1
|
Gräwe A, van der Veer H, Jongkees SAK, Flipse J, Rossey I, de Vries RP, Saelens X, Merkx M. Direct and Ultrasensitive Bioluminescent Detection of Intact Respiratory Viruses. ACS Sens 2024; 9:5550-5560. [PMID: 39375866 PMCID: PMC11519905 DOI: 10.1021/acssensors.4c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Respiratory viruses such as SARS-CoV-2, influenza, and respiratory syncytial virus (RSV) represent pressing health risks. Rapid diagnostic tests for these viruses detect single antigens or nucleic acids, which do not necessarily correlate with the amount of the intact virus. Instead, specific detection of intact respiratory virus particles may be more effective at assessing the contagiousness of a patient. Here, we report GLOVID, a modular biosensor platform to detect intact virions against a background of "free" viral proteins in solution. Our approach harnesses the multivalent display of distinct proteins on the surface of a viral particle to template the reconstitution of a split luciferase, allowing specific, single-step detection of intact influenza A and RSV virions corresponding to 0.1-0.3 fM of genomic units. The protein ligation system used to assemble GLOVID sensors is compatible with a broad range of binding domains, including nanobodies, scFv fragments, and cyclic peptides, which allows straightforward adjustment of the sensor platform to target different viruses.
Collapse
Affiliation(s)
- Alexander Gräwe
- Laboratory
of Protein Engineering, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Harm van der Veer
- Laboratory
of Protein Engineering, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Seino A. K. Jongkees
- Department
of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular
and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 HZ, The Netherlands
| | - Jacky Flipse
- Laboratory
for Medical Microbiology and Immunology, Rijnstate Hospital, Arnhem 6880 AA, The Netherlands
- Laboratory
for Medical Microbiology and Immunology, Dicoon, Elst 6662 PA, The Netherlands
| | - Iebe Rossey
- VIB
Center for Medical Biotechnology, Department of Biochemistry and Microbiology, Ghent University, 9052 Zwijnaarde, Belgium
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht 3584 CG, The Netherlands
| | - Xavier Saelens
- VIB
Center for Medical Biotechnology, Department of Biochemistry and Microbiology, Ghent University, 9052 Zwijnaarde, Belgium
| | - Maarten Merkx
- Laboratory
of Protein Engineering, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
2
|
Ekas H, Wang B, Silverman AD, Lucks JB, Karim AS, Jewett MC. An Automated Cell-Free Workflow for Transcription Factor Engineering. ACS Synth Biol 2024; 13:3389-3399. [PMID: 39373325 PMCID: PMC11494693 DOI: 10.1021/acssynbio.4c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
The design and optimization of metabolic pathways, genetic systems, and engineered proteins rely on high-throughput assays to streamline design-build-test-learn cycles. However, assay development is a time-consuming and laborious process. Here, we create a generalizable approach for the tailored optimization of automated cell-free gene expression (CFE)-based workflows, which offers distinct advantages over in vivo assays in reaction flexibility, control, and time to data. Centered around designing highly accurate and precise transfers on the Echo Acoustic Liquid Handler, we introduce pilot assays and validation strategies for each stage of protocol development. We then demonstrate the efficacy of our platform by engineering transcription factor-based biosensors. As a model, we rapidly generate and assay libraries of 127 MerR and 134 CadR transcription factor variants in 3682 unique CFE reactions in less than 48 h to improve limit of detection, selectivity, and dynamic range for mercury and cadmium detection. This was achieved by assessing a panel of ligand conditions for sensitivity (to 0.1, 1, 10 μM Hg and 0, 1, 10, 100 μM Cd for MerR and CadR, respectively) and selectivity (against Ag, As, Cd, Co, Cu, Hg, Ni, Pb, and Zn). We anticipate that our Echo-based, cell-free approach can be used to accelerate multiple design workflows in synthetic biology.
Collapse
Affiliation(s)
- Holly
M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Brenda Wang
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam D. Silverman
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B. Lucks
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Simpson Querrey
Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Mohammadifar E, Gasbarri M, Dimde M, Nie C, Wang H, Povolotsky TL, Kerkhoff Y, Desmecht D, Prevost S, Zemb T, Ludwig K, Stellacci F, Haag R. Supramolecular Architectures of Dendritic Polymers Provide Irreversible Inhibitor to Block Viral Infection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408294. [PMID: 39344918 DOI: 10.1002/adma.202408294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/20/2024] [Indexed: 10/01/2024]
Abstract
In Nature, most known objects can perform their functions only when in supramolecular self-assembled from, e.g. protein complexes and cell membranes. Here, a dendritic polymer is presented that inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an irreversible (virucidal) mechanism only when self-assembled into a Two-dimmensional supramolecular polymer (2D-SupraPol). Monomeric analogs of the dendritic polymer can only inhibit SARS-CoV-2 reversibly, thus allowing for the virus to regain infectivity after dilution. Upon assembly, 2D-SupraPol shows a remarkable half-inhibitory concentration (IC50 30 nM) in vitro and in vivo in a Syrian Hamster model has a good efficacy. Using cryo-TEM, it is shown that the 2D-SupraPol has a controllable lateral size that can be tuned by adjusting the pH and use small angle X-ray and neutron scattering to unveil the architecture of the supramolecular assembly. This functional 2D-SupraPol, and its supramolecular architecture are proposed, as a prophylaxis nasal spray to inhibit the virus interaction with the respiratory tract.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Matteo Gasbarri
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Mathias Dimde
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Chuanxiong Nie
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Heyun Wang
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Tatyana L Povolotsky
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| | - Yannic Kerkhoff
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Daniel Desmecht
- Animal Pathology, FARAH Research Center, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman B43, Liège, 4000, Belgium
| | - Sylvain Prevost
- Institut Laue-Langevin - The European Neutron Source, 71 avenue des Martyrs - CS 20156 38042, Grenoble, cedex 9, France
| | - Thomas Zemb
- ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Bagnols-sur-Ceze, 30207, France
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Gerätezentrum BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Berlin, Germany
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin, Takustr 3, 14195, Berlin, Germany
| |
Collapse
|
4
|
Ekas HM, Wang B, Silverman AD, Lucks JB, Karim AS, Jewett MC. Engineering a PbrR-Based Biosensor for Cell-Free Detection of Lead at the Legal Limit. ACS Synth Biol 2024; 13:3003-3012. [PMID: 39255329 DOI: 10.1021/acssynbio.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Industrialization and failing infrastructure have led to a growing number of irreversible health conditions resulting from chronic lead exposure. While state-of-the-art analytical chemistry methods provide accurate and sensitive detection of lead, they are too slow, expensive, and centralized to be accessible to many. Cell-free biosensors based on allosteric transcription factors (aTFs) can address the need for accessible, on-demand lead detection at the point of use. However, known aTFs, such as PbrR, are unable to detect lead at concentrations regulated by the Environmental Protection Agency (24-72 nM). Here, we develop a rapid cell-free platform for engineering aTF biosensors with improved sensitivity, selectivity, and dynamic range characteristics. We apply this platform to engineer PbrR mutants for a shift in limit of detection from 10 μM to 50 nM lead and demonstrate use of PbrR as a cell-free biosensor. We envision that our workflow could be applied to engineer any aTF.
Collapse
Affiliation(s)
- Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Brenda Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam D Silverman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Huang B, Coventry B, Borowska MT, Arhontoulis DC, Exposit M, Abedi M, Jude KM, Halabiya SF, Allen A, Cordray C, Goreshnik I, Ahlrichs M, Chan S, Tunggal H, DeWitt M, Hyams N, Carter L, Stewart L, Fuller DH, Mei Y, Garcia KC, Baker D. De novo design of miniprotein antagonists of cytokine storm inducers. Nat Commun 2024; 15:7064. [PMID: 39152100 PMCID: PMC11329760 DOI: 10.1038/s41467-024-50919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/25/2024] [Indexed: 08/19/2024] Open
Abstract
Cytokine release syndrome (CRS), commonly known as cytokine storm, is an acute systemic inflammatory response that is a significant global health threat. Interleukin-6 (IL-6) and interleukin-1 (IL-1) are key pro-inflammatory cytokines involved in CRS and are hence critical therapeutic targets. Current antagonists, such as tocilizumab and anakinra, target IL-6R/IL-1R but have limitations due to their long half-life and systemic anti-inflammatory effects, making them less suitable for acute or localized treatments. Here we present the de novo design of small protein antagonists that prevent IL-1 and IL-6 from interacting with their receptors to activate signaling. The designed proteins bind to the IL-6R, GP130 (an IL-6 co-receptor), and IL-1R1 receptor subunits with binding affinities in the picomolar to low-nanomolar range. X-ray crystallography studies reveal that the structures of these antagonists closely match their computational design models. In a human cardiac organoid disease model, the IL-1R antagonists demonstrated protective effects against inflammation and cardiac damage induced by IL-1β. These minibinders show promise for administration via subcutaneous injection or intranasal/inhaled routes to mitigate acute cytokine storm effects.
Collapse
Affiliation(s)
- Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Marta T Borowska
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dimitrios C Arhontoulis
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC, USA
| | - Marc Exposit
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Samer F Halabiya
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Aza Allen
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cami Cordray
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hillary Tunggal
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Michelle DeWitt
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Nathaniel Hyams
- Department of Bioengineering, Clemson University, Charleston, SC, USA
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Deborah H Fuller
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Ying Mei
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC, USA
- Department of Bioengineering, Clemson University, Charleston, SC, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Lee J, Case JB, Park YJ, Ravichandran R, Asarnow D, Tortorici MA, Brown JT, Sanapala S, Carter L, Baker D, Diamond MS, Veesler D. A pan-variant miniprotein inhibitor protects against SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606885. [PMID: 39149384 PMCID: PMC11326246 DOI: 10.1101/2024.08.08.606885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The continued evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has compromised neutralizing antibody responses elicited by prior infection or vaccination and abolished the utility of most monoclonal antibody therapeutics. We previously described a computationally-designed, homotrimeric miniprotein inhibitor, designated TRI2-2, that protects mice against pre-Omicron SARS-CoV-2 variants. Here, we show that TRI2-2 exhibits pan neutralization of variants that evolved during the 4.5 years since the emergence of SARS-CoV-2 and protects mice against BQ.1.1, XBB.1.5 and BA.2.86 challenge when administered post-exposure by an intranasal route. The resistance of TRI2-2 to viral escape and its direct delivery to the upper airways rationalize a path toward clinical advancement.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Jack T. Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Shilpa Sanapala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Albanese KI, Petrenas R, Pirro F, Naudin EA, Borucu U, Dawson WM, Scott DA, Leggett GJ, Weiner OD, Oliver TAA, Woolfson DN. Rationally seeded computational protein design of ɑ-helical barrels. Nat Chem Biol 2024; 20:991-999. [PMID: 38902458 PMCID: PMC11288890 DOI: 10.1038/s41589-024-01642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/09/2024] [Indexed: 06/22/2024]
Abstract
Computational protein design is advancing rapidly. Here we describe efficient routes starting from validated parallel and antiparallel peptide assemblies to design two families of α-helical barrel proteins with central channels that bind small molecules. Computational designs are seeded by the sequences and structures of defined de novo oligomeric barrel-forming peptides, and adjacent helices are connected by loop building. For targets with antiparallel helices, short loops are sufficient. However, targets with parallel helices require longer connectors; namely, an outer layer of helix-turn-helix-turn-helix motifs that are packed onto the barrels. Throughout these computational pipelines, residues that define open states of the barrels are maintained. This minimizes sequence sampling, accelerating the design process. For each of six targets, just two to six synthetic genes are made for expression in Escherichia coli. On average, 70% of these genes express to give soluble monomeric proteins that are fully characterized, including high-resolution structures for most targets that match the design models with high accuracy.
