1
|
Ling S, Xu JW. Phenotypes and functions of "aged" neutrophils in cardiovascular diseases. Biomed Pharmacother 2024; 179:117324. [PMID: 39216451 DOI: 10.1016/j.biopha.2024.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neutrophils are important effector cells of innate immunity and undergo several phenotypic changes after release from the bone marrow. Neutrophils with a late life cycle phenotype are often referred to as "aged" neutrophils. These neutrophils undergo functional changes that accompany stimuli of inflammation, tissue senescence and injury, inducing their maturation and senescence in the circulation and locally in damaged tissues, forming a unique late-life neutrophil phenotype. "Aged" neutrophils, although attenuated in antibacterial capacity, are more active in aging and age-related diseases, exhibit high levels of mitochondrial ROS and mitochondrial DNA leakage, promote senescence of neighboring cells, and exacerbate cardiac and vascular tissue damage, including vascular inflammation, myocardial infarction, atherosclerosis, stroke, abdominal aortic aneurysm, and SARS-CoV-2 myocarditis. In this review, we outline the phenotypic changes of "aged" neutrophils characterized by CXCR4high/CD62Llow, investigate the mechanisms driving neutrophil aging and functional transformation, and analyze the damage caused by "aged" neutrophils to various types of heart and blood vessels. Tissue injury and senescence promote neutrophil infiltration and induce neutrophil aging both in the circulation and locally in damaged tissues, resulting in an "aged" neutrophil phenotype characterized by CXCR4high/CD62Llow. We also discuss the effects of certain agents, such as neutralizing mitochondrial ROS, scavenging IsoLGs, blocking VDAC oligomers and mPTP channel activity, activating Nrf2 activity, and inhibiting neutrophil PAD4 activity, to inhibit neutrophil NET formation and ameliorate age-associated cardiovascular disease, providing a new perspective for anti-aging therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Shuang Ling
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
La Rosa F, Montecucco F, Liberale L, Sessarego M, Carbone F. Venous thrombosis and obesity: from clinical needs to therapeutic challenges. Intern Emerg Med 2024:10.1007/s11739-024-03765-7. [PMID: 39269539 DOI: 10.1007/s11739-024-03765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Weight bias and stigma have limited the awareness of the systemic consequences related to obesity. As the narrative evolves, obesity is emerging as a driver and enhancer of many pathological conditions. Among these, the risk of venous thromboembolism (VTE) is a critical concern linked to obesity, ranking as the third most common cardiovascular condition. Obesity is recognized as a multifactorial risk factor for VTE, influenced by genetic, demographic, behavioral, and socio-economic conditions. Despite established links, the exact incidence of obesity related VTE in the general population remains largely unknown. The complexity of distinguishing between provoked and unprovoked VTE, coupled with gaps in obesity definition and assessment still complicates a tailored risk assessment of VTE risk. Obesity reactivity, hypercoagulability, and endothelial dysfunction are driven by the so-called 'adiposopathy'. This state of chronic inflammation and metabolic disturbance amplifies thrombin generation and alters endothelial function, promoting a pro-thrombotic environment. Additionally, the inflammation-induced clot formation-also referred to as 'immunothrombosis' further exacerbates VTE risk in people living with obesity. Furthermore, current evidence highlights significant gaps in the management of obesity related VTE, particularly concerning prophylaxis and treatment efficacy of anticoagulants in people living with obesity. This review underscores the need for tailored therapeutic approaches and well-designed clinical trials to address the unique challenges posed by obesity in VTE prevention and management. Advanced research and innovative strategies are imperative to improve outcomes and reduce the burden of VTE in people living with obesity.
Collapse
Grants
- RCR-2022-23682288 - Rete CARDIOLOGICA- Integrated strategies for the study of tissue Ministero della Salute
- molecular determinants of vulnerable atherosclerotic plaque - Procedura nota DGRIC n. 1401 del 13/04/2022 Fondo progetti reti EF 2022' Ministero della Salute
- NEXTGENERATIONEU (NGEU) Ministero dell'Istruzione, dell'Università e della Ricerca
- funded by the Ministry of University Ministero dell'Istruzione, dell'Università e della Ricerca
- Research (MUR) Ministero dell'Istruzione, dell'Università e della Ricerca
- National Recovery Ministero dell'Istruzione, dell'Università e della Ricerca
- Resilience Plan (NRRP) Ministero dell'Istruzione, dell'Università e della Ricerca
- project MNESYS (PE0000006) - (DN. 1553 11.10.2022).. Ministero dell'Istruzione, dell'Università e della Ricerca
- NEXTGENERATIONEU (NGEU) Ministero dell'Istruzione, dell'Università e della Ricerca
- funded by the Ministry of University Ministero dell'Istruzione, dell'Università e della Ricerca
- Research (MUR) Ministero dell'Istruzione, dell'Università e della Ricerca
- National Recovery Ministero dell'Istruzione, dell'Università e della Ricerca
- Resilience Plan (NRRP) Ministero dell'Istruzione, dell'Università e della Ricerca
- project MNESYS (PE0000006) - (DN. 1553 11.10.2022).. Ministero dell'Istruzione, dell'Università e della Ricerca
Collapse
Affiliation(s)
- Federica La Rosa
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy.
