1
|
Lee KCY, Williams AL, Wang L, Xie G, Jia W, Fujimoto A, Gerschenson M, Shohet RV. PKM2 regulates metabolic flux and oxidative stress in the murine heart. Physiol Rep 2024; 12:e70040. [PMID: 39256891 PMCID: PMC11387154 DOI: 10.14814/phy2.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Cardiac metabolism ensures a continuous ATP supply, primarily using fatty acids in a healthy state and favoring glucose in pathological conditions. Pyruvate kinase muscle (PKM) controls the final step of glycolysis, with PKM1 being the main isoform in the heart. PKM2, elevated in various heart diseases, has been suggested to play a protective role in cardiac stress, but its function in basal cardiac metabolism remains unclear. We examined hearts from global PKM2 knockout (PKM2-/-) mice and found reduced intracellular glucose. Isotopic tracing of U-13C glucose revealed a shift to biosynthetic pathways in PKM2-/- cardiomyocytes. Total ATP content was two-thirds lower in PKM2-/- hearts, and functional analysis indicated reduced mitochondrial oxygen consumption. Total reactive oxygen species (ROS) and mitochondrial superoxide were also increased in PKM2-/- cardiomyocytes. Intriguingly, PKM2-/- hearts had preserved ejection fraction compared to controls. Mechanistically, increased calcium/calmodulin-dependent kinase II activity and phospholamban phosphorylation may contribute to higher sarcoendoplasmic reticulum calcium ATPase 2 pump activity in PKM2-/- hearts. Loss of PKM2 led to altered glucose metabolism, diminished mitochondrial function, and increased ROS in cardiomyocytes. These data suggest that cardiac PKM2 acts as an important rheostat to maintain ATP levels while limiting oxidative stress. Although loss of PKM2 did not impair baseline contractility, its absence may make hearts more sensitive to environmental stress or injury.
Collapse
Affiliation(s)
- Katie C. Y. Lee
- Department of Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Allison L. Williams
- Department of Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Lu Wang
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Guoxiang Xie
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Wei Jia
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Anastasia Fujimoto
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Mariana Gerschenson
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| | - Ralph V. Shohet
- Department of Medicine, John A. Burns School of MedicineUniversity of HawaiiHonoluluHawaiiUSA
| |
Collapse
|
2
|
Jin Q, Zhou X, Niu X, Ping C, Dong X, Duan D, Wang R, Chen Y, Pan F, Yang F, Yang X, Zhang G, Wang R, Zhang S, Ren G. Co-delivery of doxorubicin-dihydroartemisinin prodrug/TEPP-46 nano-liposomes for improving antitumor and decreasing cardiotoxicity in B16-F10 tumor-bearing mice. Colloids Surf B Biointerfaces 2024; 241:113992. [PMID: 38833960 DOI: 10.1016/j.colsurfb.2024.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/12/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
In order to reduce the cardiotoxicity of doxorubicin (DOX) and improve its antitumor effect, dihydroartemisinin (DHA) and DOX prodrug (DOX-S-DHA) synthesized via a single sulfur bond was used with TEPP-46 to prepare nano-liposomes (DOX-S-DHA@TEPP-46 Lips). In which, TEPP-46 was expected to exert p53 bidirectional regulation to promote the synergistic antitumor effect of DOX and DHA while reducing cardiotoxicity. DOX-S-DHA@TEPP-46 Lips exhibited uniform particle size, good stability, and excellent redox-responsive activity. DOX-S-DHA@TEPP-46 Lips could significantly inhibit the proliferation of tumor cells, but had less cytotoxicity on normal cells. The presence of TEPP-46 increased the content of p53 protein, which further induced tumor cell apoptosis. DOX-S-DHA@TEPP-46 Lips had satisfactory long circulation to enhance the antitumor efficacy and reversed the cardiotoxicity of DOX in B16-F10 tumor-bearing mice. In conclusion, DOX-S-DHA@TEPP-46 Lips provides a new insight on creating sophisticated redox-sensitive nano-liposomes for cancer therapy as well as the decreased cardiotoxicity of DOX.
Collapse
Affiliation(s)
- Qiuyue Jin
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaohui Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaomin Niu
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Canqi Ping
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaozhou Dong
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Danyu Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Yi Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Fei Pan
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Fan Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Xihua Yang
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Guoshun Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China.
| | - Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
3
|
Ma L, Li H, Xu H, Liu D. The potential roles of PKM2 in cerebrovascular diseases. Int Immunopharmacol 2024; 139:112675. [PMID: 39024754 DOI: 10.1016/j.intimp.2024.112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Pyruvate kinase M2 (PKM2), a key enzyme involved in glycolysis,plays an important role in regulating cell metabolism and growth under different physiological conditions. PKM2 has been intensively investigated in multiple cancer diseases. Recent years, many studies have found its pivotal role in cerebrovascular diseases (CeVDs), the disturbances in intracranial blood circulation. CeVDs has been confirmed to be closely associated with oxidative stress (OS), mitochondrial dynamics, systemic inflammation, and local neuroinflammation in the brain. It has further been revealed that PKM2 exerts various biological functions in the regulation of energy supply, OS, inflammatory responses, and mitochondrial dysfunction. The roles of PKM2 are closely related to its different isoforms, expression levels in subcellular localization, and post-translational modifications. Therefore, summarizing the roles of PKM2 in CeVDs will help further understanding the molecular mechanisms of CeVDs. In this review, we illustrate the characteristics of PKM2, the regulated PKM2 expression, and the biological roles of PKM2 in CeVDs.
Collapse
Affiliation(s)
- Ling Ma
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Huatao Li
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Hu Xu
- Department of Stroke Center, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Dianwei Liu
- Department of Stroke Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Department of Neurosurgery, XuanWu Hospital Capital Medical University Jinan Branch, Jinan, Shandong 250100, China.
| |
Collapse
|
4
|
Zhu G, Cao L, Wu J, Xu M, Zhang Y, Wu M, Li J. Co-morbid intersections of cancer and cardiovascular disease and targets for natural drug action: Reprogramming of lipid metabolism. Biomed Pharmacother 2024; 176:116875. [PMID: 38850662 DOI: 10.1016/j.biopha.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Cancer and cardiovascular diseases are major contributors to global morbidity and mortality, and their seemingly separate pathologies are intricately intertwined. In the context of cancer, the cardiovascular disease encompasses not only the side effects arising from anti-tumor treatments but also the metabolic shifts induced by oncological conditions. A growing body of research indicates that lipid metabolic reprogramming serves as a distinctive hallmark of tumors. Furthermore, anomalies in lipid metabolism play a significant role in the development of cardiovascular disease. This study delves into the cardiac implications of lipid metabolic reprogramming within the cancer context, closely examining abnormalities in lipid metabolism present in tumors, cardiac tissue, and immune cells within the microenvironment. Additionally, we examined risk factors such as obesity and anti-tumor therapy. Despite progress, a gap remains in the availability of drugs targeting lipid metabolism modulation for treating tumors and mitigating cardiac risk, with limited advancement seen in prior studies. Here, we present a review of previous research on natural drugs that exhibit both shared and distinct therapeutic effects on tumors and cardiac health by modulating lipid metabolism. Our aim is to provide insights for potential drug development.
Collapse
Affiliation(s)
- Guanghui Zhu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Luchang Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jingyuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Manman Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ying Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Min Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Jie Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Qian C, Zhou Y, Zhang T, Dong G, Song M, Tang Y, Wei Z, Yu S, Shen Q, Chen W, Choi JP, Yan J, Zhong C, Wan L, Li J, Wang A, Lu Y, Zhao Y. Targeting PKM2 signaling cascade with salvianic acid A normalizes tumor blood vessels to facilitate chemotherapeutic drug delivery. Acta Pharm Sin B 2024; 14:2077-2096. [PMID: 38799619 PMCID: PMC11121179 DOI: 10.1016/j.apsb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 05/29/2024] Open
Abstract
Aberrant tumor blood vessels are prone to propel the malignant progression of tumors, and targeting abnormal metabolism of tumor endothelial cells emerges as a promising option to achieve vascular normalization and antagonize tumor progression. Herein, we demonstrated that salvianic acid A (SAA) played a pivotal role in contributing to vascular normalization in the tumor-bearing mice, thereby improving delivery and effectiveness of the chemotherapeutic agent. SAA was capable of inhibiting glycolysis and strengthening endothelial junctions in the human umbilical vein endothelial cells (HUVECs) exposed to hypoxia. Mechanistically, SAA was inclined to directly bind to the glycolytic enzyme PKM2, leading to a dramatic decrease in endothelial glycolysis. More importantly, SAA improved the endothelial integrity via activating the β-Catenin/Claudin-5 signaling axis in a PKM2-dependent manner. Our findings suggest that SAA may serve as a potent agent for inducing tumor vascular normalization.
Collapse
Affiliation(s)
- Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yueke Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Teng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanglu Dong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Tang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suyun Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiuhong Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jaesung P. Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney NSW 2050, Australia
| | - Juming Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou 221004, China
| | - Chongjin Zhong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wan
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jia Li
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney NSW 2109, Australia
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Wu B, Liang Z, Lan H, Teng X, Wang C. The role of PKM2 in cancer progression and its structural and biological basis. J Physiol Biochem 2024; 80:261-275. [PMID: 38329688 DOI: 10.1007/s13105-024-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Pyruvate kinase M2 (PKM2), a subtype of pyruvate kinase (PK), has been shown to play an important role in the development of cancer. It regulates the last step of glycolytic pathway. PKM2 has both pyruvate kinase and protein kinase activity, and the conversion of these two functions of PKM2 depends on the mutual change of dimer and tetramer. The dimerization of PKM2 can promote the proliferation and growth of tumor cells, so inhibiting the dimerization of PKM2 is essential to curing cancer. The aggregation of PKM2 is regulated by both endogenous and exogenous cofactors as well as post-translational modification (PTM). Although there are many studies on the different aggregation of PKM2 in the process of tumor development, there are few summaries in recent years. In this review, we first introduce the role of PKM2 in various biological processes of tumor growth. Then, we summarize the aggregation regulation mechanism of PKM2 by various endogenous cofactors such as Fructose-1, 6-diphosphate (FBP), various amino acids, and post-translational modification (PTMs). Finally, the related inhibitors and agonists of PKM2 are summarized to provide reference for regulating PKM2 aggregation in the treatment of cancer in the future.