Collapse
Affiliation(s)
- Katherine I Albanese
- School of Chemistry, University of Bristol, Bristol, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
| | | | - Fabio Pirro
- School of Chemistry, University of Bristol, Bristol, UK
| | | | - Ufuk Borucu
- School of Biochemistry, University of Bristol, Medical Sciences Building, Bristol, UK
| | | | - D Arne Scott
- Rosa Biotech, Science Creates St Philips, Bristol, UK
| | | | - Orion D Weiner
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK.
- School of Biochemistry, University of Bristol, Medical Sciences Building, Bristol, UK.
- Bristol BioDesign Institute, University of Bristol, Bristol, UK.
| |
Collapse
|
8
|
Gaur NK, Urankar S, Sengupta D, Chepuri VR, Makde RD, Kulkarni K. A cell based assay using virus-like particles to screen AM type mimics for SARS-CoV-2 neutralisation. Biochem Biophys Res Commun 2024; 718:150082. [PMID: 38735141 DOI: 10.1016/j.bbrc.2024.150082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
A number of small molecule and protein therapeutic candidates have been developed in the last four years against SARS-CoV-2 spike. However, there are hardly a few molecules that have advanced through the subsequent discovery steps to eventually work as a therapeutic agent. This is majorly because of the hurdles in determining the affinity of potential therapeutics with live SARS-CoV-2 virus. Furthermore, affinity determined for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, at times, fails to mimic physiological conditions of the host-virus interaction. To bridge this gap between in vitro and in vivo methods of therapeutic agent screening, we report an improved screening protocol for therapeutic candidates using SARS-CoV-2 virus like particles (VLPs). To minimise the interference from the bulkier reporters like GPF in the affinity studies, a smaller hemagglutinin (HA) tag has been fused to one of the proteins of VLP. This HA tag serves as readout, when probed with fluorescent anti-HA antibodies. Outcome of this study sheds light on the lesser known virus neutralisation capabilities of AM type miniprotein mimics. Further, to assess the stability of SARS-CoV-2 spike - miniprotein complex, we have performed molecular dynamic simulations on the membrane embedded protein complex. Simulation results reveal extremely stable intermolecular interactions between RBD and one of the AM type miniproteins, AM1. Furthermore, we discovered a robust network of intramolecular interactions that help stabilise AM1. Findings from our in vitro and in silico experiments concurrently highlight advantages and capabilities of mimic based miniprotein therapeutics.
Collapse
Affiliation(s)
- Neeraj Kailash Gaur
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune- 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Shreegauri Urankar
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune- 411008, India
| | - Durba Sengupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India; Division of Physical and Material Chemistry, CSIR- National Chemical Laboratory, Pune, 411008, India
| | - V Ramana Chepuri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India; Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Kiran Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune- 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
9
|
Willi JA, Karim AS, Jewett MC. Cell-Free Translation Quantification via a Fluorescent Minihelix. ACS Synth Biol 2024; 13:2253-2259. [PMID: 38979618 DOI: 10.1021/acssynbio.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cell-free gene expression systems are used in numerous applications, including medicine making, diagnostics, and educational kits. Accurate quantification of nonfluorescent proteins in these systems remains a challenge. To address this challenge, we report the adaptation and use of an optimized tetra-cysteine minihelix both as a fusion protein and as a standalone reporter with the FlAsH dye. The fluorescent reporter helix is short enough to be encoded on a primer pair to tag any protein of interest via PCR. Both the tagged protein and the standalone reporter can be detected quantitatively in real time or at the end of cell-free expression reactions with standard 96/384-well plate readers, an RT-qPCR system, or gel electrophoresis without the need for staining. The fluorescent signal is stable and correlates linearly with the protein concentration, enabling product quantification. We modified the reporter to study cell-free expression dynamics and engineered ribosome activity. We anticipate that the fluorescent minihelix reporter will facilitate efforts in engineering in vitro transcription and translation systems.
Collapse
Affiliation(s)
- Jessica A Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
10
|
Wei Y, Liu Z, Zhang M, Zhu X, Niu Q. Inhibition of ACE2-S Protein Interaction by a Short Functional Peptide with a Boomerang Structure. Molecules 2024; 29:3022. [PMID: 38998974 PMCID: PMC11242946 DOI: 10.3390/molecules29133022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Considering the high evolutionary rate and great harmfulness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is imperative to develop new pharmacological antagonists. Human angiotensin-converting enzyme-2 (ACE2) functions as a primary receptor for the spike protein (S protein) of SARS-CoV-2. Thus, a novel functional peptide, KYPAY (K5), with a boomerang structure, was developed to inhibit the interaction between ACE2 and the S protein by attaching to the ACE2 ligand-binding domain (LBD). The inhibition property of K5 was evaluated via molecular simulations, cell experiments, and adsorption kinetics analysis. The molecular simulations showed that K5 had a high affinity for ACE2 but a low affinity for the cell membrane. The umbrella sampling (US) simulations revealed a significant enhancement in the binding potential of this functional peptide to ACE2. The fluorescence microscopy and cytotoxicity experiments showed that K5 effectively prevented the interaction between ACE2 and the S protein without causing any noticeable harm to cells. Further flow cytometry research indicated that K5 successfully hindered the interaction between ACE2 and the S protein, resulting in 78% inhibition at a concentration of 100 μM. This work offers an innovative perspective on the development of functional peptides for the prevention and therapy of SARS-CoV-2.
Collapse
Affiliation(s)
- Yuping Wei
- School of Life Science, Nanyang Normal University, Nanyang 473061, China; (Y.W.); (Z.L.); (X.Z.)
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang 473061, China;
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Ziyang Liu
- School of Life Science, Nanyang Normal University, Nanyang 473061, China; (Y.W.); (Z.L.); (X.Z.)
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang 473061, China;
| | - Man Zhang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang 473061, China;
- Department of Oncology, Nanyang First People’s Hospital, Nanyang 473002, China
| | - Xingyan Zhu
- School of Life Science, Nanyang Normal University, Nanyang 473061, China; (Y.W.); (Z.L.); (X.Z.)
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang 473061, China;
| | - Qiuhong Niu
- School of Life Science, Nanyang Normal University, Nanyang 473061, China; (Y.W.); (Z.L.); (X.Z.)
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, Nanyang Normal University, Nanyang 473061, China;
| |
Collapse
|
11
|
Liu WQ, Ji X, Ba F, Zhang Y, Xu H, Huang S, Zheng X, Liu Y, Ling S, Jewett MC, Li J. Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides. Nat Commun 2024; 15:4336. [PMID: 38773100 PMCID: PMC11109155 DOI: 10.1038/s41467-024-48726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with diverse chemical structures and potent biological activities. A vast majority of RiPP gene clusters remain unexplored in microbial genomes, which is partially due to the lack of rapid and efficient heterologous expression systems for RiPP characterization and biosynthesis. Here, we report a unified biocatalysis (UniBioCat) system based on cell-free gene expression for rapid biosynthesis and engineering of RiPPs. We demonstrate UniBioCat by reconstituting a full biosynthetic pathway for de novo biosynthesis of salivaricin B, a lanthipeptide RiPP. Next, we delete several protease/peptidase genes from the source strain to enhance the performance of UniBioCat, which then can synthesize and screen salivaricin B variants with enhanced antimicrobial activity. Finally, we show that UniBioCat is generalizable by synthesizing and evaluating the bioactivity of ten uncharacterized lanthipeptides. We expect UniBioCat to accelerate the discovery, characterization, and synthesis of RiPPs.
Collapse
Affiliation(s)
- Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiangyang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yufei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huiling Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiao Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Michael C Jewett
- Department of Bioengineering, Stanford University, Stanford, CA, US.
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
12
|
Vishweshwaraiah YL, Hnath B, Wang J, Chandler M, Mukherjee A, Yennawar NH, Booker SJ, Afonin KA, Dokholyan NV. A Piecewise Design Approach to Engineering a Miniature ACE2 Mimic to Bind SARS-CoV-2. ACS APPLIED BIO MATERIALS 2024; 7:3238-3246. [PMID: 38700999 DOI: 10.1021/acsabm.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues its global spread, the exploration of novel therapeutic and diagnostic strategies is still needed. The virus enters host cells by binding the angiotensin-converting enzyme 2 (ACE2) receptor through the spike protein. Here, we develop an engineered, small, stable, and catalytically inactive version of ACE2, termed miniature ACE2 (mACE2), designed to bind the spike protein with high affinity. Employing a magnetic nanoparticle-based assay, we harnessed the strong binding affinity of mACE2 to develop a sensitive and specific platform for the detection or neutralization of SARS-CoV-2. Our findings highlight the potential of engineered mACE2 as a valuable tool in the fight against SARS-CoV-2. The success of developing such a small reagent based on a piecewise molecular design serves as a proof-of-concept approach for the rapid deployment of such agents to diagnose and fight other viral diseases.
Collapse
Affiliation(s)
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| | - Morgan Chandler
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Arnab Mukherjee
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- The Howard Hughes Medical Institute, Penn State University, University Park, Pennsylvania 16802, United States
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
| | - Squire J Booker
- Department of Chemistry, Penn State University, University Park, Pennsylvania 16802, United States
- The Howard Hughes Medical Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry & Molecular Biology, Penn State University, University Park, Pennsylvania 16802, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, United States
| |
Collapse
|
13
|
Guo H, Ha S, Botten JW, Xu K, Zhang N, An Z, Strohl WR, Shiver JW, Fu TM. SARS-CoV-2 Omicron: Viral Evolution, Immune Evasion, and Alternative Durable Therapeutic Strategies. Viruses 2024; 16:697. [PMID: 38793580 PMCID: PMC11125895 DOI: 10.3390/v16050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Since the SARS-CoV-2 Omicron virus has gained dominance worldwide, its continual evolution with unpredictable mutations and patterns has revoked all authorized immunotherapeutics. Rapid viral evolution has also necessitated several rounds of vaccine updates in order to provide adequate immune protection. It remains imperative to understand how Omicron evolves into different subvariants and causes immune escape as this could help reevaluate the current intervention strategies mostly implemented in the clinics as emergency measures to counter the pandemic and, importantly, develop new solutions. Here, we provide a review focusing on the major events of Omicron viral evolution, including the features of spike mutation that lead to immune evasion against monoclonal antibody (mAb) therapy and vaccination, and suggest alternative durable options such as the ACE2-based experimental therapies superior to mAbs to address this unprecedented evolution of Omicron virus. In addition, this type of unique ACE2-based virus-trapping molecules can counter all zoonotic SARS coronaviruses, either from unknown animal hosts or from established wild-life reservoirs of SARS-CoV-2, and even seasonal alpha coronavirus NL63 that depends on human ACE2 for infection.
