1
|
Chen PY, Wu TY, Wang JT, Liu WD, Chen YC, Chang SC. Effectiveness of full mRNA vaccinations to prevent COVID-19 among immunocompromised patients receiving tixagevimab-cilgavimab as pre-exposure prophylaxis. J Formos Med Assoc 2025:S0929-6646(25)00139-1. [PMID: 40204574 DOI: 10.1016/j.jfma.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/13/2025] [Accepted: 03/20/2025] [Indexed: 04/11/2025] Open
Abstract
Pre-exposure prophylaxis with monoclonal antibodies (mAbs) offers protection against COVID-19 in immunocompromised patients. To attest full vaccinations, defined by ≥ 3-dose mRNA vaccines, providing additional protection effect on mAbs against COVID-19, we retrospectively compared the breakthrough SARS-CoV-2 infection rates between adult immunocompromised patients with and without full vaccinations before receiving prophylactic tixagevimab-cilgavimab during the Omicron BA.5 dominant period. Among 148 patients, most (96.6 %) had hematologic malignancies. Fifty-nine (39.9 %) patients received full vaccinations before tixagevimab-cilgavimab. Overall, 19 (12.8 %) patients have breakthrough infections, and only three of them had full vaccinations. By a multivariable logistic regression model, receipt of full vaccinations was the only independent factor associated with prevention of breakthrough infections (adjusted odds ratio, 0.26 [95 % CI, 0.07-0.95]). The Kaplan-Meier estimate showed a lesser trend of breakthrough infections with those receiving full vaccinations (P = 0.08). Our study underscores the importance of full vaccinations among immunocompromised patients receiving pre-exposure prophylactic mAbs against COVID-19.
Collapse
Affiliation(s)
- Pao-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzong-Yow Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; National Institutes of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Wang-Da Liu
- Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; National Institutes of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; School of Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
Efe O, Sauvage G, Chung J, Jeyabalan A, Al Jurdi A, Seethapathy HS, Laliberte KA, Niles JL. Protracted COVID-19 pneumonia in B-cell-depleted patients. Rheumatology (Oxford) 2025; 64:2303-2305. [PMID: 39714289 PMCID: PMC11962908 DOI: 10.1093/rheumatology/keae703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024] Open
Affiliation(s)
- Orhan Efe
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA, USA
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Gabriel Sauvage
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA, USA
| | - James Chung
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA, USA
| | - Anushya Jeyabalan
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA, USA
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ayman Al Jurdi
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA, USA
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Harish S Seethapathy
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA, USA
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Karen A Laliberte
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA, USA
| | - John L Niles
- Vasculitis and Glomerulonephritis Center, Massachusetts General Hospital, Boston, MA, USA
- Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Alrubayyi A, Huang H, Gaiha GD. Severe Acute Respiratory Syndrome Coronavirus 2 Immunology and Coronavirus Disease 2019 Clinical Outcomes. Infect Dis Clin North Am 2025:S0891-5520(25)00006-6. [PMID: 40089444 DOI: 10.1016/j.idc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The humoral and cellular immune response are the key players in preventing viral infection and limiting disease severity, particular in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019. In this review, we discuss how immune responses generated by prior infection and vaccination influence the outcomes of SARS-CoV-2 infection. We aim to provide an overview of the role of humoral and cellular immunity, with a particular focus on CD8+ T cell responses, to delineate how different immune compartments contribute to the control of infection and modulation of disease outcomes.
Collapse
Affiliation(s)
| | - Hsinyen Huang
- Ragon Institute of MGB, MIT and Harvard, 600 Main Street, Cambridge, MA 02139
| | - Gaurav D Gaiha
- Ragon Institute of MGB, MIT and Harvard, 600 Main Street, Cambridge, MA 02139; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02115.
| |
Collapse
|
4
|
Lopes da Silva VG, Schmitz GJH, Sullivan KE, Barbate J, de Haro Azinar MI, Aranda CS, de Moraes-Pinto MI. Enhanced T-cell immunity and lower humoral responses following 5-dose SARS-CoV-2 vaccination in patients with inborn errors of immunity compared with healthy controls. Front Immunol 2025; 16:1538453. [PMID: 40114918 PMCID: PMC11922935 DOI: 10.3389/fimmu.2025.1538453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025] Open
Abstract
Objective Patients with Inborn Errors of Immunity (IEI) are at higher risk of severe SARS-CoV-2 infection. We evaluated humoral and cellular responses to COVID-19 vaccines in Brazilian patients with IEI and healthy controls. Methods Fifty-five patients with IEI (13-61 years) and 60 controls (13-71 years) received inactivated SARS-CoV-2 (CoronaVac), non-replicating virus-vectored (ChAdOx1 nCoV-19, AstraZeneca) or monovalent mRNA (Original strain of BNT162b2, Pfizer-BioNTech) and bivalent mRNA (Original/Omicron BA.1, Pfizer-BioNTech) vaccines and were sampled five times. Diagnoses included common variable immunodeficiency (n=25), specific antibody deficiency (n=9), ataxia-telangiectasia (n=5), X-linked agammaglobulinemia (n=4), PIK3CD-related disorders (n=4), hyper-IgM syndrome (n=4), combined immunodeficiency (n=3), and STAT1 gain-of-function (n=1). Humoral immunity was assessed via multiplex microarray for Spike, Nucleocapsid, RBD-Wuhan, RBD-Delta, RBD-BA.1, RBD-BA.2 and RBD-BA.5 neutralizing antibodies. T-cell responses to Spike and Nucleocapsid were assessed using ELISpot. Results Patients with IEI exhibited significantly lower levels of Nucleocapsid and RBD-neutralizing antibodies (p < 0.05). Notable differences in RBD-BA.2 (p = 0.008) and IgG-Nucleocapsid (p = 0.010) levels emerged over time. T-cell responses to Spike were stronger in patients with IEI post-booster (405 vs. 149 spot-forming cells/million PBMC; p = 0.002). Both groups showed enhanced Nucleocapsid-specific cellular responses over time (p = 0.017). COVID-19 hospitalization rates among patients with IEI with SARS-CoV-2 diagnosis dropped from 33.3% to zero after the first booster dose. Conclusions While humoral responses to SARS-CoV-2 vaccines were weaker in patients with IEI, their cellular immunity was similar to controls. Boosters enhanced both humoral and cellular responses. After completion of the vaccination protocol, none of the patients with IEI were hospitalized with COVID-19. Robust T-cell responses may play a critical role in protecting patients with IEI from severe COVID-19 and mortality.