Collapse
Affiliation(s)
- Bingxin Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuhui Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Huan Lan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaojun Teng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Diehl FF, Sapp KM, Vander Heiden MG. The bidirectional relationship between metabolism and cell cycle control. Trends Cell Biol 2024; 34:136-149. [PMID: 37385879 DOI: 10.1016/j.tcb.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
The relationship between metabolism and cell cycle progression is complex and bidirectional. Cells must rewire metabolism to meet changing biosynthetic demands across cell cycle phases. In turn, metabolism can influence cell cycle progression through direct regulation of cell cycle proteins, through nutrient-sensing signaling pathways, and through its impact on cell growth, which is linked to cell division. Furthermore, metabolism is a key player in mediating quiescence-proliferation transitions in physiologically important cell types, such as stem cells. How metabolism impacts cell cycle progression, exit, and re-entry, as well as how these processes impact metabolism, is not fully understood. Recent advances uncovering mechanistic links between cell cycle regulators and metabolic processes demonstrate a complex relationship between metabolism and cell cycle control, with many questions remaining.
Collapse
Affiliation(s)
- Frances F Diehl
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kiera M Sapp
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
8
|
Guo L, Wang L, Qin G, Zhang J, Peng J, Li L, Chen X, Wang D, Qiu J, Wang E. M-type pyruvate kinase 2 (PKM2) tetramerization alleviates the progression of right ventricle failure by regulating oxidative stress and mitochondrial dynamics. J Transl Med 2023; 21:888. [PMID: 38062516 PMCID: PMC10702013 DOI: 10.1186/s12967-023-04780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Right ventricle failure (RVF) is a progressive heart disease that has yet to be fully understood at the molecular level. Elevated M-type pyruvate kinase 2 (PKM2) tetramerization alleviates heart failure, but detailed molecular mechanisms remain unclear. OBJECTIVE We observed changes in PKM2 tetramerization levels during the progression of right heart failure and in vitro cardiomyocyte hypertrophy and explored the causal relationship between altered PKM2 tetramerization and the imbalance of redox homeostasis in cardiomyocytes, as well as its underlying mechanisms. Ultimately, our goal was to propose rational intervention strategies for the treatment of RVF. METHOD We established RVF in Sprague Dawley (SD) rats by intraperitoneal injection of monocrotaline (MCT). The pulmonary artery pressure and right heart function of rats were assessed using transthoracic echocardiography combined with right heart catheterization. TEPP-46 was used both in vivo and in vitro to promote PKM2 tetramerization. RESULTS We observed that oxidative stress and mitochondrial disorganization were associated with increased apoptosis in the right ventricular tissue of RVF rats. Quantitative proteomics revealed that PKM2 was upregulated during RVF and negatively correlated with the cardiac function. Facilitating PKM2 tetramerization promoted mitochondrial network formation and alleviated oxidative stress and apoptosis during cardiomyocyte hypertrophy. Moreover, enhancing PKM2 tetramer formation improved cardiac mitochondrial morphology, mitigated oxidative stress and alleviated heart failure. CONCLUSION Disruption of PKM2 tetramerization contributed to RVF by inducing mitochondrial fragmentation, accumulating ROS, and finally promoted the progression of cardiomyocyte apoptosis. Facilitating PKM2 tetramerization holds potential as a promising therapeutic approach for RVF.
Collapse
Affiliation(s)
- Lizhe Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Qin
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Peng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Dandan Wang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
| | - Jian Qiu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.
| |
Collapse
|
9
|
Gopal K, Abdualkader AM, Li X, Greenwell AA, Karwi QG, Altamimi TR, Saed C, Uddin GM, Darwesh AM, Jamieson KL, Kim R, Eaton F, Seubert JM, Lopaschuk GD, Ussher JR, Al Batran R. Loss of muscle PDH induces lactic acidosis and adaptive anaplerotic compensation via pyruvate-alanine cycling and glutaminolysis. J Biol Chem 2023; 299:105375. [PMID: 37865313 PMCID: PMC10692893 DOI: 10.1016/j.jbc.2023.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.
Collapse
Affiliation(s)
- Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Abdualrahman Mohammed Abdualkader
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada
| | - Xiaobei Li
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada
| | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Qutuba G Karwi
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada; Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Tariq R Altamimi
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Christina Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Golam M Uddin
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - K Lockhart Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Ryekjang Kim
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, Université de Montréal, Montréal, Quebec, Canada; Montreal Diabetes Research Center, Montréal, Quebec, Canada; Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, Quebec, Canada.
| |
Collapse
|
10
|
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, Zhang N, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol 2023; 118:48. [PMID: 37938421 PMCID: PMC10632287 DOI: 10.1007/s00395-023-01018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Nanxiang Ouyang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
11
|
Xie W, He Q, Zhang Y, Xu X, Wen P, Cao H, Zhou Y, Luo J, Yang J, Jiang L. Pyruvate kinase M2 regulates mitochondrial homeostasis in cisplatin-induced acute kidney injury. Cell Death Dis 2023; 14:663. [PMID: 37816709 PMCID: PMC10564883 DOI: 10.1038/s41419-023-06195-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
An important pathophysiological process of acute kidney injury (AKI) is mitochondrial fragmentation in renal tubular epithelial cells, which leads to cell death. Pyruvate kinase M2 (PKM2) is an active protein with various biological functions that participates in regulating glycolysis and plays a key role in regulating cell survival. However, the role and mechanism of PKM2 in regulating cell survival during AKI remain unclear. Here, we found that the phosphorylation of PKM2 contributed to the formation of the PKM2 dimer and translocation of PKM2 into the mitochondria after treatment with staurosporine or cisplatin. Mitochondrial PKM2 binds myosin heavy chain 9 (MYH9) to promote dynamin-related protein 1 (DRP1)-mediated mitochondrial fragmentation. Both in vivo and in vitro, PKM2-specific loss or regulation PKM2 activity partially limits mitochondrial fragmentation, alleviating renal tubular injury and cell death, including apoptosis, necroptosis, and ferroptosis. Moreover, staurosporine or cisplatin-induced mitochondrial fragmentation and cell death were reversed in cultured cells by inhibiting MYH9 activity. Taken together, our results indicate that the regulation of PKM2 abundance and activity to inhibit mitochondrial translocation may maintain mitochondrial integrity and provide a new therapeutic strategy for treating AKI.
Collapse
Affiliation(s)
- Wenjia Xie
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qingyun He
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xinxin Xu
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ping Wen
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hongdi Cao
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Jing Luo
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Junwei Yang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| | - Lei Jiang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Ensink E, Jordan T, Medeiros HCD, Thurston G, Pardal A, Yu L, Lunt SY. Pyruvate Kinase Activity Regulates Cystine Starvation Induced Ferroptosis through Malic Enzyme 1 in Pancreatic Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557984. [PMID: 37745559 PMCID: PMC10516027 DOI: 10.1101/2023.09.15.557984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with high mortality and limited efficacious therapeutic options. PDAC cells undergo metabolic alterations to survive within a nutrient-depleted tumor microenvironment. One critical metabolic shift in PDAC cells occurs through altered isoform expression of the glycolytic enzyme, pyruvate kinase (PK). Pancreatic cancer cells preferentially upregulate pyruvate kinase muscle isoform 2 isoform (PKM2). PKM2 expression reprograms many metabolic pathways, but little is known about its impact on cystine metabolism. Cystine metabolism is critical for supporting survival through its role in defense against ferroptosis, a non-apoptotic iron-dependent form of cell death characterized by unchecked lipid peroxidation. To improve our understanding of the role of PKM2 in cystine metabolism and ferroptosis in PDAC, we generated PKM2 knockout (KO) human PDAC cells. Fascinatingly, PKM2KO cells demonstrate a remarkable resistance to cystine starvation mediated ferroptosis. This resistance to ferroptosis is caused by decreased PK activity, rather than an isoform-specific effect. We further utilized stable isotope tracing to evaluate the impact of glucose and glutamine reprogramming in PKM2KO cells. PKM2KO cells depend on glutamine metabolism to support antioxidant defenses against lipid peroxidation, primarily by increased glutamine flux through the malate aspartate shuttle and utilization of ME1 to produce NADPH. Ferroptosis can be synergistically induced by the combination of PKM2 activation and inhibition of the cystine/glutamate antiporter in vitro. Proof-of-concept in vivo experiments demonstrate the efficacy of this mechanism as a novel treatment strategy for PDAC.
