1
|
Choudhary P, Ramalingam B, Bose S, Das SK. Antibacterial and safe chitosan-graphene hydrogel films: a promising nanotherapeutic for Staphylococcus aureus wound infections. Biomater Sci 2025; 13:639-658. [PMID: 39668657 DOI: 10.1039/d4bm01276c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Pathogenic bacterial growth at wound sites, particularly Staphylococcus aureus, poses a serious threat during trauma. Delayed treatment can lead to increased inflammation and severe tissue damage. In this study, a chitosan cross-linked polycationic peptide-conjugated graphene-silver (CGrAP) nanocomposite hydrogel film was developed as an antibacterial wound dressing to treat S. aureus infections. The CGrAP hydrogel was synthesized via a Schiff-base reaction between the ε-poly-L-lysine functionalized graphene-silver nanocomposite and chitosan, and then cast into a film. Its antibacterial action is due to electrostatic interactions and ROS generation, finally disrupting the bacterial cells. In vivo studies on Wistar rat model demonstrated superior bacterial eradication and wound healing compared to antibiotic treatment. The CGrAP hydrogel also showed excellent physicochemical properties, including porosity, water uptake and cytocompatibility with L929 fibroblast cells along with no skin irritation or acute dermal toxicity. These results suggest that, CGrAP nanocomposite hydrogel films have strong potential for antibacterial wound dressing development in chronic wound care.
Collapse
Affiliation(s)
- Priyadarshani Choudhary
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai-600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Baskaran Ramalingam
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai-600020, India
- Department of Civil Engineering, Anna University, Chennai-600020, India
| | - Somashree Bose
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata-700032, India
| |
Collapse
|
2
|
Zahir A, Okorie PA, Nwobasi VN, David EI, Nwankwegu RO, Azi F. Harnessing Microbial Signal Transduction Systems in Natural and Synthetic Consortia for Biotechnological Applications. Biotechnol Appl Biochem 2024. [PMID: 39740178 DOI: 10.1002/bab.2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/24/2024] [Indexed: 01/02/2025]
Abstract
Signal transduction is crucial for communication and cellular response in microbial communities. Consortia rely on it for effective communication, responding to changing environmental conditions, establishing community structures, and performing collective behaviors. Microbial signal transduction can be through quorum sensing (QS), two-component signal transduction systems, biofilm formation, nutrient sensing, chemotaxis, horizontal gene transfer stress response, and so forth. The consortium uses small signaling molecules in QS to regulate gene expression and coordinate intercellular communication and behaviors. Biofilm formation allows cells to adhere and aggregate, promoting species interactions and environmental stress resistance. Chemotaxis enables directional movement toward or away from chemical gradients, promoting efficient resource utilization and community organization within the consortium. In recent years, synthetic microbial consortia have gained attention for their potential applications in biotechnology and bioremediation. Understanding signal transduction in natural and synthetic microbial consortia is important for gaining insights into community dynamics, evolution, and ecological function. It can provide strategies for biotechnological innovation for enhancing biosensors, biodegradation, bioenergy efficiency, and waste reduction. This review provides compelling insight that will advance our understanding of microbial signal transduction dynamics and its role in orchestrating microbial interactions, which facilitate coordination, cooperation, gene expression, resource allocation, and trigger specific responses that determine community success.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Department of Food Science and Technology, Faculty of Veterinary Sciences, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Peter A Okorie
- Department of Food Science & Technology, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Veronica N Nwobasi
- Department of Food Science & Technology, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Esther I David
- Department of Home Economics, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Rita O Nwankwegu
- Department of Food Science & Technology, Ebonyi State University EBSU, Abakaliki, Nigeria
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
3
|
Bhattacharya M, Spencer BL, Kwiecinski JM, Podkowik M, Putzel G, Pironti A, Shopsin B, Doran KS, Horswill AR. Collagen binding adhesin restricts Staphylococcus aureus skin infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621145. [PMID: 39554114 PMCID: PMC11565922 DOI: 10.1101/2024.11.01.621145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Staphylococcus aureus causes approximately 80% of skin and soft tissue infections (SSTIs). Collagen is the most abundant human extracellular matrix protein with critical roles in wound healing, and S. aureus encodes a collagen binding adhesin (Cna). The role of this protein during skin infections is unknown. Here we report that inability to bind collagen results in worsened pathology of intradermal Δcna S. aureus infection. WT/Cna+ S. aureus showed reduced infection severity, aggregate formation, and significantly improved clearance of bacteria. Cna binds to the collagen-like domain of serum C1q protein to reduce its opsonophagocytic functions. We demonstrate that infection of C1qKO mice with WT bacteria show results similar to the Δcna group. Conversely, inability to bind collagen resulted in an amplified inflammatory response caused in part by macrophage and neutrophil small molecule mediators released at the infection site (MMP-9, MMP-12, LTB4), resulting in increased immune cell infiltration and death.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