Collapse
Affiliation(s)
| | | | - Kathleen E Sullivan
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Júlia Barbate
- Departamento de Pediatria, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Izabel de Haro Azinar
- Departamento de Pediatria, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carolina Sanchez Aranda
- Departamento de Pediatria, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
5
|
Kinoshita H, Walti CS, Webber K, Pezzella G, Jensen-Wachspress M, Lang H, Shuey K, Boonyaratanakornkit J, Pergam SA, Chu HY, Bollard CM, Keller MD, Hill JA. T Cell Immune Response to Influenza Vaccination When Administered Prior to and Following Autologous Chimeric Antigen Receptor-Modified T Cell Therapy. Transplant Cell Ther 2025:S2666-6367(25)01053-X. [PMID: 40032074 DOI: 10.1016/j.jtct.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Chimeric antigen receptor-modified T (CAR-T) cell therapies are gaining wider use in relapsed and refractory malignancies. However, data on vaccination in this population is lacking. We evaluated T cell responses in an established cohort of CAR-T recipients and healthy controls before and after 2019 to 2020 influenza vaccination. Peripheral blood mononuclear cells were isolated from healthy controls and patients who received the 2019 to 2020 influenza vaccine pre- or post-CD19, CD20, or B cell maturation antigen CAR-T. T cells were expanded in vitro for 10 days with peptide libraries for hemagglutinin (HA) and nucleoprotein from the 2019 to 2020 vaccine influenza A strains and analyzed by flow cytometry following interferon-γ/tumor necrosis factor-α (IFNγ/TNFα) intracellular staining. Antibody response was evaluated by a hemagglutination inhibition assay. Twenty-nine participants, including eight immunocompetent adults, seven pre-CAR-T, and 14 post-CAR-T patients, were evaluated. IFNγ+/TNFα+ T cell responses after influenza vaccination in healthy controls varied with an increased response to HA-Kansas after vaccination in 7/8 individuals. In the pre-CAR-T cohort, there was a rise in CD4+ T cell response to HA-Brisbane in 6/7 patients after vaccination that remained detectable in 3/4 evaluable patients 90 days post-CAR-T. Five of six patients who lacked an antibody response nonetheless demonstrated a T cell response to HA-Brisbane. There was no association between time since CAR-T administration, baseline immunoglobulin G, or absolute lymphocyte count and change in CD4+ T cell IFNγ+/TNFα+ response pre- to postvaccine for the post-CART cohort. These data demonstrate that cell-mediated immunity to the influenza vaccine can be elicited in patients vaccinated pre-CAR-T and sustained post-CAR-T, filling an important gap from lack of humoral responses.
Collapse
Affiliation(s)
- Hannah Kinoshita
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Carla S Walti
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington; Infectious Disease and Hospital Epidemiology Division, University Hospital Basel, Basel, Switzerland
| | - Kathleen Webber
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia
| | - Gloria Pezzella
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia
| | - Mariah Jensen-Wachspress
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia
| | - Haili Lang
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia
| | - Kiel Shuey
- Department of Medicine, University of Washington, Seattle, Washington
| | - Jim Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Steven A Pergam
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington; Clinical Research Division and Immunotherapy Integrated Research Center, Seattle, Washington
| | - Helen Y Chu
- Department of Medicine, University of Washington, Seattle, Washington
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Michael D Keller
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, District of Columbia; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Joshua A Hill
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington.
| |
Collapse
|
6
|
Kamelian K, Sievers B, Chen-Xu M, Turner S, Cheng MTK, Altaf M, Kemp SA, Abdullahi A, Csiba K, Collier DA, Mlcochova P, Meng B, Jones RB, Smith D, Bradley J, Smith KGC, Doffinger R, Smith RM, Gupta RK. Humoral responses to SARS-CoV-2 vaccine in vasculitis-related immune suppression. SCIENCE ADVANCES 2025; 11:eadq3342. [PMID: 39937891 PMCID: PMC11817922 DOI: 10.1126/sciadv.adq3342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025]
Abstract
Immune suppression poses a challenge to vaccine immunogenicity. We show that serum antibody neutralization against SARS-CoV-2 Omicron descendants was largely absent post-doses 1 and 2 in individuals with vasculitis treated with rituximab. Detectable and increasing neutralizing titers were observed post-doses 3 and 4, except for XBB. Rituximab in vasculitis exacerbates neutralization deficits over standard immunosuppressive therapy, although impairment resolves over time since dosing. We observed discordance between detectable IgG binding and neutralizing activity specifically in the context of rituximab use, with high proportions of individuals showing reasonable IgG titer but no neutralization. ADCC response was more frequently detectable compared to neutralization in the context of rituximab, indicating that a notable proportion of binding antibodies are non-neutralizing. Therefore, use of rituximab is associated with severe impairment in neutralization against Omicron descendants despite repeated vaccinations, with better preservation of non-neutralizing antibody activity.
Collapse
Affiliation(s)
- Kimia Kamelian
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Benjamin Sievers
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Michael Chen-Xu
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, Cambridgeshire, UK
| | - Sam Turner
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Mark Tsz Kin Cheng
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Mazharul Altaf
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Steven A. Kemp
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Kata Csiba
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Dami A. Collier
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Bo Meng
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Rachel B. Jones
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, Cambridgeshire, UK
| | | | - Derek Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - John Bradley
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Kenneth G. C. Smith
- The Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia
- University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke’s Hospital, Cambridge, UK
| | - Rona M. Smith
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, Cambridgeshire, UK
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Ravindra K. Gupta
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
7
|
Wohlwend J, Nathan A, Shalon N, Crain CR, Tano-Menka R, Goldberg B, Richards E, Gaiha GD, Barzilay R. Deep learning enhances the prediction of HLA class I-presented CD8 + T cell epitopes in foreign pathogens. NAT MACH INTELL 2025; 7:232-243. [PMID: 40008296 PMCID: PMC11847706 DOI: 10.1038/s42256-024-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/10/2024] [Indexed: 02/27/2025]
Abstract
Accurate in silico determination of CD8+ T cell epitopes would greatly enhance T cell-based vaccine development, but current prediction models are not reliably successful. Here, motivated by recent successes applying machine learning to complex biology, we curated a dataset of 651,237 unique human leukocyte antigen class I (HLA-I) ligands and developed MUNIS, a deep learning model that identifies peptides presented by HLA-I alleles. MUNIS shows improved performance compared with existing models in predicting peptide presentation and CD8+ T cell epitope immunodominance hierarchies. Moreover, application of MUNIS to proteins from Epstein-Barr virus led to successful identification of both established and novel HLA-I epitopes which were experimentally validated by in vitro HLA-I-peptide stability and T cell immunogenicity assays. MUNIS performs comparably to an experimental stability assay in terms of immunogenicity prediction, suggesting that deep learning can reduce experimental burden and accelerate identification of CD8+ T cell epitopes for rapid T cell vaccine development.
Collapse
Affiliation(s)
- Jeremy Wohlwend
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA
- Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Anusha Nathan
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA USA
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA USA
| | - Nitan Shalon
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA
- Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Charles R. Crain
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA USA
| | - Rhoda Tano-Menka
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA USA
| | | | - Emma Richards
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA USA
| | - Gaurav D. Gaiha
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, MA USA
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA USA
| | - Regina Barzilay
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA USA
- Jameel Clinic, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
8
|
Pinto PBA, Timis J, Chuensirikulchai K, Li QH, Lu HH, Maule E, Nguyen M, Alves RPDS, Verma SK, Ana-Sosa-Batiz F, Valentine K, Landeras-Bueno S, Kim K, Hastie K, Saphire EO, Alves A, Elong Ngono A, Shresta S. Co-immunization with spike and nucleocapsid based DNA vaccines for long-term protective immunity against SARS-CoV-2 Omicron. NPJ Vaccines 2024; 9:252. [PMID: 39702529 PMCID: PMC11659323 DOI: 10.1038/s41541-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
The continuing evolution of SARS-CoV-2 variants challenges the durability of existing spike (S)-based COVID-19 vaccines. We hypothesized that vaccines composed of both S and nucleocapsid (N) antigens would increase the durability of protection by strengthening and broadening cellular immunity compared with S-based vaccines. To test this, we examined the immunogenicity and efficacy of wild-type SARS-CoV-2 S- and N-based DNA vaccines administered individually or together to K18-hACE2 mice. S, N, and S + N vaccines all elicited polyfunctional CD4+ and CD8+ T cell responses and provided short-term cross-protection against Beta and Omicron BA.2 variants, but only co-immunization with S + N vaccines provided long-term protection against Omicron BA.2. Depletion of CD4+ and CD8+ T cells reduced the long-term efficacy, demonstrating a crucial role for T cells in the durability of protection. These findings underscore the potential to enhance long-lived protection against SARS-CoV-2 variants by combining S and N antigens in next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Paolla Beatriz Almeida Pinto
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kantinan Chuensirikulchai
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Qin Hui Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Hsueh Han Lu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Michael Nguyen
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | | | | | | | - Kristen Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Sara Landeras-Bueno
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- University Cardenal Herrera-CEU, CEU Universities, Valencia, 46113, Spain
| | - Kenneth Kim
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kathryn Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, 92093, USA
| | - Ada Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, 92093, USA.
