastoma multiforme (GBM) is one of the most common forms of brain cancer, and cancer progression is often correlated with significantly altered tissue stiffness. To elucidate the effect of matrix stiffness on GBM cell fates, previous research is largely limited to 2D studies using immortalized cell lines, which has limited physiological relevance. The objective of the study is to develop gradient hydrogels with brain-mimicking stiffness range as a 3Din vitro GBM model for screening of the effects of matrix stiffness on GBM. To increase the physiological relevance, patient-derived tumor xenograft (PDTX) GBM cells were used. Our gradient platform allows formation of cell-containing hydrogels with stiffness ranging from 40 Pa to 1,300 Pa within a few minutes. By focusing on a brain-mimicking stiffness range, this gradient hydrogel platform is designed for investigating brain cancer. Increasing stiffness led to decreased GBM proliferation and less spreading, which is accompanied by downregulation of matrix-metalloproteinases (MMPs). Using temozolomide (TMZ) as a model drug, we demonstrate that increasing stiffness led to higher drug resistance by PDTX GBM cells in 3D, suggesting matrix stiffness can directly modulate how GBM cells respond to drug treatment. While the current study focuses on stiffness gradient, the setup may also be adapted for screening other cancer niche cues such as how biochemical ligand gradient modulates brain cancer progression and drug responses using reduced materials and time.
Collapse
Affiliation(s)
- Danqing Zhu
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Pavin Trinh
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Jianfeng Li
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Gerry A Grant
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
39
|
Liang K, Du Y. Cell engineering techniques improve pharmacology of cellular therapeutics. BIOMATERIALS AND BIOSYSTEMS 2021; 2:100016. [PMID: 36824659 PMCID: PMC9934495 DOI: 10.1016/j.bbiosy.2021.100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the rapid growth of clinical trials for cellular therapy worldwide, their clinical success is still afflicted with formidable challenges demanding conceptual and technological overhaul. Pharmacology, which is conventionally divided into pharmacokinetics (PK) and pharmacodynamics (PD) in drug discovery have emerged as a prominent research direction to elucidate the cell fate and ensure the efficacy and safety of the therapeutic cells. Herein, we concisely present the dilemmas of cellular therapies, the concept of cell pharmacology, and the advances in cell engineering that leverage the cell formulation technologies to modulate cellular PK/PD for development of more cogent and versatile cell-based therapies.
Collapse
|
40
|
Pennacchio FA, Nastały P, Poli A, Maiuri P. Tailoring Cellular Function: The Contribution of the Nucleus in Mechanotransduction. Front Bioeng Biotechnol 2021; 8:596746. [PMID: 33490050 PMCID: PMC7820809 DOI: 10.3389/fbioe.2020.596746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cells sense a variety of different mechanochemical stimuli and promptly react to such signals by reshaping their morphology and adapting their structural organization and tensional state. Cell reactions to mechanical stimuli arising from the local microenvironment, mechanotransduction, play a crucial role in many cellular functions in both physiological and pathological conditions. To decipher this complex process, several studies have been undertaken to develop engineered materials and devices as tools to properly control cell mechanical state and evaluate cellular responses. Recent reports highlight how the nucleus serves as an important mechanosensor organelle and governs cell mechanoresponse. In this review, we will introduce the basic mechanisms linking cytoskeleton organization to the nucleus and how this reacts to mechanical properties of the cell microenvironment. We will also discuss how perturbations of nucleus-cytoskeleton connections, affecting mechanotransduction, influence health and disease. Moreover, we will present some of the main technological tools used to characterize and perturb the nuclear mechanical state.
