1
|
Hagan NB, Inaku C, Kunder N, White T, Iraguha T, Meyer A, Pauken KE, Schenkel JM. In vivo antibody labeling route and fluorophore dictate labeling efficiency, sensitivity, and longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607414. [PMID: 39149319 PMCID: PMC11326299 DOI: 10.1101/2024.08.10.607414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Leukocytes migrate through the blood and extravasate into organs to surveil the host for infection or cancer. Recently, we demonstrated that intravenous (IV) anti-CD45.2 antibody labeling allowed for precise tracking of leukocyte migration. However, the narrow labeling window can make this approach challenging for tracking rare migration events. Here, we show that altering antibody administration route and fluorophore can significantly extend the antibody active labeling time. We found that while both IV and intraperitoneal (IP) anti-CD45.2 antibody labeled circulating leukocytes after injection, they had different kinetic properties that impacted labeling time and intensity. Quantification of circulating antibody revealed that while unbound IV anti-CD45.2 antibody rapidly decreased, unbound IP anti-CD45.2 antibody increased over one hour. Using in vitro and in vivo serial dilution assays, we found that Alexa Fluor 647 (AF647) and Brilliant Blue 700 (BB700) dyes had the greatest labeling sensitivity compared to other fluorophores. However, IP antibody injection with anti-CD45.2 BB700, but not AF647, resulted in continuous blood leukocyte labeling for over 6 hours. Finally, we leveraged IP anti-CD45.2 BB700 antibody to track slower migrating leukocytes into tumors. We found that IP anti-CD45.2 antibody injection allowed for the identification of ~seven times as many tumor-specific CD8+ T cells that had recently migrated from blood into tumors. Our results demonstrate how different injection routes and fluorophores affect anti-CD45.2 antibody leukocyte labeling and highlight the utility of this approach for defining leukocyte migration in the context of homeostasis and cancer.
Collapse
Affiliation(s)
- Natalie B. Hagan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Inaku
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nikesh Kunder
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tayleur White
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Thierry Iraguha
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna Meyer
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kristen E. Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jason M. Schenkel
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Shanahan SL, Kunder N, Inaku C, Hagan NB, Gibbons G, Mathey-Andrews N, Anandappa G, Soares S, Pauken KE, Jacks T, Schenkel JM. Longitudinal Intravascular Antibody Labeling Identified Regulatory T Cell Recruitment as a Therapeutic Target in a Mouse Model of Lung Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:906-918. [PMID: 39082930 PMCID: PMC11460633 DOI: 10.4049/jimmunol.2400268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024]
Abstract
Anticancer immunity is predicated on leukocyte migration into tumors. Once recruited, leukocytes undergo substantial reprogramming to adapt to the tumor microenvironment. A major challenge in the field is distinguishing recently recruited from resident leukocytes in tumors. In this study, we developed an intravascular Ab technique to label circulating mouse leukocytes before they migrate to tissues, providing unprecedented insight into the kinetics of recruitment. This approach unveiled the substantial role of leukocyte migration in tumor progression using a preclinical mouse model of lung adenocarcinoma. Regulatory T cells (Tregs), critical mediators of immunosuppression, were continuously and rapidly recruited into tumors throughout cancer progression. Moreover, leukocyte trafficking depended on the integrins CD11a/CD49d, and CD11a/CD49d blockade led to significant tumor burden reduction in mice. Importantly, preventing circulating Treg recruitment through depletion or sequestration in lymph nodes was sufficient to decrease tumor burden, indicating that Treg migration was crucial for suppressing antitumor immunity. These findings underscore the dynamic nature of the immune compartment within mouse lung tumors and demonstrate the relevance of a temporal map of leukocyte recruitment into tumors, thereby advancing our understanding of leukocyte migration in the context of tumor development.
Collapse
Affiliation(s)
- Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nikesh Kunder
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Inaku
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie B. Hagan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Grace Gibbons
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Nicolas Mathey-Andrews
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Gayathri Anandappa
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shawn Soares
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Kristen E. Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Jason M. Schenkel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
3
|
Han L, Sun X, Kong J, Li J, Feng K, Bai Y, Wang X, Zhu Z, Yang F, Chen Q, Zhang M, Yue B, Wang X, Fu L, Chen Y, Yang Q, Wang S, Xin Q, Sun N, Zhang D, Zhou Y, Gao Y, Zhao J, Jiang Y, Guo R. Multi-omics analysis reveals a feedback loop amplifying immune responses in acute graft-versus-host disease due to imbalanced gut microbiota and bile acid metabolism. J Transl Med 2024; 22:746. [PMID: 39113144 PMCID: PMC11308528 DOI: 10.1186/s12967-024-05577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Acute graft-versus-host disease (aGVHD) is primarily driven by allogeneic donor T cells associated with an altered composition of the host gut microbiome and its metabolites. The severity of aGVHD after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is not solely determined by the host and donor characteristics; however, the underlying mechanisms remain unclear. Using single-cell RNA sequencing, we decoded the immune cell atlas of 12 patients who underwent allo-HSCT: six with aGVHD and six with non-aGVHD. We performed a fecal microbiota (16SrRNA sequencing) analysis to investigate the fecal bacterial composition of 82 patients: 30 with aGVHD and 52 with non-aGVHD. Fecal samples from these patients were analyzed for bile acid metabolism. Through multi-omic analysis, we identified a feedback loop involving "immune cell-gut microbes-bile acid metabolites" contributing to heightened immune responses in patients with aGVHD. The dysbiosis of the gut microbiota and disruption of bile acid metabolism contributed to an exaggerated interleukin-1 mediated immune response. Our findings suggest that resistin and defensins are crucial in mitigating against aGVHD. Therefore, a comprehensive multi-omic atlas incorporating immune cells, gut microbes, and bile acid metabolites was developed in this study and used to propose novel, non-immunosuppressive approaches to prevent aGVHD.
Collapse
Affiliation(s)
- Lijie Han
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlei Sun
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Kong
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Li
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Feng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanliang Bai
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Xianjing Wang
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China
| | - Zhenhua Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengyuan Yang
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingzhou Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Zhang
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Baohong Yue
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoqian Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liyan Fu
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yaoyao Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiankun Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuya Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingxuan Xin
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Nannan Sun
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Danfeng Zhang
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiwei Zhou
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanxia Gao
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junwei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yong Jiang
- Henan Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine and Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rongqun Guo
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Bonnin E, Rodrigo Riestra M, Marziali F, Mena Osuna R, Denizeau J, Maurin M, Saez JJ, Jouve M, Bonté PE, Richer W, Nevo F, Lemoine S, Girard N, Lefevre M, Borcoman E, Vincent-Salomon A, Baulande S, Moreau HD, Sedlik C, Hivroz C, Lennon-Duménil AM, Tosello Boari J, Piaggio E. CD74 supports accumulation and function of regulatory T cells in tumors. Nat Commun 2024; 15:3749. [PMID: 38702311 PMCID: PMC11068745 DOI: 10.1038/s41467-024-47981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Regulatory T cells (Tregs) are plastic cells playing a pivotal role in the maintenance of immune homeostasis. Tregs actively adapt to the microenvironment where they reside; as a consequence, their molecular and functional profiles differ among tissues and pathologies. In tumors, the features acquired by Tregs remains poorly characterized. Here, we observe that human tumor-infiltrating Tregs selectively overexpress CD74, the MHC class II invariant chain. CD74 has been previously described as a regulator of antigen-presenting cell biology, however its function in Tregs remains unknown. CD74 genetic deletion in human primary Tregs reveals that CD74KO Tregs exhibit major defects in the organization of their actin cytoskeleton and intracellular organelles. Additionally, intratumoral CD74KO Tregs show a decreased activation, a drop in Foxp3 expression, a low accumulation in the tumor, and consistently, they are associated with accelerated tumor rejection in preclinical models in female mice. These observations are unique to tumor conditions as, at steady state, CD74KO-Treg phenotype, survival, and suppressive capacity are unaffected in vitro and in vivo. CD74 therefore emerges as a specific regulator of tumor-infiltrating Tregs and as a target to interfere with Treg anti-tumor activity.
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- Animals
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/immunology
- Histocompatibility Antigens Class II/metabolism
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/genetics
- Humans
- Female
- Mice
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Tumor Microenvironment/immunology
- Neoplasms/immunology
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
Collapse
Affiliation(s)
- Elisa Bonnin
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Maria Rodrigo Riestra
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Federico Marziali
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Rafael Mena Osuna
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Jordan Denizeau
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Mathieu Maurin
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Juan Jose Saez
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Mabel Jouve
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Pierre-Emmanuel Bonté
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Wilfrid Richer
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | | | | | - Nicolas Girard
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Paris Saclay University, UVSQ, Versailles, France
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
| | - Marine Lefevre
- Pathology Department, Institut Mutualiste Montsouris, Paris, France
| | - Edith Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Anne Vincent-Salomon
- Institut du Thorax Curie Montsouris, Institut Curie, Paris, France
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, PSL Research University, Institut Curie Research Center, Paris, France
| | - Helene D Moreau
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | - Christine Sedlik
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Claire Hivroz
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France
| | | | - Jimena Tosello Boari
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France.
