1
|
Rössler A, Netzl A, Lasrado N, Chaudhari J, Mühlemann B, Wilks SH, Kimpel J, Smith DJ, Barouch DH. Nonhuman primate antigenic cartography of SARS-CoV-2. Cell Rep 2025; 44:115140. [PMID: 39754717 DOI: 10.1016/j.celrep.2024.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
Virus neutralization profiles against primary infection sera and corresponding antigenic cartography are integral part of the COVID-19 and influenza vaccine strain selection processes. Human single variant exposure sera have previously defined the antigenic relationships among SARS-CoV-2 variants but are now largely unavailable due to widespread population immunity. Therefore, antigenic characterization of future SARS-CoV-2 variants will require an animal model, analogous to using ferrets for influenza virus. We evaluated neutralization profiles against 23 SARS-CoV-2 variants in nonhuman primates (NHPs) after single variant exposure and generated an NHP-derived antigenic map. We identified a distant antigenic region occupied by BA.2.86, JN.1, and the descendants KP.2, KP.3, and KZ.1.1.1. We also found that the monovalent XBB.1.5 mRNA vaccine induced broad immunity against the mapped antigenic space. In addition, substantial concordance was observed between our NHP-derived and two human antigenic maps, demonstrating the utility of NHPs as a surrogate for antigenic cartography in humans.
Collapse
Affiliation(s)
- Annika Rössler
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Ninaad Lasrado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jayeshbhai Chaudhari
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Berlin, Germany; German Centre for Infection Research (DZIF), Partner Site Charité, 10117 Berlin, Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, Innsbruck, Tyrol 6020, Austria
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Rella SA, Kulikova YA, Minnegalieva AR, Kondrashov FA. Complex vaccination strategies prevent the emergence of vaccine resistance. Evolution 2024; 78:1722-1738. [PMID: 38990788 DOI: 10.1093/evolut/qpae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
Vaccination is the most effective tool to control infectious diseases. However, the evolution of vaccine resistance, exemplified by vaccine resistance in SARS-CoV-2, remains a concern. Here, we model complex vaccination strategies against a pathogen with multiple epitopes-molecules targeted by the vaccine. We found that a vaccine targeting one epitope was ineffective in preventing vaccine escape. Vaccine resistance in highly infectious pathogens was prevented by the full-epitope vaccine, that is, one targeting all available epitopes, but only when the rate of pathogen evolution was low. Strikingly, a bet-hedging strategy of random administration of vaccines targeting different epitopes was the most effective in preventing vaccine resistance in pathogens with the low rate of infection and high rate of evolution. Thus, complex vaccination strategies, when biologically feasible, may be preferable to the currently used single-vaccine approaches for long-term control of disease outbreaks, especially when applied to livestock with near 100% vaccination rates.
Collapse
Affiliation(s)
- Simon A Rella
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Yuliya A Kulikova
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Okinawa Institute of Science and Technology, Okinawa, Japan
| | | | | |
Collapse
|
3
|
Coe CL, Nimityongskul F, Lubach GR, Luke K, Rancour D, Schomburg FM. Maternal Immunization with Adjuvanted Recombinant Receptor-Binding Domain Protein Provides Immune Protection against SARS-CoV-2 in Infant Monkeys. Vaccines (Basel) 2024; 12:929. [PMID: 39204052 PMCID: PMC11359192 DOI: 10.3390/vaccines12080929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Maternal vaccinations administered prior to conception or during pregnancy enhance the immune protection of newborn infants against many pathogens. A feasibility experiment was conducted to determine if monkeys can be used to model the placental transfer of maternal antibody against SARS-CoV-2. Six adult rhesus monkeys were immunized with adjuvanted recombinant-protein antigens comprised of receptor-binding domain human IgG1-Fc fusion proteins (RBD-Fc) containing protein sequences from the ancestral-Wuhan or Gamma variants. The female monkeys mounted robust and sustained anti-SARS-CoV-2 antibody responses. Blood samples collected from their infants after delivery verified prenatal transfer of high levels of spike-specific IgG, which were positively correlated with maternal IgG titers at term. In addition, an in vitro test of ACE2 neutralization indicated that the infants' IgG demonstrated antigen specificity, reflecting prior maternal immunization with either Wuhan or Gamma-variant antigens. All sera showed stronger ACE2-RBD binding inhibition when variants in the assay more closely resembled the vaccine RBD sequence than with more distantly related variants (i.e., Delta and Omicron). Monkeys are a valuable animal model for evaluating new vaccines that can promote maternal and infant health. Further, the findings highlight the enduring nature and safety of the immune protection elicited by an adjuvanted recombinant RBD-Fc vaccine.