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Marta Sessarego
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
3
|
Rayes J, Brill A. Hot under the clot: venous thrombogenesis is an inflammatory process. Blood 2024; 144:477-489. [PMID: 38728383 DOI: 10.1182/blood.2023022522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Venous thrombosis (VT) is a serious medical condition in which a blood clot forms in deep veins, often causing limb swelling and pain. Current antithrombotic therapies carry significant bleeding risks resulting from targeting essential coagulation factors. Recent advances in this field have revealed that the cross talk between the innate immune system and coagulation cascade is a key driver of VT pathogenesis, offering new opportunities for potential therapeutic interventions without inducing bleeding complications. This review summarizes and discusses recent evidence from preclinical models on the role of inflammation in VT development. We highlight the major mechanisms by which endothelial cell activation, Weibel-Palade body release, hypoxia, reactive oxygen species, inflammasome, neutrophil extracellular traps, and other immune factors cooperate to initiate and propagate VT. We also review emerging clinical data describing anti-inflammatory approaches as adjuncts to anticoagulation in VT treatment. Finally, we identify key knowledge gaps and future directions that could maximize the benefit of anti-inflammatory therapies in VT. Identifying and targeting the inflammatory factors driving VT, either at the endothelial cell level or within the clot, may pave the way for new therapeutic possibilities for improving VT treatment and reducing thromboembolic complications without increasing bleeding risk.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Li Z, Zeng M, Wu T, Wang Z, Sun Y, Zhang Z, Wu F, Chen Z, Fu M, Meng F. Causal Effects of COVID-19 on the Risk of Thrombosis: A Two-Sample Mendel Randomization Study. Thromb Haemost 2024; 124:709-720. [PMID: 38325400 PMCID: PMC11259497 DOI: 10.1055/a-2263-8514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/17/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) and thrombosis are linked, but the biomolecular mechanism is unclear. We aimed to investigate the causal relationship between COVID-19 and thrombotic biomarkers. METHODS We used two-sample Mendelian randomization (MR) to assess the effect of COVID-19 on 20 thrombotic biomarkers. We estimated causality using inverse variance weighting with multiplicative random effect, and performed sensitivity analysis using weighted median, MR-Egger regression and MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) methods. All the results were examined by false discovery rate (FDR) with the Benjamin and Hochberg method for this correction to minimize false positives. We used R language for the analysis. RESULTS All COVID-19 classes showed lower levels of tissue factor pathway inhibitor (TFPI) and interleukin-1 receptor type 1 (IL-1R1). COVID-19 significantly reduced TFPI (odds ratio [OR] = 0.639, 95% confidence interval [CI]: 0.435-0.938) and IL-1R1 (OR = 0.603, 95% CI = 0.417-0.872), nearly doubling the odds. We also found that COVID-19 lowered multiple coagulation factor deficiency protein 2 and increased C-C motif chemokine 3. Hospitalized COVID-19 cases had less plasminogen activator, tissue type (tPA) and P-selectin glycoprotein ligand 1 (PSGL-1), while severe cases had higher mean platelet volume (MPV) and lower platelet count. These changes in TFPI, tPA, IL-1R1, MPV, and platelet count suggested a higher risk of thrombosis. Decreased PSGL-1 indicated a lower risk of thrombosis. CONCLUSION TFPI, IL-1R, and seven other indicators provide causal clues of the pathogenesis of COVID-19 and thrombosis. This study demonstrated that COVID-19 causally influences thrombosis at the biomolecular level.
Collapse
Affiliation(s)
- Zhengran Li
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Minghui Zeng
- Institute of Scientific Research, Southern Medical University, Guangzhou, China
| | - Tong Wu
- The First Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zijin Wang
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Sun
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziran Zhang
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Fanye Wu
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zejun Chen
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fanke Meng
- Emergency Department, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Zhu L, Lian W, Yu N, Meng J, Zeng H, Wang Y, Wang X, Wen M, Chen Z. Erythrocyte-Membrane-Camouflaged Magnetic Nanocapsules With Photothermal/Magnetothermal Effects for Thrombolysis. Adv Healthc Mater 2024; 13:e2400127. [PMID: 38691349 DOI: 10.1002/adhm.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/07/2024] [Indexed: 05/03/2024]
Abstract
Venous/arterial thrombosis poses significant threats to human health. However, drug-enabled thrombolysis treatment often encounters challenges such as short half-life and low bioavailability. To address these issues, the design of erythrocyte-membrane (EM) camouflaged nanocapsules (USIO/UK@EM) incorporating ultra-small iron oxide (USIO) and urokinase (UK) drug, which exhibits remarkable photothermal/magnetothermal effects and drug delivery ability for venous/arterial thrombolysis, is reported. USIO, UK, and EM are coextruded to fabricate USIO/UK@EM with average sizes of 103.7 nm. As USIO/UK@EM possesses wide photoabsorption and good magnetic properties, its solution demonstrates a temperature increase to 41.8-42.9 °C within 5 min when exposed to an 808 nm laser (0.33 mW cm-2) or alternating magnetic field (AMF). Such photothermal/magnetothermal effect along with UK confers impressive thrombolytic rates of 82.4% and 74.2%, higher than that (≈15%) achieved by UK alone. Further, the EM coating extends the circulating half-life (t1/2 = 3.28 h). When USIO/UK@EM is administered to mice and rabbits, tail vein thrombus in mice and femoral artery thrombus in rabbits can be dissolved by the synergetic effect of thermothrombolysis and UK. Therefore, this study not only offers insights into the rational design of multifunctional biomimetic nanocapsules but also showcases a promising thrombolysis strategy utilizing nanomedicine.