Collapse
Affiliation(s)
- Fabrizio A. Pennacchio
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paulina Nastały
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Medical University of Gdańsk, Gdańsk, Poland
| | - Alessandro Poli
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Paolo Maiuri
- FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
41
|
Nims RJ, Pferdehirt L, Ho NB, Savadipour A, Lorentz J, Sohi S, Kassab J, Ross AK, O'Conor CJ, Liedtke WB, Zhang B, McNulty AL, Guilak F. A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues. SCIENCE ADVANCES 2021; 7:eabd9858. [PMID: 33571125 PMCID: PMC7840132 DOI: 10.1126/sciadv.abd9858] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/08/2020] [Indexed: 05/12/2023]
Abstract
Mechanobiologic signals regulate cellular responses under physiologic and pathologic conditions. Using synthetic biology and tissue engineering, we developed a mechanically responsive bioartificial tissue that responds to mechanical loading to produce a preprogrammed therapeutic biologic drug. By deconstructing the signaling networks induced by activation of the mechanically sensitive ion channel transient receptor potential vanilloid 4 (TRPV4), we created synthetic TRPV4-responsive genetic circuits in chondrocytes. We engineered these cells into living tissues that respond to mechanical loading by producing the anti-inflammatory biologic drug interleukin-1 receptor antagonist. Chondrocyte TRPV4 is activated by osmotic loading and not by direct cellular deformation, suggesting that tissue loading is transduced into an osmotic signal that activates TRPV4. Either osmotic or mechanical loading of tissues transduced with TRPV4-responsive circuits protected constructs from inflammatory degradation by interleukin-1α. This synthetic mechanobiology approach was used to develop a mechanogenetic system to enable long-term, autonomously regulated drug delivery driven by physiologically relevant loading.
Collapse
Affiliation(s)
- Robert J Nims
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lara Pferdehirt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Noelani B Ho
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Alireza Savadipour
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63105, USA
| | - Jeremiah Lorentz
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Sima Sohi
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Jordan Kassab
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Alison K Ross
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Christopher J O'Conor
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wolfgang B Liedtke
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amy L McNulty
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Shriners Hospitals for Children-Saint Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
42
|
Abstract
The role of the physical microenvironment in tumor development, progression, metastasis, and treatment is gaining appreciation. The emerging multidisciplinary field of the physical sciences of cancer is now embraced by engineers, physicists, cell biologists, developmental biologists, tumor biologists, and oncologists attempting to understand how physical parameters and processes affect cancer progression and treatment. Discoveries in this field are starting to be translated into new therapeutic strategies for cancer. In this Review, we propose four physical traits of tumors that contribute to tumor progression and treatment resistance: (i) elevated solid stresses (compression and tension), (ii) elevated interstitial fluid pressure, (iii) altered material properties (for example, increased tissue stiffness, which historically has been used to detect cancer by palpation), and (iv) altered physical microarchitecture. After defining these physical traits, we discuss their causes, consequences, and how they complement the biological hallmarks of cancer.
Collapse
Affiliation(s)
- Hadi T Nia
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rakesh K Jain
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. .,Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Veerasubramanian PK, Trinh A, Akhtar N, Liu WF, Downing TL. Biophysical and epigenetic regulation of cancer stemness, invasiveness and immune action. CURRENT TISSUE MICROENVIRONMENT REPORTS 2020; 1:277-300. [PMID: 33817661 PMCID: PMC8015331 DOI: 10.1007/s43152-020-00021-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The tumor microenvironment (TME) is an amalgam of multiple dysregulated biophysical cues that can alter cellular behavior through mechanotransductive signaling and epigenetic modifications. Through this review, we seek to characterize the extent of biophysical and epigenetic regulation of cancer stemness and tumor-associated immune cells in order to identify ideal targets for cancer therapy. RECENT FINDINGS Recent studies have identified cancer stemness and immune action as significant contributors to neoplastic disease, due to their susceptibility to microenvironmental influences. Matrix stiffening, altered vasculature, and resultant hypoxia within the TME can influence cancer stem cell (CSC) and immune cell behavior, as well as alter the epigenetic landscapes involved in cancer development. SUMMARY This review highlights the importance of aberrant biophysical cues in driving cancer progression through altered behavior of CSCs and immune cells, which in turn sustains further biophysical dysregulation. We examine current and potential therapeutic approaches that break this self-sustaining cycle of disease progression by targeting the presented biophysical and epigenetic signatures of cancer. We also summarize strategies including the normalization of the TME, targeted drug delivery, and inhibition of cancer-enabling epigenetic players.