Collapse
Affiliation(s)
- Christopher L. Coe
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI 53715, USA;
| | | | - Gabriele R. Lubach
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI 53715, USA;
| | | | | | | |
Collapse
|
4
|
Mandolesi M, Das H, de Vries L, Yang Y, Kim C, Dhinakaran M, Castro Dopico X, Fischbach J, Kim S, Guryleva MV, Àdori M, Chernyshev M, Stålmarck A, Hanke L, McInerney GM, Sheward DJ, Corcoran M, Hällberg BM, Murrell B, Karlsson Hedestam GB. Multi-compartmental diversification of neutralizing antibody lineages dissected in SARS-CoV-2 spike-immunized macaques. Nat Commun 2024; 15:6338. [PMID: 39068149 PMCID: PMC11283548 DOI: 10.1038/s41467-024-50286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The continued evolution of SARS-CoV-2 underscores the need to understand qualitative aspects of the humoral immune response elicited by spike immunization. Here, we combine monoclonal antibody (mAb) isolation with deep B cell receptor (BCR) repertoire sequencing of rhesus macaques immunized with prefusion-stabilized spike glycoprotein. Longitudinal tracing of spike-sorted B cell lineages in multiple immune compartments demonstrates increasing somatic hypermutation and broad dissemination of vaccine-elicited B cells in draining and non-draining lymphoid compartments, including the bone marrow, spleen and, most notably, periaortic lymph nodes. Phylogenetic analysis of spike-specific monoclonal antibody lineages identified through deep repertoire sequencing delineates extensive intra-clonal diversification that shaped neutralizing activity. Structural analysis of the spike in complex with a broadly neutralizing mAb provides a molecular basis for the observed differences in neutralization breadth between clonally related antibodies. Our findings highlight that immunization leads to extensive intra-clonal B cell evolution where members of the same lineage can both retain the original epitope specificity and evolve to recognize additional spike variants not previously encountered.
Collapse
MESH Headings
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Macaca mulatta
- Antibodies, Neutralizing/immunology
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- B-Lymphocytes/immunology
- Antibodies, Viral/immunology
- Phylogeny
- Antibodies, Monoclonal/immunology
- Epitopes/immunology
- COVID-19/immunology
- COVID-19/virology
- Humans
- COVID-19 Vaccines/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- Somatic Hypermutation, Immunoglobulin
- Immunization
Collapse
Affiliation(s)
- Marco Mandolesi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Hrishikesh Das
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Liset de Vries
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yiqiu Yang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manojj Dhinakaran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julian Fischbach
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sungyong Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mariia V Guryleva
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Àdori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mark Chernyshev
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aron Stålmarck
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Leo Hanke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
5
|
Jiang W, Maldeney AR, Yuan X, Richer MJ, Renshaw SE, Luo W. Ipsilateral immunization after a prior SARS-CoV-2 mRNA vaccination elicits superior B cell responses compared to contralateral immunization. Cell Rep 2024; 43:113665. [PMID: 38194344 PMCID: PMC10851277 DOI: 10.1016/j.celrep.2023.113665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
mRNA vaccines have proven to be pivotal in the fight against COVID-19. A recommended booster, given 3 to 4 weeks post the initial vaccination, can substantially amplify protective antibody levels. Here, we show that, compared to contralateral boost, ipsilateral boost of the SARS-CoV-2 mRNA vaccine induces more germinal center B cells (GCBCs) specific to the receptor binding domain (RBD) and generates more bone marrow plasma cells. Ipsilateral boost can more rapidly generate high-affinity RBD-specific antibodies with improved cross-reactivity to the Omicron variant. Mechanistically, the ipsilateral boost promotes the positive selection and plasma cell differentiation of pre-existing GCBCs from the prior vaccination, associated with the expansion of T follicular helper cells. Furthermore, we show that ipsilateral immunization with an unrelated antigen after a prior mRNA vaccination enhances the germinal center and antibody responses to the new antigen compared to contralateral immunization. These findings propose feasible approaches to optimize vaccine effectiveness.