Collapse
Affiliation(s)
- Elliot Ensink
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Tessa Jordan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hyllana C D Medeiros
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Galloway Thurston
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Anmol Pardal
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Lei Yu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Peng K, Zeng C, Gao Y, Liu B, Li L, Xu K, Yin Y, Qiu Y, Zhang M, Ma F, Wang Z. Overexpressed SIRT6 ameliorates doxorubicin-induced cardiotoxicity and potentiates the therapeutic efficacy through metabolic remodeling. Acta Pharm Sin B 2023; 13:2680-2700. [PMID: 37425037 PMCID: PMC10326298 DOI: 10.1016/j.apsb.2023.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 07/11/2023] Open
Abstract
Since the utilization of anthracyclines in cancer therapy, severe cardiotoxicity has become a major obstacle. The major challenge in treating cancer patients with anthracyclines is minimizing cardiotoxicity without compromising antitumor efficacy. Herein, histone deacetylase SIRT6 expression was reduced in plasma of patients treated with anthracyclines-based chemotherapy regimens. Furthermore, overexpression of SIRT6 alleviated doxorubicin-induced cytotoxicity in cardiomyocytes, and potentiated cytotoxicity of doxorubicin in multiple cancer cell lines. Moreover, SIRT6 overexpression ameliorated doxorubicin-induced cardiotoxicity and potentiated antitumor efficacy of doxorubicin in mice, suggesting that SIRT6 overexpression could be an adjunctive therapeutic strategy during doxorubicin treatment. Mechanistically, doxorubicin-impaired mitochondria led to decreased mitochondrial respiration and ATP production. And SIRT6 enhanced mitochondrial biogenesis and mitophagy by deacetylating and inhibiting Sgk1. Thus, SIRT6 overexpression coordinated metabolic remodeling from glycolysis to mitochondrial respiration during doxorubicin treatment, which was more conducive to cardiomyocyte metabolism, thus protecting cardiomyocytes but not cancer cells against doxorubicin-induced energy deficiency. In addition, ellagic acid, a natural compound that activates SIRT6, alleviated doxorubicin-induced cardiotoxicity and enhanced doxorubicin-mediated tumor regression in tumor-bearing mice. These findings provide a preclinical rationale for preventing cardiotoxicity by activating SIRT6 in cancer patients undergoing chemotherapy, but also advancing the understanding of the crucial role of SIRT6 in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kezheng Peng
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Chenye Zeng
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuqi Gao
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Binliang Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyuan Li
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Kang Xu
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuemiao Yin
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ying Qiu
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mingkui Zhang
- Department of Cardiac Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhao Wang
- The Ministry of Education Key Laboratory of Protein Science, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Guo Y, Tang Y, Lu G, Gu J. p53 at the Crossroads between Doxorubicin-Induced Cardiotoxicity and Resistance: A Nutritional Balancing Act. Nutrients 2023; 15:nu15102259. [PMID: 37242146 DOI: 10.3390/nu15102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic drug, but its long-term use can cause cardiotoxicity and drug resistance. Accumulating evidence demonstrates that p53 is directly involved in DOX toxicity and resistance. One of the primary causes for DOX resistance is the mutation or inactivation of p53. Moreover, because the non-specific activation of p53 caused by DOX can kill non-cancerous cells, p53 is a popular target for reducing toxicity. However, the reduction in DOX-induced cardiotoxicity (DIC) via p53 suppression is often at odds with the antitumor advantages of p53 reactivation. Therefore, in order to increase the effectiveness of DOX, there is an urgent need to explore p53-targeted anticancer strategies owing to the complex regulatory network and polymorphisms of the p53 gene. In this review, we summarize the role and potential mechanisms of p53 in DIC and resistance. Furthermore, we focus on the advances and challenges in applying dietary nutrients, natural products, and other pharmacological strategies to overcome DOX-induced chemoresistance and cardiotoxicity. Lastly, we present potential therapeutic strategies to address key issues in order to provide new ideas for increasing the clinical use of DOX and improving its anticancer benefits.
Collapse
Affiliation(s)
- Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
15
|
Huerta M, Franco-Serrano L, Amela I, Perez-Pons JA, Piñol J, Mozo-Villarías A, Querol E, Cedano J. Role of Moonlighting Proteins in Disease: Analyzing the Contribution of Canonical and Moonlighting Functions in Disease Progression. Cells 2023; 12:cells12020235. [PMID: 36672169 PMCID: PMC9857295 DOI: 10.3390/cells12020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
The term moonlighting proteins refers to those proteins that present alternative functions performed by a single polypeptide chain acquired throughout evolution (called canonical and moonlighting, respectively). Over 78% of moonlighting proteins are involved in human diseases, 48% are targeted by current drugs, and over 25% of them are involved in the virulence of pathogenic microorganisms. These facts encouraged us to study the link between the functions of moonlighting proteins and disease. We found a large number of moonlighting functions activated by pathological conditions that are highly involved in disease development and progression. The factors that activate some moonlighting functions take place only in pathological conditions, such as specific cellular translocations or changes in protein structure. Some moonlighting functions are involved in disease promotion while others are involved in curbing it. The disease-impairing moonlighting functions attempt to restore the homeostasis, or to reduce the damage linked to the imbalance caused by the disease. The disease-promoting moonlighting functions primarily involve the immune system, mesenchyme cross-talk, or excessive tissue proliferation. We often find moonlighting functions linked to the canonical function in a pathological context. Moonlighting functions are especially coordinated in inflammation and cancer. Wound healing and epithelial to mesenchymal transition are very representative. They involve multiple moonlighting proteins with a different role in each phase of the process, contributing to the current-phase phenotype or promoting a phase switch, mitigating the damage or intensifying the remodeling. All of this implies a new level of complexity in the study of pathology genesis, progression, and treatment. The specific protein function involved in a patient's progress or that is affected by a drug must be elucidated for the correct treatment of diseases.
Collapse
|
16
|
Tiwari RK, Rawat SG, Gupta VK, Jaiswara PK, Sonker P, Kumar S, Gautam V, Mishra MK, Kumar A. Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem Biol Interact 2023; 369:110278. [PMID: 36423730 DOI: 10.1016/j.cbi.2022.110278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
In recent years, studies have reported the role of stress-regulatory hormones, including epinephrine, in regulating the progression of a few cancers. However, the tumor-promoting action of epinephrine is not yet investigated in T cell malignancy, a rare and complicated neoplastic disorder. More so, very little is known regarding the implication of epinephrine in the glucose metabolic rewiring in tumor cells. The present investigation showed that epinephrine enhanced the proliferation of T lymphoma cells through up- and down-regulating the expression of PCNA, cyclin D, and p53, respectively. In addition, epinephrine inhibited apoptosis in T lymphoma cells possibly by increasing the level of BCL2 (an anti-apoptotic protein) and decreasing PARP level (a pro-apoptotic protein). Intriguingly, epinephrine is reported to stimulate glycolysis in T lymphoma cells by increasing the expression of crucial glycolysis regulatory molecules, namely HKII and PKM2, in a HIF-1α-dependent manner. Moreover, augmented production of ROS has been observed in T lymphoma cells, which might be a central player in epinephrine-mediated T cell lymphoma growth. Taken together, our study demonstrates that epinephrine might have a significant role in the progression of T cell lymphoma.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Shiv Govind Rawat
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vishal Kumar Gupta
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pradip Kumar Jaiswara
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pratishtha Sonker
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA
| | - Ajay Kumar
- Tumor Biomarker and Therapeutics Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
17
|
Chatterjee DR, Kapoor S, Jain M, Das R, Chowdhury MG, Shard A. PROTACting the kinome with covalent warheads. Drug Discov Today 2023; 28:103417. [PMID: 36306996 DOI: 10.1016/j.drudis.2022.103417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 10/19/2022] [Indexed: 02/02/2023]
Abstract
The dawn of targeted degradation using proteolysis-targeting chimeras (PROTACs) against recalcitrant proteins has prompted numerous efforts to develop complementary drugs. Although many of these are specifically directed against undruggable proteins, there is increasing interest in small molecule-based PROTACs that target intracellular pathways, and some have recently entered clinical trials. Concurrently, small molecule-based PROTACs that target protumorigenic pathways in cancer cells, the tumor microenvironment (TME), and angiogenesis have been found to have potent effects that synergize with the action of antibodies. This has led to the augmentation of PROTACs with variable substitution patterns. Several combinations with small molecules targeting undruggable proteins are now under clinical investigation. In this review, we discuss the recent milestones achieved as well as challenges encountered in this area of drug development, as well as our opinion on the best path forward.
Collapse
Affiliation(s)
- Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Meenakshi Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
18
|
PKM2 deficiency exacerbates gram-negative sepsis-induced cardiomyopathy via disrupting cardiac calcium homeostasis. Cell Death Dis 2022; 8:496. [PMID: 36564378 PMCID: PMC9789059 DOI: 10.1038/s41420-022-01287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Sepsis is a life-threatening syndrome with multi-organ dysfunction in critical care medicine. With the occurrence of sepsis-induced cardiomyopathy (SIC), characterized by reduced ventricular contractility, the mortality of sepsis is boosted to 70-90%. Pyruvate kinase M2 (PKM2) functions in a variety of biological processes and diseases other than glycolysis, and has been documented as a cardioprotective factor in several heart diseases. It is currently unknown whether PKM2 influences the development of SIC. Here, we found that PKM2 was upregulated in cardiomyocytes treated with LPS both in vitro and in vivo. Pkm2 inhibition exacerbated the LPS-induced cardiac damage to neonatal rat cardiomyocytes (NRCMs). Furthermore, cardiomyocytes lacking PKM2 aggravated LPS-induced cardiomyopathy, including myocardial damage and impaired contractility, whereas PKM2 overexpression and activation mitigated SIC. Mechanism investigation revealed that PKM2 interacted with sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), a key regulator of the excitation-contraction coupling, to maintain calcium homeostasis, and PKM2 deficiency exacerbated LPS-induced cardiac systolic dysfunction by impairing SERCA2a expression. In conclusion, these findings highlight that PKM2 plays an essential role in gram-negative sepsis-induced cardiomyopathy, which provides an attractive target for the prevention and treatment of septic cardiomyopathy.