| |
Collapse
|
9
|
Gao N, Yang T, Dong L, Tang W, Cao K, Ding L, Zhu C, Bai S, Xia A, Zhu Y, Zhao C, Peng H, Xu J, Zhang X. A multi-antigen vaccinia vaccine broadly protected mice against SARS-CoV-2 and influenza A virus while also targeting SARS-CoV-1 and MERS-CoV. Front Immunol 2024; 15:1473428. [PMID: 39669563 PMCID: PMC11634893 DOI: 10.3389/fimmu.2024.1473428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Coronaviruses and influenza viruses are significant respiratory pathogens that cause severe disease burdens and economic losses for society. Due to their diversity and evolution, vaccines typically require periodic updating to remain effective. An additional challenge is imposed by the possible coinfection of SARS-CoV-2 and influenza, which could increase disease severity. Methods We developed a vaccinia vaccine, named rTTV-RBD-HA2, broadly targeting coronaviruses and influenza viruses. This vaccine expresses three fusion proteins, each comprising the receptor-binding domain (RBD) from one of the three highly pathogenic coronaviruses (SARS-CoV-2, SARS-CoV, and MERS-CoV) and the conserved HA stalk region from two influenza viruses (pdmH1N1 and nH7N9) belonging to groups 1 and 2, respectively. Results The multi-targeting nature of this vaccine was validated by its success in inducing antibody responses to the three RBDs and both group 1 and 2 HAs in mice. Importantly, it also generated robust T cell responses to all the immunogens, which could be mobilized to the lung through intranasal vaccination. Consistent with this broad immunogenicity profile, when administered via intramuscular priming and two intranasal boosts, rTTV-RBD-HA2 effectively protected vaccinated mice against challenges of the wild-type SARS-CoV-2 virus, the Omicron XBB variant, and the influenza A H1N1 and H3N2 viruses. Discussion Our results collectively support the candidacy of recombinant rTTV-RBD-HA2 as a novel respiratory virus vaccine that provides cross-protection against coronaviruses and influenza viruses, surpassing the breadth of previous vaccines. Additionally, they underscore the importance of establishing a strong mucosal T cell response in the development of a universal respiratory virus vaccine.
Collapse
Affiliation(s)
- Nan Gao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tianhan Yang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lanlan Dong
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wanda Tang
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Kangli Cao
- Clinical Center of Biotherapy at Zhongshan Hospital and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| | - Longfei Ding
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Cuisong Zhu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shimeng Bai
- Bio-therapeutic Center, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ai Xia
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Youwei Zhu
- Clinical Center of Biotherapy at Zhongshan Hospital and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Haoran Peng
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Clinical Center of Biotherapy at Zhongshan Hospital and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
- Xiamen Key Laboratory of Biotherapy, Xiamen, Fujian, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Clinical Center of Biotherapy at Zhongshan Hospital and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
- Xiamen Key Laboratory of Biotherapy, Xiamen, Fujian, China
| |
Collapse
|
10
|
Carvajal R, Rodríguez-Acevedo B, García-Vasco L, Zabalza A, Ariño H, Bollo L, Cabello-Clotet N, Castilló J, Cobo-Calvo Á, Comabella M, Falcó-Roget A, Galán I, García-Sarreón A, Gómez-Estévez I, Granados G, La Puma D, Mato Chain G, Midaglia L, Nieto-García A, Otero-Romero S, Pappolla A, Rodriguez M, Sansano I, Río J, Tagliani P, Tur C, Vidal-Jordana Á, Vilaseca A, Villar A, Sastre-Garriga J, Oreja-Guevara C, Tintoré M, Montalban X, Arrambide G. Secondary organising pneumonia associated to COVID-19 infection in patients with central nervous system inflammatory demyelinating diseases treated with anti-CD20 therapies. Mult Scler 2024:13524585241297038. [PMID: 39520297 DOI: 10.1177/13524585241297038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Organizing pneumonia (OP), an interstitial lung disease, has been observed in patients with inflammatory demyelinating diseases (IDDs) treated with anti-CD20, particularly after COVID-19, but data are limited. AIM To provide a detailed characterization of COVID-19-associated OP in IDD patients treated with anti-CD20. METHODS Bi-centric retrospective cohort study including patients with multiple sclerosis (MS), aquaporin-4-positive neuromyelitis optica spectrum disorder (AQP4 + NMOSD), and myelin oligodendrocyte glycoprotein antibody disease (MOGAD) who received anti-CD20 and were diagnosed with COVID-19-associated OP between March 2020 and October 2023. RESULTS Nineteen patients were included (mean age 46.8 years; 52.6% female; 63% rituximab, 37% ocrelizumab). Sixteen had MS, two MOGAD, and one AQP4 + NMOSD. Intermittent fever was the predominant symptom. Hospitalization occurred in all but one patient, without fatalities. Chest CT consistently showed OP patterns. Thirteen patients had positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR in bronchoalveolar lavage. Treatments included corticosteroids, antivirals, monoclonal antibodies, and convalescent plasma. Fourteen patients postponed infusions; nine resumed post-recovery (median 11.9 months), two switched due to hypogammaglobulinemia, and three stopped. After a mean follow-up of 1.5 years, lung abnormalities and clinical manifestations resolved in 18 patients; however, 13 experienced long-COVID. CONCLUSIONS In anti-CD20-treated patients with recurrent fever and distinctive CT features, COVID-19-associated OP should be considered.