Collapse
Affiliation(s)
- Wenxia Jiang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander R Maldeney
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xue Yuan
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Martin J Richer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Cooperative Center of Excellence in Hematology (CCEH), Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott E Renshaw
- Department of Family Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wei Luo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Cooperative Center of Excellence in Hematology (CCEH), Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
6
|
Wang R, Han Y, Zhang R, Zhu J, Nan X, Liu Y, Yang Z, Zhou B, Yu J, Lin Z, Li J, Chen P, Wang Y, Li Y, Liu D, Shi X, Wang X, Zhang Q, Yang YR, Li T, Zhang L. Dissecting the intricacies of human antibody responses to SARS-CoV-1 and SARS-CoV-2 infection. Immunity 2023; 56:2635-2649.e6. [PMID: 37924813 DOI: 10.1016/j.immuni.2023.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/25/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
The 2003 severe acute respiratory syndrome coronavirus (SARS-CoV-1) causes more severe disease than SARS-CoV-2, which is responsible for COVID-19. However, our understanding of antibody response to SARS-CoV-1 infection remains incomplete. Herein, we studied the antibody responses in 25 SARS-CoV-1 convalescent patients. Plasma neutralization was higher and lasted longer in SARS-CoV-1 patients than in severe SARS-CoV-2 patients. Among 77 monoclonal antibodies (mAbs) isolated, 60 targeted the receptor-binding domain (RBD) and formed 7 groups (RBD-1 to RBD-7) based on their distinct binding and structural profiles. Notably, RBD-7 antibodies bound to a unique RBD region interfaced with the N-terminal domain of the neighboring protomer (NTD proximal) and were more prevalent in SARS-CoV-1 patients. Broadly neutralizing antibodies for SARS-CoV-1, SARS-CoV-2, and bat and pangolin coronaviruses were also identified. These results provide further insights into the antibody response to SARS-CoV-1 and inform the design of more effective strategies against diverse human and animal coronaviruses.
Collapse
Affiliation(s)
- Ruoke Wang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100005, China
| | - Rui Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiayi Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Xuanyu Nan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Yaping Liu
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Ziqing Yang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jinfang Yu
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zichun Lin
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinqian Li
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Peng Chen
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yangjunqi Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuhe R Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China, CAS, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Beijing 100730, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing 100005, China.
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases Research, NexVac Research Center, Center for Infectious Diseases Research, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
7
|
da Silva Antunes R, Weiskopf D, Sidney J, Rubiro P, Peters B, Arlehamn CSL, Grifoni A, Sette A. The MegaPool Approach to Characterize Adaptive CD4+ and CD8+ T Cell Responses. Curr Protoc 2023; 3:e934. [PMID: 37966108 PMCID: PMC10662678 DOI: 10.1002/cpz1.934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Epitopes recognized by T cells are a collection of short peptide fragments derived from specific antigens or proteins. Immunological research to study T cell responses is hindered by the extreme degree of heterogeneity of epitope targets, which are usually derived from multiple antigens; within a given antigen, hundreds of different T cell epitopes can be recognized, differing from one individual to the next because T cell epitope recognition is restricted by the epitopes' ability to bind to MHC molecules, which are extremely polymorphic in different individuals. Testing large pools encompassing hundreds of peptides is technically challenging because of logistical considerations regarding solvent-induced toxicity. To address this issue, we developed the MegaPool (MP) approach based on sequential lyophilization of large numbers of peptides that can be used in a variety of assays to measure T cell responses, including ELISPOT, intracellular cytokine staining, and activation-induced marker assays, and that has been validated in the study of infectious diseases, allergies, and autoimmunity. Here, we describe the procedures for generating and testing MPs, starting with peptide synthesis and lyophilization, as well as a step-by-step guide and recommendations for their handling and experimental usage. Overall, the MP approach is a powerful strategy for studying T cell responses and understanding the immune system's role in health and disease. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of peptide pools ("MegaPools") Basic Protocol 2: MegaPool testing and quantitation of antigen-specific T cell responses.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| |