Collapse
Affiliation(s)
- Liqiong Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Weishuai Lian
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jialan Meng
- Department of Ultrasound, Songjiang Maternity & Child Health Hospital of Shanghai, Shanghai, 201600, China
| | - Hongchun Zeng
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, P. R. China
| | - Yue Wang
- Department of Radiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, P. R. China
| | - Xiao Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
6
|
Martinod K, Wagner DD. Reflections on Targeting Neutrophil Extracellular Traps in Deep Vein Thrombosis. Arterioscler Thromb Vasc Biol 2024; 44:1719-1724. [PMID: 39047082 PMCID: PMC11279430 DOI: 10.1161/atvbaha.124.320148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Affiliation(s)
- Kimberly Martinod
- Center for Vascular and Molecular Biology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Denisa D. Wagner
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, US
| |
Collapse
|
7
|
Jiang K, Hwa J, Xiang Y. Novel strategies for targeting neutrophil against myocardial infarction. Pharmacol Res 2024; 205:107256. [PMID: 38866263 DOI: 10.1016/j.phrs.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inflammation is a crucial factor in cardiac remodeling after acute myocardial infarction (MI). Neutrophils, as the first wave of leukocytes to infiltrate the injured myocardium, exacerbate inflammation and cardiac injury. However, therapies that deplete neutrophils to manage cardiac remodeling after MI have not consistently produced promising outcomes. Recent studies have revealed that neutrophils at different time points and locations may have distinct functions. Thus, transferring neutrophil phenotypes, rather than simply blocking their activities, potentially meet the needs of cardiac repair. In this review, we focus on discussing the fate, heterogeneity, functions of neutrophils, and attempt to provide a more comprehensive understanding of their roles and targeting strategies in MI. We highlight the strategies and translational potential of targeting neutrophils to limit cardiac injury to reduce morbidity and mortality from MI.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yaozu Xiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Pandey N, Kaur H, Chorawala MR, Anand SK, Chandaluri L, Butler ME, Aishwarya R, Gaddam SJ, Shen X, Alfaidi M, Wang J, Zhang X, Beedupalli K, Bhuiyan MS, Bhuiyan MAN, Buchhanolla P, Rai P, Shah R, Chokhawala H, Jordan JD, Magdy T, Orr AW, Stokes KY, Rom O, Dhanesha N. Interactions between integrin α9β1 and VCAM-1 promote neutrophil hyperactivation and mediate poststroke DVT. Blood Adv 2024; 8:2104-2117. [PMID: 38498701 PMCID: PMC11063402 DOI: 10.1182/bloodadvances.2023012282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
ABSTRACT Venous thromboembolic events are significant contributors to morbidity and mortality in patients with stroke. Neutrophils are among the first cells in the blood to respond to stroke and are known to promote deep vein thrombosis (DVT). Integrin α9 is a transmembrane glycoprotein highly expressed on neutrophils and stabilizes neutrophil adhesion to activated endothelium via vascular cell adhesion molecule 1 (VCAM-1). Nevertheless, the causative role of neutrophil integrin α9 in poststroke DVT remains unknown. Here, we found higher neutrophil integrin α9 and plasma VCAM-1 levels in humans and mice with stroke. Using mice with embolic stroke, we observed enhanced DVT severity in a novel model of poststroke DVT. Neutrophil-specific integrin α9-deficient mice (α9fl/flMrp8Cre+/-) exhibited a significant reduction in poststroke DVT severity along with decreased neutrophils and citrullinated histone H3 in thrombi. Unbiased transcriptomics indicated that α9/VCAM-1 interactions induced pathways related to neutrophil inflammation, exocytosis, NF-κB signaling, and chemotaxis. Mechanistic studies revealed that integrin α9/VCAM-1 interactions mediate neutrophil adhesion at the venous shear rate, promote neutrophil hyperactivation, increase phosphorylation of extracellular signal-regulated kinase, and induce endothelial cell apoptosis. Using pharmacogenomic profiling, virtual screening, and in vitro assays, we identified macitentan as a potent inhibitor of integrin α9/VCAM-1 interactions and neutrophil adhesion to activated endothelial cells. Macitentan reduced DVT severity in control mice with and without stroke, but not in α9fl/flMrp8Cre+/- mice, suggesting that macitentan improves DVT outcomes by inhibiting neutrophil integrin α9. Collectively, we uncovered a previously unrecognized and critical pathway involving the α9/VCAM-1 axis in neutrophil hyperactivation and DVT.
Collapse
Affiliation(s)
- Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Harpreet Kaur
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Mehul R. Chorawala
- Department of Pharmacology and Pharmacy Practice, L.M. College of Pharmacy, Ahmedabad, India
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Lakshmi Chandaluri
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Megan E. Butler
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Shiva J. Gaddam
- Department of Hematology and Oncology and Feist Weiller Cancer Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Xinggui Shen
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Mabruka Alfaidi
- Division of Cardiology, Department of Internal Medicine, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Jian Wang
- Bioinformatics and Modeling Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Xiaolu Zhang
- Bioinformatics and Modeling Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Kavitha Beedupalli
- Department of Hematology and Oncology and Feist Weiller Cancer Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | | | - Prabandh Buchhanolla
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Prashant Rai
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Rahul Shah
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Himanshu Chokhawala
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Tarek Magdy
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - A. Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Karen Y. Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| |
Collapse
|
9
|
Shen Y, Yu Y, Zhang X, Hu B, Wang N. Progress of nanomaterials in the treatment of thrombus. Drug Deliv Transl Res 2024; 14:1154-1172. [PMID: 38006448 DOI: 10.1007/s13346-023-01478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Thrombus has long been the major contributor of death and disability because it can cause adverse effects to varying degrees on the body, resulting in vascular blockage, embolism, heart valve deformation, widespread bleeding, etc. However, clinically, conventional thrombolytic drug treatments have hemorrhagic complication risks and easy to miss the best time of treatment window. Thus, it is an urgent need to investigate newly alternative treatment strategies that can reduce adverse effects and improve treatment effectiveness. Drugs based on nanomaterials act as a new biomedical strategy and promising tools, and have already been investigated for both diagnostic and therapeutic purposes in thrombus therapy. Recent studies have some encouraging progress. In the present review, we primarily concern with the latest developments in the areas of nanomedicines targeting thrombosis therapy. We present the thrombus' formation, characteristics, and biomarkers for diagnosis, overview recent emerging nanomedicine strategies for thrombus therapy, and focus on the future design directions, challenges, and prospects in the nanomedicine application in thrombus therapy.
Collapse
Affiliation(s)
- Yetong Shen
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- College of Life and Health Sciences, Northeastern University, Shenyang, 110167, China
| | - Yang Yu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
| | - Ning Wang
- Department of Biochemistry and Molecular Biology, China Medical University, No. 77 Puhe Road, Shenyang, 110122, China.