Collapse
Affiliation(s)
- Hailong Guo
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Sha Ha
- IGM Biosciences, Mountain View, CA 94043, USA
| | - Jason W. Botten
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Kai Xu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
14
|
Kofman C, Willi JA, Karim AS, Jewett MC. Ribosome Pool Engineering Increases Protein Biosynthesis Yields. ACS CENTRAL SCIENCE 2024; 10:871-881. [PMID: 38680563 PMCID: PMC11046459 DOI: 10.1021/acscentsci.3c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
The biosynthetic capability of the bacterial ribosome motivates efforts to understand and harness sequence-optimized versions for synthetic biology. However, functional differences between natively occurring ribosomal RNA (rRNA) operon sequences remain poorly characterized. Here, we use an in vitro ribosome synthesis and translation platform to measure protein production capabilities of ribosomes derived from all unique combinations of 16S and 23S rRNAs from seven distinct Escherichia coli rRNA operon sequences. We observe that polymorphisms that distinguish native E. coli rRNA operons lead to significant functional changes in the resulting ribosomes, ranging from negligible or low gene expression to matching the protein production activity of the standard rRNA operon B sequence. We go on to generate strains expressing single rRNA operons and show that not only do some purified in vivo expressed homogeneous ribosome pools outperform the wild-type, heterogeneous ribosome pool but also that a crude cell lysate made from the strain expressing only operon A ribosomes shows significant yield increases for a panel of medically and industrially relevant proteins. We anticipate that ribosome pool engineering can be applied as a tool to increase yields across many protein biomanufacturing systems, as well as improve basic understanding of ribosome heterogeneity and evolution.
Collapse
Affiliation(s)
- Camila Kofman
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jessica A. Willi
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Bioengineering, Stanford University, Stanford California 94305, United States
| |
Collapse
|
15
|
Zhang X, Luo F, Zhang H, Guo H, Zhou J, Li T, Chen S, Song S, Shen M, Wu Y, Gao Y, Han X, Wang Y, Hu C, Zhao X, Guo H, Zhang D, Lu Y, Wang W, Wang K, Tang N, Jin T, Ding M, Luo S, Lin C, Lu T, Lu B, Tian Y, Yang C, Cheng G, Yang H, Jin A, Ji X, Gong R, Chiu S, Huang A. Prophylactic efficacy of an intranasal spray with 2 synergetic antibodies neutralizing Omicron. JCI Insight 2024; 9:e171034. [PMID: 38587080 PMCID: PMC11128199 DOI: 10.1172/jci.insight.171034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUNDAs Omicron is prompted to replicate in the upper airway, neutralizing antibodies (NAbs) delivered through inhalation might inhibit early-stage infection in the respiratory tract. Thus, elucidating the prophylactic efficacy of NAbs via nasal spray addresses an important clinical need.METHODSThe applicable potential of a nasal spray cocktail containing 2 NAbs was characterized by testing its neutralizing potency, synergetic neutralizing mechanism, emergency protective and therapeutic efficacy in a hamster model, and pharmacokinetics/pharmacodynamic (PK/PD) in human nasal cavity.RESULTSThe 2 NAbs displayed broad neutralizing efficacy against Omicron, and they could structurally compensate each other in blocking the Spike-ACE2 interaction. When administrated through the intranasal mucosal route, this cocktail demonstrated profound efficacy in the emergency prevention in hamsters challenged with authentic Omicron BA.1. The investigator-initiated trial in healthy volunteers confirmed the safety and the PK/PD of the NAb cocktail delivered via nasal spray. Nasal samples from the participants receiving 4 administrations over a course of 16 hours demonstrated potent neutralization against Omicron BA.5 in an ex vivo pseudovirus neutralization assay.CONCLUSIONThese results demonstrate that the NAb cocktail nasal spray provides a good basis for clinical prophylactic efficacy against Omicron infections.TRIAL REGISTRATIONwww.chictr.org.cn, ChiCTR2200066525.FUNDINGThe National Science and Technology Major Project (2017ZX10202203), the National Key Research and Development Program of China (2018YFA0507100), Guangzhou National Laboratory (SRPG22-015), Lingang Laboratory (LG202101-01-07), Science and Technology Commission of Shanghai Municipality (YDZX20213100001556), and the Emergency Project from the Science & Technology Commission of Chongqing (cstc2021jscx-fyzxX0001).
Collapse
Affiliation(s)
- Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Feiyang Luo
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hangtian Guo
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Junhui Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Li
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Shaohong Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Song
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Meiying Shen
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Xiaojian Han
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yingming Wang
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Chao Hu
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | | | | | | | - Yuchi Lu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | | | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tengchuan Jin
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Shuhui Luo
- Mindao Haoyue Co., Ltd., Chongqing, China
| | - Cuicui Lin
- Mindao Haoyue Co., Ltd., Chongqing, China
| | | | - Bingxia Lu
- Mindao Haoyue Co., Ltd., Chongqing, China
| | - Yang Tian
- Mindao Haoyue Co., Ltd., Chongqing, China
| | | | | | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Aishun Jin
- Department of Immunology, College of Basic Medicine, and
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Viruses and Infectious Diseases, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China
- Institute of Life Sciences, and
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Bennett NR, Watson JL, Ragotte RJ, Borst AJ, See DL, Weidle C, Biswas R, Shrock EL, Leung PJY, Huang B, Goreshnik I, Ault R, Carr KD, Singer B, Criswell C, Vafeados D, Sanchez MG, Kim HM, Torres SV, Chan S, Baker D. Atomically accurate de novo design of single-domain antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585103. [PMID: 38562682 PMCID: PMC10983868 DOI: 10.1101/2024.03.14.585103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite the central role that antibodies play in modern medicine, there is currently no way to rationally design novel antibodies to bind a specific epitope on a target. Instead, antibody discovery currently involves time-consuming immunization of an animal or library screening approaches. Here we demonstrate that a fine-tuned RFdiffusion network is capable of designing de novo antibody variable heavy chains (VHH's) that bind user-specified epitopes. We experimentally confirm binders to four disease-relevant epitopes, and the cryo-EM structure of a designed VHH bound to influenza hemagglutinin is nearly identical to the design model both in the configuration of the CDR loops and the overall binding pose.
Collapse
Affiliation(s)
- Nathaniel R. Bennett
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA 98105, USA
| | - Joseph L. Watson
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Robert J. Ragotte
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Andrew J. Borst
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Déjenaé L. See
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Connor Weidle
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Riti Biswas
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA 98105, USA
| | - Ellen L. Shrock
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Philip J. Y. Leung
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA 98105, USA
| | - Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Russell Ault
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth D. Carr
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Benedikt Singer
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Cameron Criswell
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Dionne Vafeados
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | | | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Susana Vázquez Torres
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Gräwe A, Spruit CM, de Vries RP, Merkx M. Bioluminescent detection of viral surface proteins using branched multivalent protein switches. RSC Chem Biol 2024; 5:148-157. [PMID: 38333197 PMCID: PMC10849123 DOI: 10.1039/d3cb00164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024] Open
Abstract
Fast and reliable virus diagnostics is key to prevent the spread of viruses in populations. A hallmark of viruses is the presence of multivalent surface proteins, a property that can be harnessed to control conformational switching in sensor proteins. Here, we introduce a new sensor platform (dark-LUX) for the detection of viral surface proteins consisting of a general bioluminescent framework that can be post-translationally functionalized with separately expressed binding domains. The platform relies on (1) plug-and-play bioconjugation of different binding proteins via SpyTag/SpyCatcher technology to create branched protein structures, (2) an optimized turn-on bioluminescent switch based on complementation of the split-luciferase NanoBiT upon target binding and (3) straightforward exploration of the protein linker space. The influenza A virus (IAV) surface proteins hemagglutinin (HA) and neuraminidase (NA) were used as relevant multivalent targets to establish proof of principle and optimize relevant parameters such as linker properties, choice of target binding domains and the optimal combination of the competing NanoBiT components SmBiT and DarkBiT. The sensor framework allows rapid conjugation and exchange of various binding domains including scFvs, nanobodies and de novo designed binders for a variety of targets, including the construction of a heterobivalent switch that targets the head and stem region of hemagglutinin. The modularity of the platform thus allows straightforward optimization of binding domains and scaffold properties for existing viral targets, and is well suited to quickly adapt bioluminescent sensor proteins to effectively detect newly evolving viral epitopes.