| | - Jakub M. Kwiecinski
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Denver, CO, USA
- Lead author
| |
Collapse
|
4
|
Mills KB, Maciag JJ, Wang C, Crawford JA, Enroth TJ, Keim KC, Dufrêne YF, Robinson DA, Fey PD, Herr AB, Horswill AR. Staphylococcus aureus skin colonization is mediated by SasG lectin variation. Cell Rep 2024; 43:114022. [PMID: 38568806 DOI: 10.1016/j.celrep.2024.114022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/23/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. The initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus: SasG-I and SasG-II. Structural analyses of SasG-II identify a nonaromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicate that SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment results in different binding profiles between SasG-I and SasG-II on skin cells. In addition, SasG-mediated adhesion is recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.
Collapse
Affiliation(s)
- Krista B Mills
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph J Maciag
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - John A Crawford
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Timothy J Enroth
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Klara C Keim
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - D Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Veterans Affairs, VA Eastern Colorado Healthcare System, Aurora, CO, USA.
| |
Collapse
|
5
|
Glatthardt T, Lima RD, de Mattos RM, Ferreira RBR. Microbe Interactions within the Skin Microbiome. Antibiotics (Basel) 2024; 13:49. [PMID: 38247608 PMCID: PMC10812674 DOI: 10.3390/antibiotics13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The skin is the largest human organ and is responsible for many important functions, such as temperature regulation, water transport, and protection from external insults. It is colonized by several microorganisms that interact with each other and with the host, shaping the microbial structure and community dynamics. Through these interactions, the skin microbiota can inhibit pathogens through several mechanisms such as the production of bacteriocins, proteases, phenol soluble modulins (PSMs), and fermentation. Furthermore, these commensals can produce molecules with antivirulence activity, reducing the potential of these pathogens to adhere to and invade human tissues. Microorganisms of the skin microbiota are also able to sense molecules from the environment and shape their behavior in response to these signals through the modulation of gene expression. Additionally, microbiota-derived compounds can affect pathogen gene expression, including the expression of virulence determinants. Although most studies related to microbial interactions in the skin have been directed towards elucidating competition mechanisms, microorganisms can also use the products of other species to their benefit. In this review, we will discuss several mechanisms through which microorganisms interact in the skin and the biotechnological applications of products originating from the skin microbiota that have already been reported in the literature.
Collapse
Affiliation(s)
- Thaís Glatthardt
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
- Department of Physiology and Pharmacology, Health Research Innovation Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, Alberta Children Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Rayssa Durães Lima
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Raquel Monteiro de Mattos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
| | - Rosana Barreto Rocha Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (T.G.); (R.D.L.); (R.M.d.M.)
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
6
|
Su Y, Ding T. Targeting microbial quorum sensing: the next frontier to hinder bacterial driven gastrointestinal infections. Gut Microbes 2023; 15:2252780. [PMID: 37680117 PMCID: PMC10486307 DOI: 10.1080/19490976.2023.2252780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Bacteria synchronize social behaviors via a cell-cell communication and interaction mechanism termed as quorum sensing (QS). QS has been extensively studied in monocultures and proved to be intensively involved in bacterial virulence and infection. Despite the role QS plays in pathogens during laboratory engineered infections has been proved, the potential functions of QS related to pathogenesis in context of microbial consortia remain poorly understood. In this review, we summarize the basic molecular mechanisms of QS, primarily focusing on pathogenic microbes driving gastrointestinal (GI) infections. We further discuss how GI pathogens disequilibrate the homeostasis of the indigenous microbial consortia, rebuild a realm dominated by pathogens, and interact with host under worsening infectious conditions via pathogen-biased QS signaling. Additionally, we present recent applications and main challenges of manipulating QS network in microbial consortia with the goal of better understanding GI bacterial sociality and facilitating novel therapies targeting bacterial infections.