Collapse
Affiliation(s)
- René Carvajal
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Breogán Rodríguez-Acevedo
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ana Zabalza
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Helena Ariño
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luca Bollo
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Noemí Cabello-Clotet
- Department of Internal Medicine-Infectious Diseases, Hospital Clínico San Carlos-IdISSC, CIBERINFEC-ISIII, Universidad Complutense, Madrid, Spain
| | - Joaquín Castilló
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Álvaro Cobo-Calvo
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Falcó-Roget
- Department of Infectious Diseases, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ingrid Galán
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alexis García-Sarreón
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Galo Granados
- Department of Pneumology, Interstitial Lung Disease Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Delon La Puma
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gloria Mato Chain
- Department of Preventive Medicine, Hospital Clínico San Carlos, Madrid, Spain
| | - Luciana Midaglia
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Susana Otero-Romero
- Neurology Department, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Preventive Medicine and Epidemiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Agustín Pappolla
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Rodriguez
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irene Sansano
- Department of Patology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Río
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Tagliani
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Tur
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ángela Vidal-Jordana
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andreu Vilaseca
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Villar
- Department of Pneumology, Interstitial Lung Disease Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Medicine department, Universidad Complutense, Madrid, Spain
| | - Mar Tintoré
- Neurology Department, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain
| | - Xavier Montalban
- Neurology Department, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain
| | - Georgina Arrambide
- Department of Neurology-Neuroimmunology, Vall Hebron University Hospital and Multiple Sclerosis Centre of Catalonia (Cemcat) & Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Gallais Sérézal I, Spehner L, Kroemer M, Bourezane I, Meaux-Ruault N, Prati C, Pastissier A, Lodovichetti J, Tiberghien P, Aubin F. Timing is essential: Humoral and cellular responses to SARS-CoV-2 vaccination in a cohort of patients with auto-immune diseases treated with rituximab. Heliyon 2024; 10:e38043. [PMID: 39328554 PMCID: PMC11425176 DOI: 10.1016/j.heliyon.2024.e38043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Rituximab (RTX), an anti CD20 monoclonal antibody, is now a gold standard treatment for several auto-immune and chronic inflammatory diseases. Receiving RTX exposes patients to more severe infections as vaccinations become virtually inefficient in terms of B cell responses. During the COVID-19 crisis, RTX-exposed patients exhibited more severe forms of the disease, and in some cases, the introduction of RTX was delayed or avoided to protect patients as much as possible against SARS-CoV-2 infections. We retrospectively collected cellular and humoral responses from thirteen patients with dermatological and rheumatological autoimmune diseases who had been vaccinated after receiving RTX. Memory T cells subsets from patients that exposed to RTX showed few differences when compared to a cohort of healthy donors. The IFNᵧ ELISpot assay using SARS-CoV-Prot_S1 showed that eight patients exhibited a positive response that was neither correlated to the time between RTX infusion and the sampling nor to the time between RTX and the vaccination. Conversely, analysis of the SARS-CoV-2 serology showed a clearly lower binding antibody units per mL in case of recent RTX infusion. The safe threshold forconsistently positive serology was to vaccinate at least 300 days after RTX infusion (p = 0.02). Our data illustrate the difficulty in obtaining a satisfactory response to vaccination after RTX treatment within almost a year after the latest infusion, and emphasize the need to better evaluate the risk of relapses in auto-immune diseases before administering RTX in order to maintain RTX only in patients whose medical situation requires it.
Collapse
Affiliation(s)
- Irène Gallais Sérézal
- Department of Dermatology, Besançon University Hospital, Besançon, France
- Université de Franche-Comté, EFS, INSERM UMR RIGHT, Besançon, France
| | - Laurie Spehner
- Université de Franche-Comté, EFS, INSERM UMR RIGHT, Besançon, France
- Inserm CIC-1431, CHU Besançon, Besançon, France
| | - Marie Kroemer
- Université de Franche-Comté, EFS, INSERM UMR RIGHT, Besançon, France
- Department of Pharmacy, Besançon University Hospital, Besançon, France
| | - Inès Bourezane
- Université de Franche-Comté, EFS, INSERM UMR RIGHT, Besançon, France
- Department of Pharmacy, Besançon University Hospital, Besançon, France
| | - Nadine Meaux-Ruault
- Department of Internal Medicine, Besançon University Hospital, Besançon, France
| | - Clément Prati
- Department of Rheumatology, Besançon University Hospital, Besançon, France
| | - Andréa Pastissier
- Department of Internal Medicine, Besançon University Hospital, Besançon, France
| | | | - Pierre Tiberghien
- Université de Franche-Comté, EFS, INSERM UMR RIGHT, Besançon, France
- Etablissement Francais Du Sang, La Plaine-Saint Denis, Saint-Denis, France
| | - François Aubin
- Department of Dermatology, Besançon University Hospital, Besançon, France
- Université de Franche-Comté, EFS, INSERM UMR RIGHT, Besançon, France
| |
Collapse
|
12
|
Maxwell JWC, Stockdale S, Stewart EL, Ashley CL, Smith LJ, Steain M, Triccas JA, Byrne SN, Britton WJ, Ashhurst AS, Payne RJ. Intranasal Self-Adjuvanted Lipopeptide Vaccines Elicit High Antibody Titers and Strong Cellular Responses against SARS-CoV-2. ACS Infect Dis 2024; 10:3419-3429. [PMID: 39196071 DOI: 10.1021/acsinfecdis.4c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Despite concerted efforts to tackle the COVID-19 pandemic, the persistent transmission of SARS-CoV-2 demands continued research into novel vaccination strategies to combat the virus. In light of this, intranasally administered peptide vaccines, particularly those conjugated to an immune adjuvant to afford so-called "self-adjuvanted vaccines", remain underexplored. Here, we describe the synthesis and immunological evaluation of self-adjuvanting peptide vaccines derived from epitopes of the spike glycoprotein of SARS-CoV-2 covalently fused to the potent adjuvant, Pam2Cys, that targets toll-like receptor 2 (TLR2). When administered intranasally, these vaccines elicited a strong antigen-specific CD4+ and CD8+ T-cell response in the lungs as well as high titers of IgG and IgA specific to the native spike protein of SARS-CoV-2. Unfortunately, serum and lung fluid from mice immunized with these vaccines failed to inhibit viral entry in spike-expressing pseudovirus assays. Following this, we designed and synthesized fusion vaccines composed of the T-cell epitope discovered in this work, covalently fused to epitopes of the receptor-binding domain of the spike protein reported to be neutralizing. While antibodies elicited against these fusion vaccines were not neutralizing, the T-cell epitope retained its ability to stimulate strong antigen-specific CD4+ lymphocyte responses within the lungs. Given the Spike(883-909) region is still completely conserved in SARS-CoV-2 variants of concern and variants of interest, we envision the self-adjuvanting vaccine platform reported here may inform future vaccine efforts.
Collapse
MESH Headings
- Animals
- SARS-CoV-2/immunology
- Administration, Intranasal
- Mice
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Lipopeptides/immunology
- Lipopeptides/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacology
- Female
- Humans
- Mice, Inbred BALB C
- Adjuvants, Vaccine/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Immunity, Cellular
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- CD8-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Joshua W C Maxwell
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Skye Stockdale
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Erica L Stewart
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Caroline L Ashley
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Lachlan J Smith
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Megan Steain
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - James A Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Warwick J Britton
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Anneliese S Ashhurst
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Tuberculosis Research Program Centenary Institute, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Richard J Payne
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
13
|
Hill JA, Martens MJ, Young JAH, Bhavsar K, Kou J, Chen M, Lee LW, Baluch A, Dhodapkar MV, Nakamura R, Peyton K, Howard DS, Ibrahim U, Shahid Z, Armistead P, Westervelt P, McCarty J, McGuirk J, Hamadani M, DeWolf S, Hosszu K, Sharon E, Spahn A, Toor AA, Waldvogel S, Greenberger LM, Auletta JJ, Horowitz MM, Riches ML, Perales MA. SARS-CoV-2 Vaccination in the First Year After Hematopoietic Cell Transplant or Chimeric Antigen Receptor T-Cell Therapy: A Prospective, Multicenter, Observational Study. Clin Infect Dis 2024; 79:542-554. [PMID: 38801746 PMCID: PMC11327798 DOI: 10.1093/cid/ciae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The optimal timing of vaccination with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines after cellular therapy is incompletely understood. The objectives of this study are to determine whether humoral and cellular responses after SARS-CoV-2 vaccination differ if initiated <4 months versus 4-12 months after cellular therapy. METHODS We conducted a multicenter, prospective, observational study at 30 cancer centers in the United States. SARS-CoV-2 vaccination was administered as part of routine care. We obtained blood prior to and after vaccinations at up to 5 time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T-cell receptors, in a subgroup. RESULTS We enrolled 466 allogeneic hematopoietic cell transplantation (HCT) (n = 231), autologous HCT (n = 170), and chimeric antigen receptor T-cell (CAR-T-cell) therapy (n = 65) recipients between April 2021 and June 2022. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months versus 4-12 months after cellular therapy. Anti-S IgG ≥2500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T-cell recipients, respectively. SARS-CoV-2-specific T-cell responses were attained in 57%, 83%, and 58%, respectively. Pre-cellular therapy SARS-CoV-2 infection or vaccination and baseline B-cell count were key predictors of post-cellular therapy immunity. CONCLUSIONS These data support mRNA SARS-CoV-2 vaccination prior to, and reinitiation 3 to 4 months after, cellular therapies with allogeneic HCT, autologous HCT, and CAR-T-cell therapy.