Collapse
|
8
|
Feng Y, Yuan M, Powers JM, Hu M, Munt JE, Arunachalam PS, Leist SR, Bellusci L, Kim J, Sprouse KR, Adams LE, Sundaramurthy S, Zhu X, Shirreff LM, Mallory ML, Scobey TD, Moreno A, O’Hagan DT, Kleanthous H, Villinger FJ, Veesler D, King NP, Suthar MS, Khurana S, Baric RS, Wilson IA, Pulendran B. Broadly neutralizing antibodies against sarbecoviruses generated by immunization of macaques with an AS03-adjuvanted COVID-19 vaccine. Sci Transl Med 2023; 15:eadg7404. [PMID: 37163615 PMCID: PMC11032722 DOI: 10.1126/scitranslmed.adg7404] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that evade immunity elicited by vaccination has placed an imperative on the development of countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent monoclonal antibodies (mAbs) that neutralized multiple sarbecoviruses from macaques vaccinated with AS03-adjuvanted monovalent subunit vaccines. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells (MBCs) for at least 1 year after primary vaccination. Antibodies generated from these antigen-specific MBCs at 5 to 12 months after vaccination displayed greater potency and breadth relative to those identified at 1.4 months. Fifteen of the 338 (about 4.4%) antibodies isolated at 1.4 to 6 months after the primary vaccination showed potency against SARS-CoV-2 BA.1, despite the absence of serum BA.1 neutralization. 25F9 and 20A7 neutralized authentic clade 1 sarbecoviruses (SARS-CoV, WIV-1, SHC014, SARS-CoV-2 D614G, BA.1, and Pangolin-GD) and vesicular stomatitis virus-pseudotyped clade 3 sarbecoviruses (BtKY72 and PRD-0038). 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1, and XBB. Crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved sites within the RBD. Prophylactic protection of 25F9, 20A7, and 27A12 was confirmed in mice, and administration of 25F9 particularly provided complete protection against SARS-CoV-2, BA.1, SARS-CoV, and SHC014 challenge. These data underscore the extremely potent and broad activity of these mAbs against sarbecoviruses.
Collapse
Affiliation(s)
- Yupeng Feng
- Institute for Immunity, Transplantation and Infection, Stanford University; Stanford, CA 94305, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - John M. Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Mengyun Hu
- Institute for Immunity, Transplantation and Infection, Stanford University; Stanford, CA 94305, USA
| | - Jennifer E. Munt
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Prabhu S. Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University; Stanford, CA 94305, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Lorenza Bellusci
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA); Silver Spring, MD 20993, USA
| | - JungHyun Kim
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA); Silver Spring, MD 20993, USA
| | - Kaitlin R. Sprouse
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
| | - Lily E. Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | | | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Lisa M. Shirreff
- New Iberia Research Center, University of Louisiana at Lafayette; New Iberia, LA 70560, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Trevor D. Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Alberto Moreno
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine; Atlanta, GA 30322, USA
| | | | | | - Francois J. Villinger
- New Iberia Research Center, University of Louisiana at Lafayette; New Iberia, LA 70560, USA
| | - David Veesler
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington; Seattle, WA 98195, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington; Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington; Seattle, WA 98195, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center; Atlanta, GA 30329, USA
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA); Silver Spring, MD 20993, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University; Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford University; Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
9
|