Collapse
Affiliation(s)
- Praveen Krishna Veerasubramanian
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Annie Trinh
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
| | - Navied Akhtar
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA, USA
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
44
|
Spatial mapping of the collagen distribution in human and mouse tissues by force volume atomic force microscopy. Sci Rep 2020; 10:15664. [PMID: 32973235 PMCID: PMC7518416 DOI: 10.1038/s41598-020-72564-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Changes in the elastic properties of living tissues during normal development and in pathological processes are often due to modifications of the collagen component of the extracellular matrix at various length scales. Force volume AFM can precisely capture the mechanical properties of biological samples with force sensitivity and spatial resolution. The integration of AFM data with data of the molecular composition contributes to understanding the interplay between tissue biochemistry, organization and function. The detection of micrometer-size, heterogeneous domains at different elastic moduli in tissue sections by AFM has remained elusive so far, due to the lack of correlations with histological, optical and biochemical assessments. In this work, force volume AFM is used to identify collagen-enriched domains, naturally present in human and mouse tissues, by their elastic modulus. Collagen identification is obtained in a robust way and affordable timescales, through an optimal design of the sample preparation method and AFM parameters for faster scan with micrometer resolution. The choice of a separate reference sample stained for collagen allows correlating elastic modulus with collagen amount and position with high statistical significance. The proposed preparation method ensures safe handling of the tissue sections guarantees the preservation of their micromechanical characteristics over time and makes it much easier to perform correlation experiments with different biomarkers independently.
Collapse
|
45
|
Zhang T, Xu Q, Huang T, Ling D, Gao J. New Insights into Biocompatible Iron Oxide Nanoparticles: A Potential Booster of Gene Delivery to Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001588. [PMID: 32725792 DOI: 10.1002/smll.202001588] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Gene delivery to stem cells is a critical issue of stem cells-based therapies, still facing ongoing challenges regarding efficiency and safety. Recent advances in the controlled synthesis of biocompatible magnetic iron oxide nanoparticles (IONPs) have provided a powerful nanotool for assisting gene delivery to stem cells. However, this field is still at an early stage, with well-designed and scalable IONPs synthesis highly desired. Furthermore, the potential risks or bioeffects of IONPs on stem cells are not completely figured out. Therefore, in this review, the updated researches focused on the gene delivery to stem cells using various designed IONPs are highlighted. Additionally, the impacts of the physicochemical properties of IONPs, as well as the magnetofection systems on the gene delivery performance and biocompatibility are summarized. Finally, challenges attributed to the potential impacts of IONPs on the biologic behaviors of stem cells and the large-scale productions of uniform IONPs are emphasized. The principles and challenges summarized in this review provide a general guidance for the rational design of IONPs-assisted gene delivery to stem cells.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qianhao Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
46
|
Levy O, Kuai R, Siren EMJ, Bhere D, Milton Y, Nissar N, De Biasio M, Heinelt M, Reeve B, Abdi R, Alturki M, Fallatah M, Almalik A, Alhasan AH, Shah K, Karp JM. Shattering barriers toward clinically meaningful MSC therapies. SCIENCE ADVANCES 2020; 6:eaba6884. [PMID: 32832666 PMCID: PMC7439491 DOI: 10.1126/sciadv.aba6884] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/05/2020] [Indexed: 05/11/2023]
Abstract
More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies. However, most of the clinical-stage MSC therapies have been unable to meet primary efficacy end points. The innate therapeutic functions of MSCs administered to humans are not as robust as demonstrated in preclinical studies, and in general, the translation of cell-based therapy is impaired by a myriad of steps that introduce heterogeneity. In this review, we discuss the major clinical challenges with MSC therapies, the details of these challenges, and the potential bioengineering approaches that leverage the unique biology of MSCs to overcome the challenges and achieve more potent and versatile therapies.
Collapse
Affiliation(s)
- Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Erika M. J. Siren
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Deepak Bhere
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuka Milton
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Nabeel Nissar
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael De Biasio
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Martina Heinelt
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | - Brock Reeve
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Meshael Alturki
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Mohanad Fallatah
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulaziz Almalik
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Ali H. Alhasan
- National Center of Pharmaceutical Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- KACST Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Khalid Shah
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Jeffrey M. Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- BWH Center of Excellence for Biomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
47
|
Valadão IC, Ralph ACL, Bordeleau F, Dzik LM, Borbely KSC, Geraldo MV, Reinhart-King CA, Freitas VM. High type I collagen density fails to increase breast cancer stem cell phenotype. PeerJ 2020; 8:e9153. [PMID: 32435546 PMCID: PMC7227653 DOI: 10.7717/peerj.9153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is a highly frequent and lethal malignancy which metastasis and relapse frequently associates with the existence of breast cancer stem cells (CSCs). CSCs are undifferentiated, aggressive and highly resistant to therapy, with traits modulated by microenvironmental cells and the extracellular matrix (ECM), a biologically complex and dynamic structure composed mainly by type I collagen (Col-I). Col-I enrichment in the tumor-associated ECM leads to microenvironment stiffness and higher tumor aggressiveness and metastatic potential. While Col-I is also known to induce tumor stemness, it is unknown if such effect is dependent of Col-I density. To answer this question, we evaluated the stemness phenotype of MDA-MB-231 and MCF-7 human breast cancer cells cultured within gels of varying Col-I densities. High Col-I density increased CD44+CD24− breast cancer stem cell (BCSC) immunophenotype but failed to potentiate Col-I fiber alignment, cell self-renewal and clonogenicity in MDA-MB-231 cells. In MCF-7 cells, high Col-I density decreased total levels of variant CD44 (CD44v). Common to both cell types, high Col-I density induced neither markers related to CSC nor those related with mechanically-induced cell response. We conclude that high Col-I density per se is not sufficient to fully develop the BCSC phenotype.