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France.
| | - Eliane Piaggio
- INSERM U932 Immunity and Cancer, PSL University, Institut Curie Research Center, Paris, France.
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France.
- Egle Therapeutics, Paris, France.
| |
Collapse
|
5
|
Murakami M. Tissue-resident memory T cells: decoding intra-organ diversity with a gut perspective. Inflamm Regen 2024; 44:19. [PMID: 38632596 PMCID: PMC11022361 DOI: 10.1186/s41232-024-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tissue-resident memory T cells (TRM) serve as the frontline of host defense, playing a critical role in protection against invading pathogens. This emphasizes their role in providing rapid on-site immune responses across various organs. The physiological significance of TRM is not just confined to infection control; accumulating evidence has revealed that TRM also determine the pathology of diseases such as autoimmune disorders, inflammatory bowel disease, and cancer. Intensive studies on the origin, mechanisms of formation and maintenance, and physiological significance of TRM have elucidated the transcriptional and functional diversity of these cells, which are often affected by local cues associated with their presence. These were further confirmed by the recent remarkable advancements of next-generation sequencing and single-cell technologies, which allow the transcriptional and phenotypic characterization of each TRM subset induced in different microenvironments. This review first overviews the current knowledge of the cell fate, molecular features, transcriptional and metabolic regulation, and biological importance of TRM in health and disease. Finally, this article presents a variety of recent studies on disease-associated TRM, particularly focusing and elaborating on the TRM in the gut, which constitute the largest and most intricate immune network in the body, and their pathological relevance to gut inflammation in humans.
Collapse
Affiliation(s)
- Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Oravecz-Wilson K, Lauder E, Taylor A, Maneix L, Van Nostrand JL, Sun Y, Li L, Zhao D, Liu C, Reddy P. Autophagy differentially regulates tissue tolerance of distinct target organs in graft-versus-host disease models. J Clin Invest 2024; 134:e167369. [PMID: 38426503 PMCID: PMC10904048 DOI: 10.1172/jci167369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Tissue-intrinsic mechanisms that regulate severity of systemic pathogenic immune-mediated diseases, such as acute graft-versus-host disease (GVHD), remain poorly understood. Following allogeneic hematopoietic stem cell transplantation, autophagy, a cellular stress protective response, is induced in host nonhematopoietic cells. To systematically address the role of autophagy in various host nonhematopoietic tissues, both specific classical target organs of acute GVHD (intestines, liver, and skin) and organs conventionally not known to be targets of GVHD (kidneys and heart), we generated mice with organ-specific knockout of autophagy related 5 (ATG5) to specifically and exclusively inhibit autophagy in the specific organs. When compared with wild-type recipients, animals that lacked ATG5 in the gastrointestinal tract or liver showed significantly greater tissue injury and mortality, while autophagy deficiency in the skin, kidneys, or heart did not affect mortality. Treatment with the systemic autophagy inducer sirolimus only partially mitigated GVHD mortality in intestine-specific autophagy-deficient hosts. Deficiency of autophagy increased MHC class I on the target intestinal epithelial cells, resulting in greater susceptibility to damage by alloreactive T cells. Thus, autophagy is a critical cell-intrinsic protective response that promotes tissue tolerance and regulates GVHD severity.
Collapse
Affiliation(s)
- Katherine Oravecz-Wilson
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Emma Lauder
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| | - Austin Taylor
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
| | | | - Jeanine L. Van Nostrand
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yaping Sun
- Dan L. Duncan Comprehensive Cancer Center and
| | - Lu Li
- Dan L. Duncan Comprehensive Cancer Center and
| | | | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Pavan Reddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Rogel Cancer Center, Ann Arbor, Michigan, USA
- Dan L. Duncan Comprehensive Cancer Center and
| |
Collapse
|
7
|
Tong L, Meng Y, Zhang L, Yu J, Dou Y. The distribution of intestinal flora after hematopoietic stem cell transplantation in children. Pediatr Transplant 2024; 28:e14678. [PMID: 38148707 DOI: 10.1111/petr.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/07/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND This prospective study aimed to comprehensively understand the changes in intestinal flora at different stages after hematopoietic stem cell transplantation (HSCT) in pediatric patients and to analyze the effect of intestinal flora on acute graft versus host disease (aGVHD), especially on gastrointestinal graft versus host disease (GI GVHD). METHODS A total of 32 children with primary diseases of primary immunodeficiency disease (PID) and thalassemia were included. 16S sequencing was used to characterize the microbiota layout at three time points peri-transplant including pre-transplant, Day +3, and Day +30. RESULTS By comparing the intestinal flora of children with GI GVHD and those without GI GVHD, it suggests that in children with GI GVHD, the distribution of intestinal flora after transplantation was more variable and more chaotic (chao1 index, Friedman test, p = .029). Besides, Veillonella and Ruminococcaceae were more abundant before transplantation, Bifidobacteriaceae and Bacillales were more abundant after transplantation. Comparing children with PID and thalassemia, it was found that the destruction of gut microbiota diversity was more significant in children with thalassemia after transplantation. The comparison of children with 0-I° aGVHD and II-III° aGVHD indicates that children with II-III° aGVHD had more Bilophila before transplantation than children with 0-I° aGVHD. Additionally, exploratory analyses to evaluate correlations between clinical characteristics (medications, immune cell recovery, etc.) and microbiome features were also performed. CONCLUSIONS This study has synthetically shown the distribution of intestinal flora after allo-HSCT, and some characteristic bacteria at different stages that may serve as potential biomarkers were screened out additionally, perhaps providing clues for the prevention and treatment of the disease.
Collapse
Affiliation(s)
- Lin Tong
- Department of Hematology Oncology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Meng
- Department of Hematology Oncology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Luying Zhang
- Department of Hematology Oncology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yu
- Department of Hematology Oncology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Dou
- Department of Hematology Oncology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Wang Y, He S, Calendo G, Bui T, Tian Y, Lee CY, Zhou Y, Zhao X, Abraham C, Mo W, Chen M, Sanders-Braggs R, Madzo J, Issa JP, Hexner EO, Wiest DL, Reshef R, Xue HH, Zhang Y. Tissue-infiltrating alloreactive T cells require Id3 to deflect PD-1-mediated immune suppression during GVHD. Blood 2024; 143:166-177. [PMID: 37871574 PMCID: PMC10797551 DOI: 10.1182/blood.2023021126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023] Open
Abstract
ABSTRACT Persisting alloreactive donor T cells in target tissues are a determinant of graft-versus-host disease (GVHD), but the transcriptional regulators that control the persistence and function of tissue-infiltrating T cells remain elusive. We demonstrate here that Id3, a DNA-binding inhibitor, is critical for sustaining T-cell responses in GVHD target tissues in mice, including the liver and intestine. Id3 loss results in aberrantly expressed PD-1 in polyfunctional T helper 1 (Th1) cells, decreased tissue-infiltrating PD-1+ polyfunctional Th1 cell numbers, impaired maintenance of liver TCF-1+ progenitor-like T cells, and inhibition of GVHD. PD-1 blockade restores the capacity of Id3-ablated donor T cells to mediate GVHD. Single-cell RNA-sequencing analysis revealed that Id3 loss leads to significantly decreased CD28- and PI3K/AKT-signaling activity in tissue-infiltrating polyfunctional Th1 cells, an indicator of active PD-1/PD-L1 effects. Id3 is also required for protecting CD8+ T cells from the PD-1 pathway-mediated suppression during GVHD. Genome-wide RNA-sequencing analysis reveals that Id3 represses transcription factors (e.g., Nfatc2, Fos, Jun, Ets1, and Prdm1) that are critical for PD-1 transcription, exuberant effector differentiation, and interferon responses and dysfunction of activated T cells. Id3 achieves these effects by restraining the chromatin accessibility for these transcription factors. Id3 ablation in donor T cells preserved their graft vs tumor effects in mice undergoing allogeneic hematopoietic stem cell transplantation. Furthermore, CRISPR/Cas9 knockout of ID3 in human CD19-directed chimeric antigen receptor T cells retained their antitumor activity in NOD/SCID/IL2Rg-/- mice early after administration. These findings identify that ID3 is an important target to reduce GVHD, and the gene-editing program of ID3 may have broad implications in T-cell-based immunotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Shan He
- Fels Institute and Department of Cancer Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Tien Bui
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Yuanyuan Tian
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Che Young Lee
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Yan Zhou
- Fox Chase Cancer Center, Temple University, Philadelphia, PA
| | - Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Ciril Abraham
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
- Fels Institute and Department of Cancer Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Wenbin Mo
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Mimi Chen
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | | | - Jozef Madzo
- Coriell Institute for Medical Research, Camden, NJ
| | | | - Elizabeth O. Hexner
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David L. Wiest
- Fox Chase Cancer Center, Temple University, Philadelphia, PA
| | - Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
| | - Yi Zhang
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ
- Fels Institute and Department of Cancer Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
9
|
Frueh JT, Campe J, Sunaga-Franze DY, Verheyden NA, Ghimire S, Meedt E, Haslinger D, Harenkamp S, Staudenraus D, Sauer S, Kreft A, Schubert R, Lohoff M, Krueger A, Bonig H, Chiocchetti AG, Zeiser R, Holler E, Ullrich E. Interferon regulatory factor 4 plays a pivotal role in the development of aGVHD-associated colitis. Oncoimmunology 2023; 13:2296712. [PMID: 38170159 PMCID: PMC10761041 DOI: 10.1080/2162402x.2023.2296712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Interferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD.