Collapse
Affiliation(s)
- Alexander Gräwe
- Laboratory of Protein Engineering, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Cindy M Spruit
- Utrecht Institute for Pharmaceutical Sciences, Department of Chemical Biology and Drug Discovery Utrecht The Netherlands
| | - Robert P de Vries
- Utrecht Institute for Pharmaceutical Sciences, Department of Chemical Biology and Drug Discovery Utrecht The Netherlands
| | - Maarten Merkx
- Laboratory of Protein Engineering, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
18
|
Gaur NK, Khakerwala Z, Makde RD. Design of human ACE2 mimic miniprotein binders that interact with RBD of SARS-CoV-2 variants of concerns. J Biomol Struct Dyn 2024:1-13. [PMID: 38315516 DOI: 10.1080/07391102.2024.2310789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024]
Abstract
The world of medicine demands from the research community solutions to the emerging problem of SARS-CoV-2 variants and other such potential global pandemics. With advantages of specificity over small molecule drugs and designability over antibodies, miniprotein therapeutics offers a unique solution to the threats of rapidly emerging SARS-CoV-2 variants. Unfortunately, most of the promising miniprotein binders are de novo designed and it is not viable to generate molecules for each new variant. Therefore in this study, we demonstrate a method for design of miniprotein mimics from the interaction interphase of human angiotensin converting enzyme 2 (ACE2). ACE2 is the natural interacting partner for the SARS-CoV-2 spike receptor binding domain (RBD) and acts as a recognition molecule for viral entry into the host cells. Starting with ACE2 N-terminal triple helix interaction interphase, we generated more than 70 miniprotein sequences. Employing Rosetta folding and docking scores we selected 10 promising miniprotein candidates amongst which 3 were found to be soluble in lab studies. Further, using molecular mechanics (MM) calculations on molecular dynamics (MD) trajectories we test interaction of miniproteins with RBD from various variants of concern (VOC). Presently, we report two key findings; miniproteins in this study are generated using less than 10 lab testing experiments, yet when tested through in-vitro experiments, they show submicro to nanomolar affinities towards SARS-CoV-2 RBD. Also in simulation studies, when compared with previously developed therapeutics, our miniproteins display remarkable ability to mimic ACE2 interphase; making them an ideal solution to the ever evolving problem of VOCs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neeraj K Gaur
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Zeenat Khakerwala
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Maharashtra, Mumbai, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
19
|
Notin P, Rollins N, Gal Y, Sander C, Marks D. Machine learning for functional protein design. Nat Biotechnol 2024; 42:216-228. [PMID: 38361074 DOI: 10.1038/s41587-024-02127-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
Recent breakthroughs in AI coupled with the rapid accumulation of protein sequence and structure data have radically transformed computational protein design. New methods promise to escape the constraints of natural and laboratory evolution, accelerating the generation of proteins for applications in biotechnology and medicine. To make sense of the exploding diversity of machine learning approaches, we introduce a unifying framework that classifies models on the basis of their use of three core data modalities: sequences, structures and functional labels. We discuss the new capabilities and outstanding challenges for the practical design of enzymes, antibodies, vaccines, nanomachines and more. We then highlight trends shaping the future of this field, from large-scale assays to more robust benchmarks, multimodal foundation models, enhanced sampling strategies and laboratory automation.
Collapse
Affiliation(s)
- Pascal Notin
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Department of Computer Science, University of Oxford, Oxford, UK.
| | | | - Yarin Gal
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Chris Sander
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Debora Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
20
|
Steinkühler J, Peruzzi JA, Krüger A, Villaseñor CG, Jacobs ML, Jewett MC, Kamat NP. Improving Cell-Free Expression of Model Membrane Proteins by Tuning Ribosome Cotranslational Membrane Association and Nascent Chain Aggregation. ACS Synth Biol 2024; 13:129-140. [PMID: 38150067 DOI: 10.1021/acssynbio.3c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell-free gene expression (CFE) systems are powerful tools for transcribing and translating genes outside of a living cell. Synthesis of membrane proteins is of particular interest, but their yield in CFE is substantially lower than that for soluble proteins. In this paper, we study the CFE of membrane proteins and develop a quantitative kinetic model. We identify that ribosome stalling during the translation of membrane proteins is a strong predictor of membrane protein synthesis due to aggregation between the ribosome nascent chains. Synthesis can be improved by the addition of lipid membranes, which incorporate protein nascent chains and, therefore, kinetically compete with aggregation. We show that the balance between peptide-membrane association and peptide aggregation rates determines the yield of the synthesized membrane protein. We define a membrane protein expression score that can be used to rationalize the engineering of lipid composition and the N-terminal domain of a native and computationally designed membrane proteins produced through CFE.
Collapse
Affiliation(s)
- Jan Steinkühler
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Bio-Inspired Computation, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Citlayi G Villaseñor
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Miranda L Jacobs
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
21
|
Jiang X, Qin Q, Zhu H, Qian J, Huang Q. Structure-guided design of a trivalent nanobody cluster targeting SARS-CoV-2 spike protein. Int J Biol Macromol 2024; 256:128191. [PMID: 38000614 DOI: 10.1016/j.ijbiomac.2023.128191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Nanobodies are natural anti-SARS-CoV-2 drug candidates. Engineering multivalent nanobodies is an effective way to improve the functional binding affinity of natural nanobodies by simultaneously targeting multiple sites on viral proteins. However, multivalent nanobodies have usually been engineered by trial and error, and rational designs are still lacking. Here, we describe a structure-guided design of a self-assembled trivalent nanobody cluster targeting the SARS-CoV-2 spike protein. Using the nanobody Nb6 as a monovalent binder, we first selected a human-derived trimerization scaffold evaluated by molecular dynamics simulations, then selected an optimal linker according to the minimum distance between Nb6 and the trimerization scaffold, and finally successfully engineered a trivalent nanobody cluster called Tribody. Compared with the low-affinity monovalent counterpart (Nb6), Tribody showed much higher target binding affinity (KD < 1 pM) and thus had a 900-fold increase in antiviral neutralization against SARS-CoV-2 pseudovirus. We determined the cryo-EM structure of the Tribody-spike complex and confirmed that all three Nb6 binders of Tribody collectively bind to the three receptor-binding domains (RBDs) of the spike and lock them in a 3-RBD-down conformation, fully consistent with our structure-guided design. This study demonstrates that synthetic nanobody clusters with human-derived self-assembled scaffolds are potential protein drugs against SARS-CoV-2 coronaviruses.
Collapse
Affiliation(s)
- Xinyi Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qin Qin
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Haixia Zhu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiaqiang Qian
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China; Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China.
| |
Collapse
|
22
|
Firdaus ARR, Baroroh U, Ramdani Tohari T, Hardianto A, Subroto T, Yusuf M. Computational design of scFv anti-receptor binding domain of SARS-CoV-2 spike protein based on antibody S230 anti-SARS-CoV-1. J Biomol Struct Dyn 2024; 42:22-33. [PMID: 37880854 DOI: 10.1080/07391102.2023.2265485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/28/2023] [Indexed: 10/27/2023]
Abstract
Developing therapeutics such as neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is essential to halt the Covid-19 infection. However, antibody production is expensive and relatively inaccessible to many low-income countries. Therefore, a more efficient and smaller antibody fragment, such as a single-chain variable fragment (scFv), derived from a known neutralizing antibody structure, is of interest due to the lower cost of recombinant protein production and the ability to tailor scFvs against circulating viruses. In this study, we used computational design to create an scFv based on the structure of a known neutralizing antibody, S230, for SARS-CoV-1. By analyzing the interaction of S230 with the RBD of both SARS-CoV-1 and SARS-CoV-2, five mutations were introduced to improve the binding of the scFv to the RBD of SARS-CoV-2. These mutations were Ser32Thr, Trp99Val, Asn57Val, Lys65Glu, and Tyr106Ile. Molecular dynamics simulations were used to evaluate the stability and affinity of the designed scFv. Our results showed that the designed scFv improved binding to the RBD of SARS-CoV-2 compared to the original S230, as indicated by principal component analysis, distance analysis, and MM/GBSA interaction energy. Furthermore, a positive result in a spot test lateral flow assay of the expressed scFv against the RBD indicated that the mutations did not alter the protein's structure. The designed scFv showed a negative result when tested against human serum albumin as a negative control, indicating reasonable specificity. We hope that this study will be useful in designing a specific and low-cost therapeutic agent, particularly during early outbreaks when information on neutralizing antibodies is limited.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ade R R Firdaus
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
- Biotechnology Master Program, Postgraduate School, Universitas Padjadjaran, Bandung, Indonesia
| | - Umi Baroroh
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacy, Sekolah Tinggi Farmasi Indonesia, Bandung, Indonesia
| | - Taufik Ramdani Tohari
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | - Ari Hardianto
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Toto Subroto
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muhammad Yusuf
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
23
|
Jin H, Gong Y, Cheng L, Zhu Y, Zhang Z, He Y. Susceptibility and Resistance of SARS-CoV-2 Variants to LCB1 and Its Multivalent Derivatives. Viruses 2023; 16:36. [PMID: 38257736 PMCID: PMC10819472 DOI: 10.3390/v16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
LCB1 is a computationally designed three-helix miniprotein that precisely targets the spike (S) receptor-binding motif (RBM) of SARS-CoV-2, exhibiting remarkable antiviral efficacy; however, emerging SARS-CoV-2 variants could substantially compromise its neutralization effectiveness. In this study, we constructed two multivalent LCB1 fusion proteins termed LCB1T and LCB1T-Fc, and characterized their potency in inhibiting SARS-CoV-2 pseudovirus and authentic virus in vitro. In the inhibition of various SARS-CoV-2 variants, the two LCB1 fusion proteins exhibited markedly improved inhibitory activities compared to LCB1 as anticipated; however, it was observed that relative to the D614G mutation hosting variant, the variants Delta, Lambda, and Omicron BQ.1.1, XBB, XBB.1.5, and EG.5.1 caused various degrees of resistance to the two fusion proteins' inhibition, with XBB, XBB.1.5, and EG.5.1 variants showing high-level resistance. Moreover, we demonstrated that bat coronavirus RaTG13 and pangolin coronavirus PCoV-GD/PCoV-GX were highly sensitive to two LCB1 fusion proteins, but not LCB1, inhibition. Importantly, our findings revealed a notable decrease in the blocking capacity of the multivalent LCB1 inhibitor on the interaction between the virus's RBD/S and the cell receptor ACE2 when confronted with the XBB variant compared to WT and the Omicron BA.1 variant. In conclusion, our studies provide valuable insights into the antiviral profiling of multivalent LCB1 inhibitors and offer a promising avenue for the development of novel broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Hongliang Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| | - Yani Gong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| | - Lin Cheng
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China;
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China;
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| |
Collapse
|
24
|
Hao L, Li X, Liang H, Lei W, Yang W, Zhang B. Biosensors based on potent miniprotein binder for sensitive testing of SARS-CoV‑2 variants of concern. Mikrochim Acta 2023; 191:38. [PMID: 38110824 DOI: 10.1007/s00604-023-06113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
The miniprotein binder TRI2-2 was employed as an antibody alternative to build a single antibody-coupled TRI2-2 based gold nanoparticle-based lateral flow immunoassay (AT-GLFIA) biosensor. The biosensor provides high specificity and affinity binding between TRI2-2 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) spike antigen receptor binding domain (S-RBD). It also enables rapid testing of wild-type (WT), B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), P.1 (Gamma), and B.1.1.529 (Omicron) SARS-CoV-2 S-RBD and is at least ~ 16-fold more sensitive than conventional antibody pair-based GLFIA (AP-GLFIA). Besides, we developed a wireless micro-electrochemical assay (WMECA) biosensor based on the TRI2-2, which demonstrates an excellent VOCs testing capability at the pg mL-1 level. Overall, our results demonstrate that integrating miniprotein binders into conventional immunoassay systems is a promising design for improving the testing capabilities of such systems without hard-to-obtain antibody pair, complex reporter design, laborious signal amplification strategies, or specific instrumentation.