Collapse
Grants
- Kyowa Kirin
- OptumHealth
- Takeda Oncology Co
- Xenikos BV
- Talaris Therapeutics
- Karyopharm Therapeutics
- Sanofi Genzyme
- MorphoSys
- U10HL069294 National Cancer Institute [NCI]
- Karius
- Vertex
- OncoImmune, Inc
- Orca Biosystems, Inc
- Medexus, Merck & Co.
- Kyowa Kirin International plc
- Seagen, Inc
- P30 CA015704 NCI NIH HHS
- Bristol Myers Squibb Co
- HistoGenetics
- Millennium
- U24 CA076518 NCI NIH HHS
- Oncopeptides, Inc
- Janssen Research & Development, LLC
- Miltenyi Biotec, Inc
- AlloVir, Inc
- UG1 HL069315 NHLBI NIH HHS
- Janssen/Johnson & Johnson
- UG1 HL138645 NHLBI NIH HHS
- HRSA HHS
- Terumo Blood and Cell Technologies
- N00014-20-1-2705 Department of Health and Human Services [DHHS]
- Adienne SA
- Novartis
- Kiadis Pharma
- Actinium Pharmaceuticals, Inc
- Bluebird Bio, Inc
- Novartis Pharmaceuticals Corporation
- Medical College of Wisconsin
- HHSH234200637015C National Institute of Allergy and Infectious Diseases
- UG1 HL069246 NHLBI NIH HHS
- TG Therapeutics
- Pfizer, Inc
- Kite Pharma, Inc
- P30 CA008748 NCI NIH HHS
- Incyte Corporation
- Pharmacyclics, LLC
- Tscan
- National Heart, Lung, and Blood Institute [NHLBI]
- CytoSen Therapeutics, Inc
- Gilead
- Astellas Pharma US
- Takeda Pharmaceuticals
- Accenture
- AbbVie
- Gilead Company
- Be the Match Foundation
- Leukemia and Lymphoma Society
- Adaptive Biotechnologies
- National Marrow Donor Program/Be the Match
- Multiple Myeloma Research Foundation
- Stemcyte
- DBA Eurofins Transplant Diagnostics
- CareDx
- Eurofins Viracor
- NIH HHS
- CSL Behring
- Medac GmbH
- GlaxoSmithKline
- Fate Therapeutics
- American Society for Transplantation and Cellular Therapy
- Gamida-Cell, Ltd
- NCI
- Legend Biotech
- Kadmon
- Ossium Health, Inc
- Vor Biopharma
- Jasper Therapeutics
- Jazz Pharmaceuticals, Inc
- Iovance
- U24CA076518
- LabCorp
- Omeros Corporation
- Amgen, Inc
- Magenta Therapeutics
- Daiichi Sankyo Co, Ltd
- Priothera
- Office of Naval Research
- National Institutes of Health
- Health Resources and Services Administration
Collapse
Affiliation(s)
- Joshua A Hill
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Center, and Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Michael J Martens
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jo-Anne H Young
- Division of Infectious Diseases, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kavita Bhavsar
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jianqun Kou
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Min Chen
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lik Wee Lee
- Adaptive Biotechnologies Corporation, Seattle, Washington, USA
| | - Aliyah Baluch
- Division of Infectious Diseases, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | | | - Dianna S Howard
- Division of Hematology and Oncology, Wake Forest Baptist, Winston-Salem, North Carolina, USA
| | - Uroosa Ibrahim
- Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, New York, USA
| | - Zainab Shahid
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Paul Armistead
- Division of Hematology, University of North Carolina Medical Center, Chapel Hill, North Carolina, USA
| | - Peter Westervelt
- Division of Oncology, Barnes-Jewish Hospital, Washington University, St. Louis, Missouri, USA
| | - John McCarty
- Division of Hematology, Oncology & Palliative Care, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joseph McGuirk
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas, Lawrence, Kansas, USA
| | - Mehdi Hamadani
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Susan DeWolf
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kinga Hosszu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, Maryland, USA
| | - Ashley Spahn
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Amir A Toor
- Lehigh Valley Health Network, Allentown, Pennsylvania, USA
| | - Stephanie Waldvogel
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Lee M Greenberger
- The Leukemia and Lymphoma Society, Rye Brook, New York, New York, USA
| | - Jeffery J Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
- Division of Hematology/Oncology/BMT and Infectious Diseases, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mary M Horowitz
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marcie L Riches
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Miguel-Angel Perales
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
14
|
Schweitzer L, Miko BA, Pereira MR. Infectious Disease Prophylaxis During and After Immunosuppressive Therapy. Kidney Int Rep 2024; 9:2337-2352. [PMID: 39156157 PMCID: PMC11328545 DOI: 10.1016/j.ekir.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 08/20/2024] Open
Abstract
Immune-mediated renal diseases are a diverse group of disorders caused by antibody, complement, or cell-mediated autosensitization. Although these diseases predispose to infection on their own, a growing array of traditional and newer, more targeted immunosuppressant medications are used to treat these diseases. By understanding their mechanisms of action and the infections associated with suppression of each arm of the immune system, nephrologists can better anticipate these risks and effectively prevent and recognize opportunistic infections. Focusing specifically on nonkidney transplant recipients, this review discusses the infections that can be associated with each of the commonly used immunosuppressants by nephrologists and suggest interventions to prevent infectious complications in patients with immune-mediated renal disease.
Collapse
Affiliation(s)
- Lorne Schweitzer
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Benjamin A. Miko
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Marcus R. Pereira
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
15
|
Ammitzbøll C, Thomsen MK, Bartels LE, Hansen CB, Hermansen MF, Hänel M, Klose‐Jensen R, Larsen ML, Lauritsen MO, Mistegaard CE, Mikkelsen S, Olesen JBM, Næser EU, Nielsen MA, Erikstrup C, Garred P, Hauge E, Troldborg A. COVID-19 Vaccination Before Initiating Rituximab Treatment Induces Strong Serological Response in Autoimmune Rheumatic Disease, Reducing Post-Pandemic Concerns About the Impact of Rituximab. ACR Open Rheumatol 2024; 6:519-528. [PMID: 38923834 PMCID: PMC11319921 DOI: 10.1002/acr2.11681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE Rituximab (RTX)-treated patients exhibit suboptimal responses to COVID-19 vaccines. However, existing research primarily involves patients already receiving RTX when vaccines were introduced, failing to account for the current landscape where patients are vaccinated before initiating RTX. Our objective was to compare the serological response to COVID-19 vaccines in patients vaccinated before or after RTX initiation. METHODS We included 254 RTX-treated patients with autoimmune inflammatory rheumatic diseases (AIIRDs) and 113 blood donors (BDs) in a retrospective, observational cohort study. Patients were categorized based on the timing of RTX treatment relative to primary COVID-19 vaccination. Serological vaccine responses were assessed using three immunoassays, and logistic regression analysis was used to identify predictors of serological response. RESULTS Patients vaccinated before initiating RTX treatment had significantly higher seroconversion rates of SARS-CoV-2 immunoglobulin G (87%) and neutralizing antibodies (91%) compared with those receiving RTX before and after vaccination (n = 132) (61% and 65%, respectively). In the logistic regression analysis, a positive serological response was associated with the number of vaccines administered >9 months after the last RTX treatment. Patients receiving the highest number of vaccines with >9 months after RTX showed a response comparable to that of the BDs. CONCLUSION Vaccinating before RTX initiation yields a robust serological response in patients with AIIRDs. Furthermore, we highlight the reversibility of antibody impairment after RTX treatment cessation, provided that adequate vaccinations occur within a minimum of 9 months after RTX. Our findings offer essential insights for clinical decision-making regarding COVID-19 vaccination and RTX treatment, alleviating concerns about future RTX use.