Collapse
|
19
|
Lu B, Shen L, Ma Y, Qi J, Li Y, Wang Z, Han L, Zhong M. Cardiovascular adverse events associated with cyclophosphamide, pegylated liposomal doxorubicin, vincristine, and prednisone with or without rituximab ((R)-CDOP) in non-Hodgkin’s lymphoma: A systematic review and meta-analysis. Front Pharmacol 2022; 13:1060668. [DOI: 10.3389/fphar.2022.1060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Background: The (R)-CDOP combination regimen, based on pegylated liposomal doxorubicin, is increasingly used for elderly patients with non-Hodgkin’s lymphoma. However, the cardiotoxicity and efficacy of the (R)-CDOP regimen compared with conventional anthracyclines have not been demonstrated in the general population. Therefore, this systematic review and meta-analysis evaluated the risk of cardiotoxicity and efficacy associated with the (R)-CDOP regimen in patients with non-Hodgkin’s lymphoma.Methods: PubMed, Embase, Cochrane Library, CNKI, WanFang Database, and VIP were searched. The search covered the period from the start of the clinical use of (R)-CDOP to April 2022. We searched the literature for cardiovascular adverse events associated with (R)-CDOP in non-Hodgkin’s lymphoma. The data were analyzed using R 4.2.0 and Stata 12.0.Results: From the included studies, the important findings were as follows: total cardiovascular event rate, 7.45% (95% confidence interval [CI] = 4.86%–10.44%); non-serious cardiovascular adverse event rate, 6.48% (95% CI = 3.70%–9.8%); serious cardiovascular adverse event rate, 0.67% (95% CI = 0.00%–2.12%); heart failure rate, 0.55% (95% CI = 0.00%–1.93%); rate of treatment discontinuation attributable to left ventricular dysfunction or heart failure, 0.02% (95% CI = 0.00%–0.57%); and cardiovascular death rate, 0.00% (95% CI = 0.00%–0.37%). Compared with the (R)-CHOP regimen, the (R)-CDOP regimen reduced the risk of cardiovascular events, including total cardiovascular adverse events (odds ratio [OR] = 0.161, 95% CI = 0.103–0.251, p < 0.001, and NNT = 3.7), non-serious cardiovascular adverse events (OR = 0.171, 95% CI = 0.093–0.314, p < 0.001, and NNT = 3.6), serious cardiovascular adverse events (OR = 0.252, 95% CI = 0.119–0.535, p < 0.001, and NNT = 6.8), and heart failure (OR = 0.294, 95% CI = 0.128–0.674, p = 0.004, and NNT = 9.5). To evaluate the survival benefits, we compared (R)-CDOP and (R)-CHOP regimens. We found that the (R)-CDOP regimen was no less efficacious, including complete remission (CR) (OR = 1.398, 95% CI = 0.997–1.960, and p = 0.052), partial response (PR) (OR = 1.631, 95% CI = 1.162–2.289, and p = 0.005), objective response rate (ORR) (OR = 2.236, 95% CI = 1.594–3.135, and p < 0.001), stable disease (SD) (OR = 0.526, 95% CI = 0.356–0.776, and p = 0.001), and progressive disease (PD) (OR = 0.537, 95% CI = 0.323–0.894, and p = 0.017).Conclusion: Our findings suggested that the (R)-CDOP regimen had a lower risk of cardiovascular adverse events in non-Hodgkin’s lymphoma than the (R)-CHOP regimen, demonstrating its safety with regard to cardiotoxicity. In addition, this study found the (R)-CDOP regimen was no less efficacious than the (R)-CHOP regimen in the treatment of non-Hodgkin’s lymphoma. These findings need to be validated by higher-quality research because of the limited number and quality of included studies.
Collapse
|
20
|
Lorenzana-Carrillo MA, Gopal K, Byrne NJ, Tejay S, Saleme B, Das SK, Zhang Y, Haromy A, Eaton F, Mendiola Pla M, Bowles DE, Dyck JR, Ussher JR, Michelakis ED, Sutendra G. TRIM35-mediated degradation of nuclear PKM2 destabilizes GATA4/6 and induces P53 in cardiomyocytes to promote heart failure. Sci Transl Med 2022; 14:eabm3565. [DOI: 10.1126/scitranslmed.abm3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pyruvate kinase M2 (PKM2) is a glycolytic enzyme that translocates to the nucleus to regulate transcription factors in different tissues or pathologic states. Although studied extensively in cancer, its biological role in the heart remains unresolved. PKM1 is more abundant than the PKM2 isoform in cardiomyocytes, and thus, we speculated that PKM2 is not genetically redundant to PKM1 and may be critical in regulating cardiomyocyte-specific transcription factors important for cardiac survival. Here, we showed that nuclear PKM2 (
S37
P-PKM2) in cardiomyocytes interacts with prosurvival and proapoptotic transcription factors, including GATA4, GATA6, and P53. Cardiomyocyte-specific PKM2-deficient mice (
Pkm2
Mut Cre
+
) developed age-dependent dilated cardiac dysfunction and had decreased amounts of GATA4 and GATA6 (GATA4/6) but increased amounts of P53 compared to Control Cre
+
hearts. Nuclear PKM2 prevented caspase-1–dependent cleavage and degradation of GATA4/6 while also providing a molecular platform for MDM2-mediated reduction of P53. In a preclinical heart failure mouse model, nuclear PKM2 and GATA4/6 were decreased, whereas P53 was increased in cardiomyocytes. Loss of nuclear PKM2 was ubiquitination dependent and associated with the induction of the E3 ubiquitin ligase TRIM35. In mice, cardiomyocyte-specific TRIM35 overexpression resulted in decreased
S37
P-PKM2 and GATA4/6 along with increased P53 in cardiomyocytes compared to littermate controls and similar cardiac dysfunction to
Pkm2
Mut Cre
+
mice. In patients with dilated left ventricles, increase in TRIM35 was associated with decreased
S37
P-PKM2 and GATA4/6 and increased P53. This study supports a previously unrecognized role for PKM2 as a molecular platform that mediates cell signaling events essential for cardiac survival.
Collapse
Affiliation(s)
- Maria Areli Lorenzana-Carrillo
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Keshav Gopal
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Nikole J. Byrne
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Saymon Tejay
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Subhash K. Das
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Farah Eaton
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | | | - Dawn E. Bowles
- Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Jason R. B. Dyck
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - John R. Ussher
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada
| | - Evangelos D. Michelakis
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
21
|
Seara FAC, Kasai-Brunswick TH, Nascimento JHM, Campos-de-Carvalho AC. Anthracycline-induced cardiotoxicity and cell senescence: new therapeutic option? Cell Mol Life Sci 2022; 79:568. [DOI: 10.1007/s00018-022-04605-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
|
22
|
Chen M, Li X, Du B, Chen S, Li Y. Upstream stimulatory factor 2 inhibits erastin-induced ferroptosis in pancreatic cancer through transcriptional regulation of pyruvate kinase M2. Biochem Pharmacol 2022; 205:115255. [DOI: 10.1016/j.bcp.2022.115255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
|
23
|
Ni L, Lin B, Hu L, Zhang R, Fu F, Shen M, Yang J, Shi D. Pyruvate Kinase M2 Protects Heart from Pressure Overload-Induced Heart Failure by Phosphorylating RAC1. J Am Heart Assoc 2022; 11:e024854. [PMID: 35656980 PMCID: PMC9238738 DOI: 10.1161/jaha.121.024854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Heart failure, caused by sustained pressure overload, remains a major public health problem. PKM (pyruvate kinase M) acts as a rate‐limiting enzyme of glycolysis. PKM2 (pyruvate kinase M2), an alternative splicing product of PKM, plays complex roles in various biological processes and diseases. However, the role of PKM2 in the development of heart failure remains unknown. Methods and Results Cardiomyocyte‐specific Pkm2 knockout mice were generated by crossing the floxed Pkm2 mice with α‐MHC (myosin heavy chain)‐Cre transgenic mice, and cardiac specific Pkm2 overexpression mice were established by injecting adeno‐associated virus serotype 9 system. The results showed that cardiomyocyte‐specific Pkm2 deletion resulted in significant deterioration of cardiac functions under pressure overload, whereas Pkm2 overexpression mitigated transverse aortic constriction‐induced cardiac hypertrophy and improved heart functions. Mechanistically, we demonstrated that PKM2 acted as a protein kinase rather than a pyruvate kinase, which inhibited the activation of RAC1 (rho family, small GTP binding protein)‐MAPK (mitogen‐activated protein kinase) signaling pathway by phosphorylating RAC1 in the progress of heart failure. In addition, blockade of RAC1 through NSC23766, a specific RAC1 inhibitor, attenuated pathological cardiac remodeling in Pkm2 deficiency mice subjected to transverse aortic constriction. Conclusions This study revealed that PKM2 attenuated overload‐induced pathological cardiac hypertrophy and heart failure, which provides an attractive target for the prevention and treatment of cardiomyopathies.
Collapse
Affiliation(s)
- Le Ni
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | - Bowen Lin
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | - Lingjie Hu
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | | | - Fengmei Fu
- Jinzhou Medical University Liaoning China
| | - Meiting Shen
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| | - Jian Yang
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China.,Department of Cell Biology Tongji University School of Medicine Shanghai China.,Institute of Medical Genetics Tongji University Shanghai China
| | - Dan Shi
- Department of Cardiology Shanghai East HospitalTongji University School of Medicine Shanghai China.,Key Laboratory of Arrhythmias of the Ministry of Education of China Shanghai East HospitalTongji University School of Medicine Shanghai China
| |
Collapse
|
24
|
The Role of PKM2 in the Regulation of Mitochondrial Function: Focus on Mitochondrial Metabolism, Oxidative Stress, Dynamic, and Apoptosis. PKM2 in Mitochondrial Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7702681. [PMID: 35571239 PMCID: PMC9106463 DOI: 10.1155/2022/7702681] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
The M2 isoform of pyruvate kinase (PKM2) is one isoform of pyruvate kinase (PK). PKM2 is expressed at high levels during embryonic development and tumor progression and is subject to complex allosteric regulation. PKM2 is a special glycolytic enzyme that regulates the final step of glycolysis; the role of PKM2 in the metabolism, survival, and apoptosis of cancer cells has received increasing attention. Mitochondria are directly or indirectly involved in the regulation of energy metabolism, susceptibility to oxidative stress, and cell death; however, the role of PKM2 in mitochondrial functions remains unclear. Herein, we review the related mechanisms of the role of PKM2 in the regulation of mitochondrial functions from the aspects of metabolism, reactive oxygen species (ROS), dynamic, and apoptosis, which can be highlighted as a target for the clinical management of cardiovascular and metabolic diseases.
Collapse
|
25
|
Shimauchi T, Boucherat O, Yokokawa T, Grobs Y, Wu W, Orcholski M, Martineau S, Omura J, Tremblay E, Shimauchi K, Nadeau V, Breuils-Bonnet S, Paulin R, Potus F, Provencher S, Bonnet S. PARP1-PKM2 Axis Mediates Right Ventricular Failure Associated With Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2022; 7:384-403. [PMID: 35540097 PMCID: PMC9079853 DOI: 10.1016/j.jacbts.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
The authors show that increased poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) and pyruvate kinase muscle isozyme 2 (PKM2) expression is a common feature of a decompensated right ventricle in patients with pulmonary arterial hypertension and animal models. The authors find in vitro that overactivated PARP1 promotes cardiomyocyte dysfunction by favoring PKM2 expression and nuclear function, glycolytic gene expression, activation of nuclear factor κB-dependent proinflammatory factors. Pharmacologic and genetic inhibition of PARP1 or enforced tetramerization of PKM2 attenuates maladaptive remodeling improving right ventricular (RV) function in multiple rodent models. Taken together, these data implicate the PARP1/PKM2 axis as a critical driver of maladaptive RV remodeling and a new promising target to directly sustain RV function in patients with pulmonary arterial hypertension.