Collapse
Affiliation(s)
- Ying Su
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| |
Collapse
|
7
|
Mills KB, Maciag JJ, Wang C, Crawford JA, Enroth TJ, Keim KC, Dufrêne YF, Robinson DA, Fey PD, Herr AB, Horswill AR. Staphylococcus aureus skin colonization is mediated by SasG lectin variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567970. [PMID: 38045275 PMCID: PMC10690190 DOI: 10.1101/2023.11.20.567970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. Initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus, SasG-I and SasG-II. Structural analyses of SasG-II identified a unique non-aromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicated SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment resulted in different binding profiles between SasG-I and SasG-II on skin cells. Additionally, SasG-mediated adhesion was recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.
Collapse
Affiliation(s)
- Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph J. Maciag
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - John A. Crawford
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Timothy J. Enroth
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Klara C. Keim
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - D. Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Veterans Affairs, VA Eastern Colorado Healthcare System, Aurora, CO, USA
| |
Collapse
|
8
|
West KHJ, Ma SV, Pensinger DA, Tucholski T, Tiambeng TN, Eisenbraun EL, Yehuda A, Hayouka Z, Ge Y, Sauer JD, Blackwell HE. Characterization of an Autoinducing Peptide Signal Reveals Highly Efficacious Synthetic Inhibitors and Activators of Quorum Sensing and Biofilm Formation in Listeria monocytogenes. Biochemistry 2023; 62:2878-2892. [PMID: 37699554 PMCID: PMC10676741 DOI: 10.1021/acs.biochem.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Bacteria can use chemical signals to assess their local population density in a process called quorum sensing (QS). Many of these bacteria are common pathogens, including Gram-positive bacteria that utilize agr QS systems regulated by macrocyclic autoinducing peptide (AIP) signals. Listeria monocytogenes, an important foodborne pathogen, uses an agr system to regulate a variety of virulence factors and biofilm formation, yet little is known about the specific roles of agr in Listeria infection and its persistence in various environments. Herein, we report synthetic peptide tools that will enable the study of QS in Listeria. We identified a 6-mer AIP signal in L. monocytogenes supernatants and selected it as a scaffold around which a collection of non-native AIP mimics was designed and synthesized. These peptides were evaluated in cell-based agr reporter assays to generate structure-activity relationships for AIP-based agonism and antagonism in L. monocytogenes. We discovered synthetic agonists with increased potency relative to native AIP and a synthetic antagonist capable of reducing agr activity to basal levels. Notably, the latter peptide was able to reduce biofilm formation by over 90%, a first for a synthetic QS modulator in wild-type L. monocytogenes. The lead agr agonist and antagonist in L. monocytogenes were also capable of antagonizing agr signaling in the related pathogen Staphylococcus aureus, further extending their utility and suggesting different mechanisms of agr activation in these two pathogens. This study represents an important first step in the application of chemical methods to modulate QS and concomitant virulence outcomes in L. monocytogenes.
Collapse
Affiliation(s)
- Korbin H J West
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Stella V Ma
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Daniel A Pensinger
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Emma L Eisenbraun
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, Wisconsin 53705, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Machado M, Silva S, Costa EM. Are Antimicrobial Peptides a 21st-Century Solution for Atopic Dermatitis? Int J Mol Sci 2023; 24:13460. [PMID: 37686269 PMCID: PMC10488019 DOI: 10.3390/ijms241713460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder that is the result of various environmental, bacterial and genetic stimuli, which culminate in the disruption of the skin's barrier function. Characterized by highly pruritic skin lesions, xerosis and an array of comorbidities among which skin infections are the most common, this condition results in both a significant loss of quality of life and in the need for life-long treatments (e.g., corticosteroids, monoclonal antibodies and regular antibiotic intake), all of which may have harmful secondary effects. This, in conjunction with AD's rising prevalence, made the development of alternative treatment strategies the focus of both the scientific community and the pharmaceutical industry. Given their potential to both manage the skin microbiome, fight infections and even modulate the local immune response, the use of antimicrobial peptides (AMPs) from more diverse origins has become one of the most promising alternative solutions for AD management, with some being already used with some success towards this end. However, their production and use also exhibit some limitations. The current work seeks to compile the available information and provide a better understanding of the state of the art in the understanding of AMPs' true potential in addressing AD.