Collapse
Affiliation(s)
- Liangwen Hao
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xue Li
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Hongying Liang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wenjing Lei
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
25
|
Pradhan S, Swanson CJ, Leff C, Tengganu I, Bergeman MH, Wisna GBM, Hogue IB, Hariadi RF. Viral Attachment Blocking Chimera Composed of DNA Origami and Nanobody Inhibits Pseudorabies Virus Infection In Vitro. ACS NANO 2023; 17:23317-23330. [PMID: 37982733 PMCID: PMC10787579 DOI: 10.1021/acsnano.3c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Antivirals are indispensable tools that can be targeted at viral domains directly or at cellular domains indirectly to obstruct viral infections and reduce pathogenicity. Despite their transformative use in healthcare, antivirals have been clinically approved to treat only 10 of the more than 200 known pathogenic human viruses. Additionally, many virus functions are intimately coupled with host cellular processes, which presents challenges in antiviral development due to the limited number of clear targets per virus, necessitating extensive insight into these molecular processes. Compounding this challenge, many viral pathogens have evolved to evade effective antivirals. We hypothesize that a viral attachment blocking chimera (VirABloC) composed of a viral binder and a bulky scaffold that sterically blocks interactions between a viral particle and a host cell may be suitable for the development of antivirals that are agnostic to the extravirion epitope that is being bound. We test this hypothesis by modifying a nanobody that specifically recognizes a nonessential epitope presented on the extravirion surface of pseudorabies virus strain 486 with a 3-dimensional wireframe DNA origami structure ∼100 nm in diameter. The nanobody switches from having no inhibitory properties to 4.2 ± 0.9 nM IC50 when conjugated with the DNA origami scaffold. Mechanistic studies support that inhibition is mediated by the noncovalent attachment of the DNA origami scaffold to the virus particle, which obstructs the attachment of the viruses onto host cells. These results support the potential of VirABloC as a generalizable approach to developing antivirals.
Collapse
Affiliation(s)
- Swechchha Pradhan
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Carter J Swanson
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Chloe Leff
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Isadonna Tengganu
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Melissa H Bergeman
- School of Life Science, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, Arizona 85281, United States
| | - Gde B M Wisna
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85281, United States
| | - Ian B Hogue
- School of Life Science, Arizona State University, Tempe, Arizona 85281, United States
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, Arizona 85281, United States
| | - Rizal F Hariadi
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
26
|
Kang JJ, Ohoka A, Sarkar CA. Designing Multivalent and Multispecific Biologics. Annu Rev Chem Biomol Eng 2023; 15:293-314. [PMID: 38064501 DOI: 10.1146/annurev-chembioeng-100722-112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the era of precision medicine, multivalent and multispecific therapeutics present a promising approach for targeted disease intervention. These therapeutics are designed to interact with multiple targets simultaneously, promising enhanced efficacy, reduced side effects, and resilience against drug resistance. We dissect the principles guiding the design of multivalent biologics, highlighting challenges and strategies that must be considered to maximize therapeutic effect. Engineerable elements in multivalent and multispecific biologic design-domain affinities, valency, and spatial presentation-must be considered in the context of the molecular targets as well as the balance of important properties such as target avidity and specificity. We illuminate recent applications of these principles in designing protein and cell therapies and identify exciting future directions in this field, underscored by advances in biomolecular and cellular engineering and computational approaches. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer J Kang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| | - Ayako Ohoka
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
- Present affiliation: AbbVie Inc., North Chicago, Illinois, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| |
Collapse
|
27
|
Glieca S, Cavazzini D, Levati E, Garrapa V, Bolchi A, Franceschi V, Odau S, Ottonello S, Donofrio G, Füner J, Sonvico F, Bettini R, Montanini B, Buttini F. A dry powder formulation for peripheral lung delivery and absorption of an anti-SARS-CoV-2 ACE2 decoy polypeptide. Eur J Pharm Sci 2023; 191:106609. [PMID: 37838239 DOI: 10.1016/j.ejps.2023.106609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023]
Abstract
One of the strategies proposed for the neutralization of SARS-CoV-2 has been to synthetize small proteins able to act as a decoy towards the virus spike protein, preventing it from entering the host cells. In this work, the incorporation of one of these proteins, LCB1, within a spray-dried formulation for inhalation was investigated. A design of experiments approach was applied to investigate the optimal condition for the manufacturing of an inhalable powder. The lead formulation, containing 6% w/w of LCB1 as well as trehalose and L-leucine as excipients, preserved the physical stability of the protein and its ability to neutralize the virus. In addition, the powder had a fine particle fraction of 58.6% and a very high extra-fine particle fraction (31.3%) which could allow a peripheral deposition in the lung. The in vivo administration of the LCB1 inhalation powder showed no significant difference in the pharmacokinetic from the liquid formulation, indicating the rapid dissolution of the microparticles and the protein capability to translocate into the plasma. Moreover, LCB1 in plasma samples still maintained the ability to neutralize the virus. In conclusion, the optimized spray drying conditions allowed to obtain an inhalation powder able to preserve the protein biological activity, rendering it suitable for a systemic prevention of the viral infection via pulmonary administration.
Collapse
Affiliation(s)
- Stefania Glieca
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Elisabetta Levati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | | | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Valentina Franceschi
- Department of Medical Veterinary Science, University of Parma, via del Taglio 10, Parma 43126, Italy
| | - Simone Odau
- Preclinics GmbH, Wetzlarer Str. 20, Potsdam 14482, Germany
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Gaetano Donofrio
- Department of Medical Veterinary Science, University of Parma, via del Taglio 10, Parma 43126, Italy
| | - Jonas Füner
- Preclinics GmbH, Wetzlarer Str. 20, Potsdam 14482, Germany
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy; Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy; Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Barbara Montanini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy.
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy; Interdepartmental Center for Innovation in Health Products, Biopharmanet_TEC, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy.
| |
Collapse
|
28
|
Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans. Nat Commun 2023; 14:7175. [PMID: 37935678 PMCID: PMC10630519 DOI: 10.1038/s41467-023-42836-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectrometry. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a role of hinge glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays implicated involvement of N1242-glyan in virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA
| | - Eric A Wilson
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Grigore Pintilie
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jing Jin
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Vitalant Research Institute, San Francisco, CA, 94118, USA.
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Abhishek Singharoy
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA.
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
29
|
Yang J, Lin S, Chen Z, Yang F, Guo L, Wang L, Duan Y, Zhang X, Dai Y, Yin K, Yu C, Yuan X, Sun H, He B, Cao Y, Ye H, Dong H, Liu X, Chen B, Li J, Zhao Q, Lu G. Development of a bispecific nanobody conjugate broadly neutralizes diverse SARS-CoV-2 variants and structural basis for its broad neutralization. PLoS Pathog 2023; 19:e1011804. [PMID: 38033141 PMCID: PMC10688893 DOI: 10.1371/journal.ppat.1011804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and profound immune-escape capacity makes it an urgent need to develop broad-spectrum therapeutics. Nanobodies have recently attracted extensive attentions due to their excellent biochemical and binding properties. Here, we report two high-affinity nanobodies (Nb-015 and Nb-021) that target non-overlapping epitopes in SARS-CoV-2 S-RBD. Both nanobodies could efficiently neutralize diverse viruses of SARS-CoV-2. The neutralizing mechanisms for the two nanobodies are further delineated by high-resolution nanobody/S-RBD complex structures. In addition, an Fc-based tetravalent nanobody format is constructed by combining Nb-015 and Nb-021. The resultant nanobody conjugate, designated as Nb-X2-Fc, exhibits significantly enhanced breadth and potency against all-tested SARS-CoV-2 variants, including Omicron sub-lineages. These data demonstrate that Nb-X2-Fc could serve as an effective drug candidate for the treatment of SARS-CoV-2 infection, deserving further in-vivo evaluations in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Wang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Duan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xindan Zhang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yushan Dai
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keqing Yin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongzhang Yu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yuan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Honglu Sun
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Ye
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianbo Liu
- CHENGDU NB BIOLAB CO., LTD, Chengdu, Sichuan, China
| | - Bo Chen
- CHENGDU NB BIOLAB CO., LTD, Chengdu, Sichuan, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
30
|
Padhi AK, Kalita P, Maurya S, Poluri KM, Tripathi T. From De Novo Design to Redesign: Harnessing Computational Protein Design for Understanding SARS-CoV-2 Molecular Mechanisms and Developing Therapeutics. J Phys Chem B 2023; 127:8717-8735. [PMID: 37815479 DOI: 10.1021/acs.jpcb.3c04542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The continuous emergence of novel SARS-CoV-2 variants and subvariants serves as compelling evidence that COVID-19 is an ongoing concern. The swift, well-coordinated response to the pandemic highlights how technological advancements can accelerate the detection, monitoring, and treatment of the disease. Robust surveillance systems have been established to understand the clinical characteristics of new variants, although the unpredictable nature of these variants presents significant challenges. Some variants have shown resistance to current treatments, but innovative technologies like computational protein design (CPD) offer promising solutions and versatile therapeutics against SARS-CoV-2. Advances in computing power, coupled with open-source platforms like AlphaFold and RFdiffusion (employing deep neural network and diffusion generative models), among many others, have accelerated the design of protein therapeutics with precise structures and intended functions. CPD has played a pivotal role in developing peptide inhibitors, mini proteins, protein mimics, decoy receptors, nanobodies, monoclonal antibodies, identifying drug-resistance mutations, and even redesigning native SARS-CoV-2 proteins. Pending regulatory approval, these designed therapies hold the potential for a lasting impact on human health and sustainability. As SARS-CoV-2 continues to evolve, use of such technologies enables the ongoing development of alternative strategies, thus equipping us for the "New Normal".
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Shweata Maurya
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- Department of Zoology, School of Life Sciences, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
31
|
Xu Y, Zheng R, Prasad A, Liu M, Wan Z, Zhou X, Porter RM, Sample M, Poppleton E, Procyk J, Liu H, Li Y, Wang S, Yan H, Sulc P, Stephanopoulos N. High-affinity binding to the SARS-CoV-2 spike trimer by a nanostructured, trivalent protein-DNA synthetic antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558353. [PMID: 37790307 PMCID: PMC10542138 DOI: 10.1101/2023.09.18.558353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Multivalency enables nanostructures to bind molecular targets with high affinity. Although antibodies can be generated against a wide range of antigens, their shape and size cannot be tuned to match a given target. DNA nanotechnology provides an attractive approach for designing customized multivalent scaffolds due to the addressability and programmability of the nanostructure shape and size. Here, we design a nanoscale synthetic antibody ("nano-synbody") based on a three-helix bundle DNA nanostructure with one, two, or three identical arms terminating in a mini-binder protein that targets the SARS-CoV-2 spike protein. The nano-synbody was designed to match the valence and distance between the three receptor binding domains (RBDs) in the spike trimer, in order to enhance affinity. The protein-DNA nano-synbody shows tight binding to the wild-type, Delta, and several Omicron variants of the SARS-CoV-2 spike trimer, with affinity increasing as the number of arms increases from one to three. The effectiveness of the nano-synbody was also verified using a pseudovirus neutralization assay, with the three-arm nanostructure inhibiting two Omicron variants against which the structures with only one or two arms are ineffective. The structure of the three-arm nano-synbody bound to the Omicron variant spike trimer was solved by negative-stain transmission electron microscopy reconstruction, and shows the protein-DNA nanostructure with all three arms attached to the RBD domains, confirming the intended trivalent attachment. The ability to tune the size and shape of the nano-synbody, as well as its potential ability to attach two or more different binding ligands, will enable the high-affinity targeting of a range of proteins not possible with traditional antibodies.