Collapse
Affiliation(s)
- Iuri C Valadão
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Carolina L Ralph
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - François Bordeleau
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Luciana M Dzik
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karen S C Borbely
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Cell Biology Laboratory, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil.,Faculty of Nutrition, Federal University of Alagoas, Maceió, Brazil
| | - Murilo V Geraldo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Yadav VK, Lee TY, Hsu JBK, Huang HD, Yang WCV, Chang TH. Computational analysis for identification of the extracellular matrix molecules involved in endometrial cancer progression. PLoS One 2020; 15:e0231594. [PMID: 32315343 PMCID: PMC7173926 DOI: 10.1371/journal.pone.0231594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Recurrence and poorly differentiated (grade 3 and above) and atypical cell type endometrial cancer (EC) have poor prognosis outcome. The mechanisms and characteristics of recurrence and distal metastasis of EC remain unclear. The extracellular matrix (ECM) of the reproductive tract in women undergoes extensive structural remodelling changes every month. Altered ECMs surrounding cells were believed to play crucial roles in a cancer progression. To decipher the associations between ECM and EC development, we generated a PAN-ECM Data list of 1516 genes including ECM molecules (ECMs), synthetic and degradation enzymes for ECMs, ECM receptors, and soluble molecules that regulate ECM and used RNA-Seq data from The Cancer Genome Atlas (TCGA) for the studies. The alterations of PAN-ECM genes by comparing the RNA-Seq expressions profiles of EC samples which have been grouped as tumorigenesis and metastasis group based on their pathological grading were identified. Differential analyses including functional enrichment, co-expression network, and molecular network analysis were carried out to identify the specific PAN-ECM genes that may involve in the progression of EC. Eight hundred and thirty-one and 241 PAN-ECM genes were significantly involved in tumorigenesis (p-value <1.571e-15) and metastasis (p-value <2.2e-16), respectively, whereas 140 genes were in the intersection of tumorigenesis and metastasis. Interestingly, 92 of the 140 intersecting PAN-ECM genes showed contrasting fold changes between the tumorigenesis and metastasis datasets. Enrichment analysis for the contrast PAN-ECM genes indicated pathways such as GP6 signaling, ILK signaling, and interleukin (IL)-8 signaling pathways were activated in metastasis but inhibited in tumorigenesis. The significantly activated ECM and ECM associated genes in GP6 signaling, ILK signaling, and interleukin (IL)-8 signaling pathways may play crucial roles in metastasis of EC. Our study provides a better understanding of the etiology and the progression of EC.
Collapse
Affiliation(s)
- Vijesh Kumar Yadav
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
| | - Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, Guangdong Province, China
| | - Wei-Chung Vivian Yang
- The Program for Translational Medicine, Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- * E-mail: (W-CVY); (T-HC)
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail: (W-CVY); (T-HC)
| |
Collapse
|
49
|
Dong H, Xu X, Wang L, Mo R. Advances in living cell-based anticancer therapeutics. Biomater Sci 2020; 8:2344-2365. [DOI: 10.1039/d0bm00036a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in the applications of living cells as drug carriers or active drugs for anticancer drug delivery and cancer therapy.
Collapse
Affiliation(s)
- He Dong
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Xiao Xu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Leikun Wang
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Ran Mo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
50
|
Lei Y, Goldblatt ZE, Billiar KL. Micromechanical Design Criteria for Tissue-Engineering Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|