Collapse
Affiliation(s)
| | - Sara Silva
- CBQF Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Eduardo M. Costa
- CBQF Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
10
|
Wei M, Flowers L, Knight SAB, Zheng Q, Murga-Garrido S, Uberoi A, Pan JTC, Walsh J, Schroeder E, Chu EW, Campbell A, Shin D, Bradley CW, Duran-Struuck R, Grice EA. Harnessing diversity and antagonism within the pig skin microbiota to identify novel mediators of colonization resistance to methicillin-resistant Staphylococcus aureus. mSphere 2023; 8:e0017723. [PMID: 37404023 PMCID: PMC10449522 DOI: 10.1128/msphere.00177-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/02/2023] [Indexed: 07/06/2023] Open
Abstract
The microbiota mediate multiple aspects of skin barrier function, including colonization resistance to pathogens such as Staphylococcus aureus. The endogenous skin microbiota limits S. aureus colonization via competition and direct inhibition. Novel mechanisms of colonization resistance are promising therapeutic targets for drug-resistant infections, such as those caused by methicillin-resistant S. aureus (MRSA). Here, we developed and characterized a swine model of topical microbiome perturbation and MRSA colonization. As in other model systems, topical antimicrobial treatment had a little discernable effect on community diversity though the overall microbial load was sensitive to multiple types of intervention, including swabbing. In parallel, we established a porcine skin culture collection and screened 7,700 isolates for MRSA inhibition. Using genomic and phenotypic criteria, we curated three isolates to investigate whether prophylactic colonization would inhibit MRSA colonization in vivo. The three-member consortium together, but not individually, provided protection against MRSA colonization, suggesting cooperation and/or synergy among the strains. Inhibitory isolates were represented across all major phyla of the pig skin microbiota and did not have a strong preference for inhibiting closely related species, suggesting that relatedness is not a condition of antagonism. These findings reveal the porcine skin as an underexplored reservoir of skin commensal species with the potential to prevent MRSA colonization and infection. IMPORTANCE The skin microbiota is protective against pathogens or opportunists such as S. aureus, the most common cause of skin and soft tissue infections. S. aureus can colonize normal skin and nasal passages, and colonization is a risk factor for infection, especially on breach of the skin barrier. Here, we established a pig model to study the competitive mechanisms of the skin microbiota and their role in preventing colonization by MRSA. This drug-resistant strain is also a livestock pathogen, and swine herds can be reservoirs of MRSA carriage. From 7,700 cultured skin isolates, we identified 37 unique species across three phyla that inhibited MRSA. A synthetic community of three inhibitory isolates provided protection together, but not individually, in vivo in a murine model of MRSA colonization. These findings suggest that antagonism is widespread in the pig skin microbiota, and these competitive interactions may be exploited to prevent MRSA colonization.
Collapse
Affiliation(s)
- Monica Wei
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurice Flowers
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Simon A. B. Knight
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qi Zheng
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sofia Murga-Garrido
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Aayushi Uberoi
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jamie Ting-Chun Pan
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jasmine Walsh
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin Schroeder
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily W. Chu
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy Campbell
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel Shin
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles W. Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raimon Duran-Struuck
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Grice
- Department of Dermatology & Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Jiminez V, Yusuf N. Bacterial Metabolites and Inflammatory Skin Diseases. Metabolites 2023; 13:952. [PMID: 37623895 PMCID: PMC10456496 DOI: 10.3390/metabo13080952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The microbiome and gut-skin axis are popular areas of interest in recent years concerning inflammatory skin diseases. While many bacterial species have been associated with commensalism of both the skin and gastrointestinal tract in certain disease states, less is known about specific bacterial metabolites that regulate host pathways and contribute to inflammation. Some of these metabolites include short chain fatty acids, amine, and tryptophan derivatives, and more that when dysregulated, have deleterious effects on cutaneous disease burden. This review aims to summarize the knowledge of wealth surrounding bacterial metabolites of the skin and gut and their role in immune homeostasis in inflammatory skin diseases such as atopic dermatitis, psoriasis, and hidradenitis suppurativa.