Collapse
Affiliation(s)
| | | | | | | | | | - Mathias Hänel
- Aarhus University Hospital and Aarhus UniversityAarhusDenmark
| | | | | | | | | | | | | | | | | | | | - Peter Garred
- Rigshospitalet, University Hospital of CopenhagenCopenhagenDenmark
| | | | - Anne Troldborg
- Aarhus University Hospital and Aarhus UniversityAarhusDenmark
| |
Collapse
|
16
|
Fan X, Song JW, Cao WJ, Zhou MJ, Yang T, Wang J, Meng FP, Shi M, Zhang C, Wang FS. T-Cell Epitope Mapping of SARS-CoV-2 Reveals Coordinated IFN-γ Production and Clonal Expansion of T Cells Facilitates Recovery from COVID-19. Viruses 2024; 16:1006. [PMID: 39066169 PMCID: PMC11281491 DOI: 10.3390/v16071006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND T-cell responses can be protective or detrimental during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; however, the underlying mechanism is poorly understood. METHODS In this study, we screened 144 15-mer peptides spanning the SARS-CoV-2 spike, nucleocapsid (NP), M, ORF8, ORF10, and ORF3a proteins and 39 reported SARS-CoV-1 peptides in peripheral blood mononuclear cells (PBMCs) from nine laboratory-confirmed coronavirus disease 2019 (COVID-19) patients (five moderate and four severe cases) and nine healthy donors (HDs) collected before the COVID-19 pandemic. T-cell responses were monitored by IFN-γ and IL-17A production using ELISA, and the positive samples were sequenced for the T cell receptor (TCR) β chain. The positive T-cell responses to individual SARS-CoV-2 peptides were validated by flow cytometry. RESULTS COVID-19 patients with moderate disease produced more IFN-γ than HDs and patients with severe disease (moderate vs. HDs, p < 0.0001; moderate vs. severe, p < 0.0001) but less IL-17A than those with severe disease (p < 0.0001). A positive correlation was observed between IFN-γ production and T-cell clonal expansion in patients with moderate COVID-19 (r = 0.3370, p = 0.0214) but not in those with severe COVID-19 (r = -0.1700, p = 0.2480). Using flow cytometry, we identified that a conserved peptide of the M protein (Peptide-120, P120) was a dominant epitope recognized by CD8+ T cells in patients with moderate disease. CONCLUSION Coordinated IFN-γ production and clonal expansion of SARS-CoV-2-specific T cells are associated with disease resolution in COVID-19. Our findings contribute to a better understanding of T-cell-mediated immunity in COVID-19 and may inform future strategies for managing and preventing severe outcomes of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xing Fan
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Jin-Wen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
- Medical School of Chinese PLA, Beijing 100853, China
| | - Wen-Jing Cao
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ming-Ju Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Tao Yang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Jing Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Fan-Ping Meng
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China; (X.F.); (J.-W.S.); (W.-J.C.); (M.-J.Z.); (T.Y.); (J.W.); (F.-P.M.); (M.S.)
- Medical School of Chinese PLA, Beijing 100853, China
| |
Collapse
|
17
|
Malahe SRK, den Hartog Y, Rietdijk WJR, van Baarle D, de Kuiper R, Reijerkerk D, Ras AM, Geers D, Diavatopoulos DA, Messchendorp AL, van der Molen RG, Imhof C, Frölke SC, Bemelman FJ, Gansevoort RT, Hilbrands LB, Sanders JSF, GeurtsvanKessel CH, Kho MML, de Vries RD, Reinders MEJ, Baan CC. Repeated COVID-19 Vaccination Drives Memory T- and B-cell Responses in Kidney Transplant Recipients: Results From a Multicenter Randomized Controlled Trial. Transplantation 2024; 108:00007890-990000000-00797. [PMID: 38902860 PMCID: PMC11581438 DOI: 10.1097/tp.0000000000005119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Insight into cellular immune responses to COVID-19 vaccinations is crucial for optimizing booster programs in kidney transplant recipients (KTRs). METHODS In an immunologic substudy of a multicenter randomized controlled trial (NCT05030974) investigating different repeated vaccination strategies in KTR who showed poor serological responses after 2 or 3 doses of an messenger RNA (mRNA)-based vaccine, we compared SARS-CoV-2-specific interleukin-21 memory T-cell and B-cell responses by enzyme-linked immunosorbent spot (ELISpot) assays and serum IgG antibody levels. Patients were randomized to receive: a single dose of mRNA-1273 (100 μg, n = 25), a double dose of mRNA-1273 (2 × 100 μg, n = 25), or a single dose of adenovirus type 26 encoding the SARS-CoV-2 spike glycoprotein (Ad26.COV2.S) (n = 25). In parallel, we also examined responses in 50 KTR receiving 100 μg mRNA-1273, randomized to continue (n = 25) or discontinue (n = 25) mycophenolate mofetil/mycophenolic acid. As a reference, the data were compared with KTR who received 2 primary mRNA-1273 vaccinations. RESULTS Repeated vaccination increased the seroconversion rate from 21% to 66% in all patients, which was strongly associated with enhanced levels of SARS-CoV-2-specific interleukin-21 memory T cells (odd ratio, 3.84 [1.89-7.78]; P < 0.001) and B cells (odd ratio, 35.93 [6.94-186.04]; P < 0.001). There were no significant differences observed in these responses among various vaccination strategies. In contrast to KTR vaccinated with 2 primary vaccinations, the number of antigen-specific memory B cells demonstrated potential for classifying seroconversion after repeated vaccination (area under the curve, 0.64; 95% confidence interval, 0.37-0.90; P = 0.26 and area under the curve, 0.95; confidence interval, 0.87-0.97; P < 0.0001, respectively). CONCLUSIONS Our study emphasizes the importance of virus-specific memory T- and B-cell responses for comprehensive understanding of COVID-19 vaccine efficacy among KTR.