Collapse
Affiliation(s)
- Jochen T. Frueh
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Julia Campe
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Daniele Yumi Sunaga-Franze
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
| | - Sakhila Ghimire
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Elisabeth Meedt
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Denise Haslinger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Sabine Harenkamp
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
| | | | - Sascha Sauer
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Andreas Kreft
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Ralf Schubert
- Department of Pediatric Medicine, Division of Pneumology, Allergology, Infectious diseaes und Gastroenterology. Frankfurt am Main, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael Lohoff
- Institute for Microbiology, Philipps University, Marburg, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Halvard Bonig
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ernst Holler
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Evelyn Ullrich
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ, University Hospital Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| |
Collapse
|
10
|
Pang N, Yu M, Xu J, Yuan H, Chen G, Wang D, Han C, Wang W, Ding J, Jiang M. The level of Tim-3+CD8+ T cells can serve as a potential marker for evaluating the severity of acute graft-versus-host disease after haplo-PBSCT. Braz J Med Biol Res 2023; 56:e12997. [PMID: 38126537 PMCID: PMC10729645 DOI: 10.1590/1414-431x2023e12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/29/2023] [Indexed: 12/23/2023] Open
Abstract
Early and accurate diagnosis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation is crucial for the prognosis of patients. This study identified a potential biomarker for the severity of aGVHD after human leukocyte antigen (HLA)-haploidentical peripheral blood hematopoietic stem cell transplantation (haplo-PBSCT). We included 20 healthy subjects and 57 patients who underwent haplo-PBSCT. Of these patients, 22 developed aGVHD after haplo-PBSCT. The results showed that patients with aGVHD had significantly increased levels of Tim-3+/Perforin+/Granzyme B+CD8+ T cells, but significantly decreased Galectin-9. The differences in Galectin-9 and Tim-3+/Granzyme B+CD8+ T cells between grade I-II aGVHD and III-IV aGVHD were also significant. In vitro, the apoptosis of CD8+ T cells from aGVHD patients was significantly increased after Tim-3/Galectin-9 pathway activation, which decreased Granzyme B secretion. As revealed by univariate analysis, the level of Tim-3+CD8+ T cells was a risk factor for severe aGVHD. ROC analysis demonstrated that high levels of Tim-3+CD8+ T cells had a significant diagnostic value for severe aGVHD, with an area under the curve of 0.854 and cut-off value of 14.155%. In conclusion, the binding of Tim-3 with exogenous Galectin-9 can promote apoptosis of CD8+ T cells and affect the secretion of Granzyme B. Tim-3+CD8+ T cells have the potential to serve as immunological markers for assessing the severity of aGVHD after haplo-PBSCT and identifying patients at a higher risk for severe aGVHD.
Collapse
Affiliation(s)
- Nannan Pang
- Department of Pathology, the First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Mingkai Yu
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jianli Xu
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Hailong Yuan
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Gang Chen
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Dong Wang
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Chunxia Han
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| | - Weiguo Wang
- Department of Urology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Jianbing Ding
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Ming Jiang
- Center of Hematology, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Research Institute of Hematology, Urumqi, China
| |
Collapse
|
11
|
Buxbaum NP, Socié G, Hill GR, MacDonald KPA, Tkachev V, Teshima T, Lee SJ, Ritz J, Sarantopoulos S, Luznik L, Zeng D, Paczesny S, Martin PJ, Pavletic SZ, Schultz KR, Blazar BR. Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD. Blood Adv 2023; 7:4886-4902. [PMID: 36322878 PMCID: PMC10463203 DOI: 10.1182/bloodadvances.2022007611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.
Collapse
Affiliation(s)
- Nataliya P. Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gerard Socié
- Hematology-Transplantation, Assistance Publique-Hopitaux de Paris & University of Paris – INSERM UMR 676, Hospital Saint Louis, Paris, France
| | - Geoffrey R. Hill
- Division of Medical Oncology, The University of Washington, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kelli P. A. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Stephanie J. Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Duke Cancer Institute, Durham, NC
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, Hematologic Maligancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Cancer Immunology Program, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneappolis, MN
| |
Collapse
|
12
|
Matthe DM, Dinkel M, Schmid B, Vogler T, Neurath MF, Poeck H, Neufert C, Büttner-Herold M, Hildner K. Novel T cell/organoid culture system allows ex vivo modeling of intestinal graft-versus-host disease. Front Immunol 2023; 14:1253514. [PMID: 37705975 PMCID: PMC10495981 DOI: 10.3389/fimmu.2023.1253514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Acute graft-versus-host disease (GvHD) remains the biggest clinical challenge and prognosis-determining complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Donor T cells are acceptedly key mediators of alloreactivity against host tissues and here especially the gut. In support of previous studies, we found that the intestinal intra-epithelial lymphocyte (IEL) compartment was dynamically regulated in the course of MHC class I full mismatch allo-HSCT. However, while intestinal epithelial cell (IEC) damage endangers the integrity of the intestinal barrier and is a core signature of intestinal GvHD, the question whether and to what degree IELs are contributing to IEC dysregulation is poorly understood. To study lymphoepithelial interaction, we employed a novel ex vivo T cell/organoid co-culture model system. Here, allogeneic intra-epithelial T cells were superior in inducing IEC death compared to syngeneic IEL and allogeneic non-IEL T cells. The ability to induce IEC death was predominately confined to TCRβ+ T cells and was executed in a largely IFNγ-dependent manner. Alloreactivity required a diverse T cell receptor (TCR) repertoire since IELs genetically modified to express a TCR restricted to a single, non-endogenous antigen failed to mediate IEC pathology. Interestingly, minor histocompatibility antigen (miHA) mismatch was sufficient to elicit IEL-driven IEC damage. Finally, advanced live cell imaging analyses uncovered that alloreactive IELs patrolled smaller areas within intestinal organoids compared to syngeneic controls, indicating their unique migratory properties within allogeneic IECs. Together, we provide here experimental evidence for the utility of a co-culture system to model the cellular and molecular characteristics of the crosstalk between IELs and IEC in an allogeneic setting ex vivo. In the light of the emerging concept of dysregulated immune-epithelial homeostasis as a core aspect of intestinal GvHD, this approach represents a novel experimental system to e.g. screen therapeutic strategies for their potential to normalize T cell/IEC- interaction. Hence, analyses in pre-clinical in vivo allo-HSCT model systems may be restricted to hereby positively selected, promising approaches.