Song G, Yuan M, Liu H, Capozzola T, Lin RN, Torres JL, He WT, Musharrafieh R, Dueker K, Zhou P, Callaghan S, Mishra N, Yong P, Anzanello F, Avillion G, Vo AL, Li X, Makhdoomi M, Feng Z, Zhu X, Peng L, Nemazee D, Safonova Y, Briney B, Ward AB, Burton DR, Wilson IA, Andrabi R. Broadly neutralizing antibodies targeting a conserved silent face of spike RBD resist extreme SARS-CoV-2 antigenic drift. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538488. [PMID: 37162858 PMCID: PMC10168401 DOI: 10.1101/2023.04.26.538488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Developing broad coronavirus vaccines requires identifying and understanding the molecular basis of broadly neutralizing antibody (bnAb) spike sites. In our previous work, we identified sarbecovirus spike RBD group 1 and 2 bnAbs. We have now shown that many of these bnAbs can still neutralize highly mutated SARS-CoV-2 variants, including the XBB.1.5. Structural studies revealed that group 1 bnAbs use recurrent germline-encoded CDRH3 features to interact with a conserved RBD region that overlaps with class 4 bnAb site. Group 2 bnAbs recognize a less well-characterized "site V" on the RBD and destabilize spike trimer. The site V has remained largely unchanged in SARS-CoV-2 variants and is highly conserved across diverse sarbecoviruses, making it a promising target for broad coronavirus vaccine development. Our findings suggest that targeted vaccine strategies may be needed to induce effective B cell responses to escape resistant subdominant spike RBD bnAb sites.
Collapse
Affiliation(s)
- Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan N. Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nitesh Mishra
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Avillion
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anh Lina Vo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xuduo Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Muzamil Makhdoomi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ziqi Feng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Ian A. Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Lead Contact
| |
Collapse
|
10
|
Zhou P, Song G, Liu H, Yuan M, He WT, Beutler N, Zhu X, Tse LV, Martinez DR, Schäfer A, Anzanello F, Yong P, Peng L, Dueker K, Musharrafieh R, Callaghan S, Capozzola T, Limbo O, Parren M, Garcia E, Rawlings SA, Smith DM, Nemazee D, Jardine JG, Safonova Y, Briney B, Rogers TF, Wilson IA, Baric RS, Gralinski LE, Burton DR, Andrabi R. Broadly neutralizing anti-S2 antibodies protect against all three human betacoronaviruses that cause deadly disease. Immunity 2023; 56:669-686.e7. [PMID: 36889306 PMCID: PMC9933850 DOI: 10.1016/j.immuni.2023.02.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/10/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Pan-betacoronavirus neutralizing antibodies may hold the key to developing broadly protective vaccines against novel pandemic coronaviruses and to more effectively respond to SARS-CoV-2 variants. The emergence of Omicron and subvariants of SARS-CoV-2 illustrates the limitations of solely targeting the receptor-binding domain (RBD) of the spike (S) protein. Here, we isolated a large panel of broadly neutralizing antibodies (bnAbs) from SARS-CoV-2 recovered-vaccinated donors, which targets a conserved S2 region in the betacoronavirus spike fusion machinery. Select bnAbs showed broad in vivo protection against all three deadly betacoronaviruses, SARS-CoV-1, SARS-CoV-2, and MERS-CoV, which have spilled over into humans in the past two decades. Structural studies of these bnAbs delineated the molecular basis for their broad reactivity and revealed common antibody features targetable by broad vaccination strategies. These bnAbs provide new insights and opportunities for antibody-based interventions and for developing pan-betacoronavirus vaccines.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-Ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Longping V Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fabio Anzanello
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linghang Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Katharina Dueker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Musharrafieh
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean Callaghan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oliver Limbo
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mara Parren
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen A Rawlings
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Davey M Smith
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joseph G Jardine
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yana Safonova
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bryan Briney
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas F Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ian A Wilson
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Departments of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Lisa E Gralinski
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA.