- Department of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, 110122, China.
| |
Collapse
|
10
|
Chen Z, Yuan C, Ye Y, Lu B, Hu E, Lu F, Yu K, Xie R, Lan G. Dual-targeting fucoidan-based microvesicle for arterial thrombolysis and re-occlusion inhibition. Carbohydr Polym 2024; 328:121703. [PMID: 38220339 DOI: 10.1016/j.carbpol.2023.121703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Arterial thrombosis is a critical thrombotic disease that poses a significant threat to human health. However, the existing clinical treatment of arterial thrombosis lacks effective targeting and precise drug release capability. In this study, we developed a system for targeted delivery and on-demand release in arterial thrombosis treatment. The carrier was constructed using chitosan (CS) and fucoidan (Fu) through layer-by-layer assembly, with subsequent surface modification using cRGD peptide. Upon encapsulation of urokinase-type plasminogen activator (uPA), the resulting therapeutic drug delivery system, uPA-CS/Fu@cRGD, demonstrated dual-targeting abilities towards P-selectin and αIIbβ3, as well as pH and platelet-responsive release properties. Importantly, we have demonstrated that the dual targeting effect exhibits higher targeting efficiency at shear rates simulating thrombosed arterial conditions (1800 s-1) compared to single targeting for the first time. In the mouse common iliac artery model, uPA-CS/Fu@cRGD exhibited great thrombolytic capability while promoting the down-regulation of coagulation factors (FXa and PAI-1) and inflammatory factors (TNF-α and IL-6), thus improving the thrombus microenvironment and exerting potential in preventing re-occlusion. Our dual-target and dual-responsive, fucoidan-based macrovesicle represent a promising platform for advanced drug target delivery applications, with potential to prevent coagulation tendencies as well as improving thrombolytic and reducing the risk of re-occlusion.
Collapse
Affiliation(s)
- Zhechang Chen
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Caijie Yuan
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Yaxin Ye
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Enling Hu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Fei Lu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria.
| | - Guangqian Lan
- State Key Laboratory of Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
11
|
Chen J, Wang X, Liu Y, Zhang X. Recent advances on neutrophil dysregulation in the pathogenesis of rheumatic diseases. Curr Opin Rheumatol 2024; 36:142-147. [PMID: 37916474 DOI: 10.1097/bor.0000000000000986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW The exact pathogenic mechanisms of rheumatic diseases (RMD) remain largely unknown. Increasing evidence highlights a pathogenic role of neutrophil dysregulation in the development of RMD. RECENT FINDINGS The purpose of this review is to present a current overview of recent advancements in understanding the role of neutrophil dysfunction in the development of RMD. Additionally, this review will discuss strategies for targeting pathways associated with neutrophil dysregulation as potential treatments for RMD. One specific aspect of neutrophil dysregulation, known as neutrophil extracellular traps (NETs), will be explored. NETs have been found to contribute to chronic pulmonary inflammation and fibrosis, as well as serve as DNA scaffolds for binding autoantigens, including both citrullinated and carbamylated autoantigens. Putative therapies, such as 6-gingerol or defibrotide, have demonstrated beneficial effects in the treatment of RMD by suppressing NETs formation. SUMMARY Recent advances have significantly reinforced the crucial role of neutrophil dysregulation in the pathogenesis of RMD. A deeper understanding of the potential mechanisms underlying this pathogenic process would aid in the development of more precise and effective targeting strategies, thus ultimately improving the outcomes of RMD.
Collapse
Affiliation(s)
- Jianing Chen
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Xinyu Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine
| |
Collapse
|
12
|
Tohidi-Esfahani I, Mittal P, Isenberg D, Cohen H, Efthymiou M. Platelets and Thrombotic Antiphospholipid Syndrome. J Clin Med 2024; 13:741. [PMID: 38337435 PMCID: PMC10856779 DOI: 10.3390/jcm13030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Antiphospholipid antibody syndrome (APS) is an autoimmune disorder characterised by thrombosis and the presence of antiphospholipid antibodies (aPL): lupus anticoagulant and/or IgG/IgM anti-β2-glycoprotein I and anticardiolipin antibodies. APS carries significant morbidity for a relatively young patient population from recurrent thrombosis in any vascular bed (arterial, venous, or microvascular), often despite current standard of care, which is anticoagulation with vitamin K antagonists (VKA). Platelets have established roles in thrombosis at any site, and platelet hyperreactivity is clearly demonstrated in the pathophysiology of APS. Together with excess thrombin generation, platelet activation and aggregation are the common end result of all the pathophysiological pathways leading to thrombosis in APS. However, antiplatelet therapies play little role in APS, reserved as a possible option of low dose aspirin in addition to VKA in arterial or refractory thrombosis. This review outlines the current evidence and mechanisms for excessive platelet activation in APS, how it plays a central role in APS-related thrombosis, what evidence for antiplatelets is available in clinical outcomes studies, and potential future avenues to define how to target platelet hyperreactivity better with minimal impact on haemostasis.
Collapse
Affiliation(s)
- Ibrahim Tohidi-Esfahani
- Haematology Department, Concord Repatriation General Hospital, Sydney, NSW 2139, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Prabal Mittal
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| | - David Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, London WC1E 6JF, UK
| | - Hannah Cohen
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| | - Maria Efthymiou
- Haemostasis Research Unit, Department of Haematology, University College London, London WC1E 6DD, UK;
| |
Collapse
|
13
|
Li L, Stegner D. Immunothrombosis versus thrombo-inflammation: platelets in cerebrovascular complications. Res Pract Thromb Haemost 2024; 8:102344. [PMID: 38433977 PMCID: PMC10907225 DOI: 10.1016/j.rpth.2024.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
A State-of-the Art lecture titled "Thrombo-Neuroinflammatory Disease" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. First, we would like to advocate for discrimination between immunothrombosis and thrombo-inflammation, as immunothrombosis describes an overshooting inflammatory reaction that results in detrimental thrombotic activity. In contrast, thrombo-inflammation describes the interplay of platelets and coagulation with the immunovascular system, resulting in the recruitment of immune cells and loss of barrier function (hence, hallmarks of inflammation). Both processes can be observed in the brain, with cerebral venous thrombosis being a prime example of immunothrombosis, while infarct progression in response to ischemic stroke is a paradigmatic example of thrombo-inflammation. Here, we review the pathomechanisms underlying cerebral venous thrombosis and ischemic stroke from a platelet-centric perspective and discuss translational implications. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Lexiao Li
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - David Stegner
- Julius-Maximilians-Universität Würzburg, Rudolf Virchow Center for Integrative and Translational Bioimaging, Würzburg, Germany
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| |
Collapse
|
14
|
Robert M, Scherlinger M. Platelets are a major player and represent a therapeutic opportunity in systemic lupus erythematosus. Joint Bone Spine 2024; 91:105622. [PMID: 37495075 DOI: 10.1016/j.jbspin.2023.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by immune dysregulation and organ injury with a premature mortality due to cardiovascular diseases. Platelets, that are primarily known for their role in hemostasis, have been shown to play an active role in the pathogenesis and in the progression of immune-mediated inflammatory diseases. Here we summarize the evidence of their roles in SLE pathogenesis which supports the development of targeted treatments. Platelets and their precursors, the megakaryocytes, are intrinsically different in SLE patients compared with healthy controls. Different triggers related to innate and adaptive immunity activate platelets which release extracellular vesicles, soluble factors and interact with immune cells, thereby perpetuating inflammation. Platelets are involved in organ damage in SLE, especially in lupus nephritis and participate in the heightened cardiovascular mortality. They also play a clear role in antiphospholipid syndrome which can be associated with both thrombocytopenia and thrombosis. To tackle platelet activation and their interactions with immune cells now constitute promising therapeutic strategies in SLE.