Collapse
Affiliation(s)
- Diana M. Matthe
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Martin Dinkel
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen (OICE), University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tina Vogler
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Hendrik Poeck
- Clinic and Polyclinic for Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Clemens Neufert
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU) and University Hospital, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, Kussmaul Campus for Medical Research, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
13
|
DeWolf S, Elhanati Y, Nichols K, Waters NR, Nguyen CL, Slingerland JB, Rodriguez N, Lyudovyk O, Giardina PA, Kousa AI, Andrlová H, Ceglia N, Fei T, Kappagantula R, Li Y, Aleynick N, Baez P, Murali R, Hayashi A, Lee N, Gipson B, Rangesa M, Katsamakis Z, Dai A, Blouin AG, Arcila M, Masilionis I, Chaligne R, Ponce DM, Landau HJ, Politikos I, Tamari R, Hanash AM, Jenq RR, Giralt SA, Markey KA, Zhang Y, Perales MA, Socci ND, Greenbaum BD, Iacobuzio-Donahue CA, Hollmann TJ, van den Brink MR, Peled JU. Tissue-specific features of the T cell repertoire after allogeneic hematopoietic cell transplantation in human and mouse. Sci Transl Med 2023; 15:eabq0476. [PMID: 37494469 PMCID: PMC10758167 DOI: 10.1126/scitranslmed.abq0476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
T cells are the central drivers of many inflammatory diseases, but the repertoire of tissue-resident T cells at sites of pathology in human organs remains poorly understood. We examined the site-specificity of T cell receptor (TCR) repertoires across tissues (5 to 18 tissues per patient) in prospectively collected autopsies of patients with and without graft-versus-host disease (GVHD), a potentially lethal tissue-targeting complication of allogeneic hematopoietic cell transplantation, and in mouse models of GVHD. Anatomic similarity between tissues was a key determinant of TCR repertoire composition within patients, independent of disease or transplant status. The T cells recovered from peripheral blood and spleens in patients and mice captured a limited portion of the TCR repertoire detected in tissues. Whereas few T cell clones were shared across patients, motif-based clustering revealed shared repertoire signatures across patients in a tissue-specific fashion. T cells at disease sites had a tissue-resident phenotype and were of donor origin based on single-cell chimerism analysis. These data demonstrate the complex composition of T cell populations that persist in human tissues at the end stage of an inflammatory disorder after lymphocyte-directed therapy. These findings also underscore the importance of studying T cell in tissues rather than blood for tissue-based pathologies and suggest the tissue-specific nature of both the endogenous and posttransplant T cell landscape.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuval Elhanati
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Nichols
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas R. Waters
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chi L. Nguyen
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John B. Slingerland
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasia Rodriguez
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Olga Lyudovyk
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul A. Giardina
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anastasia I. Kousa
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hana Andrlová
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nick Ceglia
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajya Kappagantula
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyun Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathan Aleynick
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Priscilla Baez
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajmohan Murali
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akimasa Hayashi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Kyorin University, Mitaka City, Tokyo, Japan
| | - Nicole Lee
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brianna Gipson
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Madhumitha Rangesa
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zoe Katsamakis
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anqi Dai
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda G. Blouin
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Arcila
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ignas Masilionis
- Program for Computational and System Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligne
- Program for Computational and System Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doris M. Ponce
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Heather J. Landau
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Ioannis Politikos
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Roni Tamari
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Alan M. Hanash
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert R. Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergio A. Giralt
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Kate A. Markey
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Medical Oncology, University of Washington; Seattle, WA, USA
| | - Yanming Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Nicholas D. Socci
- Bioinformatics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D. Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Travis J. Hollmann
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Bristol Myers Squibb, Lawrenceville, NJ 08540
| | - Marcel R.M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
14
|
Hayase E, Jenq RR. New insights about immune populations in gastrointestinal GvHD. Cell Rep Med 2023; 4:101126. [PMID: 37467719 PMCID: PMC10394264 DOI: 10.1016/j.xcrm.2023.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Jarosch et al.1 have deeply characterized immune cell infiltrates in gastrointestinal (GI) biopsies from individuals with GI graft-versus-host disease (GI-GvHD) using single-cell RNA sequencing and ChipCytometry. Individuals with severe GI-GvHD demonstrated increased clonally expanded cytotoxic CD8 T cells in GI biopsies.
Collapse
Affiliation(s)
- Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Tkachev V, Vanderbeck A, Perkey E, Furlan SN, McGuckin C, Atria DG, Gerdemann U, Rui X, Lane J, Hunt DJ, Zheng H, Colonna L, Hoffman M, Yu A, Outen R, Kelly S, Allman A, Koch U, Radtke F, Ludewig B, Burbach B, Shimizu Y, Panoskaltsis-Mortari A, Chen G, Carpenter SM, Harari O, Kuhnert F, Thurston G, Blazar BR, Kean LS, Maillard I. Notch signaling drives intestinal graft-versus-host disease in mice and nonhuman primates. Sci Transl Med 2023; 15:eadd1175. [PMID: 37379368 PMCID: PMC10896076 DOI: 10.1126/scitranslmed.add1175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Notch signaling promotes T cell pathogenicity and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT) in mice, with a dominant role for the Delta-like Notch ligand DLL4. To assess whether Notch's effects are evolutionarily conserved and to identify the mechanisms of Notch signaling inhibition, we studied antibody-mediated DLL4 blockade in a nonhuman primate (NHP) model similar to human allo-HCT. Short-term DLL4 blockade improved posttransplant survival with durable protection from gastrointestinal GVHD in particular. Unlike prior immunosuppressive strategies tested in the NHP GVHD model, anti-DLL4 interfered with a T cell transcriptional program associated with intestinal infiltration. In cross-species investigations, Notch inhibition decreased surface abundance of the gut-homing integrin α4β7 in conventional T cells while preserving α4β7 in regulatory T cells, with findings suggesting increased β1 competition for α4 binding in conventional T cells. Secondary lymphoid organ fibroblastic reticular cells emerged as the critical cellular source of Delta-like Notch ligands for Notch-mediated up-regulation of α4β7 integrin in T cells after allo-HCT. Together, DLL4-Notch blockade decreased effector T cell infiltration into the gut, with increased regulatory to conventional T cell ratios early after allo-HCT. Our results identify a conserved, biologically unique, and targetable role of DLL4-Notch signaling in intestinal GVHD.
Collapse
Affiliation(s)
- Victor Tkachev
- Massachusetts General Hospital, Center for Transplantation Sciences, Boston, MA 02114
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Immunology Graduate Group and Veterinary Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric Perkey
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109
| | - Connor McGuckin
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Daniela Gómez Atria
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ulrike Gerdemann
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Xianliang Rui
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Jennifer Lane
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Daniel J. Hunt
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Hengqi Zheng
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Lucrezia Colonna
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Michelle Hoffman
- Clinical Research Division, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109
| | - Alison Yu
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, University of Washington, Seattle, WA 98101
| | - Riley Outen
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Samantha Kelly
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ute Koch
- EPFL, 1015 Lausanne, Switzerland
| | | | - Burkhard Ludewig
- Medical Research Center, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Brandon Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Angela Panoskaltsis-Mortari
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Guoying Chen
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591
| | | | | | | | | | - Bruce R. Blazar
- Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455
| | - Leslie S. Kean
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
16
|
Kubota N, Tanaka R, Ichimura Y, Konishi R, Tso JY, Tsurushita N, Nomura T, Okiyama N. Blockade of CD122 on memory T cells in the skin suppresses sclerodermatous graft-versus-host disease. J Dermatol Sci 2023; 109:127-135. [PMID: 36966029 DOI: 10.1016/j.jdermsci.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/05/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Antigen-stimulated naïve T cells differentiate into effector and memory T cells, of which resident memory T (TRM) cells reside permanently in organ tissues. Involvement of TRM cells has been indicated in pathological conditions of various skin diseases. CD122, which is the β chain subunit of interleukin (IL)- 2 and IL-15 receptors, is expressed on immune cells including TRM cells. OBJECTIVE To investigate whether CD122 signaling in skin CD8+ TRM cells mediates the development of mucocutaneous graft-versus-host disease (GVHD). METHODS We used a genetically modified mouse expressing a membrane-bound form of chicken ovalbumin (OVA) under the control of the keratin 14 promoter, which develops GVHD-like erosive mucocutaneous disease resulting in sclerodermatous disease after transfer of OVA-specific T cell-receptor-transgenic CD8+ OT-I cells. Mice with mucocutaneous GVHD were treated with an anti-CD122 blocking antibody. RESULTS Administration of an anti-CD122 blocking antibody suppresses the development of acute/chronic GVHD-like mucocutaneous disease in our murine model via the reduction of CD122-expressing memory CD8+ T cells, including skin, memory autoaggressive CD8+ T cells. Moreover, blockade of CD122, even after the establishment of acute GVHD, inhibited the development of chronic GVHD-like sclerodermatous disease via the reduction of epidermal and dermal TRM autoaggressive CD8+ T cells. CONCLUSION Skin memory CD8+ T cells in particular mediate the development of mucocutaneous GVHD, and blockade of CD122 may be an effective treatment strategy, especially for sclerodermatous GVHD.
Collapse
Affiliation(s)
- Noriko Kubota
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Japan
| | - Ryota Tanaka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Japan; Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Yuki Ichimura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Japan; Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Risa Konishi
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Japan; Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | | | | | - Toshifumi Nomura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Japan
| | - Naoko Okiyama
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
17
|
Wang R, Wu D, Dai J, Shen J, Rong J, Chen Z, Jiao Y, Qi X. USP11 plays a critical role in the onset and progression of acute graft-versus-host disease:Novel target for precision therapeutics. Pharmacol Res 2023; 189:106707. [PMID: 36822452 DOI: 10.1016/j.phrs.2023.106707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Acute graft-versus-host disease (aGvHD) is considered a result of "cytokine storm." Targeted therapeutic interventions on cytokines via ubiquitination regulatory pathways may provide a potential approach for aGvHD treatment. Ubiquitin-specific peptidase 11 (USP11) has been reported to play key roles in a variety of physiopathological processes by regulating the stability and function of several vital protein molecules. However, its role in aGvHD remains unclear. In this study, we identified USP11 was associated with aGvHD in patients. In the aGvHD mouse model, the colon and liver were more seriously affected in recipient mice who received USP11 wt bone marrow (BM) cells and eased after the donor was treated with a USP11 inhibitor or received USP11 ko BM cells. In mouse models, IL-6 was identified as a major effecter in accelerating aGvHD induced by USP11. In the cell model, IL-6 mRNA transcript was affected by USP11. In addition, USP11 also inhibited IL-6 degradation by affecting IL-6 ubiquitination. Furthermore, the positive correlation between USP11 and IL-6 was confirmed in the GvHD patients' samples. Collectively, all results indicated that USP11 played a critical role in the onset and progression of aGvHD. USP11 might be a potential target for aGvHD treatment.