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Logue J, Johnson RM, Patel N, Zhou B, Maciejewski S, Foreman B, Zhou H, Portnoff AD, Tian JH, Rehman A, McGrath ME, Haupt RE, Weston SM, Baracco L, Hammond H, Guebre-Xabier M, Dillen C, Madhangi M, Greene AM, Massare MJ, Glenn GM, Smith G, Frieman MB. Immunogenicity and protection of a variant nanoparticle vaccine that confers broad neutralization against SARS-CoV-2 variants. Nat Commun 2023; 14:1130. [PMID: 36854666 PMCID: PMC9972327 DOI: 10.1038/s41467-022-35606-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/12/2022] [Indexed: 03/02/2023] Open
Abstract
SARS-CoV-2 variants have emerged with elevated transmission and a higher risk of infection for vaccinated individuals. We demonstrate that a recombinant prefusion-stabilized spike (rS) protein vaccine based on Beta/B.1.351 (rS-Beta) produces a robust anamnestic response in baboons against SARS-CoV-2 variants when given as a booster one year after immunization with NVX-CoV2373. Additionally, rS-Beta is highly immunogenic in mice and produces neutralizing antibodies against WA1/2020, Beta/B.1.351, and Omicron/BA.1. Mice vaccinated with two doses of Novavax prototype NVX-CoV2373 (rS-WU1) or rS-Beta alone, in combination, or heterologous prime-boost, are protected from challenge. Virus titer is undetectable in lungs in all vaccinated mice, and Th1-skewed cellular responses are observed. We tested sera from a panel of variant spike protein vaccines and find broad neutralization and inhibition of spike:ACE2 binding from the rS-Beta and rS-Delta vaccines against a variety of variants including Omicron. This study demonstrates that rS-Beta vaccine alone or in combination with rS-WU1 induces antibody-and cell-mediated responses that are protective against challenge with SARS-CoV-2 variants and offers broader neutralizing capacity than a rS-WU1 prime/boost regimen alone. Together, these nonhuman primate and murine data suggest a Beta variant booster dose could elicit a broad immune response to fight new and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- James Logue
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert M Johnson
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Nita Patel
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Bin Zhou
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Bryant Foreman
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Haixia Zhou
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Jing-Hui Tian
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Asma Rehman
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Marisa E McGrath
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robert E Haupt
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stuart M Weston
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lauren Baracco
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Holly Hammond
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Ross 1164, Baltimore, MD, 21205, USA
| | | | - Carly Dillen
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - M Madhangi
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Ann M Greene
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | | | - Greg M Glenn
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Gale Smith
- Novavax, Inc, 21 Firstfield Road, Gaithersburg, MD, 20878, USA
| | - Matthew B Frieman
- The Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Center for Pathogen Research, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
12
|
Li S, Wu J, Jiang W, He H, Zhou Y, Wu W, Gao Y, Xie M, Xia A, He J, Zhang Q, Han Y, Wang N, Zhu G, Wang Q, Zhang Z, Mayer CT, Wang K, Wang X, Wang J, Chen Z, Jiang S, Sun L, Xia R, Wang Q. Characterization of cross-reactive monoclonal antibodies against SARS-CoV-1 and SARS-CoV-2: Implication for rational design and development of pan-sarbecovirus vaccines and neutralizing antibodies. J Med Virol 2023; 95:e28440. [PMID: 36573441 PMCID: PMC9880677 DOI: 10.1002/jmv.28440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Emergence of various circulating SARS-CoV-2 variants of concern (VOCs) promotes the identification of pan-sarbecovirus vaccines and broadly neutralizing antibodies (bNAbs). Here, to characterize monoclonal antibodies cross-reactive against both SARS-CoV-1 and SARS-CoV-2 and to search the criterion for bNAbs against all emerging SARS-CoV-2, we isolated several SARS-CoV-1-cross-reactive monoclonal antibodies (mAbs) from a wildtype SARS-CoV-2 convalescent donor. These antibodies showed broad binding capacity and cross-neutralizing potency against various SARS-CoV-2 VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), but failed to efficiently neutralize Omicron variant and its sublineages. Structural analysis revealed how Omicron sublineages, but not other VOCs, efficiently evade an antibody family cross-reactive against SARS-CoV-1 through their escape mutations. Further evaluation of a series of SARS-CoV-1/2-cross-reactive bNAbs showed a negative correlation between the neutralizing activities against SARS-CoV-1 and SARS-CoV-2 Omicron variant. Together, these results suggest the necessity of using cross-neutralization against SARS-CoV-1 and SARS-CoV-2 Omicron as criteria for rational design and development of potent pan-sarbecovirus vaccines and bNAbs.