Collapse
|
32
|
Llewellyn GN, Chen HY, Rogers GL, Huang X, Sell PJ, Henley JE, Cannon PM. Comparison of SARS-CoV-2 entry inhibitors based on ACE2 receptor or engineered Spike-binding peptides. J Virol 2023; 97:e0068423. [PMID: 37555663 PMCID: PMC10506483 DOI: 10.1128/jvi.00684-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
With increasing resistance of SARS-CoV-2 variants to antibodies, there is interest in developing entry inhibitors that target essential receptor-binding regions of the viral Spike protein and thereby present a high bar for viral resistance. Such inhibitors could be derivatives of the viral receptor, ACE2, or peptides engineered to interact specifically with the Spike receptor-binding pocket. We compared the efficacy of a series of both types of entry inhibitors, constructed as fusions to an antibody Fc domain. Such a design can increase protein stability and act to both neutralize free virus and recruit effector functions to clear infected cells. We tested the reagents against prototype variants of SARS-CoV-2, using both Spike pseudotyped vesicular stomatitis virus vectors and replication-competent viruses. These analyses revealed that an optimized ACE2 derivative could neutralize all variants we tested with high efficacy. In contrast, the Spike-binding peptides had varying activities against different variants, with resistance observed in the Spike proteins from Beta, Gamma, and Omicron (BA.1 and BA.5). The resistance mapped to mutations at Spike residues K417 and N501 and could be overcome for one of the peptides by linking two copies in tandem, effectively creating a tetrameric reagent in the Fc fusion. Finally, both the optimized ACE2 and tetrameric peptide inhibitors provided some protection to human ACE2 transgenic mice challenged with the SARS-CoV-2 Delta variant, which typically causes death in this model within 7-9 days. IMPORTANCE The increasing resistance of SARS-CoV-2 variants to therapeutic antibodies has highlighted the need for new treatment options, especially in individuals who do not respond to vaccination. Receptor decoys that block viral entry are an attractive approach because of the presumed high bar to developing viral resistance. Here, we compare two entry inhibitors based on derivatives of the ACE2 receptor, or engineered peptides that bind to the receptor-binding pocket of the SARS-CoV-2 Spike protein. In each case, the inhibitors were fused to immunoglobulin Fc domains, which can further enhance therapeutic properties, and compared for activity against different SARS-CoV-2 variants. Potent inhibition against multiple SARS-CoV-2 variants was demonstrated in vitro, and even relatively low single doses of optimized reagents provided some protection in a mouse model, confirming their potential as an alternative to antibody therapies.
Collapse
Affiliation(s)
- George N. Llewellyn
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Hsu-Yu Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Geoffrey L. Rogers
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Xiaoli Huang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Philip J. Sell
- The Hastings Foundation and The Wright Foundation Laboratories, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Jill E. Henley
- The Hastings Foundation and The Wright Foundation Laboratories, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
33
|
Thames AH, Rische CH, Cao Y, Krier-Burris RA, Kuang FL, Hamilton RG, Bronzert C, Bochner BS, Jewett MC. A Cell-Free Protein Synthesis Platform to Produce a Clinically Relevant Allergen Panel. ACS Synth Biol 2023; 12:2252-2261. [PMID: 37553068 PMCID: PMC10768853 DOI: 10.1021/acssynbio.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Allergens are used in the clinical diagnosis (e.g., skin tests) and treatment (e.g., immunotherapy) of allergic diseases. With growing interest in molecular allergy diagnostics and precision therapies, new tools are needed for producing allergen-based reagents. As a step to address this need, we demonstrate a cell-free protein synthesis approach for allergen production of a clinically relevant allergen panel composed of common allergens spanning a wide range of phylogenetic kingdoms. We show that allergens produced with this approach can be recognized by allergen-specific immunoglobulin E (IgE), either monoclonals or in patient sera. We also show that a cell-free expressed allergen can activate human cells such as peripheral blood basophils and CD34+ progenitor-derived mast cells in an IgE-dependent manner. We anticipate that this cell-free platform for allergen production will enable diagnostic and therapeutic technologies, providing useful tools and treatments for both the allergist and allergic patient.
Collapse
Affiliation(s)
- Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Clayton H Rische
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Yun Cao
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Rebecca A Krier-Burris
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Fei Li Kuang
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Robert G Hamilton
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, United States
| | - Charles Bronzert
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, United States
| | - Bruce S Bochner
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Michael C Jewett
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
34
|
Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE, Ahern W, Borst AJ, Ragotte RJ, Milles LF, Wicky BIM, Hanikel N, Pellock SJ, Courbet A, Sheffler W, Wang J, Venkatesh P, Sappington I, Torres SV, Lauko A, De Bortoli V, Mathieu E, Ovchinnikov S, Barzilay R, Jaakkola TS, DiMaio F, Baek M, Baker D. De novo design of protein structure and function with RFdiffusion. Nature 2023; 620:1089-1100. [PMID: 37433327 PMCID: PMC10468394 DOI: 10.1038/s41586-023-06415-8] [Citation(s) in RCA: 299] [Impact Index Per Article: 299.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
Collapse
Affiliation(s)
- Joseph L Watson
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Juergens
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Nathaniel R Bennett
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Molecular Engineering, University of Washington, Seattle, WA, USA
| | - Brian L Trippe
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Columbia University, Department of Statistics, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Jason Yim
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helen E Eisenach
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Woody Ahern
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Andrew J Borst
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Robert J Ragotte
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lukas F Milles
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Basile I M Wicky
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Nikita Hanikel
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Samuel J Pellock
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alexis Courbet
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- National Centre for Scientific Research, École Normale Supérieure rue d'Ulm, Paris, France
| | - William Sheffler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jue Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Preetham Venkatesh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Isaac Sappington
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Susana Vázquez Torres
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Anna Lauko
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Valentin De Bortoli
- National Centre for Scientific Research, École Normale Supérieure rue d'Ulm, Paris, France
| | - Emile Mathieu
- Department of Engineering, University of Cambridge, Cambridge, UK
| | - Sergey Ovchinnikov
- Faculty of Applied Sciences, Harvard University, Cambridge, MA, USA
- John Harvard Distinguished Science Fellowship, Harvard University, Cambridge, MA, USA
| | | | | | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Minkyung Baek
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
35
|
Beeg M, Baroni S, Piotti A, Porta A, De Luigi A, Cagnotto A, Gobbi M, Diomede L, Salmona M. A Comprehensive Technology Platform for the Rapid Discovery of Peptide Inhibitors against SARS-CoV-2 Pseudovirus Infection. Int J Mol Sci 2023; 24:12146. [PMID: 37569522 PMCID: PMC10418426 DOI: 10.3390/ijms241512146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
We developed and validated a technology platform for designing and testing peptides inhibiting the infectivity of SARS-CoV-2 spike protein-based pseudoviruses. This platform integrates target evaluation, in silico inhibitor design, peptide synthesis, and efficacy screening. We generated a cyclic peptide library derived from the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor. The cell-free validation process by ELISA competition assays and Surface Plasmon Resonance (SPR) studies revealed that the cyclic peptide c9_05, but not its linear form, binds well to ACE2. Moreover, it effectively inhibited the transduction in HEK293, stably expressing the human ACE2 receptor of pseudovirus particles displaying the SARS-CoV-2 spike in the Wuhan or UK variants. However, the inhibitory efficacy of c9_05 was negligible against the Omicron variant, and it failed to impede the entry of pseudoviruses carrying the B.1.351 (South African) spike. These variants contain three or more mutations known to increase affinity to ACE2. This suggests further refinement is needed for potential SARS-CoV-2 inhibition. Our study hints at a promising approach to develop inhibitors targeting viral infectivity receptors, including SARS-CoV-2's. This platform also promises swift identification and evaluation of inhibitors for other emergent viruses.
Collapse
|
36
|
Hunt AC, Vögeli B, Hassan AO, Guerrero L, Kightlinger W, Yoesep DJ, Krüger A, DeWinter M, Diamond MS, Karim AS, Jewett MC. A rapid cell-free expression and screening platform for antibody discovery. Nat Commun 2023; 14:3897. [PMID: 37400446 DOI: 10.1038/s41467-023-38965-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/23/2023] [Indexed: 07/05/2023] Open
Abstract
Antibody discovery is bottlenecked by the individual expression and evaluation of antigen-specific hits. Here, we address this bottleneck by developing a workflow combining cell-free DNA template generation, cell-free protein synthesis, and binding measurements of antibody fragments in a process that takes hours rather than weeks. We apply this workflow to evaluate 135 previously published antibodies targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including all 8 antibodies previously granted emergency use authorization for coronavirus disease 2019 (COVID-19), and demonstrate identification of the most potent antibodies. We also evaluate 119 anti-SARS-CoV-2 antibodies from a mouse immunized with the SARS-CoV-2 spike protein and identify neutralizing antibody candidates, including the antibody SC2-3, which binds the SARS-CoV-2 spike protein of all tested variants of concern. We expect that our cell-free workflow will accelerate the discovery and characterization of antibodies for future pandemics and for research, diagnostic, and therapeutic applications more broadly.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Bastian Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura Guerrero
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Danielle J Yoesep
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Madison DeWinter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
37
|
Seki K, Galindo JL, Karim AS, Jewett MC. A Cell-Free Gene Expression Platform for Discovering and Characterizing Stop Codon Suppressing tRNAs. ACS Chem Biol 2023; 18:1324-1334. [PMID: 37257197 DOI: 10.1021/acschembio.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Non-canonical amino acids (ncAAs) can be incorporated into peptides and proteins to create new properties and functions. Site-specific ncAA incorporation is typically enabled by orthogonal translation systems comprising a stop codon suppressing tRNA (typically UAG), an aminoacyl-tRNA synthetase, and an ncAA of interest. Unfortunately, methods to discover and characterize suppressor tRNAs are limited because of laborious and time-consuming workflows in living cells. In this work, we develop anEscherichia coli crude extract-based cell-free gene expression system to rapidly express and characterize functional suppressor tRNAs. Our approach co-expresses orthogonal tRNAs using endogenous machinery alongside a stop-codon containing superfolder green fluorescent protein (sfGFP) reporter, which can be used as a simple read-out for suppression. As a model, we evaluate the UAG and UAA suppressing activity of several orthogonal tRNAs. Then, we demonstrate that co-transcription of two mutually orthogonal tRNAs can direct the incorporation of two unique ncAAs within a single modified sfGFP. Finally, we show that the cell-free workflow can be used to discover putative UAG-suppressor tRNAs found in metagenomic data, which are nonspecifically recognized by endogenous aminoacyl-tRNA synthetases. We anticipate that our cell-free system will accelerate the development of orthogonal translation systems for synthetic biology.