Collapse
Affiliation(s)
- Marie Robert
- Service de médecine interne et immunologie clinique, centre hospitalier universitaire Édouard-Herriot, hospices civils de Lyon, Lyon, France
| | - Marc Scherlinger
- Service de rhumatologie, centre hospitalier universitaire de Strasbourg, 1, avenue Molière, 67098 Strasbourg, France; Laboratoire d'immuno-rhumatologie moléculaire, Institut national de la santé et de la recherche médicale (Inserm) UMR S 1109, Strasbourg, France; Centre national de référence des maladies auto-immunes et systémiques rares, Est/Sud-Ouest (RESO), France.
| |
Collapse
|
15
|
Huang SL, Xin HY, Wang XY, Feng GG, Wu FQ, Feng ZP, Xing Z, Zhang XH, Xin HW, Luo WY. Recent Advances on the Molecular Mechanism and Clinical Trials of Venous Thromboembolism. J Inflamm Res 2023; 16:6167-6178. [PMID: 38111686 PMCID: PMC10726951 DOI: 10.2147/jir.s439205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Venous thromboembolism is a condition that includes deep vein thrombosis and pulmonary embolism. It is the third most common cardiovascular disease behind acute coronary heart disease and stroke. Over the past few years, growing research suggests that venous thrombosis is also related to the immune system and inflammatory factors have been confirmed to be involved in venous thrombosis. The role of inflammation and inflammation-related biomarkers in cerebrovascular thrombotic disease is the subject of ongoing debate. P-selectin leads to platelet-monocyte aggregation and stimulates vascular inflammation and thrombosis. The dysregulation of miRNAs has also been reported in venous thrombosis, suggesting the involvement of miRNAs in the progression of venous thrombosis. Plasminogen activator inhibitor-1 (PAI-1) is a crucial component of the plasminogen-plasmin system, and elevated levels of PAI-1 in conjunction with advanced age are significant risk factors for thrombosis. In addition, it has been showed that one of the ways that neutrophils promote venous thrombosis is the formation of neutrophil extracellular traps (NETs). In recent years, the role of extracellular vesicles (EVs) in the occurrence and development of VTE has been continuously revealed. With the advancement of research technology, the complex regulatory role of EVs on the coagulation process has been gradually discovered. However, our understanding of the causes and consequences of these changes in venous thrombosis is still limited. Therefore, we review our current understanding the molecular mechanisms of venous thrombosis and the related clinical trials, which is crucial for the future treatment of venous thrombosis.
Collapse
Affiliation(s)
- Shao-Li Huang
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524400, People’s Republic of China
- First Clinical College, Guangdong Medical University, Guangdong, 524400, People’s Republic of China
- Clinical laboratory, Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
| | - Hong-Yi Xin
- Doctoral Scientific Research Center, Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
- Guangdong Medical University Affiliated Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
| | - Xiao-Yan Wang
- Doctoral Scientific Research Center, Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
- Guangdong Medical University Affiliated Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
| | - Guang-Gui Feng
- Clinical laboratory, Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
| | - Fu-Qing Wu
- Clinical laboratory, Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
| | - Zhi-Peng Feng
- Department of Gastroenterology, Yueyang Hospital Affiliated to Hunan Normal University, Yueyang, Hunan, 414000, People’s Republic of China
| | - Zhou Xing
- First Clinical College, Guangdong Medical University, Guangdong, 524400, People’s Republic of China
| | - Xi-He Zhang
- Doctoral Scientific Research Center, Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
- Guangdong Medical University Affiliated Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
| | - Hong-Wu Xin
- Doctoral Scientific Research Center, Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Faculty of Medicine, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Research Centre of Molecular Medicine, Medical College of Chifeng University, Chifeng, Inner Mongolian Autonomous Region, 024000, People’s Republic of China
| | - Wen-Ying Luo
- Medical Laboratory Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524400, People’s Republic of China
| |
Collapse
|
16
|
Lai H, Tu Y, Zhang S, Liao C, Tu H, Li J. Association of inflammation and abnormal lipid metabolism with risk of thrombosis and thrombosis progression in patients with polycythemia vera: a retrospective study. Ann Hematol 2023; 102:3413-3426. [PMID: 37907800 PMCID: PMC10640535 DOI: 10.1007/s00277-023-05518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