Collapse
Affiliation(s)
- Rongrong Wang
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Suzhou 215006, P R China; Institute of Blood and Marrow Transplantation, Suzhou 215006, PR China; Cyrus Tang Hematology Center, Soochow University, Suzhou 215006, PR China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215000, PR China
| | - Depei Wu
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Suzhou 215006, P R China; Institute of Blood and Marrow Transplantation, Suzhou 215006, PR China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215000, PR China
| | - Jianfeng Dai
- Institutes of Biology and Medical Science, Soochow University, Suzhou 215000, PR China
| | - Jiaqi Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Suzhou 215006, P R China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215000, PR China
| | - Jianjie Rong
- Department of Vascular Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, PR China
| | - Zixing Chen
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Suzhou 215006, P R China; Institute of Blood and Marrow Transplantation, Suzhou 215006, PR China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215000, PR China.
| | - Xiaofei Qi
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou 215006, PR China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Collaborative Innovation Center of Hematology, Suzhou 215006, P R China; Institute of Blood and Marrow Transplantation, Suzhou 215006, PR China; Cyrus Tang Hematology Center, Soochow University, Suzhou 215006, PR China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215000, PR China; Departments of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215006, PR China.
| |
Collapse
|
18
|
Sacirbegovic F, Günther M, Greco A, Zhao D, Wang X, Zhou M, Rosenberger S, Oberbarnscheidt MH, Held W, McNiff J, Jain D, Höfer T, Shlomchik WD. Graft-versus-host disease is locally maintained in target tissues by resident progenitor-like T cells. Immunity 2023; 56:369-385.e6. [PMID: 36720219 PMCID: PMC10182785 DOI: 10.1016/j.immuni.2023.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023]
Abstract
In allogeneic hematopoietic stem cell transplantation, donor αβ T cells attack recipient tissues, causing graft-versus-host disease (GVHD), a major cause of morbidity and mortality. A central question has been how GVHD is sustained despite T cell exhaustion from chronic antigen stimulation. The current model for GVHD holds that disease is maintained through the continued recruitment of alloreactive effectors from blood into affected tissues. Here, we show, using multiple approaches including parabiosis of mice with GVHD, that GVHD is instead primarily maintained locally within diseased tissues. By tracking 1,203 alloreactive T cell clones, we fitted a mathematical model predicting that within each tissue a small number of progenitor T cells maintain a larger effector pool. Consistent with this, we identified a tissue-resident TCF-1+ subpopulation that preferentially engrafted, expanded, and differentiated into effectors upon adoptive transfer. These results suggest that therapies targeting affected tissues and progenitor T cells within them would be effective.
Collapse
Affiliation(s)
- Faruk Sacirbegovic
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthias Günther
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Alessandro Greco
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Daqiang Zhao
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xi Wang
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Meng Zhou
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Rosenberger
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin H Oberbarnscheidt
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Werner Held
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Jennifer McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany; BioQuant Center, University of Heidelberg, Heidelberg, Germany.
| | - Warren D Shlomchik
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Bojanic I, Worel N, Pacini CP, Stary G, Piekarska A, Flinn AM, Schell KJ, Gennery AR, Knobler R, Lacerda JF, Greinix HT, Pulanic D, Crossland RE. Extracorporeal photopheresis as an immunomodulatory treatment modality for chronic GvHD and the importance of emerging biomarkers. Front Immunol 2023; 14:1086006. [PMID: 36875063 PMCID: PMC9981637 DOI: 10.3389/fimmu.2023.1086006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Haematopoietic stem cell transplantation (HSCT) is the treatment of choice for malignant haematological diseases. Despite continuous improvements in pre- and post-transplantation procedures, the applicability of allo-HSCT is limited by life-threatening complications such as graft-versus-host disease (GvHD), engraftment failure, and opportunistic infections. Extracorporeal photopheresis (ECP) is used to treat steroid resistant GvHD with significant success. However, the molecular mechanisms driving its immunomodulatory action, whilst preserving immune function, require further understanding. As ECP is safe to administer with few significant adverse effects, it has the potential for earlier use in the post-HSCT treatment of GvHD. Thus, further understanding the immunomodulatory mechanisms of ECP action may justify more timely use in clinical practice, as well as identify biomarkers for using ECP as first line or pre-emptive GvHD therapy. This review aims to discuss technical aspects and response to ECP, review ECP as an immunomodulatory treatment modality for chronic GvHD including the effect on regulatory T cells and circulating vs. tissue-resident immune cells and consider the importance of emerging biomarkers for ECP response.
Collapse
Affiliation(s)
- Ines Bojanic
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nina Worel
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Carolina P Pacini
- Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Agnieszka Piekarska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Aisling M Flinn
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kimberly J Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Robert Knobler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - João F Lacerda
- Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | | | - Drazen Pulanic
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Rachel E Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
Socie G, Michonneau D. Milestones in acute GVHD pathophysiology. Front Immunol 2022; 13:1079708. [PMID: 36544776 PMCID: PMC9760667 DOI: 10.3389/fimmu.2022.1079708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
In the past 65 years, over 25 000 referenced articles have been published on graft-versus-host disease (GVHD). Although this included clinically orientated papers or publications on chronic GVHD, the conservative estimate of scientific publications still contains several thousands of documents on the pathophysiology of acute GVHD. Thus, summarizing what we believe are prominent publications that can be considered milestones in our knowledge of this disease is a challenging and inherently biased task. Here we review from a historical perspective what can be regarded as publications that have made the field move forward. We also included several references of reviews on aspects we could not cover in detail.
Collapse
Affiliation(s)
- Gerard Socie
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| | - David Michonneau
- Université Paris Cité, Paris, France
- APHP, Hématologie Greffe, Hôpital Saint Louis, Paris, France
- INSERM UMR 976, Hôpital Saint Louis, Paris, France
| |
Collapse
|
21
|
Wienke J, Veldkamp SR, Struijf EM, Yousef Yengej FA, van der Wal MM, van Royen-Kerkhof A, van Wijk F. T cell interaction with activated endothelial cells primes for tissue-residency. Front Immunol 2022; 13:827786. [PMID: 36172363 PMCID: PMC9510578 DOI: 10.3389/fimmu.2022.827786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Tissue-resident memory T cells (TRM) are suspected drivers of chronic inflammation, but their induction remains unclear. Since endothelial cells (EC) are obligate interaction partners for T cells trafficking into inflamed tissues, they may play a role in TRM development. Here, we used an in vitro co-culture system of human cytokine-activated EC and FACS-sorted T cells to study the effect of EC on T(RM) cell differentiation. T cell phenotypes were assessed by flow cytometry, including proliferation measured by CellTrace Violet dilution assay. Soluble mediators were analyzed by multiplex immunoassay. Co-culture of T cells with cytokine-activated, but not resting EC induced CD69 expression without activation (CD25, Ki67) or proliferation. The dynamic of CD69 expression induced by EC was distinct from that induced by TCR triggering, with rapid induction and stable expression over 7 days. CD69 induction by activated EC was higher in memory than naive T cells, and most pronounced in CD8+ effector memory T cells. Early CD69 induction was mostly mediated by IL-15, whereas later effects were also mediated by interactions with ICAM-1 and/or VCAM-1. CD69+ T cells displayed a phenotype associated with tissue-residency, with increased CD49a, CD103, CXCR6, PD-1 and CD57 expression, and decreased CD62L and S1PR1. EC-induced CD69+ T cells were poised for high production of pro-inflammatory cytokines and showed increased expression of T-helper 1 transcription factor T-bet. Our findings demonstrate that activated EC can induce functional specialization in T cells with sustained CD69 expression, increased cytokine response and a phenotypic profile reminiscent of TRM. Interaction with activated EC during transmigration into (inflamed) tissues thus contributes to TRM-residency priming.