Collapse
Affiliation(s)
- S. Reshwan K. Malahe
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yvette den Hartog
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wim J. R. Rietdijk
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, the Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Ronella de Kuiper
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Derek Reijerkerk
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alicia M. Ras
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dimitri A. Diavatopoulos
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - A. Lianne Messchendorp
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Renate G. van der Molen
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Céline Imhof
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophie C. Frölke
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike J. Bemelman
- Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ron T. Gansevoort
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Luuk B. Hilbrands
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Stephan F. Sanders
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Marcia M. L. Kho
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marlies E. J. Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Anderson E, Powell M, Yang E, Kar A, Leung TM, Sison C, Steinberg R, Mims R, Choudhury A, Espinosa C, Zelmanovich J, Okoye NC, Choi EJ, Marder G, Narain S, Gregersen PK, Mackay M, Diamond B, Levy T, Zanos TP, Khosroshahi A, Sanz I, Luning Prak ET, Bar-Or A, Merrill J, Arriens C, Pardo G, Guthridge J, James J, Payne A, Utz PJ, Boss JM, Aranow C, Davidson A. Factors associated with immune responses to SARS-CoV-2 vaccination in individuals with autoimmune diseases. JCI Insight 2024; 9:e180750. [PMID: 38833310 PMCID: PMC11383356 DOI: 10.1172/jci.insight.180750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Patients with autoimmune diseases are at higher risk for severe infection due to their underlying disease and immunosuppressive treatments. In this real-world observational study of 463 patients with autoimmune diseases, we examined risk factors for poor B and T cell responses to SARS-CoV-2 vaccination. We show a high frequency of inadequate anti-spike IgG responses to vaccination and boosting in the autoimmune population but minimal suppression of T cell responses. Low IgG responses in B cell-depleted patients with multiple sclerosis (MS) were associated with higher CD8 T cell responses. By contrast, patients taking mycophenolate mofetil (MMF) exhibited concordant suppression of B and T cell responses. Treatments with highest risk for low anti-spike IgG response included B cell depletion within the last year, fingolimod, and combination treatment with MMF and belimumab. Our data show that the mRNA-1273 (Moderna) vaccine is the most effective vaccine in the autoimmune population. There was minimal induction of either disease flares or autoantibodies by vaccination and no significant effect of preexisting anti-type I IFN antibodies on either vaccine response or breakthrough infections. The low frequency of breakthrough infections and lack of SARS-CoV-2-related deaths suggest that T cell immunity contributes to protection in autoimmune disease.
Collapse
Affiliation(s)
- Erik Anderson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Michael Powell
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Emily Yang
- Division of Immunology and Rheumatology, Department of Medicine, and
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, California, USA
| | - Ananya Kar
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell, Manhasset, New York, USA
| | - Tung Ming Leung
- Biostatistics Unit, Office of Academic Affairs, Northwell, New Hyde Park, New York, USA
| | - Cristina Sison
- Biostatistics Unit, Office of Academic Affairs, Northwell, New Hyde Park, New York, USA
| | - Rebecca Steinberg
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell, Manhasset, New York, USA
| | - Raven Mims
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ananya Choudhury
- Division of Immunology and Rheumatology, Department of Medicine, and
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, California, USA
| | - Carlo Espinosa
- Division of Immunology and Rheumatology, Department of Medicine, and
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, California, USA
| | - Joshua Zelmanovich
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Nkemakonam C. Okoye
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Eun Jung Choi
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Galina Marder
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Sonali Narain
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Peter K. Gregersen
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Meggan Mackay
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Todd Levy
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell, Manhasset, New York, USA
| | - Theodoros P. Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Northwell, Manhasset, New York, USA
| | - Arezou Khosroshahi
- Division of Rheumatology, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | | - Amit Bar-Or
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joan Merrill
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Cristina Arriens
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Gabriel Pardo
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Joel Guthridge
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Judith James
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Aimee Payne
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Paul J. Utz
- Division of Immunology and Rheumatology, Department of Medicine, and
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, California, USA
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Cynthia Aranow
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Anne Davidson
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
19
|
Kim AHJ. Additional SARS-CoV-2 vaccine doses: a little is better than none. THE LANCET. RHEUMATOLOGY 2024; 6:e330-e331. [PMID: 38734020 DOI: 10.1016/s2665-9913(24)00119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Affiliation(s)
- Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
20
|
Lavelle EC, McEntee CP. Vaccine adjuvants: Tailoring innate recognition to send the right message. Immunity 2024; 57:772-789. [PMID: 38599170 DOI: 10.1016/j.immuni.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Adjuvants play pivotal roles in vaccine development, enhancing immunization efficacy through prolonged retention and sustained release of antigen, lymph node targeting, and regulation of dendritic cell activation. Adjuvant-induced activation of innate immunity is achieved via diverse mechanisms: for example, adjuvants can serve as direct ligands for pathogen recognition receptors or as inducers of cell stress and death, leading to the release of immunostimulatory-damage-associated molecular patterns. Adjuvant systems increasingly stimulate multiple innate pathways to induce greater potency. Increased understanding of the principles dictating adjuvant-induced innate immunity will subsequently lead to programming specific types of adaptive immune responses. This tailored optimization is fundamental to next-generation vaccines capable of inducing robust and sustained adaptive immune memory across different cohorts.
Collapse
Affiliation(s)
- Ed C Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Craig P McEntee
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Fumagalli V, Ravà M, Marotta D, Di Lucia P, Bono EB, Giustini L, De Leo F, Casalgrandi M, Monteleone E, Mouro V, Malpighi C, Perucchini C, Grillo M, De Palma S, Donnici L, Marchese S, Conti M, Muramatsu H, Perlman S, Pardi N, Kuka M, De Francesco R, Bianchi ME, Guidotti LG, Iannacone M. Antibody-independent protection against heterologous SARS-CoV-2 challenge conferred by prior infection or vaccination. Nat Immunol 2024; 25:633-643. [PMID: 38486021 PMCID: PMC11003867 DOI: 10.1038/s41590-024-01787-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024]
Abstract
Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.
Collapse
Affiliation(s)
- Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Davide Marotta
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa B Bono
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica De Leo
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Violette Mouro
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Malpighi
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Perucchini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Grillo
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Sara De Palma
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Charles River Laboratories, Calco, Italy
| | - Lorena Donnici
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Silvia Marchese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Matteo Conti
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mirela Kuka
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele De Francesco
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco E Bianchi
- Vita-Salute San Raffaele University, Milan, Italy.
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Luca G Guidotti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
22
|
Kim AHJ. Additional Reassuring Data for SARS-CoV-2 Vaccination in Immune-Mediated Inflammatory Diseases, but With a Catch. J Rheumatol 2024; 51:332-335. [PMID: 38302175 PMCID: PMC10984787 DOI: 10.3899/jrheum.2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Alfred H J Kim
- A.H.J. Kim, MD, PhD, Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
23
|
Müller TR, Gao Y, Wu J, Ribeiro O, Chen P, Bergman P, Blennow O, Hansson L, Mielke S, Nowak P, Vesterbacka J, Akber M, Söderdahl G, Smith CIE, Loré K, Chen MS, Ljungman P, Ingelman-Sundberg HM, Ljunggren HG, Österborg A, Sette A, Grifoni A, Aleman S, Buggert M. Memory T cells effectively recognize the SARS-CoV-2 hypermutated BA.2.86 variant. Cell Host Microbe 2024; 32:156-161.e3. [PMID: 38211584 DOI: 10.1016/j.chom.2023.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
T cells are critical in mediating the early control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) breakthrough infection. However, it remains unknown whether memory T cells can effectively cross-recognize new SARS-CoV-2 variants with a broad array of mutations, such as the emergent hypermutated BA.2.86 variant. Here, we report in two separate cohorts, including healthy controls and individuals with chronic lymphocytic leukemia, that SARS-CoV-2 spike-specific CD4+ and CD8+ T cells induced by prior infection or vaccination demonstrate resilient immune recognition of BA.2.86. In both cohorts, we found largely preserved SARS-CoV-2 spike-specific CD4+ and CD8+ T cell magnitudes against mutated spike epitopes of BA.2.86. Functional analysis confirmed that both cytokine expression and proliferative capacity of SARS-CoV-2 spike-specific T cells to BA.2.86-mutated spike epitopes are similarly sustained. In summary, our findings indicate that memory CD4+ and CD8+ T cells continue to provide cell-mediated immune recognition to highly mutated emerging variants such as BA.2.86.