To date, no therapeutic strategy has been shown to be effective in reducing the risk of polycythemia vera (PV) transforming into myelofibrosis or leukemia, and the main goal of current treatment is to prevent thrombotic events. Recent studies have shown that higher levels of inflammation are associated with an increased risk of thrombosis in PV patients, while the correlation between inflammation and abnormal lipid metabolism with the risk of thrombosis in PV has not been reported. In this retrospective study, 148 patients with newly diagnosed PV who visited the Affiliated Hospitals of Nanchang University from January 2013 to June 2023 were categorized into low-risk group and high-risk group according to the risk of thrombosis, and were subsequently divided into thrombosis non-progression group and progression group. The differences of novel inflammatory markers PHR, NHR, MHR, LHR, and SIRI in each group were analyzed and compared with healthy adults who underwent physical examination in the hospitals during the same period. The results showed that PHR, NHR, MHR, and SIRI levels were significantly higher in the PV group than in the control group (P < 0.001), while HDL-C levels were considerably lower (1.09 vs. 1.31, P < 0.001). Comparisons within the groups of PV patients revealed that PHR, MHR, NHR, NLR, and SIRI levels were significantly higher in the high-risk group for thrombosis than in the low-risk group (P < 0.01); the thrombosis PHR, NHR, NLR, and SIRI levels were higher in the group with progression of thrombosis than in the group without progression of thrombosis (P < 0.05), while HDL-C levels were significantly lower (1.02 vs. 1.12, P < 0.001). The results of the ROC curve analysis showed that NHR (AUC = 0.791), HDL-C (AUC = 0.691), PHR (AUC = 0.668), NLR(AUC = 0.658), and SIRI (AUC = 0.638) had high diagnostic efficacy for identifying PV patients with thrombosis progression. Multivariate analysis showed that NHR, NLR, MHR, and LHR were independent risk factors for PV patients with thrombosis progression (P < 0.05). Kaplan-Meier survival curves showed that NHR ≥ 5.82 × 109/mmol, NLR ≥ 6.295, PHR ≥ 280.4 × 109/mmol, MHR ≥ 0.295 × 109/mmol, LHR ≥ 1.41 × 109/mmol, and SIRI ≥ 1.53 × 109/L were risk factors for PFS in PV patients. The study demonstrates for the first time that novel inflammatory markers PHR, NHR, MHR, LHR, and SIRI may be used as new predictors for PV patients with thrombosis progression. NHR has the highest value in predicting thrombosis in PV patients and is superior to NLR which was reported previously.
Collapse
Affiliation(s)
- Hurong Lai
- The Key Laboratory of Hematology of Jiangxi Province, The Department of Hematology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
- Graduate School of Medicine, Nanchang University, 465 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Yansong Tu
- Faculty of Science, University of Melbourne Grattan Street, Parkville, VIC, 3010, Australia
| | - Shan Zhang
- The Key Laboratory of Hematology of Jiangxi Province, The Department of Hematology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
- Graduate School of Medicine, Nanchang University, 465 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Caifeng Liao
- The Key Laboratory of Hematology of Jiangxi Province, The Department of Hematology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
- Graduate School of Medicine, Nanchang University, 465 Bayi Road, Nanchang, 330006, Jiangxi, China
| | - Huaijun Tu
- Graduate School of Medicine, Nanchang University, 465 Bayi Road, Nanchang, 330006, Jiangxi, China
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jian Li
- The Key Laboratory of Hematology of Jiangxi Province, The Department of Hematology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
- Graduate School of Medicine, Nanchang University, 465 Bayi Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
17
|
Di L, Thomas A, Switala L, Kalikasingh K, Lapping S, Nayak L, Maiseyeu A. Surface Geometry of Cargo-less Gold Nanoparticles Is a Driving Force for Selective Targeting of Activated Neutrophils to Reduce Thrombosis in Antiphospholipid Syndrome. NANO LETTERS 2023; 23:9690-9696. [PMID: 37884274 PMCID: PMC10636870 DOI: 10.1021/acs.nanolett.3c02075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease characterized by recurrent arterial, venous, and microvascular thrombosis where activated neutrophils play a determinant role. However, neutrophils are challenging to target given their short lifespan in circulation and spontaneous activation. Screening of a small library of gold nanoparticles (AuNPs) led to the discovery of a formulation capable of targeting activated neutrophil attachment and has demonstrated that star-shaped, anti-PSGL-1-antibody-coated AuNPs (aPSGL-1-AuNPs) were more efficacious compared with other shapes of AuNPs. Our findings further revealed an exciting and safe targeting mode toward activated neutrophils in the APS mouse model induced by human-patient-derived antiphospholipid IgGs. Our studies demonstrate that targeting is dependent on the specific topographical features of the highly segregated PSGL-1 on the activated neutrophil surface for which a high affinity shape-driven nanomedicine can be designed and implemented. As such, star-shaped aPSGL-1-AuNPs serve as a promising nanoimmunotherapy for immunothrombosis associated with neutrophil adhesion in APS.