Collapse
Affiliation(s)
- Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Joey L Galindo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
38
|
Kalita P, Tripathi T, Padhi AK. Computational Protein Design for COVID-19 Research and Emerging Therapeutics. ACS CENTRAL SCIENCE 2023; 9:602-613. [PMID: 37122454 PMCID: PMC10042144 DOI: 10.1021/acscentsci.2c01513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Indexed: 05/03/2023]
Abstract
As the world struggles with the ongoing COVID-19 pandemic, unprecedented obstacles have continuously been traversed as new SARS-CoV-2 variants continually emerge. Infectious disease outbreaks are unavoidable, but the knowledge gained from the successes and failures will help create a robust health management system to deal with such pandemics. Previously, scientists required years to develop diagnostics, therapeutics, or vaccines; however, we have seen that, with the rapid deployment of high-throughput technologies and unprecedented scientific collaboration worldwide, breakthrough discoveries can be accelerated and insights broadened. Computational protein design (CPD) is a game-changing new technology that has provided alternative therapeutic strategies for pandemic management. In addition to the development of peptide-based inhibitors, miniprotein binders, decoys, biosensors, nanobodies, and monoclonal antibodies, CPD has also been used to redesign native SARS-CoV-2 proteins and human ACE2 receptors. We discuss how novel CPD strategies have been exploited to develop rationally designed and robust COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Parismita Kalita
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Molecular
and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
- Regional
Director’s Office, Indira Gandhi
National Open University, Regional Centre Kohima, Kenuozou, Kohima 797001, India
| | - Aditya K. Padhi
- Laboratory
for Computational Biology & Biomolecular Design, School of Biochemical
Engineering, Indian Institute of Technology
(BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
39
|
Kwon PS, Xu S, Oh H, Kwon SJ, Rodrigues AL, Feroz M, Fraser K, He P, Zhang F, Hong JJ, Linhardt RJ, Dordick JS. Suramin binds and inhibits infection of SARS-CoV-2 through both spike protein-heparan sulfate and ACE2 receptor interactions. Commun Biol 2023; 6:387. [PMID: 37031303 PMCID: PMC10082822 DOI: 10.1038/s42003-023-04789-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/31/2023] [Indexed: 04/10/2023] Open
Abstract
SARS-CoV-2 receptor binding domains (RBDs) interact with both the ACE2 receptor and heparan sulfate on the surface of host cells to enhance SARS-CoV-2 infection. We show that suramin, a polysulfated synthetic drug, binds to the ACE2 receptor and heparan sulfate binding sites on the RBDs of wild-type, Delta, and Omicron variants. Specifically, heparan sulfate and suramin had enhanced preferential binding for Omicron RBD, and suramin is most potent against the live SARS-CoV-2 Omicron variant (B.1.1.529) when compared to wild type and Delta (B.1.617.2) variants in vitro. These results suggest that inhibition of live virus infection occurs through dual SARS-CoV-2 targets of S-protein binding and previously reported RNA-dependent RNA polymerase inhibition and offers the possibility for this and other polysulfated molecules to be used as potential therapeutic and prophylactic options against COVID-19.
Collapse
Affiliation(s)
- Paul S Kwon
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Shirley Xu
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Hanseul Oh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungcheongbuk, Republic of Korea
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Andre L Rodrigues
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Maisha Feroz
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith Fraser
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Peng He
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea.
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA.
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
40
|
Yong Joon Kim J, Sang Z, Xiang Y, Shen Z, Shi Y. Nanobodies: Robust miniprotein binders in biomedicine. Adv Drug Deliv Rev 2023; 195:114726. [PMID: 36754285 DOI: 10.1016/j.addr.2023.114726] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/30/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Variable domains of heavy chain-only antibodies (VHH), also known as nanobodies (Nbs), are monomeric antigen-binding domains derived from the camelid heavy chain-only antibodies. Nbs are characterized by small size, high target selectivity, and marked solubility and stability, which collectively facilitate high-quality drug development. In addition, Nbs are readily expressed from various expression systems, including E. coli and yeast cells. For these reasons, Nbs have emerged as preferred antibody fragments for protein engineering, disease diagnosis, and treatment. To date, two Nb-based therapies have been approved by the U.S. Food and Drug Administration (FDA). Numerous candidates spanning a wide spectrum of diseases such as cancer, immune disorders, infectious diseases, and neurodegenerative disorders are under preclinical and clinical investigation. Here, we discuss the structural features of Nbs that allow for specific, versatile, and strong target binding. We also summarize emerging technologies for identification, structural analysis, and humanization of Nbs. Our main focus is to review recent advances in using Nbs as a modular scaffold to facilitate the engineering of multivalent polymers for cutting-edge applications. Finally, we discuss remaining challenges for Nb development and envision new opportunities in Nb-based research.
Collapse
Affiliation(s)
- Jeffrey Yong Joon Kim
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zhe Sang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Yufei Xiang
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA
| | - Zhuolun Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Shi
- Center of Protein Engineering and Therapeutics, Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1, Gustave L. Levy Pl, New York, NY 10029, USA.
| |
Collapse
|
41
|
DeWinter MA, Thames AH, Guerrero L, Kightlinger W, Karim AS, Jewett MC. Point-of-Care Peptide Hormone Production Enabled by Cell-Free Protein Synthesis. ACS Synth Biol 2023; 12:1216-1226. [PMID: 36940255 DOI: 10.1021/acssynbio.2c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
In resource-limited settings, it can be difficult to safely deliver sensitive biologic medicines to patients due to cold chain and infrastructure constraints. Point-of-care drug manufacturing could circumvent these challenges since medicines could be produced locally and used on-demand. Toward this vision, we combine cell-free protein synthesis (CFPS) and a 2-in-1 affinity purification and enzymatic cleavage scheme to develop a platform for point-of-care drug manufacturing. As a model, we use this platform to synthesize a panel of peptide hormones, an important class of medications that can be used to treat a wide variety of diseases including diabetes, osteoporosis, and growth disorders. With this approach, temperature-stable lyophilized CFPS reaction components can be rehydrated with DNA encoding a SUMOylated peptide hormone of interest when needed. Strep-Tactin affinity purification and on-bead SUMO protease cleavage yield peptide hormones in their native form that are recognized by ELISA antibodies and that can bind their respective receptors. With further development to ensure proper biologic activity and patient safety, we envision that this platform could be used to manufacture valuable peptide hormone drugs in a decentralized way.
Collapse
Affiliation(s)
- Madison A DeWinter
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ariel Helms Thames
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Laura Guerrero
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
42
|
Zhang H, Lv P, Jiang J, Liu Y, Yan R, Shu S, Hu B, Xiao H, Cai K, Yuan S, Li Y. Advances in developing ACE2 derivatives against SARS-CoV-2. THE LANCET. MICROBE 2023; 4:e369-e378. [PMID: 36934742 PMCID: PMC10019897 DOI: 10.1016/s2666-5247(23)00011-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 03/17/2023]
Abstract
Extensive immune evasion of SARS-CoV-2 rendered therapeutic antibodies ineffective in the COVID-19 pandemic. Propagating SARS-CoV-2 variants are characterised by immune evasion capacity through key amino acid mutations, but can still bind human angiotensin-converting enzyme 2 (ACE2) through the spike protein and are, thus, sensitive to ACE2-mimicking decoys as inhibitors. In this Review, we examine advances in the development of ACE2 derivatives from the past 3 years, including the recombinant ACE2 proteins, ACE2-loaded extracellular vesicles, ACE2-mimicking antibodies, and peptide or mini-protein mimetics of ACE2. Several ACE2 derivatives are granted potent neutralisation efficacy against SARS-CoV-2 variants that rival or surpass endogenous antibodies by various auxiliary techniques such as chemical modification and practical recombinant design. The derivatives also represent enhanced production efficiency and improved bioavailability. In addition to these derivatives of ACE2, new effective therapeutics against SARS-CoV-2 variants are expected to be developed.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Panjing Lv
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jingrui Jiang
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Yan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Shuai Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Jiangxia Laboratory, Wuhan, China.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
Zhu Y, Li M, Liu N, Wu T, Han X, Zhao G, He Y. Development of highly effective LCB1-based lipopeptides targeting the spike receptor-binding motif of SARS-CoV-2. Antiviral Res 2023; 211:105541. [PMID: 36682464 PMCID: PMC9851916 DOI: 10.1016/j.antiviral.2023.105541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
LCB1 is a computationally designed 56-mer miniprotein targeting the spike (S) receptor-binding motif of SARS-CoV- 2 with high potent activity (Science, 2020; Cell host microbe, 2021); however, recent studies have demonstrated that emerging SARS-CoV-2 variants are highly resistant to LCB1's inhibition. In this study, we first identified a truncated peptide termed LCB1v8, which maintained the high antiviral potency. Then, a group of lipopeptides were generated by modifying LCB1v8 with diverse lipids, and of two lipopeptides, the C-terminally stearicacid-conjugtaed LCB1v17 and cholesterol-conjugated LCB1v18, were highly effective in inhibiting both S protein-pseudovirus and authentic SARS-CoV-2 infections. We further showed that LCB1-based inhibitors had similar α-helicity and thermostability in structure and bound to the target-mimic RBD protein with high affinity, and the lipopeptides exhibited greatly enhanced binding with the viral and cellular membranes, improved inhibitory activities against emerging SARS-CoV-2 variants. Moreover, LCB1v18 was validated with high preventive and therapeutic efficacies in K18-hACE2 transgenic mice against lethal SARS-CoV-2 challenge. In conclusion, our studies have provided important information for understanding the structure and activity relationship (SAR) of LCB1 inhibitor and would guide the future development of novel antivirals.
Collapse
Affiliation(s)
- Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Min Li
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Nian Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tong Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xuelian Han
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China.