Collapse
Affiliation(s)
- Victoria Jiminez
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Williams P, Hill P, Bonev B, Chan WC. Quorum-sensing, intra- and inter-species competition in the staphylococci. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001381. [PMID: 37578829 PMCID: PMC10482373 DOI: 10.1099/mic.0.001381] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
In Gram-positive bacteria such as Staphylococcus aureus and the coagulase-negative staphylococci (CoNS), the accessory gene regulator (agr) is a highly conserved but polymorphic quorum-sensing system involved in colonization, virulence and biofilm development. Signalling via agr depends on the interaction of an autoinducing peptide (AIP) with AgrC, a transmembrane sensor kinase that, once phosphorylated activates the response regulator AgrA. This in turn autoinduces AIP biosynthesis and drives target gene expression directly via AgrA or via the post-transcriptional regulator, RNAIII. In this review we describe the molecular mechanisms underlying the agr-mediated generation of, and response to, AIPs and the molecular basis of AIP-dependent activation and inhibition of AgrC. How the environment impacts on agr functionality is considered and the consequences of agr dysfunction for infection explored. We also discuss the concept of AIP-driven competitive interference between S. aureus and the CoNS and its anti-infective potential.
Collapse
Affiliation(s)
- Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Phil Hill
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Boyan Bonev
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Weng C. Chan
- School of Pharmacy, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
13
|
Nicholas-Haizelden K, Murphy B, Hoptroff M, Horsburgh MJ. Bioprospecting the Skin Microbiome: Advances in Therapeutics and Personal Care Products. Microorganisms 2023; 11:1899. [PMID: 37630459 PMCID: PMC10456854 DOI: 10.3390/microorganisms11081899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Bioprospecting is the discovery and exploration of biological diversity found within organisms, genetic elements or produced compounds with prospective commercial or therapeutic applications. The human skin is an ecological niche which harbours a rich and compositional diversity microbiome stemming from the multifactorial interactions between the host and microbiota facilitated by exploitable effector compounds. Advances in the understanding of microbial colonisation mechanisms alongside species and strain interactions have revealed a novel chemical and biological understanding which displays applicative potential. Studies elucidating the organismal interfaces and concomitant understanding of the central processes of skin biology have begun to unravel a potential wealth of molecules which can exploited for their proposed functions. A variety of skin-microbiome-derived compounds display prospective therapeutic applications, ranging from antioncogenic agents relevant in skin cancer therapy to treatment strategies for antimicrobial-resistant bacterial and fungal infections. Considerable opportunities have emerged for the translation to personal care products, such as topical agents to mitigate various skin conditions such as acne and eczema. Adjacent compound developments have focused on cosmetic applications such as reducing skin ageing and its associated changes to skin properties and the microbiome. The skin microbiome contains a wealth of prospective compounds with therapeutic and commercial applications; however, considerable work is required for the translation of in vitro findings to relevant in vivo models to ensure translatability.
Collapse
Affiliation(s)
- Keir Nicholas-Haizelden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Barry Murphy
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Malcolm J. Horsburgh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
14
|
Hsieh RC, Liu R, Burgin DJ, Otto M. Understanding mechanisms of virulence in MRSA: implications for antivirulence treatment strategies. Expert Rev Anti Infect Ther 2023; 21:911-928. [PMID: 37501364 DOI: 10.1080/14787210.2023.2242585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a widespread pathogen, often causing recurrent and deadly infections in the hospital and community. Many S. aureus virulence factors have been suggested as potential targets for antivirulence therapy to decrease the threat of diminishing antibiotic availability. Antivirulence methods hold promise due to their adjunctive and prophylactic potential and decreased risk for selective pressure. AREAS COVERED This review describes the dominant virulence mechanisms exerted by MRSA and antivirulence therapeutics that are currently undergoing testing in clinical or preclinical stages. We also discuss the advantages and downsides of several investigational antivirulence approaches, including the targeting of bacterial transporters, host-directed therapy, and quorum-sensing inhibitors. For this review, a systematic search of literature on PubMed, Google Scholar, and Web of Science for relevant search terms was performed in April and May 2023. EXPERT OPINION Vaccine and antibody strategies have failed in clinical trials and could benefit from more basic science-informed approaches. Antivirulence-targeting approaches need to be set up better to meet the requirements of drug development, rather than only providing limited results to provide 'proof-of-principle' translational value of pathogenesis research. Nevertheless, there is great potential of such strategies and potential particular promise for novel probiotic approaches.