Collapse
Affiliation(s)
- Lin Di
- Department
of Biomedical Engineering, Case Western
Reserve University School of Engineering, Cleveland, Ohio 44106, United States
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
| | - Asha Thomas
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
- Division
of Hematology and Oncology, University Hospitals
Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Lauren Switala
- Department
of Biomedical Engineering, Case Western
Reserve University School of Engineering, Cleveland, Ohio 44106, United States
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
| | - Kenneth Kalikasingh
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
- Division
of Hematology and Oncology, University Hospitals
Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Stephanie Lapping
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
- Division
of Hematology and Oncology, University Hospitals
Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Lalitha Nayak
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
- Division
of Hematology and Oncology, University Hospitals
Cleveland Medical Center, Cleveland, Ohio 44106, United States
| | - Andrei Maiseyeu
- Department
of Biomedical Engineering, Case Western
Reserve University School of Engineering, Cleveland, Ohio 44106, United States
- Cardiovascular
Research Institute, Case Western Reserve
University School of Medicine, Cleveland, Ohio 44106, United States
| |
Collapse
|
18
|
Shah BN, Zhang X, Sergueeva AI, Miasnikova GY, Ganz T, Prchal JT, Gordeuk VR. Increased transferrin protects from thrombosis in Chuvash erythrocytosis. Am J Hematol 2023; 98:1532-1539. [PMID: 37435906 PMCID: PMC10529798 DOI: 10.1002/ajh.27021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
Von Hippel-Lindau protein (VHL) is essential to hypoxic regulation of cellular processes. VHL promotes proteolytic clearance of hypoxia-inducible transcription factors (HIFs) that have been modified by oxygen-dependent HIF-prolyl hydroxylases. A homozygous loss-of-function VHLR200W mutation causes Chuvash erythrocytosis, a congenital disorder caused by augmented hypoxia-sensing. Homozygous VHLR200W results in accumulation of HIFs that increase transcription of the erythropoietin gene and raise hematocrit. Phlebotomies reduce hematocrit and hyperviscosity symptoms. However, the major cause of morbidity and mortality in Chuvash erythrocytosis is thrombosis. Phlebotomies cause iron deficiency, which may further elevate HIF activity and transferrin, the HIF-regulated plasma iron transporter recently implicated in thrombogenesis. We hypothesized that transferrin is elevated in Chuvash erythrocytosis, and that iron deficiency contributes to its elevation and to thrombosis. We studied 155 patients and 154 matched controls at steady state and followed them for development of thrombosis. Baseline transferrin was elevated, and ferritin reduced in patients. VHLR200W homozygosity and lower ferritin correlated with higher erythropoietin and transferrin. During 11 years of follow-up, risk of thrombosis increased 8.9-fold in patients versus controls. Erythropoietin elevation, but not hematocrit or ferritin, correlated with thrombosis risk. Unexpectedly, transferrin elevation associated with reduced rather than increased thrombosis risk. The A allele of the promoter EPO single nucleotide polymorphisms (SNP), rs1617640, associated with elevated erythropoietin and increased thrombosis risk, whereas the A allele of the intronic TF SNP, rs3811647, associated with higher transferrin and protection from thrombosis in patients. Our findings suggest an unexpected causal relationship between increased transferrin and protection from thrombosis in Chuvash erythrocytosis.
Collapse
Affiliation(s)
- Binal N Shah
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xu Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Adelina I Sergueeva
- Department of Pediatric Oncology and Hematology, N. Ulianov Chuvash State University, Cheboksary, Chuvashia, Russia
| | - Galina Y Miasnikova
- Department of Hematology and Chemotherapy, Chuvash Republic Clinical Hospital, Cheboksary, Chuvashia, Russia
| | - Tomas Ganz
- Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Josef T Prchal
- Department of Medicine, University of Utah, VAH, and Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Victor R Gordeuk
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Taylor A, Kumar S, Pozzi N. Forecasting the Future of Antiphospholipid Syndrome: Prospects and Challenges. MISSOURI MEDICINE 2023; 120:359-366. [PMID: 37841574 PMCID: PMC10569398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune condition affecting young patients, primarily women, negatively impacting their quality of life. APS is under-recognized and underdiagnosed and can have devastating results if untreated, mainly due to uncontrolled thrombosis. Research in the past decades has led to several breakthroughs with important implications for clinical practice. Here, we summarize the state of APS diagnosis, treatment, pathophysiology, and research directions that hold promise for advancing diagnosis and treatment.
Collapse
Affiliation(s)
- Aberdeen Taylor
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Suresh Kumar
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
20
|
Reshetnyak T, Nurbaeva K. The Role of Neutrophil Extracellular Traps (NETs) in the Pathogenesis of Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Int J Mol Sci 2023; 24:13581. [PMID: 37686381 PMCID: PMC10487763 DOI: 10.3390/ijms241713581] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease of unknown aetiology [...].
Collapse
Affiliation(s)
- Tatiana Reshetnyak
- Department of Thromboinflammation, V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia;
| | | |
Collapse
|
21
|
Scherlinger M, Richez C, Tsokos GC, Boilard E, Blanco P. The role of platelets in immune-mediated inflammatory diseases. Nat Rev Immunol 2023; 23:495-510. [PMID: 36707719 PMCID: PMC9882748 DOI: 10.1038/s41577-023-00834-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/28/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by excessive and uncontrolled inflammation and thrombosis, both of which are responsible for organ damage, morbidity and death. Platelets have long been known for their role in primary haemostasis, but they are now also considered to be components of the immune system and to have a central role in the pathogenesis of IMIDs. In patients with IMIDs, platelets are activated by disease-specific factors, and their activation often reflects disease activity. Here we summarize the evidence showing that activated platelets have an active role in the pathogenesis and the progression of IMIDs. Activated platelets produce soluble factors and directly interact with immune cells, thereby promoting an inflammatory phenotype. Furthermore, platelets participate in tissue injury and promote abnormal tissue healing, leading to fibrosis. Targeting platelet activation and targeting the interaction of platelets with the immune system are novel and promising therapeutic strategies in IMIDs.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Laboratoire d'ImmunoRhumatologie Moléculaire UMR_S 1109, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.
| | - Christophe Richez
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche ARThrite, Université Laval, Quebec City, Quebec, Canada
| | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France.
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France.
| |
Collapse
|
22
|
Thakur M, Junho CVC, Bernhard SM, Schindewolf M, Noels H, Döring Y. NETs-Induced Thrombosis Impacts on Cardiovascular and Chronic Kidney Disease. Circ Res 2023; 132:933-949. [PMID: 37053273 PMCID: PMC10377271 DOI: 10.1161/circresaha.123.321750] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Arterial and venous thrombosis constitute a major source of morbidity and mortality worldwide. Association between thrombotic complications and cardiovascular and other chronic inflammatory diseases are well described. Inflammation and subsequent initiation of thrombotic events, termed immunothrombosis, also receive growing attention but are still incompletely understood. Nevertheless, the clinical relevance of aberrant immunothrombosis, referred to as thromboinflammation, is evident by an increased risk of thrombosis and cardiovascular events in patients with inflammatory or infectious diseases. Proinflammatory mediators released from platelets, complement activation, and the formation of NETs (neutrophil extracellular traps) initiate and foster immunothrombosis. In this review, we highlight and discuss prominent and emerging interrelationships and functions between NETs and other mediators in immunothrombosis in cardiovascular disease. Also, with patients with chronic kidney disease suffering from increased cardiovascular and thrombotic risk, we summarize current knowledge on neutrophil phenotype, function, and NET formation in chronic kidney disease. In addition, we elaborate on therapeutic targeting of NETs-induced immunothrombosis. A better understanding of the functional relevance of antithrombotic mediators which do not increase bleeding risk may provide opportunities for successful therapeutic interventions to reduce thrombotic risk beyond current treatment options.