Collapse
Affiliation(s)
- Shibo Li
- Department of Infectious DiseaseZhoushan Hospital, Wenzhou Medical UniversityZhoushanChina
| | - Jianbo Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Weiyu Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Haiyan He
- Department of Hematology, Myeloma & Lymphoma Center, Shanghai Changzheng HospitalNaval Medical UniversityShanghaiChina
| | - Yunjiao Zhou
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Wei Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yidan Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Minxiang Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Anqi Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Jiaying He
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Qianqian Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Nan Wang
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Guangqi Zhu
- Department of Infectious DiseaseZhoushan Hospital, Wenzhou Medical UniversityZhoushanChina
| | - Qiujing Wang
- Department of Infectious DiseaseZhoushan Hospital, Wenzhou Medical UniversityZhoushanChina
| | - Zheen Zhang
- Department of Infectious DiseaseZhoushan Hospital, Wenzhou Medical UniversityZhoushanChina
| | - Christian T. Mayer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Kang Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Junqing Wang
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhenguo Chen
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Fifth People's HospitalFudan UniversityShanghaiChina
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Lei Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina,Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Fifth People's HospitalFudan UniversityShanghaiChina
| | - Rong Xia
- Department of Transfusion Medicine, Shanghai Huashan HospitalFudan UniversityShanghaiChina
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Feng Y, Yuan M, Powers JM, Hu M, Munt JE, Arunachalam PS, Leist SR, Bellusci L, Adams LE, Sundaramurthy S, Shirreff LM, Mallory ML, Scooby TD, Moreno A, O’Hagan DT, Kleanthous H, Villinger FJ, Veesler D, King NP, Suthar MS, Khurana S, Baric RS, Wilson IA, Pulendran B. Extremely potent pan-sarbecovirus neutralizing antibodies generated by immunization of macaques with an AS03-adjuvanted monovalent subunit vaccine against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524784. [PMID: 36711543 PMCID: PMC9882348 DOI: 10.1101/2023.01.19.524784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The rapid emergence of SARS-CoV-2 variants that evade immunity to vaccination has placed a global health imperative on the development of therapeutic countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent pan-sarbecovirus antibodies from non-human primates vaccinated with an AS03 adjuvanted subunit vaccine against SARS-CoV-2 that recognize conserved epitopes in the receptor binding domain (RBD) with femtomolar affinities. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells for at least one year following primary vaccination. 514 monoclonal antibodies (mAbs) were generated from antigen-specific memory B cells. Antibodies isolated at 5 to 12 months following vaccination displayed greater potency and breadth, relative to those identified at 1.4 months. Notably, 15 out of 338 (∼4.4%) antibodies isolated at 1.4∼6 months after the primary vaccination showed extraordinary neutralization potency against SARS-CoV-2 omicron BA.1, despite the absence of BA.1 neutralization in serum. Two of them, 25F9 and 20A7, neutralized authentic clade Ia sarbecoviruses (SARS-CoV, WIV-1, SHC014) and clade Ib sarbecoviruses (SARS-CoV-2 D614G, SARS-CoV-2 BA.1, Pangolin-GD) with half-maximal inhibition concentrations of (0.85 ng/ml, 3 ng/ml, 6 ng/ml, 6 ng/ml, 42 ng/ml, 6 ng/ml) and (13 ng/ml, 2 ng/ml, 18 ng/ml, 9 ng/ml, 6 ng/ml, 345 ng/ml), respectively. Furthermore, 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants of concern and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1 and XBB variants. X-ray crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved RBD sites. In vivo prophylactic protection of 25F9, 20A7 and 27A12 was confirmed in aged Balb/c mice. Notably, administration of 25F9 provided complete protection against SARS-CoV-2, SARS-CoV-2 BA.1, SARS-CoV, and SHC014 challenge, underscoring that these mAbs are promising pan-sarbecovirus therapeutic antibodies. One Sentence Summary Extremely potent pan-sarbecovirus neutralizing antibodies.
Collapse
|