Collapse
Key Words
- CM, cardiomyocyte
- CO, cardiac output
- ET, endothelin
- NF-κB, nuclear factor κB
- PAB, pulmonary artery banding
- PAH, pulmonary arterial hypertension
- PARP1
- PARP1, poly(adenosine diphosphate–ribose) polymerase 1
- PKM2
- PKM2, pyruvate kinase muscle isozyme 2
- RV, right ventricular
- STAT3, signal transducer activator of transcription 3
- WT, wild-type
- cKO, conditional knockout
- pulmonary hypertension
- right ventricle
Collapse
Affiliation(s)
- Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Université Laval, Québec, Québec, Canada
| | - Tetsuro Yokokawa
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - WenHui Wu
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Mark Orcholski
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Junichi Omura
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Kana Shimauchi
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Université Laval, Québec, Québec, Canada
| | - François Potus
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Université Laval, Québec, Québec, Canada
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Université Laval, Québec, Québec, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada.,Department of Medicine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
26
|
Boukouris AE, Zhang Y, Saleme B, Kinnaird A, Zhao YY, Liu Y, Zervopoulos SD, Das SK, Mittal RD, Haromy A, Lorenzana-Carrillo MA, Krysler AR, Cromwell CR, Hubbard BP, Sutendra G, Michelakis ED. A reversible metabolic stress-sensitive regulation of CRMP2A orchestrates EMT/stemness and increases metastatic potential in cancer. Cell Rep 2022; 38:110511. [PMID: 35294884 DOI: 10.1016/j.celrep.2022.110511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/09/2021] [Accepted: 02/17/2022] [Indexed: 12/31/2022] Open
Abstract
An epithelial-to-mesenchymal transition (EMT) phenotype with cancer stem cell-like properties is a critical feature of aggressive/metastatic tumors, but the mechanism(s) that promote it and its relation to metabolic stress remain unknown. Here we show that Collapsin Response Mediator Protein 2A (CRMP2A) is unexpectedly and reversibly induced in cancer cells in response to multiple metabolic stresses, including low glucose and hypoxia, and inhibits EMT/stemness. Loss of CRMP2A, when metabolic stress decreases (e.g., around blood vessels in vivo) or by gene deletion, induces extensive microtubule remodeling, increased glutamine utilization toward pyrimidine synthesis, and an EMT/stemness phenotype with increased migration, chemoresistance, tumor initiation capacity/growth, and metastatic potential. In a cohort of 27 prostate cancer patients with biopsies from primary tumors and distant metastases, CRMP2A expression decreases in the metastatic versus primary tumors. CRMP2A is an endogenous molecular brake on cancer EMT/stemness and its loss increases the aggressiveness and metastatic potential of tumors.
Collapse
Affiliation(s)
| | - Yongneng Zhang
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Adam Kinnaird
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Yuan Yuan Zhao
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Yongsheng Liu
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Subhash K Das
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Rohan D Mittal
- Department of Pathology, University of Alberta, Edmonton, AB, Canada
| | - Alois Haromy
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Amanda R Krysler
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | | | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
27
|
Antoniak S, Phungphong S, Cheng Z, Jensen BC. Novel Mechanisms of Anthracycline-Induced Cardiovascular Toxicity: A Focus on Thrombosis, Cardiac Atrophy, and Programmed Cell Death. Front Cardiovasc Med 2022; 8:817977. [PMID: 35111832 PMCID: PMC8801506 DOI: 10.3389/fcvm.2021.817977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Anthracycline antineoplastic agents such as doxorubicin are widely used and highly effective component of adjuvant chemotherapy for breast cancer and curative regimens for lymphomas, leukemias, and sarcomas. The primary dose-limiting adverse effect of anthracyclines is cardiotoxicity that typically manifests as cardiomyopathy and can progress to the potentially fatal clinical syndrome of heart failure. Decades of pre-clinical research have explicated the complex and multifaceted mechanisms of anthracycline-induced cardiotoxicity. It is well-established that oxidative stress contributes to the pathobiology and recent work has elucidated important central roles for direct mitochondrial injury and iron overload. Here we focus instead on emerging aspects of anthracycline-induced cardiotoxicity that may have received less attention in other recent reviews: thrombosis, myocardial atrophy, and non-apoptotic programmed cell death.
Collapse
Affiliation(s)
- Silvio Antoniak
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Blood Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Silvio Antoniak
| | - Sukanya Phungphong
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
- Zhaokang Cheng
| | - Brian C. Jensen
- Cardiology Division, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
28
|
Liu Z, Le Y, Chen H, Zhu J, Lu D. Role of PKM2-Mediated Immunometabolic Reprogramming on Development of Cytokine Storm. Front Immunol 2021; 12:748573. [PMID: 34759927 PMCID: PMC8572858 DOI: 10.3389/fimmu.2021.748573] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 12/26/2022] Open
Abstract
The cytokine storm is a marker of severity of various diseases and increased mortality. The altered metabolic profile and energy generation of immune cells affects their activation, exacerbating the cytokine storm. Currently, the emerging field of immunometabolism has highlighted the importance of specific metabolic pathways in immune regulation. The glycolytic enzyme pyruvate kinase M2 (PKM2) is a key regulator of immunometabolism and bridges metabolic and inflammatory dysfunction. This enzyme changes its conformation thus walks in different fields including metabolism and inflammation and associates with various transcription factors. This review summarizes the vital role of PKM2 in mediating immunometabolic reprogramming and its role in inducing cytokine storm, with a focus on providing references for further understanding of its pathological functions and for proposing new targets for the treatment of related diseases.
Collapse
Affiliation(s)
- Zhijun Liu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifei Le
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hang Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, China
| | - Dezhao Lu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
29
|
Sawicki KT, Sala V, Prever L, Hirsch E, Ardehali H, Ghigo A. Preventing and Treating Anthracycline Cardiotoxicity: New Insights. Annu Rev Pharmacol Toxicol 2021; 61:309-332. [PMID: 33022184 DOI: 10.1146/annurev-pharmtox-030620-104842] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Anthracyclines are the cornerstone of many chemotherapy regimens for a variety of cancers. Unfortunately, their use is limited by a cumulative dose-dependent cardiotoxicity. Despite more than five decades of research, the biological mechanisms underlying anthracycline cardiotoxicity are not completely understood. In this review, we discuss the incidence, risk factors, types, and pathophysiology of anthracycline cardiotoxicity, as well as methods to prevent and treat this condition. We also summarize and discuss advances made in the last decade in the comprehension of the molecular mechanisms underlying the pathology.
Collapse
Affiliation(s)
- Konrad Teodor Sawicki
- Division of Cardiology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| | - Lorenzo Prever
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| | - Hossein Ardehali
- Division of Cardiology, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA;
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy;
| |
Collapse
|
30
|
Adhikari A, Mondal S, Chatterjee T, Das M, Biswas P, Ghosh R, Darbar S, Alessa H, Althakafy JT, Sayqal A, Ahmed SA, Das AK, Bhattacharyya M, Pal SK. Redox nanomedicine ameliorates chronic kidney disease (CKD) by mitochondrial reconditioning in mice. Commun Biol 2021; 4:1013. [PMID: 34446827 PMCID: PMC8390471 DOI: 10.1038/s42003-021-02546-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Targeting reactive oxygen species (ROS) while maintaining cellular redox signaling is crucial in the development of redox medicine as the origin of several prevailing diseases including chronic kidney disease (CKD) is linked to ROS imbalance and associated mitochondrial dysfunction. Here, we have shown that a potential nanomedicine comprising of Mn3O4 nanoparticles duly functionalized with biocompatible ligand citrate (C-Mn3O4 NPs) can maintain cellular redox balance in an animal model of oxidative injury. We developed a cisplatin-induced CKD model in C57BL/6j mice with severe mitochondrial dysfunction and oxidative distress leading to the pathogenesis. Four weeks of treatment with C-Mn3O4 NPs restored renal function, preserved normal kidney architecture, ameliorated overexpression of pro-inflammatory cytokines, and arrested glomerulosclerosis and interstitial fibrosis. A detailed study involving human embryonic kidney (HEK 293) cells and isolated mitochondria from experimental animals revealed that the molecular mechanism behind the pharmacological action of the nanomedicine involves protection of structural and functional integrity of mitochondria from oxidative damage, subsequent reduction in intracellular ROS, and maintenance of cellular redox homeostasis. To the best of our knowledge, such studies that efficiently treated a multifaceted disease like CKD using a biocompatible redox nanomedicine are sparse in the literature. Successful clinical translation of this nanomedicine may open a new avenue in redox-mediated therapeutics of several other diseases (e.g., diabetic nephropathy, neurodegeneration, and cardiovascular disease) where oxidative distress plays a central role in pathogenesis.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Susmita Mondal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | | | - Monojit Das
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, India
- Department of Zoology, Vidyasagar University, Rangamati, Midnapore, India
| | - Pritam Biswas
- Department of Microbiology, St. Xavier's College, Kolkata, India
| | - Ria Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Soumendra Darbar
- Research & Development Division, Dey's Medical Stores (Mfg.) Ltd, Kolkata, India
| | - Hussain Alessa
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jalal T Althakafy
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ali Sayqal
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Anjan Kumar Das
- Department of Pathology, Calcutta National Medical College and Hospital, Kolkata, India
| | | | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India.
- Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, India.
| |
Collapse
|
31
|
Lv X, Zhou H, Hu K, Lin L, Yang Y, Li L, Tang L, Huang J, Shen Y, Jiang R, Wan J, Zhang L. Activation of PKM2 metabolically controls fulminant liver injury via restoration of pyruvate and reactivation of CDK1. Pharmacol Res 2021; 172:105838. [PMID: 34425230 DOI: 10.1016/j.phrs.2021.105838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that metabolic events profoundly modulate the progression of various diseases. Pyruvate is a central metabolic intermediate in glucose metabolism. In the present study, the metabolic status of pyruvate and its pharmacological significance has been investigated in mice with lipopolysaccharide/D-galactosamine (LPS/D-Gal)-induced fulminant liver injury. Our results indicated that LPS/D-Gal exposure decreased the activity of pyruvate kinase and the content of pyruvate, which were reversed by the PKM2 activator TEPP-46. Pretreatment with TEPP-46 or supplementation with the cell-permeable pyruvate derivate ethyl pyruvate (EP) attenuated LPS/D-Gal-induced liver damage. Interestingly, post-insult intervention of pyruvate metabolism also resulted in beneficial outcomes. The phospho-antibody microarray analysis and immunoblot analysis found that the inhibitory phosphorylation of cyclin dependent kinase 1 (CDK1) was reversed by TEPP-46, DASA-58 or EP. In addition, the therapeutic benefits of PKM2 activator or EP were blunted by the CDK1 inhibitor Ro 3306. Our data suggests that LPS/D-Gal exposure-induced decline of pyruvate might be a novel metabolic mechanism underlies the development of LPS/D-Gal-induced fulminant liver injury, PKM2 activator or pyruvate derivate might have potential value for the pharmacological intervention of fulminant liver injury.
Collapse
Affiliation(s)
- Xiaohui Lv
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China; Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Honghong Zhou
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Kai Hu
- Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China; Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Longjiang Li
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jiayi Huang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yi Shen
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China.
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China; Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
32
|
Apostolidi M, Vathiotis IA, Muthusamy V, Gaule P, Gassaway BM, Rimm DL, Rinehart J. Targeting Pyruvate Kinase M2 Phosphorylation Reverses Aggressive Cancer Phenotypes. Cancer Res 2021; 81:4346-4359. [PMID: 34185676 PMCID: PMC8373815 DOI: 10.1158/0008-5472.can-20-4190] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/05/2021] [Accepted: 06/18/2021] [Indexed: 01/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with low survival rate and a lack of biomarkers and targeted treatments. Here, we target pyruvate kinase M2 (PKM2), a key metabolic component of oncogenesis. In patients with TNBC, PKM2pS37 was identified as a prominent phosphoprotein corresponding to the aggressive breast cancer phenotype that showed a characteristic nuclear staining pattern and prognostic value. Phosphorylation of PKM2 at S37 was connected with a cyclin-dependent kinase (CDK) pathway in TNBC cells. In parallel, pyruvate kinase activator TEPP-46 bound PKM2pS37 and reduced its nuclear localization. In a TNBC mouse xenograft model, treatment with either TEPP-46 or the potent CDK inhibitor dinaciclib reduced tumor growth and diminished PKM2pS37. Combinations of dinaciclib with TEPP-46 reduced cell invasion, impaired redox balance, and triggered cancer cell death. Collectively, these data support an approach to identify PKM2pS37-positive TNBC and target the PKM2 regulatory axis as a potential treatment. SIGNIFICANCE: PKM2 phosphorylation marks aggressive breast cancer cell phenotypes and targeting PKM2pS37 could be an effective therapeutic approach for treating triple-negative breast cancer.
Collapse
Affiliation(s)
- Maria Apostolidi
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
- Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Ioannis A Vathiotis
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Viswanathan Muthusamy
- Yale Center for Precision Cancer Modeling, Yale University School of Medicine, New Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Patricia Gaule
- Specialized Translational Services Laboratory, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Brandon M Gassaway
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
- Systems Biology Institute, Yale University, West Haven, Connecticut
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.
- Systems Biology Institute, Yale University, West Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
33
|
Zheng S, Liu Q, Liu T, Lu X. Posttranslational modification of pyruvate kinase type M2 (PKM2): novel regulation of its biological roles to be further discovered. J Physiol Biochem 2021; 77:355-363. [PMID: 33835423 DOI: 10.1007/s13105-021-00813-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
PKM2, pyruvate kinase type M2, has been shown to play a key role in aerobic glycolysis and to regulate the malignant behaviors of cancer cells. Recently, PKM2 has been revealed to hold dual metabolic and nonmetabolic roles. Working as both a pyruvate kinase with catalytic activity and a protein kinase that phosphorylates its substrates, PKM2 stands at the crossroads of glycolysis and tumor growth. Recently, it was revealed that the catalytic activity of PKM2 can be regulated by its posttranslational modification (PTM). Several PTM types, including phosphorylation, methylation, acetylation, oxidation, hydroxylation, succinylation, and glycylation, have been gradually identified on different amino acid residues of the PKM2 coding sequence. In this review, we highlight the recent advancements in understanding PKM2 PTMs and the regulatory roles conferred by PTMs during anaerobic glycolysis in tumors.
Collapse
Affiliation(s)
- Shutao Zheng
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Qing Liu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xiaomei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, People's Republic of China.
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
34
|
Nam JK, Kim AR, Choi SH, Kim JH, Choi KJ, Cho S, Lee JW, Cho HJ, Kwon YW, Cho J, Kim KS, Kim J, Lee HJ, Lee TS, Bae S, Hong HJ, Lee YJ. An antibody against L1 cell adhesion molecule inhibits cardiotoxicity by regulating persistent DNA damage. Nat Commun 2021; 12:3279. [PMID: 34078883 PMCID: PMC8172563 DOI: 10.1038/s41467-021-23478-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Targeting the molecular pathways underlying the cardiotoxicity associated with thoracic irradiation and doxorubicin (Dox) could reduce the morbidity and mortality associated with these anticancer treatments. Here, we find that vascular endothelial cells (ECs) with persistent DNA damage induced by irradiation and Dox treatment exhibit a fibrotic phenotype (endothelial-mesenchymal transition, EndMT) correlating with the colocalization of L1CAM and persistent DNA damage foci. We demonstrate that treatment with the anti-L1CAM antibody Ab417 decreases L1CAM overexpression and nuclear translocation and persistent DNA damage foci. We show that in whole-heart-irradiated mice, EC-specific p53 deletion increases vascular fibrosis and the colocalization of L1CAM and DNA damage foci, while Ab417 attenuates these effects. We also demonstrate that Ab417 prevents cardiac dysfunction-related decrease in fractional shortening and prolongs survival after whole-heart irradiation or Dox treatment. We show that cardiomyopathy patient-derived cardiovascular ECs with persistent DNA damage show upregulated L1CAM and EndMT, indicating clinical applicability of Ab417. We conclude that controlling vascular DNA damage by inhibiting nuclear L1CAM translocation might effectively prevent anticancer therapy-associated cardiotoxicity.
Collapse
Affiliation(s)
- Jae-Kyung Nam
- grid.415464.60000 0000 9489 1588Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea ,grid.222754.40000 0001 0840 2678Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - A-Ram Kim
- grid.415464.60000 0000 9489 1588Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seo-Hyun Choi
- grid.415464.60000 0000 9489 1588Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea ,grid.51462.340000 0001 2171 9952Department of Surgery, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Ji-Hee Kim
- grid.415464.60000 0000 9489 1588Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea ,grid.222754.40000 0001 0840 2678Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - Kyu Jin Choi
- grid.415464.60000 0000 9489 1588Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seulki Cho
- grid.412010.60000 0001 0707 9039Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Jae Won Lee
- grid.412484.f0000 0001 0302 820XBiomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyun-Jai Cho
- grid.412484.f0000 0001 0302 820XBiomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yoo-Wook Kwon
- grid.412484.f0000 0001 0302 820XCardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jaeho Cho
- grid.15444.300000 0004 0470 5454Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Seok Kim
- grid.415464.60000 0000 9489 1588Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Joon Kim
- grid.222754.40000 0001 0840 2678Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - Hae-June Lee
- grid.415464.60000 0000 9489 1588Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Tae Sup Lee
- grid.415464.60000 0000 9489 1588Division of RI Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sangwoo Bae
- grid.415464.60000 0000 9489 1588Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyo Jeong Hong
- grid.412010.60000 0001 0707 9039Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea ,grid.482586.5Scripps Korea Antibody Institute, Chuncheon, Korea
| | - Yoon-Jin Lee
- grid.415464.60000 0000 9489 1588Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| |
Collapse
|
35
|
Ushio-Fukai M, Ash D, Nagarkoti S, Belin de Chantemèle EJ, Fulton DJR, Fukai T. Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease. Antioxid Redox Signal 2021; 34:1319-1354. [PMID: 33899493 PMCID: PMC8418449 DOI: 10.1089/ars.2020.8161] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS; e.g., superoxide [O2•-] and hydrogen peroxide [H2O2]) and reactive nitrogen species (RNS; e.g., nitric oxide [NO•]) at the physiological level function as signaling molecules that mediate many biological responses, including cell proliferation, migration, differentiation, and gene expression. By contrast, excess ROS/RNS, a consequence of dysregulated redox homeostasis, is a hallmark of cardiovascular disease. Accumulating evidence suggests that both ROS and RNS regulate various metabolic pathways and enzymes. Recent studies indicate that cells have mechanisms that fine-tune ROS/RNS levels by tight regulation of metabolic pathways, such as glycolysis and oxidative phosphorylation. The ROS/RNS-mediated inhibition of glycolytic pathways promotes metabolic reprogramming away from glycolytic flux toward the oxidative pentose phosphate pathway to generate nicotinamide adenine dinucleotide phosphate (NADPH) for antioxidant defense. This review summarizes our current knowledge of the mechanisms by which ROS/RNS regulate metabolic enzymes and cellular metabolism and how cellular metabolism influences redox homeostasis and the pathogenesis of disease. A full understanding of these mechanisms will be important for the development of new therapeutic strategies to treat diseases associated with dysregulated redox homeostasis and metabolism. Antioxid. Redox Signal. 34, 1319-1354.