Collapse
Affiliation(s)
- Manovriti Thakur
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Germany (C.V.C.J., H.N.)
| | - Sarah Maike Bernhard
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Germany (C.V.C.J., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (H.N.)
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research (DBMR) (M.T., S.M.B., M.S., Y.D.), Bern University Hospital, University of Bern, Switzerland
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (Y.D.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany (Y.D.)
| |
Collapse
|
23
|
Chrysanthopoulou A, Antoniadou C, Natsi AM, Gavriilidis E, Papadopoulos V, Xingi E, Didaskalou S, Mikroulis D, Tsironidou V, Kambas K, Koffa M, Skendros P, Ritis K. Down-regulation of KLF2 in lung fibroblasts is linked with COVID-19 immunofibrosis and restored by combined inhibition of NETs, JAK-1/2 and IL-6 signaling. Clin Immunol 2023; 247:109240. [PMID: 36693535 PMCID: PMC9862710 DOI: 10.1016/j.clim.2023.109240] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Kruppel-like factor 2 (KLF2) has been linked with fibrosis and neutrophil-associated thromboinflammation; however, its role in COVID-19 remains elusive. We investigated the effect of disease microenvironment on the fibrotic potential of human lung fibroblasts (LFs) and its association with KLF2 expression. LFs stimulated with plasma from severe COVID-19 patients down-regulated KLF2 expression at mRNA/protein and functional level acquiring a pre-fibrotic phenotype, as indicated by increased CCN2/collagen levels. Pre-incubation with the COMBI-treatment-agents (DNase I and JAKs/IL-6 inhibitors baricitinib/tocilizumab) restored KLF2 levels of LFs to normal abolishing their fibrotic activity. LFs stimulated with plasma from COMBI-treated patients at day-7 expressed lower CCN2 and higher KLF2 levels, compared to plasma prior-to-treatment, an effect not observed in standard-of-care treatment. In line with this, COMBI-treated patients had better outcome than standard-of-care group. These data link fibroblast KLF2 with NETosis and JAK/IL-6 signaling, suggesting the potential of combined therapeutic strategies in immunofibrotic diseases, such as COVID-19.
Collapse
Affiliation(s)
- Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Antoniadou
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasia-Maria Natsi
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Efstratios Gavriilidis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Papadopoulos
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Stylianos Didaskalou
- Laboratory of Cell Biology, Proteomics and Cell Cycle, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Mikroulis
- Department of Cardiovascular Surgery, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Victoria Tsironidou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Koffa
- Laboratory of Cell Biology, Proteomics and Cell Cycle, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panagiotis Skendros
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| | - Konstantinos Ritis
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
24
|
Platelet-Neutrophil Crosstalk in Thrombosis. Int J Mol Sci 2023; 24:ijms24021266. [PMID: 36674781 PMCID: PMC9861587 DOI: 10.3390/ijms24021266] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Platelets are essential for the formation of a haemostatic plug to prevent bleeding, while neutrophils are the guardians of our immune defences against invading pathogens. The interplay between platelets and innate immunity, and subsequent triggering of the activation of coagulation is part of the host system to prevent systemic spread of pathogen in the blood stream. Aberrant immunothrombosis and excessive inflammation can however, contribute to the thrombotic burden observed in many cardiovascular diseases. In this review, we highlight how platelets and neutrophils interact with each other and how their crosstalk is central to both arterial and venous thrombosis and in COVID-19. While targeting platelets and coagulation enables efficient antithrombotic treatments, they are often accompanied with a bleeding risk. We also discuss how novel approaches to reduce platelet-mediated recruitment of neutrophils could represent promising therapies to treat thrombosis without affecting haemostasis.
Collapse
|
25
|
Targeting thromboinflammation in antiphospholipid syndrome. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2022; 21:744-757. [PMID: 36696191 DOI: 10.1016/j.jtha.2022.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023]
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disease, where persistent presence of antiphospholipid antibodies (aPL) leads to thrombotic and obstetric complications. APS is a paradigmatic thromboinflammatory disease. Thromboinflammation is a pathophysiological mechanism coupling inflammation and thrombosis, which contributes to the pathophysiology of cardiovascular disease. APS can serve as a model to unravel mechanisms of thromboinflammation and the relationship between innate immune cells and thrombosis. Monocytes are activated by aPL into a proinflammatory and procoagulant phenotype, producing proinflammatory cytokines such as tumor necrosis factor α, interleukin 6, as well as tissue factor. Important cellular signaling pathways involved are the NF-κB-pathway, mammalian target of rapamycin (mTOR) signaling, and the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome. All of these may serve as future therapeutic targets. Neutrophils produce neutrophil extracellular traps in response to aPL, and this leads to thrombosis. Thrombosis in APS also stems from increased interaction of neutrophils with endothelial cells through P-selectin glycoprotein ligand-1. NETosis can be targeted not only with several experimental therapeutics, such as DNase, but also through the redirection of current therapies such as defibrotide and the antiplatelet agent dipyridamole. Activation of platelets by aPL leads to a procoagulant phenotype. Platelet-leukocyte interactions are increased, possibly mediated by increased levels of soluble P-selectin and soluble CD40-ligand. Platelet-directed future treatment options involve the inhibition of several platelet receptors activated by aPL, as well as mTOR inhibition. This review discusses mechanisms underlying thromboinflammation in APS that present targetable therapeutic options, some of which may be generalizable to other thromboinflammatory diseases.
Collapse
|
26
|
Target neutrophils to treat thrombotic APS? Nat Rev Rheumatol 2022; 18:673. [DOI: 10.1038/s41584-022-00866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|