Collapse
Affiliation(s)
- Judith Wienke
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Saskia R. Veldkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva M. Struijf
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Fjodor A. Yousef Yengej
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - M. Marlot van der Wal
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annet van Royen-Kerkhof
- Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- *Correspondence: Femke van Wijk,
| |
Collapse
|
22
|
Wang Y, Song W, Yu S, Liu Y, Chen YG. Intestinal cellular heterogeneity and disease development revealed by single-cell technology. CELL REGENERATION 2022; 11:26. [PMID: 36045190 PMCID: PMC9433512 DOI: 10.1186/s13619-022-00127-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022]
Abstract
The intestinal epithelium is responsible for food digestion and nutrient absorption and plays a critical role in hormone secretion, microorganism defense, and immune response. These functions depend on the integral single-layered intestinal epithelium, which shows diversified cell constitution and rapid self-renewal and presents powerful regeneration plasticity after injury. Derailment of homeostasis of the intestine epithelium leads to the development of diseases, most commonly including enteritis and colorectal cancer. Therefore, it is important to understand the cellular characterization of the intestinal epithelium at the molecular level and the mechanisms underlying its homeostatic maintenance. Single-cell technologies allow us to gain molecular insights at the single-cell level. In this review, we summarize the single-cell RNA sequencing applications to understand intestinal cell characteristics, spatiotemporal evolution, and intestinal disease development.
Collapse
|
23
|
Lyu Y, Zhou Y, Shen J. An Overview of Tissue-Resident Memory T Cells in the Intestine: From Physiological Functions to Pathological Mechanisms. Front Immunol 2022; 13:912393. [PMID: 35711464 PMCID: PMC9192946 DOI: 10.3389/fimmu.2022.912393] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/02/2022] [Indexed: 01/03/2023] Open
Abstract
The human intestine contains a complex network of innate and adaptive immune cells that provide protective immunity. The dysfunction of this network may cause various chronic diseases. A large number of T cells in the human intestine have been identified as tissue-resident memory T cells (TRM). TRM are present in the peripheral tissues, and they do not recirculate through the blood. It is known that TRM provide rapid immune responses at the frontline of pathogen invasion. Recent evidence also suggests that these cells play a role in tumor surveillance and the pathogenesis of autoimmune diseases. In this review, we discuss the general features of intestinal TRM together with their role in intestinal infection, colorectal cancer (CRC), and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
| | | | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Abdeljaoued S, Arfa S, Kroemer M, Ben Khelil M, Vienot A, Heyd B, Loyon R, Doussot A, Borg C. Tissue-resident memory T cells in gastrointestinal cancer immunology and immunotherapy: ready for prime time? J Immunother Cancer 2022; 10:jitc-2021-003472. [PMID: 35470231 PMCID: PMC9039405 DOI: 10.1136/jitc-2021-003472] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Tissue-resident memory T (TRM) cells have emerged as immune sentinels that patrol the tissue microenvironment and orchestrate localized antitumor immunity in various solid cancers. Recent studies have revealed that TRM cells are key players in cancer immunosurveillance, and their involvement has been linked to favorable responses to immunotherapy as well as general better clinical outcome in cancer patients. In this review, we provide an overview of the major advances and recent findings regarding TRM cells phenotype, transcriptional and epigenetic regulation in cancer with a special focus on gastrointestinal tumors. Finally, we highlight the exciting clinical implication of TRM cells in these types of tumors.
Collapse
Affiliation(s)
- Syrine Abdeljaoued
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France .,Clinical Investigational Center, CIC-1431, Besançon, France
| | - Sara Arfa
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Marie Kroemer
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Clinical Investigational Center, CIC-1431, Besançon, France.,Department of Pharmacy, University Hospital of Besançon, Besançon, France
| | - Myriam Ben Khelil
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France
| | - Angélique Vienot
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Bruno Heyd
- Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Romain Loyon
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France
| | - Alexandre Doussot
- Department of Digestive and Oncologic Surgery, Liver Transplantation Unit, University Hospital of Besançon, Besançon, France
| | - Christophe Borg
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, University of Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Besançon, France.,Clinical Investigational Center, CIC-1431, Besançon, France.,Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| |
Collapse
|
25
|
Gerdemann U, Fleming RA, Kaminski J, McGuckin C, Rui X, Lane JF, Keskula P, Cagnin L, Shalek AK, Tkachev V, Kean LS. Identification and Tracking of Alloreactive T Cell Clones in Rhesus Macaques Through the RM-scTCR-Seq Platform. Front Immunol 2022; 12:804932. [PMID: 35154078 PMCID: PMC8825351 DOI: 10.3389/fimmu.2021.804932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023] Open
Abstract
T cell receptor (TCR) clonotype tracking is a powerful tool for interrogating T cell mediated immune processes. New methods to pair a single cell's transcriptional program with its TCR identity allow monitoring of T cell clonotype-specific transcriptional dynamics. While these technologies have been available for human and mouse T cells studies, they have not been developed for Rhesus Macaques (RM), a critical translational organism for autoimmune diseases, vaccine development and transplantation. We describe a new pipeline, 'RM-scTCR-Seq', which, for the first time, enables RM specific single cell TCR amplification, reconstruction and pairing of RM TCR's with their transcriptional profiles. We apply this method to a RM model of GVHD, and identify and track in vitro detected alloreactive clonotypes in GVHD target organs and explore their GVHD driven cytotoxic T cell signature. This novel, state-of-the-art platform fundamentally advances the utility of RM to study protective and pathogenic T cell responses.
Collapse
Affiliation(s)
- Ulrike Gerdemann
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Ryan A Fleming
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - James Kaminski
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States.,Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Chemistry, Institute for Medical Engineering and Science (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States.,Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Cambridge, MA, United States
| | - Connor McGuckin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Xianliang Rui
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Jennifer F Lane
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Paula Keskula
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Lorenzo Cagnin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Chemistry, Institute for Medical Engineering and Science (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States.,Ragon Institute of Massachusetts General Hospital (MGH), MIT and Harvard, Cambridge, MA, United States
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital; Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Mortlock RD, Wu C, Potter EL, Abraham DM, Allan DSJ, Hong SG, Roederer M, Dunbar CE. Tissue Trafficking Kinetics of Rhesus Macaque Natural Killer Cells Measured by Serial Intravascular Staining. Front Immunol 2022; 12:772332. [PMID: 35095846 PMCID: PMC8790741 DOI: 10.3389/fimmu.2021.772332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
The in vivo tissue distribution and trafficking patterns of natural killer (NK) cells remain understudied. Animal models can help bridge the gap, and rhesus macaque (RM) primates faithfully recapitulate key elements of human NK cell biology. Here, we profiled the tissue distribution and localization patterns of three NK cell subsets across various RM tissues. We utilized serial intravascular staining (SIVS) to investigate the tissue trafficking kinetics at steady state and during recovery from CD16 depletion. We found that at steady state, CD16+ NK cells were selectively retained in the vasculature while CD56+ NK cells had a shorter residence time in peripheral blood. We also found that different subsets of NK cells had distinct trafficking kinetics to and from the lymph node as well as other lymphoid and non-lymphoid tissues. Lastly, we found that following administration of CD16-depleting antibody, CD16+ NK cells and their putative precursors retained a high proportion of continuously circulating cells, suggesting that regeneration of the CD16 NK compartment may take place in peripheral blood or the perivascular compartments of tissues.
Collapse
Affiliation(s)
- Ryland D Mortlock
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - E Lake Potter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Diana M Abraham
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - David S J Allan
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
27
|
Song Q, Nasri U, Zeng D. Steroid-Refractory Gut Graft-Versus-Host Disease: What We Have Learned From Basic Immunology and Experimental Mouse Model. Front Immunol 2022; 13:844271. [PMID: 35251043 PMCID: PMC8894323 DOI: 10.3389/fimmu.2022.844271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal graft-versus-host disease (Gut-GVHD) is one of the major causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). While systemic glucocorticoids (GCs) comprise the first-line treatment option, the response rate for GCs varies from 30% to 50%. The prognosis for patients with steroid-refractory acute Gut-GVHD (SR-Gut-aGVHD) remains dismal. The mechanisms underlying steroid resistance are unclear, and apart from ruxolitinib, there are no approved treatments for SR-Gut-aGVHD. In this review, we provide an overview of the current biological understanding of experimental SR-Gut-aGVHD pathogenesis, the advanced technology that can be applied to the human SR-Gut-aGVHD studies, and the potential novel therapeutic options for patients with SR-Gut-aGVHD.
Collapse
Affiliation(s)
- Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Qingxiao Song,
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
28
|
Lange J, Rivera-Ballesteros O, Buggert M. Human mucosal tissue-resident memory T cells in health and disease. Mucosal Immunol 2022; 15:389-397. [PMID: 34743182 PMCID: PMC8571012 DOI: 10.1038/s41385-021-00467-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023]
Abstract
Memory T cells are fundamental to maintain immune surveillance of the human body. During the past decade, it has become apparent that non-recirculating resident memory T cells (TRMs) form a first line memory response in tissues to tackle re-infections. The fact that TRMs are essential for local immunity highlights the therapeutic potential of targeting this population against tumors and infections. However, similar to other immune subsets, TRMs are heterogenous and may form distinct effector populations with unique functions at diverse tissue sites. Further insight into the mechanisms of how TRM function and respond to pathogens and malignancies at different mucosal sites will help to shape future vaccine and immunotherapeutic approaches. Here, we review the current understanding of TRM function and biology at four major mucosal sites: gastrointestinal tract, lung, head and neck, as well as female reproductive tract. We also summarize our current knowledge of how TRM targets invading pathogens and developing tumor cells at these mucosal sites and contemplate how TRMs may be exploited to protect from infections and cancer.