Collapse
Affiliation(s)
- Roger C Hsieh
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Dylan J Burgin
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
15
|
Martins-Silva P, Dias CDP, Vilar LC, de Queiroz Silva S, Rossi CC, Giambiagi-deMarval M. Dispersion and persistence of antimicrobial resistance genes among Staphylococcus spp. and Mammaliicoccus spp. isolated along a swine manure treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34709-34719. [PMID: 36515883 DOI: 10.1007/s11356-022-24725-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Staphylococcus spp. and Mammaliicoccus spp. colonize the skin and mucosa of humans and other animals and are responsible for several opportunistic infections. Staphylococci antibiotic resistance may be present in the environment due to the spread of treated and untreated manure from the livestock industry due to antibiotic use to disease control or growth promoter. In this work, we analyzed the species distribution and antimicrobial susceptibility of Staphylococcus and Mammaliicoccus species along different sites of a swine manure treatment plant from Southeastern Brazil. Bacterial colonies were obtained on mannitol salt agar, selected after catalase test and Gram staining, and finally identified by mass spectrometry and sequencing of the tuf gene. According to the results, S.cohnii and S. simulans were the most prevalent species. Antibiotic resistance test revealed that several strains were resistant to multiple drugs, with high levels of chloramphenicol resistance (98%), followed by erythromycin (79%), tetracycline (73%), gentamicin (46%), ciprofloxacin (42%), cefoxitin (18%), sulfamethoxazole + trimethoprim (12%), and linezolid (4%). In addition, gene detection by PCR showed that all strains carried at least 2 resistance genes and one of them carried all 11 genes investigated. Using the GTG5-PCR approach, a high genetic similarity was observed between some strains that were isolated from different points of the treatment plant. Although some were seemingly identical, differences in their resistance phenotype and genotype suggest horizontal gene transfer. The presence of resistant bacteria and resistance genes along the treatment system highlights the potential risk of contamination by people in direct contact with these animals and the soil since the effluent is used as a biofertilizer in the surrounding environment.
Collapse
Affiliation(s)
- Priscila Martins-Silva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Camila de Paula Dias
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Lucas Cecílio Vilar
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ciro César Rossi
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Marcia Giambiagi-deMarval
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
16
|
The dynamic balance of the skin microbiome across the lifespan. Biochem Soc Trans 2023; 51:71-86. [PMID: 36606709 PMCID: PMC9988004 DOI: 10.1042/bst20220216] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
For decades research has centered on identifying the ideal balanced skin microbiome that prevents disease and on developing therapeutics to foster this balance. However, this single idealized balance may not exist. The skin microbiome changes across the lifespan. This is reflected in the dynamic shifts of the skin microbiome's diverse, inter-connected community of microorganisms with age. While there are core skin microbial taxa, the precise community composition for any individual person is determined by local skin physiology, genetics, microbe-host interactions, and microbe-microbe interactions. As a key interface with the environment, the skin surface and its appendages are also constantly exchanging microbes with close personal contacts and the environment. Hormone fluctuations and immune system maturation also drive age-dependent changes in skin physiology that support different microbial community structures over time. Here, we review recent insights into the factors that shape the skin microbiome throughout life. Collectively, the works summarized within this review highlight how, depending on where we are in lifespan, our skin supports robust microbial communities, while still maintaining microbial features unique to us. This review will also highlight how disruptions to this dynamic microbial balance can influence risk for dermatological diseases as well as impact lifelong health.