Collapse
Affiliation(s)
- Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Dipankar Ash
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Sheela Nagarkoti
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Medicine (Cardiology) and Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
36
|
Jiang J, Peng L, Wang K, Huang C. Moonlighting Metabolic Enzymes in Cancer: New Perspectives on the Redox Code. Antioxid Redox Signal 2021; 34:979-1003. [PMID: 32631077 DOI: 10.1089/ars.2020.8123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significance: Metabolic reprogramming is considered to be a critical adaptive biological event that fulfills the energy and biomass demands for cancer cells. One hallmark of metabolic reprogramming is reduced oxidative phosphorylation and enhanced aerobic glycolysis. Such metabolic abnormalities contribute to the accumulation of reactive oxygen species (ROS), the by-products of metabolic pathways. Emerging evidence suggests that ROS can in turn directly or indirectly affect the expression, activity, or subcellular localization of metabolic enzymes, contributing to the moonlighting functions outside of their primary roles. This review summarizes the multifunctions of metabolic enzymes and the involved redox modification patterns, which further reveal the inherent connection between metabolism and cellular redox state. Recent Advances: These noncanonical functions of metabolic enzymes involve the regulation of epigenetic modifications, gene transcription, post-translational modification, cellular antioxidant capacity, and many other fundamental cellular events. The multifunctional properties of metabolic enzymes further expand the metabolic dependencies of cancer cells, and confer cancer cells with a means of adapting to diverse environmental stimuli. Critical Issues: Deciphering the redox-manipulated mechanisms with specific emphasis on the moonlighting function of metabolic enzymes is important for clarifying the pertinence between metabolism and redox processes. Future Directions: Investigation of the redox-regulated moonlighting functions of metabolic enzymes will shed new lights into the mechanism by which metabolic enzymes gain noncanonical functions, and yield new insights into the development of novel therapeutic strategies for cancer treatment by targeting metabolic-redox abnormalities. Antioxid. Redox Signal. 34, 979-1003.
Collapse
Affiliation(s)
- Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Liyuan Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Kui Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, People's Republic of China
| |
Collapse
|
37
|
Gopal K, Al Batran R, Altamimi TR, Greenwell AA, Saed CT, Tabatabaei Dakhili SA, Dimaano MTE, Zhang Y, Eaton F, Sutendra G, Ussher JR. FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell Rep 2021; 35:108935. [PMID: 33826891 DOI: 10.1016/j.celrep.2021.108935] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/11/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) increases the risk for diabetic cardiomyopathy and is characterized by diastolic dysfunction. Myocardial forkhead box O1 (FoxO1) activity is enhanced in T2D and upregulates pyruvate dehydrogenase (PDH) kinase 4 expression, which inhibits PDH activity, the rate-limiting enzyme of glucose oxidation. Because low glucose oxidation promotes cardiac inefficiency, we hypothesize that FoxO1 inhibition mitigates diabetic cardiomyopathy by stimulating PDH activity. Tissue Doppler echocardiography demonstrates improved diastolic function, whereas myocardial PDH activity is increased in cardiac-specific FoxO1-deficient mice subjected to experimental T2D. Pharmacological inhibition of FoxO1 with AS1842856 increases glucose oxidation rates in isolated hearts from diabetic C57BL/6J mice while improving diastolic function. However, AS1842856 treatment fails to improve diastolic function in diabetic mice with a cardiac-specific FoxO1 or PDH deficiency. Our work defines a fundamental mechanism by which FoxO1 inhibition improves diastolic dysfunction, suggesting that it may be an approach to alleviate diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Tariq R Altamimi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Christina T Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - M Toni E Dimaano
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yongneng Zhang
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Gopinath Sutendra
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
38
|
Men H, Cai H, Cheng Q, Zhou W, Wang X, Huang S, Zheng Y, Cai L. The regulatory roles of p53 in cardiovascular health and disease. Cell Mol Life Sci 2021; 78:2001-2018. [PMID: 33179140 PMCID: PMC11073000 DOI: 10.1007/s00018-020-03694-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality globally, so further investigation is required to identify its underlying mechanisms and potential targets for its prevention. The transcription factor p53 functions as a gatekeeper, regulating a myriad of genes to maintain normal cell functions. It has received a great deal of research attention as a tumor suppressor. In the past three decades, evidence has also shown a regulatory role for p53 in the heart. Basal p53 is essential for embryonic cardiac development; it is also necessary to maintain normal heart architecture and physiological function. In pathological cardiovascular circumstances, p53 expression is elevated in both patient samples and animal models. Elevated p53 plays a regulatory role via anti-angiogenesis, pro-programmed cell death, metabolism regulation, and cell cycle arrest regulation. This largely promotes the development of CVDs, particularly cardiac remodeling in the infarcted heart, hypertrophic cardiomyopathy, dilated cardiomyopathy, and diabetic cardiomyopathy. Roles for p53 have also been found in atherosclerosis and chemotherapy-induced cardiotoxicity. However, it has different roles in cardiomyocytes and non-myocytes, even in the same model. In this review, we describe the different effects of p53 in cardiovascular physiological and pathological conditions, in addition to potential CVD therapies targeting p53.
Collapse
Affiliation(s)
- Hongbo Men
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - He Cai
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Quanli Cheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Wenqian Zhou
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Xiang Wang
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Shan Huang
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA
| | - Yang Zheng
- Department of Cardiovascular Disease, First Hospital of Jilin University, Jilin University, Changchun, 130021, China.
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
39
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
40
|
Shuvalov O, Kizenko A, Petukhov A, Fedorova O, Daks A, Bottrill A, Snezhkina AV, Kudryavtseva AV, Barlev N. SEMG1/2 augment energy metabolism of tumor cells. Cell Death Dis 2020; 11:1047. [PMID: 33311447 PMCID: PMC7733513 DOI: 10.1038/s41419-020-03251-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
SEMG1 and SEMG2 genes belong to the family of cancer-testis antigens (CTAs), whose expression normally is restricted to male germ cells but is often restored in various malignancies. High levels of SEMG1 and SEMG2 expression are detected in prostate, renal, and lung cancer as well as hemoblastosis. However, the functional importance of both SEMGs proteins in human neoplasms is still largely unknown. In this study, by using a combination of the bioinformatics and various cellular and molecular assays, we have demonstrated that SEMG1 and SEMG2 are frequently expressed in lung cancer clinical samples and cancer cell lines of different origins and are negatively associated with the survival rate of cancer patients. Using the pull-down assay followed by LC-MS/MS mass-spectrometry, we have identified 119 proteins associated with SEMG1 and SEMG2. Among the SEMGs interacting proteins we noticed two critical glycolytic enzymes-pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). Importantly, we showed that SEMGs increased the protein level and activity of both PKM2 and LDHA. Further, both SEMGs increased the membrane mitochondrial potential (MMP), glycolysis, respiration, and ROS production in several cancer cell lines. Taken together, these data provide first evidence that SEMGs can up-regulate the energy metabolism of cancer cells, exemplifying their oncogenic features.
Collapse
Affiliation(s)
| | | | - Alexey Petukhov
- Institute of Cytology RAS, St-Petersburg, Russia
- Almazov National Medical Research Center, St-Petersburg, Russia
| | | | | | | | | | | | - Nikolai Barlev
- Institute of Cytology RAS, St-Petersburg, Russia.
- MIPT, Dolgoprudny, Moscow Region, Moscow, Russia, 141701.
- IBMC Orekhovicha, Moscow, Russia, 119435.
| |
Collapse
|
41
|
Seki SM, Posyniak K, McCloud R, Rosen DA, Fernández-Castañeda A, Beiter RM, Serbulea V, Nanziri SC, Hayes N, Spivey C, Gemta L, Bullock TNJ, Hsu KL, Gaultier A. Modulation of PKM activity affects the differentiation of T H17 cells. Sci Signal 2020; 13:eaay9217. [PMID: 33109748 PMCID: PMC8040370 DOI: 10.1126/scisignal.aay9217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Small molecules that promote the metabolic activity of the pyruvate kinase isoform PKM2, such as TEPP-46 and DASA-58, limit tumorigenesis and inflammation. To understand how these compounds alter T cell function, we assessed their therapeutic activity in a mouse model of T cell-mediated autoimmunity that mimics multiple sclerosis (MS). TH17 cells are believed to orchestrate MS pathology, in part, through the production of two proinflammatory cytokines: interleukin-17 (IL-17) and GM-CSF. We found that both TEPP-46 and DASA-58 suppressed the development of IL-17-producing TH17 cells but increased the generation of those producing GM-CSF. This switch redirected disease pathology from the spinal cord to the brain. In addition, we found that activation of PKM2 interfered with TGF-β1 signaling, which is necessary for the development of TH17 and regulatory T cells. Collectively, our data clarify the therapeutic potential of PKM2 activators in MS-like disease and how these agents alter T cell function.