Collapse
Affiliation(s)
- Joshua Lange
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- grid.4714.60000 0004 1937 0626Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Rayasam A, Drobyski WR. Translational Clinical Strategies for the Prevention of Gastrointestinal Tract Graft Versus Host Disease. Front Immunol 2021; 12:779076. [PMID: 34899738 PMCID: PMC8662938 DOI: 10.3389/fimmu.2021.779076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
Graft versus host disease (GVHD) is the major non-relapse complication associated with allogeneic hematopoietic stem cell transplantation (HSCT). Unfortunately, GVHD occurs in roughly half of patients following this therapy and can induce severe life-threatening side effects and premature mortality. The pathophysiology of GVHD is driven by alloreactive donor T cells that induce a proinflammatory environment to cause pathological damage in the skin, gastrointestinal (GI) tract, lung, and liver during the acute phase of this disease. Recent work has demonstrated that the GI tract is a pivotal target organ and a primary driver of morbidity and mortality in patients. Prevention of this complication has therefore emerged as an important goal of prophylaxis strategies given the primacy of this tissue site in GVHD pathophysiology. In this review, we summarize foundational pre-clinical studies that have been conducted in animal models to prevent GI tract GVHD and examine the efficacy of these approaches upon subsequent translation into the clinic. Specifically, we focus on therapies designed to block inflammatory cytokine pathways, inhibit cellular trafficking of alloreactive donor T cells to the GI tract, and reconstitute impaired regulatory networks for the prevention of GVHD in the GI tract.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - William R Drobyski
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Bone Marrow Transplant Program, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
30
|
Zhang W, Yan C, Zhang T, Chen X, Dong J, Zhao J, Han D, Wang J, Zhao G, Cao F, Zhou D, Jiang H, Tang P, Zhao L, Yuan Z, Wang Q, Wang P, Pang Q. Addition of camrelizumab to docetaxel, cisplatin, and radiation therapy in patients with locally advanced esophageal squamous cell carcinoma: a phase 1b study. Oncoimmunology 2021; 10:1971418. [PMID: 34616588 PMCID: PMC8489938 DOI: 10.1080/2162402x.2021.1971418] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Patients with locally advanced esophageal squamous cell carcinoma (ESCC) show poor survival after concurrent chemoradiotherapy. This study investigated the safety and feasibility of combining concurrent chemoradiotherapy with the anti-PD-1 antibody camrelizumab as first-line treatment for these patients. In this phase 1b study (ClinicalTrials.gov NCT03671265), patients received concurrent chemotherapy (cisplatin [25 mg/m2] plus docetaxel [25 mg/m2] for 4 weeks) and radiotherapy (2.0 Gy/fraction, total 60 Gy) with camrelizumab (200 mg every 2 weeks for 32 weeks). Primary endpoints were safety and tolerability, and health-related quality of life. Secondary endpoints were radiological and pathological response rates, overall survival (OS), and progression-free survival (PFS). Candidate biomarkers in tumor and peripheral blood were monitored at baseline and after 40 Gy radiation. Twenty patients were enrolled. The most common treatment-related grade 3 adverse events included radiation esophagitis (20%) and esophageal fistula (10%). Serious treatment-related adverse events occurred in eight (40%) patients. No treatment-related deaths were reported. Health-related quality of life did not deteriorate. Thirteen (65%) patients had an objective response after 40 Gy radiation. At a median follow-up of 23.7 months (95% CI 21.9–24.5), OS and PFS time ranged from 8.2–28.5 and 4.0–28.5 months, respectively. The 12-month and 24-month OS rate was 85.0% and 69.6%; PFS rate was 80.0% and 65.0%. Tumor PD-L1 expression and CD11c+ dendritic cells and peripheral-blood IL-27, IL-15, Eotaxin-3, and IL-22 were associated with OS. First-line concurrent chemoradiotherapy plus camrelizumab had a manageable safety profile and promising antitumour efficacy for ESCC, and deserves further study.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tian Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Dong
- Department of Nutrition Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingjing Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong Han
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jun Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Hebei Clinical Research Center for Radiation Oncology, Shijiazhuang, China
| | - Gang Zhao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fuliang Cao
- Department of Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dejun Zhou
- Department of Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hongjing Jiang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Quanren Wang
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Lianyungang, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
31
|
Jiang H, Fu D, Bidgoli A, Paczesny S. T Cell Subsets in Graft Versus Host Disease and Graft Versus Tumor. Front Immunol 2021; 12:761448. [PMID: 34675938 PMCID: PMC8525316 DOI: 10.3389/fimmu.2021.761448] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an essential therapeutic modality for patients with hematological malignancies and other blood disorders. Unfortunately, acute graft-versus-host disease (aGVHD) remains a major source of morbidity and mortality following allo-HCT, which limits its use in a broader spectrum of patients. Chronic graft-versus-host disease (cGVHD) also remains the most common long-term complication of allo-HCT, occurring in reportedly 30-70% of patients surviving more than 100 days. Chronic GVHD is also the leading cause of non-relapse mortality (NRM) occurring more than 2 years after HCT for malignant disease. Graft versus tumor (GVT) is a major component of the overall beneficial effects of allogeneic HCT in the treatment of hematological malignancies. Better understanding of GVHD pathogenesis is important to identify new therapeutic targets for GVHD prevention and therapy. Emerging data suggest opposing roles for different T cell subsets, e.g., IFN-γ producing CD4+ and CD8+ T cells (Th1 and Tc1), IL-4 producing T cells (Th2 and Tc2), IL-17 producing T cells (Th17 and Tc17), IL-9 producing T cells (Th9 and Tc9), IL-22 producing T cells (Th22), T follicular helper cells (Tfh), regulatory T-cells (Treg) and tissue resident memory T cells (Trm) in GVHD and GVT etiology. In this review, we first summarize the general description of the cytokine signals that promote the differentiation of T cell subsets and the roles of these T cell subsets in the pathogenesis of GVHD. Next, we extensively explore preclinical findings of T cell subsets in both GVHD/GVT animal models and humans. Finally, we address recent findings about the roles of T-cell subsets in clinical GVHD and current strategies to modulate T-cell differentiation for treating and preventing GVHD in patients. Further exploring and outlining the immune biology of T-cell differentiation in GVHD that will provide more therapeutic options for maintaining success of allo-HCT.
Collapse
Affiliation(s)
| | | | | | - Sophie Paczesny
- Department of Microbiology and Immunology and Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
32
|
Hess NJ, Brown ME, Capitini CM. GVHD Pathogenesis, Prevention and Treatment: Lessons From Humanized Mouse Transplant Models. Front Immunol 2021; 12:723544. [PMID: 34394131 PMCID: PMC8358790 DOI: 10.3389/fimmu.2021.723544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 01/14/2023] Open
Abstract
Graft-vs-host disease (GVHD) is the most common cause of non-relapse mortality following allogeneic hematopoietic stem cell transplantation (HSCT) despite advances in conditioning regimens, HLA genotyping and immune suppression. While murine studies have yielded important insights into the cellular responses of GVHD, differences between murine and human biology has hindered the translation of novel therapies into the clinic. Recently, the field has expanded the ability to investigate primary human T cell responses through the transplantation of human T cells into immunodeficient mice. These xenogeneic HSCT models benefit from the human T cell receptors, CD4 and CD8 proteins having cross-reactivity to murine MHC in addition to several cytokines and co-stimulatory proteins. This has allowed for the direct assessment of key factors in GVHD pathogenesis to be investigated prior to entering clinical trials. In this review, we will summarize the current state of clinical GVHD research and discuss how xenogeneic HSCT models will aid in advancing the current pipeline of novel GVHD prophylaxis therapies into the clinic.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
33
|
Potter EL, Gideon HP, Tkachev V, Fabozzi G, Chassiakos A, Petrovas C, Darrah PA, Lin PL, Foulds KE, Kean LS, Flynn JL, Roederer M. Measurement of leukocyte trafficking kinetics in macaques by serial intravascular staining. Sci Transl Med 2021; 13:13/576/eabb4582. [PMID: 33441427 DOI: 10.1126/scitranslmed.abb4582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/06/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
Leukocyte trafficking enables detection of pathogens, immune responses, and immune memory. Dysregulation of leukocyte trafficking is often found in disease, highlighting its important role in homeostasis and the immune response. Whereas some of the molecular mechanisms mediating leukocyte trafficking are understood, little is known about the regulation of trafficking, including trafficking kinetics and its impact on immune homeostasis. We developed a method of serial intravascular staining (SIVS) to measure trafficking kinetics in nonhuman primates using infusions of fluorescently labeled antibodies to label circulating leukocytes. Because antibody infusions labeled only leukocytes in the blood, cells were "barcoded" according to their location at the time of each infusion, providing positional histories that could be used to infer trafficking kinetics. We used SIVS and multiparameter flow cytometry to quantitate cellular trafficking into lymphoid tissues of healthy animals at homeostasis and to identify perivascular cells that could be unique to nonlymphoid organs. To investigate how these parameters could be influenced during disease, SIVS was used to quantify lymphocyte trafficking in macaques infected with the bacterial pathogen Mycobacterium tuberculosis and to enumerate intravascular leukocytes in lung granulomas. We showed that whereas most cells in lung granulomas were localized there for more than 24 hours, granulomas were dynamic with a slow continual cellular influx, the rate of which predicted clearance of M. tuberculosis from the granulomas. SIVS, in combination with intracellular staining and multiparametric flow cytometry, is a powerful method to quantify the kinetics of leukocyte trafficking in nonhuman primates in vivo.