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
44
|
Chonira V, Kwon YD, Gorman J, Case JB, Ku Z, Simeon R, Casner RG, Harris DR, Olia AS, Stephens T, Shapiro L, Bender MF, Boyd H, Teng IT, Tsybovsky Y, Krammer F, Zhang N, Diamond MS, Kwong PD, An Z, Chen Z. A potent and broad neutralization of SARS-CoV-2 variants of concern by DARPins. Nat Chem Biol 2023; 19:284-291. [PMID: 36411391 PMCID: PMC10294592 DOI: 10.1038/s41589-022-01193-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
Abstract
We report the engineering and selection of two synthetic proteins-FSR16m and FSR22-for the possible treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. FSR16m and FSR22 are trimeric proteins composed of DARPin SR16m or SR22 fused with a T4 foldon. Despite selection by a spike protein from a now historical SARS-CoV-2 strain, FSR16m and FSR22 exhibit broad-spectrum neutralization of SARS-CoV-2 strains, inhibiting authentic B.1.351, B.1.617.2 and BA.1.1 viruses, with respective IC50 values of 3.4, 2.2 and 7.4 ng ml-1 for FSR16m. Cryo-EM structures revealed that these DARPins recognize a region of the receptor-binding domain (residues 456, 475, 486, 487 and 489) overlapping a critical portion of the angiotensin-converting enzyme 2 (ACE2)-binding surface. K18-hACE2 transgenic mice inoculated with B.1.617.2 and receiving intranasally administered FSR16m showed less weight loss and 10-100-fold lower viral burden in upper and lower respiratory tracts. The strong and broad neutralization potency makes FSR16m and FSR22 promising candidates for the prevention and treatment of infection by SARS-CoV-2.
Collapse
Affiliation(s)
- Vikas Chonira
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rudo Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Ryan G Casner
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hannah Boyd
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai (ISMMS), New York City, NY, USA
- Department of Pathology, Molecular and Cell based Medicine, ISMMS, New York City, NY, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Department of Molecular Microbiology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
45
|
Rasor BJ, Chirania P, Rybnicky GA, Giannone RJ, Engle NL, Tschaplinski TJ, Karim AS, Hettich RL, Jewett MC. Mechanistic Insights into Cell-Free Gene Expression through an Integrated -Omics Analysis of Extract Processing Methods. ACS Synth Biol 2023; 12:405-418. [PMID: 36700560 DOI: 10.1021/acssynbio.2c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-free systems derived from crude cell extracts have developed into tools for gene expression, with applications in prototyping, biosensing, and protein production. Key to the development of these systems is optimization of cell extract preparation methods. However, the applied nature of these optimizations often limits investigation into the complex nature of the extracts themselves, which contain thousands of proteins and reaction networks with hundreds of metabolites. Here, we sought to uncover the black box of proteins and metabolites in Escherichia coli cell-free reactions based on different extract preparation methods. We assess changes in transcription and translation activity from σ70 promoters in extracts prepared with acetate or glutamate buffer and the common post-lysis processing steps of a runoff incubation and dialysis. We then utilize proteomic and metabolomic analyses to uncover potential mechanisms behind these changes in gene expression, highlighting the impact of cold shock-like proteins and the role of buffer composition.
Collapse
Affiliation(s)
- Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Payal Chirania
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Grant A Rybnicky
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard J Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nancy L Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
46
|
Ohoka A, Sarkar CA. Facile Display of Homomultivalent Proteins for In Vitro Selections. ACS Synth Biol 2023; 12:634-638. [PMID: 36655840 PMCID: PMC9985468 DOI: 10.1021/acssynbio.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Low-affinity protein binders are emerging as valuable domains for therapeutic applications because of their higher specificity when presented in multivalent ligands that increase the overall strength and selectivity of receptor binding. De novo discovery of low-affinity binders would be enhanced by the large library sizes attainable with in vitro selection systems, but these platforms generally maximize recovery of high-affinity monovalent binders. Here, we present a facile technology that uses rolling circle amplification to create homomultivalent libraries. We show proof of principle of this approach in ribosome display with off-rate selections of a bivalent ligand against monovalent and bivalent targets, thereby demonstrating high enrichment (up to 166-fold) against a low-affinity target that is bivalent but not monovalent. This approach to homomultivalent library construction can be applied to any binder tolerant of N- and C-terminal fusions and provides a platform for performing in vitro display selections with controlled protein valency and orientation.
Collapse
Affiliation(s)
| | - Casim A. Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
47
|
Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Integrated analyses reveal a hinge glycan regulates coronavirus spike tilting and virus infectivity. RESEARCH SQUARE 2023:rs.3.rs-2553619. [PMID: 36824920 PMCID: PMC9949256 DOI: 10.21203/rs.3.rs-2553619/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectroscopy. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a novel role of stalk glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays support the hypothesis that this glycan-dependent motion impacts virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Eric A. Wilson
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Grigore Pintilie
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Michael F. Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Jing Jin
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ USA
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
48
|
Hao L, Hsiang TY, Dalmat RR, Ireton R, Morton JF, Stokes C, Netland J, Hale M, Thouvenel C, Wald A, Franko NM, Huden K, Chu HY, Sigal A, Greninger AL, Tilles S, Barrett LK, Van Voorhis WC, Munt J, Scobey T, Baric RS, Rawlings DJ, Pepper M, Drain PK, Gale M. Dynamics of SARS-CoV-2 VOC Neutralization and Novel mAb Reveal Protection against Omicron. Viruses 2023; 15:530. [PMID: 36851745 PMCID: PMC9965505 DOI: 10.3390/v15020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
New variants of SARS-CoV-2 continue to emerge and evade immunity. We isolated SARS-CoV-2 temporally across the pandemic starting with the first emergence of the virus in the western hemisphere and evaluated the immune escape among variants. A clinic-to-lab viral isolation and characterization pipeline was established to rapidly isolate, sequence, and characterize SARS-CoV-2 variants. A virus neutralization assay was applied to quantitate humoral immunity from infection and/or vaccination. A panel of novel monoclonal antibodies was evaluated for antiviral efficacy. We directly compared all variants, showing that convalescence greater than 5 months post-symptom onset from ancestral virus provides little protection against SARS-CoV-2 variants. Vaccination enhances immunity against viral variants, except for Omicron BA.1, while a three-dose vaccine regimen provides over 50-fold enhanced protection against Omicron BA.1 compared to a two-dose. A novel Mab neutralizes Omicron BA.1 and BA.2 variants better than the clinically approved Mabs, although neither can neutralize Omicron BA.4 or BA.5. Thus, the need remains for continued vaccination-booster efforts, with innovation for vaccine and Mab improvement for broadly neutralizing activity. The usefulness of specific Mab applications links with the window of clinical opportunity when a cognate viral variant is present in the infected population.
Collapse
Affiliation(s)
- Linhui Hao
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Tien-Ying Hsiang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Ronit R. Dalmat
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Renee Ireton
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| | - Jennifer F. Morton
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - Caleb Stokes
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jason Netland
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Malika Hale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Chris Thouvenel
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Anna Wald
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
- Allergy and Infectious Diseases Division, Laboratory Medicine & Pathology, & Epidemiology, University of Washington, Seattle, WA 98195, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nicholas M. Franko
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kristen Huden
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alex Sigal
- Africa Health Research Institute, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Mayville 4058, South Africa
- Centre for the AIDS Program of Research in South Africa, Congella 4013, South Africa
| | - Alex L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sasha Tilles
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lynn K. Barrett
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Wesley C. Van Voorhis
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer Munt
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - Trevor Scobey
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - Ralph S. Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27695, USA
| | - David J. Rawlings
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Marion Pepper
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Paul K. Drain
- International Clinical Research Center, Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, WA 98104, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
- Center for Emerging & Re-Emerging Infectious Diseases, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
49
|
Joshi A, Tripathi T, Singh SK, Padhi AK. Computational Approaches for Development of Engineered Therapeutics against SARS-CoV-2. Biochemistry 2023; 62:669-671. [PMID: 36583636 PMCID: PMC9844098 DOI: 10.1021/acs.biochem.2c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Aryaman Joshi
- Department of Chemical Engineering & Technology,
Indian Institute of Technology (BHU), Varanasi - 221005,
Uttar Pradesh, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory,
Department of Biochemistry, North-Eastern Hill University,
Shillong - 793022, India
- Regional Director’s Office, Indira
Gandhi National Open University, Regional Centre Kohima, Kenuozou, Kohima
- 797001, India
| | - Sumit K. Singh
- Laboratory of Engineered Therapeutics, School of
Biochemical Engineering, Indian Institute of Technology (BHU),
Varanasi - 221005, Uttar Pradesh, India
| | - Aditya K. Padhi
- Laboratory for Computational Biology &
Biomolecular Design, School of Biochemical Engineering, Indian Institute of
Technology (BHU), Varanasi - 221005, Uttar Pradesh,
India
| |
Collapse
|
50
|
Warfel K, Williams A, Wong DA, Sobol SE, Desai P, Li J, Chang YF, DeLisa MP, Karim AS, Jewett MC. A Low-Cost, Thermostable, Cell-Free Protein Synthesis Platform for On-Demand Production of Conjugate Vaccines. ACS Synth Biol 2023; 12:95-107. [PMID: 36548479 PMCID: PMC9872175 DOI: 10.1021/acssynbio.2c00392] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Cell-free protein synthesis systems that can be lyophilized for long-term, non-refrigerated storage and transportation have the potential to enable decentralized biomanufacturing. However, increased thermostability and decreased reaction cost are necessary for further technology adoption. Here, we identify maltodextrin as an additive to cell-free reactions that can act as both a lyoprotectant to increase thermostability and a low-cost energy substrate. As a model, we apply optimized formulations to produce conjugate vaccines for ∼$0.50 per dose after storage at room temperature (∼22 °C) or 37 °C for up to 4 weeks, and ∼$1.00 per dose after storage at 50 °C for up to 4 weeks, with costs based on raw materials purchased at the laboratory scale. We show that these conjugate vaccines generate bactericidal antibodies against enterotoxigenic Escherichia coli (ETEC) O78 O-polysaccharide, a pathogen responsible for diarrheal disease, in immunized mice. We anticipate that our low-cost, thermostable cell-free glycoprotein synthesis system will enable new models of medicine biosynthesis and distribution that bypass cold-chain requirements.
Collapse
Affiliation(s)
- Katherine
F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Asher Williams
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 United States
| | - Derek A. Wong
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Sarah E. Sobol
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Primit Desai
- Biochemistry,
Molecular & Cell Biology, Cornell University, Ithaca, New York 14853 United States
| | - Jie Li
- Department
of Population Medicine and Diagnostic Sciences, College of Veterinary
Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Yung-Fu Chang
- Department
of Population Medicine and Diagnostic Sciences, College of Veterinary
Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 United States
- Biochemistry,
Molecular & Cell Biology, Cornell University, Ithaca, New York 14853 United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853 United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, 2170 Campus
Drive, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological
Institute E136, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, 676 North
Saint Clair Street, Suite 1200, Chicago, Illinois 60611, United States
- Simpson
Querrey Institute, Northwestern University, 303 East Superior Street, Suite
11-131, Chicago, Illinois 60611, United States
| |
Collapse
|