Collapse
Affiliation(s)
- Thomas R Müller
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jinghua Wu
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Oriana Ribeiro
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Blennow
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Mielke
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Piotr Nowak
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden; Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå, Sweden
| | - Jan Vesterbacka
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mira Akber
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Söderdahl
- Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - C I Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Hematology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna M Ingelman-Sundberg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Altmann DM, Boyton RJ. Arming up against Omicron subvariants. Cell Host Microbe 2024; 32:147-148. [PMID: 38359794 DOI: 10.1016/j.chom.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
The rapid evolution of COVID-19 Omicron variants is driven by evasion of neutralizing antibodies. Breakthrough infections are common, even in highly vaccinated populations, making it vital to understand immune cross-protective repertoires to variants. Two studies in this issue show that the primed T cell repertoire comprises strong cross-recognition of current variants.
Collapse
Affiliation(s)
- Daniel M Altmann
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College, London, UK.
| | - Rosemary J Boyton
- Department of Infectious Disease, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
25
|
Hill JA, Martens MJ, Young JAH, Bhavsar K, Kou J, Chen M, Lee LW, Baluch A, Dhodapkar MV, Nakamura R, Peyton K, Howard DS, Ibrahim U, Shahid Z, Armistead P, Westervelt P, McCarty J, McGuirk J, Hamadani M, DeWolf S, Hosszu K, Sharon E, Spahn A, Toor AA, Waldvogel S, Greenberger LM, Auletta JJ, Horowitz MM, Riches ML, Perales MA. SARS-CoV-2 vaccination in the first year after hematopoietic cell transplant or chimeric antigen receptor T cell therapy: A prospective, multicenter, observational study (BMT CTN 2101). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.24.24301058. [PMID: 38343800 PMCID: PMC10854344 DOI: 10.1101/2024.01.24.24301058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background The optimal timing of vaccination with SARS-CoV-2 vaccines after cellular therapy is incompletely understood. Objective To describe humoral and cellular responses after SARS-CoV-2 vaccination initiated <4 months versus 4-12 months after cellular therapy. Design Multicenter prospective observational study. Setting 34 centers in the United States. Participants 466 allogeneic hematopoietic cell transplant (HCT; n=231), autologous HCT (n=170), or chimeric antigen receptor T cell (CAR-T cell) therapy (n=65) recipients enrolled between April 2021 and June 2022. Interventions SARS-CoV-2 vaccination as part of routine care. Measurements We obtained blood prior to and after vaccinations at up to five time points and tested for SARS-CoV-2 spike (anti-S) IgG in all participants and neutralizing antibodies for Wuhan D614G, Delta B.1.617.2, and Omicron B.1.1.529 strains, as well as SARS-CoV-2-specific T cell receptors (TCRs), in a subgroup. Results Anti-S IgG and neutralizing antibody responses increased with vaccination in HCT recipients irrespective of vaccine initiation timing but were unchanged in CAR-T cell recipients initiating vaccines within 4 months. Anti-S IgG ≥2,500 U/mL was correlated with high neutralizing antibody titers and attained by the last time point in 70%, 69%, and 34% of allogeneic HCT, autologous HCT, and CAR-T cell recipients, respectively. SARS-CoV-2-specific T cell responses were attained in 57%, 83%, and 58%, respectively. Humoral and cellular responses did not significantly differ among participants initiating vaccinations <4 months vs 4-12 months after cellular therapy. Pre-cellular therapy SARS-CoV-2 infection or vaccination were key predictors of post-cellular therapy anti-S IgG levels. Limitations The majority of participants were adults and received mRNA vaccines. Conclusions These data support starting mRNA SARS-CoV-2 vaccination three to four months after allogeneic HCT, autologous HCT, and CAR-T cell therapy. Funding National Marrow Donor Program, Leukemia and Lymphoma Society, Multiple Myeloma Research Foundation, Novartis, LabCorp, American Society for Transplantation and Cellular Therapy, Adaptive Biotechnologies, and the National Institutes of Health.
Collapse
Affiliation(s)
- Joshua A Hill
- Vaccine and Infectious Disease, Fred Hutchinson Cancer Center, and Department of Medicine, University of Washington, Seattle, WA, USA
| | - Michael J Martens
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Kavita Bhavsar
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianqun Kou
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Min Chen
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lik Wee Lee
- Adaptive Biotechnologies Corp, Seattle, WA, USA
| | - Aliyah Baluch
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | | | | | | | | - Zainab Shahid
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Armistead
- University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Peter Westervelt
- Barnes-Jewish Hospital, Washington University, St. Louis, MO, USA
| | - John McCarty
- Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Susan DeWolf
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kinga Hosszu
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elad Sharon
- National Cancer Institute, Bethesda, MD, USA
| | - Ashley Spahn
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | - Amir A Toor
- Lehigh Valley Health Network, Allentown, PA, USA
| | - Stephanie Waldvogel
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
| | | | - Jeffery J Auletta
- National Marrow Donor Program/Center for International Blood and Marrow Transplant Research, Minneapolis, MN, USA
- Nationwide Children's Hospital, Columbus, OH, USA
| | - Mary M Horowitz
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marcie L Riches
- Center for International Blood and Marrow Transplantation Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miguel-Angel Perales
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
26
|
Li Y, Choudhary MC, Regan J, Boucau J, Nathan A, Speidel T, Liew MY, Edelstein GE, Kawano Y, Uddin R, Deo R, Marino C, Getz MA, Reynolds Z, Barry M, Gilbert RF, Tien D, Sagar S, Vyas TD, Flynn JP, Hammond SP, Novack LA, Choi B, Cernadas M, Wallace ZS, Sparks JA, Vyas JM, Seaman MS, Gaiha GD, Siedner MJ, Barczak AK, Lemieux JE, Li JZ. SARS-CoV-2 viral clearance and evolution varies by type and severity of immunodeficiency. Sci Transl Med 2024; 16:eadk1599. [PMID: 38266109 PMCID: PMC10982957 DOI: 10.1126/scitranslmed.adk1599] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Despite vaccination and antiviral therapies, immunocompromised individuals are at risk for prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but the immune defects that predispose an individual to persistent coronavirus disease 2019 (COVID-19) remain incompletely understood. In this study, we performed detailed viro-immunologic analyses of a prospective cohort of participants with COVID-19. The median times to nasal viral RNA and culture clearance in individuals with severe immunosuppression due to hematologic malignancy or transplant (S-HT) were 72 and 40 days, respectively, both of which were significantly longer than clearance rates in individuals with severe immunosuppression due to autoimmunity or B cell deficiency (S-A), individuals with nonsevere immunodeficiency, and nonimmunocompromised groups (P < 0.01). Participants who were severely immunocompromised had greater SARS-CoV-2 evolution and a higher risk of developing resistance against therapeutic monoclonal antibodies. Both S-HT and S-A participants had diminished SARS-CoV-2-specific humoral responses, whereas only the S-HT group had reduced T cell-mediated responses. This highlights the varied risk of persistent COVID-19 across distinct immunosuppressive conditions and suggests that suppression of both B and T cell responses results in the highest contributing risk of persistent infection.
Collapse
Affiliation(s)
- Yijia Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Manish C. Choudhary
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James Regan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Anusha Nathan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA 02115, USA
| | - Tessa Speidel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - May Yee Liew
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gregory E. Edelstein
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yumeko Kawano
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rockib Uddin
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rinki Deo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Caitlin Marino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew A. Getz
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zahra Reynolds
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mamadou Barry
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Rebecca F. Gilbert
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dessie Tien
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shruti Sagar
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tammy D. Vyas
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James P. Flynn
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah P. Hammond
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lewis A. Novack
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bina Choi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manuela Cernadas
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary S. Wallace
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jeffrey A. Sparks
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jatin M. Vyas
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gaurav D. Gaiha
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Mark J. Siedner
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Amy K. Barczak
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan Z. Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|