Collapse
Affiliation(s)
- E Lake Potter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hannah P Gideon
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Victor Tkachev
- Boston Children's Hospital, Division of Hematology/Oncology, Boston, MA 02115, USA.,Dana-Farber Cancer Institute, Department of Pediatric Oncology and Harvard Medical School, Boston, MA 02215, USA
| | - Giulia Fabozzi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander Chassiakos
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philana Ling Lin
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leslie S Kean
- Boston Children's Hospital, Division of Hematology/Oncology, Boston, MA 02115, USA.,Dana-Farber Cancer Institute, Department of Pediatric Oncology and Harvard Medical School, Boston, MA 02215, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Lutter L, Roosenboom B, Brand EC, ter Linde JJ, Oldenburg B, van Lochem EG, Horjus Talabur Horje CS, van Wijk F. Homeostatic Function and Inflammatory Activation of Ileal CD8 + Tissue-Resident T Cells Is Dependent on Mucosal Location. Cell Mol Gastroenterol Hepatol 2021; 12:1567-1581. [PMID: 34224909 PMCID: PMC8551698 DOI: 10.1016/j.jcmgh.2021.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS Tissue-resident memory T (Trm) cells, both of the CD4 and CD8 lineage, have been implicated in disease flares in inflammatory bowel disease. However, data are conflicting regarding the profile of human CD8+ Trm cells, with studies suggesting both proinflammatory and regulatory functions. It is crucial to understand the functional profile of these cells in the context of (new) therapeutic strategies targeting (trafficking of) gut Trm cells. METHODS Here, we performed imaging mass cytometry, flow cytometry, and RNA-sequencing to compare lamina propria and intraepithelial CD103+/-CD69+CD8+ Trm cells in healthy control subjects and patients with active ileal Crohn's disease. RESULTS Our data revealed that lamina propria CD103+CD69+CD8+ T cells have a classical Trm cell profile with active pathways for regulating cell survival/death and cytokine signaling, whereas intraepithelial CD103+CD69+CD8+ T cells display tightly regulated innate-like cytotoxic profile. Furthermore, within lamina propria CD8+CD103- Trm cells, an Itgb2+GzmK+KLRG1+ population distinct from CD103+ CD8+ Trm cells is found. During chronic inflammation, especially intraepithelial CD103+CD69+CD8+ T cells displayed an innate proinflammatory profile with concurrent loss of homeostatic functions. CONCLUSIONS Altogether, these compartmental and inflammation-induced differences indicate that therapeutic strategies could have a different impact on the same immune cells depending on the local compartment and presence of an inflammatory milieu, and should be taken into account when investigating short- and long-term effects of new gut T cell-targeting drugs.
Collapse
Affiliation(s)
- Lisanne Lutter
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands,Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Britt Roosenboom
- Department of Gastroenterology and Hepatology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Eelco C. Brand
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands,Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - José J. ter Linde
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands,Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ellen G. van Lochem
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, the Netherlands
| | | | - Femke van Wijk
- Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht, the Netherlands,Correspondence Address correspondence to: Femke van Wijk, PhD, Centre for Translational Immunology, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands. fax: (088) 755-4305.
| |
Collapse
|
35
|
Socié G, Kean LS, Zeiser R, Blazar BR. Insights from integrating clinical and preclinical studies advance understanding of graft-versus-host disease. J Clin Invest 2021; 131:149296. [PMID: 34101618 PMCID: PMC8203454 DOI: 10.1172/jci149296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a result of impressive increases in our knowledge of rodent and human immunology, the understanding of the pathophysiologic mechanisms underlying graft-versus-host disease (GVHD) has dramatically improved in the past 15 years. Despite improved knowledge, translation to clinical care has not proceeded rapidly, and results from experimental models have been inconsistent in their ability to predict the clinical utility of new therapeutic agents. In parallel, new tools in immunology have allowed in-depth analyses of the human system and have recently been applied in the field of clinical GVHD. Notwithstanding these advances, there is a relative paucity of mechanistic insights into human translational research, and this remains an area of high unmet need. Here we review selected recent advances in both preclinical experimental transplantation and translational human studies, including new insights into human immunology, the microbiome, and regenerative medicine. We focus on the fact that both approaches can interactively improve our understanding of both acute and chronic GVHD biology and open the door to improved therapeutics and successes.
Collapse
Affiliation(s)
- Gérard Socié
- Hematology-Transplantation, Assistance Publique–Hôpitaux de Paris (APHP), Hospital Saint Louis, Paris, France
- INSERM UMR 976 (Team Insights) and University of Paris, Paris, France
| | - Leslie S. Kean
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Robert Zeiser
- Department of Medicine I, Faculty of Medicine, Medical Center–University of Freiburg, Freiburg, Germany
| | - Bruce R. Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
36
|
van Gisbergen KPJM, Zens KD, Münz C. T-cell memory in tissues. Eur J Immunol 2021; 51:1310-1324. [PMID: 33837521 DOI: 10.1002/eji.202049062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Immunological memory equips our immune system to respond faster and more effectively against reinfections. This acquired immunity was originally attributed to long-lived, memory T and B cells with body wide access to peripheral and secondary lymphoid tissues. In recent years, it has been realized that both innate and adaptive immunity to a large degree depends on resident immune cells that act locally in barrier tissues including tissue-resident memory T cells (Trm). Here, we will discuss the phenotype of these Trm in mice and humans, the tissues and niches that support them, and their function, plasticity, and transcriptional control. Their unique properties enable Trm to achieve long-lived immunological memory that can be deposited in nearly every organ in response to acute and persistent infection, and in response to cancer. However, Trm may also induce substantial immunopathology in allergic and autoimmune disease if their actions remain unchecked. Therefore, inhibitory and activating stimuli appear to balance the actions of Trm to ensure rapid proinflammatory responses upon infection and to prevent damage to host tissues under steady state conditions.
Collapse
Affiliation(s)
- Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kyra D Zens
- Viral Immunobiology, University of Zurich, Zurich, Switzerland.,Department of Public and Global Health, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.,Department of Infectious Diseases and Hospital Epidemiology, University Hospital, Zurich, Switzerland
| | - Christian Münz
- Viral Immunobiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Khuat LT, Dave M, Murphy WJ. The emerging roles of the gut microbiome in allogeneic hematopoietic stem cell transplantation. Gut Microbes 2021; 13:1966262. [PMID: 34455917 PMCID: PMC8436969 DOI: 10.1080/19490976.2021.1966262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used for the treatment of hematologic cancers and disorders. However, graft-versus-host disease (GVHD) in which the donor immune cells attack the genetically-disparate recipient is a significant cause of morbidity. Acute GVHD is an inflammatory condition and the gastrointestinal system is a major organ affected but is also tied to beneficial graft-versus-tumor (GVT) effects. There is increasing interest on the role of the microbiome on immune function as well as on cancer progression and immunotherapy outcomes. However, there are still significant unanswered questions on the role the microbiome plays in GVHD progression or how to exploit the microbiome in GVHD prevention or treatment. In this review, concepts of HSCT with the focus on GVHD pathogenesis as well as issues in preclinical models used to study GVHD will be discussed with an emphasis on the impact of the microbiome. Factors affecting the microbiome and GVHD outcome such as obesity are also examined. The bridging of preclinical models and clinical outcomes in relation to the role of the microbiome will also be discussed along with possibilities for therapeutic exploitation.
Collapse
Affiliation(s)
- Lam T. Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA
| | - Maneesh Dave
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USA
| | - William J. Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USAs
| |
Collapse
|