Collapse
Affiliation(s)
- Scott M Seki
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Kacper Posyniak
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Rebecca McCloud
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Dorian A Rosen
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Graduate Program in Pharmacological Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Anthony Fernández-Castañeda
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Rebecca M Beiter
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
- Graduate Program in Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Vlad Serbulea
- Graduate Program in Pharmacological Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Sarah C Nanziri
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Nikolas Hayes
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Charles Spivey
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Lelisa Gemta
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Timothy N J Bullock
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
42
|
Hoeger CW, Turissini C, Asnani A. Doxorubicin Cardiotoxicity: Pathophysiology Updates. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2020. [DOI: 10.1007/s11936-020-00842-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Saleme B, Das SK, Zhang Y, Boukouris AE, Lorenzana Carrillo MA, Jovel J, Wagg CS, Lopaschuk GD, Michelakis ED, Sutendra G. p53-Mediated Repression of the PGC1A (PPARG Coactivator 1α) and APLNR (Apelin Receptor) Signaling Pathways Limits Fatty Acid Oxidation Energetics: Implications for Cardio-oncology. J Am Heart Assoc 2020; 9:e017247. [PMID: 32750288 PMCID: PMC7792244 DOI: 10.1161/jaha.120.017247] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Saleme
- Department of Medicine University of Alberta Edmonton Canada.,Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Canada
| | - Subhash K Das
- Department of Medicine University of Alberta Edmonton Canada.,Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Canada
| | - Yongneng Zhang
- Department of Medicine University of Alberta Edmonton Canada.,Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Canada
| | - Aristeidis E Boukouris
- Department of Medicine University of Alberta Edmonton Canada.,Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Canada
| | - Maria Areli Lorenzana Carrillo
- Department of Medicine University of Alberta Edmonton Canada.,Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Canada
| | - Juan Jovel
- Department of Medicine University of Alberta Edmonton Canada
| | - Cory S Wagg
- Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Canada
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Canada
| | - Evangelos D Michelakis
- Department of Medicine University of Alberta Edmonton Canada.,Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Canada
| | - Gopinath Sutendra
- Department of Medicine University of Alberta Edmonton Canada.,Mazankowski Alberta Heart InstituteUniversity of Alberta Edmonton Canada.,Cancer Research Institute of Northern Alberta University of Alberta Edmonton Canada
| |
Collapse
|
44
|
Interaction with p53 explains a pro-proliferative function for VHL in cancer. J Mol Med (Berl) 2020; 98:1269-1278. [PMID: 32725274 DOI: 10.1007/s00109-020-01951-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/30/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
The von Hippel-Lindau (VHL) protein binds and degrades hypoxia-inducible factors (HIF) hydroxylated by prolyl-hydroxylases under normoxia. Although originally described as a tumor suppressor, there is growing evidence that VHL may paradoxically promote tumor growth. The significance of its described interactions with many other proteins remains unclear. We found that VHL interacts with p53, preventing its tetramerization, promoter binding and expression of its target genes p21, PUMA, and Bax. VHL limited the decrease in proliferation and increase in apoptosis caused by p53 activation, independent of prolyl-hydroxylation and HIF activity, and its presence in tumors caused a resistance to p53-inducing chemotherapy in vivo. We propose that VHL has both anti-tumor function, via HIF degradation, and a new pro-tumor function via p53 target (p21, PUMA, Bax) inhibition. Because p53 plays a critical role in tumor biology, is activated by many chemotherapies, and because VHL levels vary among different tumors and its function can even be lost by mutations in some tumors, our results have important clinical applications. KEY MESSAGES: VHL and p53 physically interact and VHL inhibits p53 activity by limiting the formation of p53 tetramers. VHL attenuates the expression of p53 target genes in response to p53 stimuli. The inhibition of p53 by VHL is independent of HIF and prolyl-hydroxylation.
Collapse
|
45
|
The Role of Antioxidants in Ameliorating Cyclophosphamide-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4965171. [PMID: 32454939 PMCID: PMC7238386 DOI: 10.1155/2020/4965171] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
The chemotherapeutic and immunosuppressive agent cyclophosphamide has previously been shown to induce complications within the setting of bone marrow transplantation. More recently, cardiotoxicity has been shown to be a dose-limiting factor during cyclophosphamide therapy, and cardiooncology is getting wider attention. Though mechanism of cyclophosphamide-induced cardiotoxicity is not completely understood, it is thought to encompass oxidative and nitrative stress. As such, this review focuses on antioxidants and their role in preventing or ameliorating cyclophosphamide-induced cardiotoxicity. It will give special emphasis to the cardioprotective effects of natural, plant-derived antioxidants that have garnered significant interest in recent times.
Collapse
|
46
|
Al Batran R, Gopal K, Capozzi ME, Chahade JJ, Saleme B, Tabatabaei-Dakhili SA, Greenwell AA, Niu J, Almutairi M, Byrne NJ, Masson G, Kim R, Eaton F, Mulvihill EE, Garneau L, Masters AR, Desta Z, Velázquez-Martínez CA, Aguer C, Crawford PA, Sutendra G, Campbell JE, Dyck JRB, Ussher JR. Pimozide Alleviates Hyperglycemia in Diet-Induced Obesity by Inhibiting Skeletal Muscle Ketone Oxidation. Cell Metab 2020; 31:909-919.e8. [PMID: 32275862 DOI: 10.1016/j.cmet.2020.03.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
Perturbations in carbohydrate, lipid, and protein metabolism contribute to obesity-induced type 2 diabetes (T2D), though whether alterations in ketone body metabolism influence T2D pathology is unknown. We report here that activity of the rate-limiting enzyme for ketone body oxidation, succinyl-CoA:3-ketoacid-CoA transferase (SCOT/Oxct1), is increased in muscles of obese mice. We also found that the diphenylbutylpiperidine pimozide, which is approved to suppress tics in individuals with Tourette syndrome, is a SCOT antagonist. Pimozide treatment reversed obesity-induced hyperglycemia in mice, which was phenocopied in mice with muscle-specific Oxct1/SCOT deficiency. These actions were dependent on pyruvate dehydrogenase (PDH/Pdha1) activity, the rate-limiting enzyme of glucose oxidation, as pimozide failed to alleviate hyperglycemia in obese mice with a muscle-specific Pdha1/PDH deficiency. This work defines a fundamental contribution of enhanced ketone body oxidation to the pathology of obesity-induced T2D, while suggesting pharmacological SCOT inhibition as a new class of anti-diabetes therapy.
Collapse
Affiliation(s)
- Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Jadin J Chahade
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Jingjing Niu
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Malak Almutairi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Nikole J Byrne
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Grant Masson
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Ryekjang Kim
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Léa Garneau
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; Institut du Savoir Montfort, Ottawa, ON, Canada
| | - Andrea R Masters
- Indiana University School of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Zeruesenay Desta
- Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | | | - Céline Aguer
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; Institut du Savoir Montfort, Ottawa, ON, Canada; School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Jason R B Dyck
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
47
|
Wan Z, Zhao L, Lu F, Gao X, Dong Y, Zhao Y, Wei M, Yang G, Xing C, Liu L. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Am J Cancer Res 2020; 10:218-230. [PMID: 31903116 PMCID: PMC6929612 DOI: 10.7150/thno.38198] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/02/2019] [Indexed: 01/04/2023] Open
Abstract
Rationale: Exosomes are emerging as a promising drug delivery carrier. However, rapid uptake of exosomes by the mononuclear phagocyte system (MPS) remains an obstacle for drug delivery into other targeted organs, including the heart. We hypothesized that prior blocking of uptake of exosomes by the MPS would improve their delivery to the targeted organs. Methods: Exosomes were isolated from the cell culture medium. Fluorescence-labeled exosomes were tracked in vitro and in vivo by fluorescence imaging. The expression of clathrin heavy chain (Cltc), cavolin1, Pak1 and Rhoa, known genes for endocytosis, were profiled in various cell lines and organs by qPCR. The knockdown efficiency of siRNA against Cltc was analyzed by Western blotting. Exosomecontrol and exosomeblocking were constructed by encapsulating isolated exosomes with siControl or siClathrin via electroporation, while exosometherapeutic was constructed by encapsulating isolated exosomes with miR-21a. Doxorubicin-induced cardiotoxicity model was used to verify the therapeutic efficiency of the exosome-based miR-21a delivery by echocardiography. Results: Exosomes were preferentially accumulated in the liver and spleen, mainly due to the presence of abundant macrophages. Besides the well-known phagocytic effect, efficient endocytosis also contributes to the uptake of exosomes by macrophages. Cltc was found to be highly expressed in the macrophages compared with other endocytosis-associated genes. Accordingly, knockdown of Cltc significantly decreased the uptake of exosomes by macrophages in vitro and in vivo. Moreover, prior injection of exosomeblocking strikingly improved the delivery efficiency of exosomes to organs other than spleen and liver. Consistently, compared with the direct injection of exosometherapeutic, prior injection of exosomeblocking produced a much better therapeutic effect on cardiac function in the doxorubicin-induced cardiotoxicity mouse model. Conclusions: Prior blocking of endocytosis of exosomes by macrophages with exosomeblocking successfully and efficiently improves the distribution of following exosometherapeutic in targeted organs, like the heart. The established two-step exosome delivery strategy (blocking the uptake of exosomes first followed by delivery of therapeutic exosomes) would be a promising method for gene therapy.
Collapse
|
48
|
Chen SL, Liu LL, Wang CH, Lu SX, Yang X, He YF, Zhang CZ, Yun JP. Loss of RDM1 enhances hepatocellular carcinoma progression via p53 and Ras/Raf/ERK pathways. Mol Oncol 2019; 14:373-386. [PMID: 31670863 PMCID: PMC6998392 DOI: 10.1002/1878-0261.12593] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), with its ineffective therapeutic options and poor prognosis, represents a global threat. In the present study, we show that RAD52 motif 1 (RDM1), a key regulator of DNA double‐strand break repair and recombination, is downregulated in HCC tissues and suppresses tumor growth. In clinical HCC samples, low expression of RDM1 correlates with larger tumor size, poor tumor differentiation, and unfavorable survival. In vitro and in vivo data demonstrate that knockdown of RDM1 increases HCC cell proliferation, colony formation, and cell population at G2/M phase, whereas RDM1 overexpression results in the opposite phenotypes. Mechanistically, RDM1 binds to the tumor suppressor p53 and enhances its protein stability. In the presence of p53, RDM1 suppresses the phosphorylation of Raf and ERK. Overexpression of p53 or treatment with ERK inhibitor significantly abolishes cell proliferation induced by the depletion of RDM1. In addition, overexpression of methyltransferase‐like 3 markedly induces N6‐methyladenosine modification of RDM1 mRNA and represses its expression. Taken together, our study indicates that RDM1 functions as a tumor suppressor and may be a potential prognostic and therapeutic factor for HCC.
Collapse
Affiliation(s)
- Shi-Lu Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chun-Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-Xun Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang-Fan He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chris Zhiyi Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
49
|
Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, Whelan J, Bettaieb A. Pyruvate kinase M2: A simple molecule with complex functions. Free Radic Biol Med 2019; 143:176-192. [PMID: 31401304 PMCID: PMC6848794 DOI: 10.1016/j.freeradbiomed.2019.08.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022]
Abstract
Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease.
Collapse
Affiliation(s)
- Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dexter L Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dina S Alani
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Amal S Humidat
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Victoria D Frankel
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Dallas R Donohoe
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Jay Whelan
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN, 37996-0840, USA; Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996-0840, USA.
| |
Collapse
|
50
|
Protective effect of taurine against doxorubicin-induced cardiotoxicity in rats: echocardiographical and histological findings. Amino Acids 2019; 51:1649-1655. [DOI: 10.1007/s00726-019-02801-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022]
|