Collapse
|
17
|
Otto M. Critical Assessment of the Prospects of Quorum-Quenching Therapy for Staphylococcus aureus Infection. Int J Mol Sci 2023; 24:ijms24044025. [PMID: 36835436 PMCID: PMC9958572 DOI: 10.3390/ijms24044025] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Staphylococcus aureus is an important pathogen that causes a high number of infections and is one of the leading causes of death in hospitalized patients. Widespread antibiotic resistance such as in methicillin-resistant S. aureus (MRSA) has prompted research into potential anti-virulence-targeted approaches. Targeting the S. aureus accessory gene regulator (Agr) quorum-sensing system, a master regulator of virulence, is the most frequently proposed anti-virulence strategy for S. aureus. While much effort has been put into the discovery and screening for Agr inhibitory compounds, in vivo analysis of their efficacy in animal infection models is still rare and reveals various shortcomings and problems. These include (i) an almost exclusive focus on topical skin infection models, (ii) technical problems that leave doubt as to whether observed in vivo effects are due to quorum-quenching, and (iii) the discovery of counterproductive biofilm-increasing effects. Furthermore, potentially because of the latter, invasive S. aureus infection is associated with Agr dysfunctionality. Altogether, the potential of Agr inhibitory drugs is nowadays seen with low enthusiasm given the failure to provide sufficient in vivo evidence for their potential after more than two decades since the initiation of such efforts. However, current Agr inhibition-based probiotic approaches may lead to a new application of Agr inhibition strategies in preventing S. aureus infections by targeting colonization or for otherwise difficult-to-treat skin infections such as atopic dermatitis.
Collapse
Affiliation(s)
- Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
18
|
Ayala DI, Grum DS, Evans NP, Russo KN, Kimminau EA, Trible BR, Lahoti MM, Novak CL, Karnezos TP. Identification and characterization of the causative agents of Focal Ulcerative Dermatitis in commercial laying hens. Front Vet Sci 2023; 10:1110573. [PMID: 36846268 PMCID: PMC9945107 DOI: 10.3389/fvets.2023.1110573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Focal Ulcerative Dermatitis (FUDS) is an emerging dermatological disease that affects cage-free laying flocks, it is characterized by the development of a lesion on the dorsum of the birds; FUDS is sporadic in nature and can result in a drop in egg production and up to 50% of cumulative mortality. A total of two cage-free flocks (flock 1: no history of FUDS; flock 2: birds affected with FUDS) from a commercial laying hen operation in the mid-west U.S. were sampled in this study. The microbial composition of skin, cloacal, cecal, and ileal samples from each bird was characterized through next generation sequencing (NGS). Results identified Staphylococcus aureus and Staphylococcus agnetis as the potential causative agents of FUDS, being the most predominant in FUDS positive birds. These results were confirmed by plating, with both staphylococci as the only pathogens isolated from lesions of FUDS positive birds. A total of 68 confirmed Staphylococcus isolates from skin and environmental samples were further analyzed by whole genome sequencing (WGS) for the presence of antimicrobial resistance (AMR) genes and virulence factors that could have contributed to the development of FUDS. Forty-four-point one-two percent of the isolates had between one and four acquired AMR genes encoding for macrolides, lincosamides, spectrogramines, and beta-lactams resistance. Six classes of virulence factors associated with adherence, enzyme, immune evasion, secretion system, toxin, and iron uptake were identified. The antimicrobial effect of 4 proprietary Bacillus Direct Fed Microbial (DFM) combinations was evaluated against the Staphylococcus aureus and Staphylococcus agnetis isolates, by agar well-diffusion (AWD) assay and competitive exclusion (CE) on broth culture. Through this antimicrobial screening, a particular two-strain combination of Bacillus pumilus was identified as the most effective inhibitor of both staphylococci. A customized Bacillus pumilus product is being used at different farms with history of FUDS resulting in the successful inhibition of both Staphylococcus aureus and Staphylococcus agnetis, decreasing FUDS mortalities, and improving harvestable eggs.
Collapse
Affiliation(s)
| | - Daniel S. Grum
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Nicholas P. Evans
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Kay N. Russo
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Emily A. Kimminau
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Benjamin R. Trible
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Manohar M. Lahoti
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | - Curtis L. Novak
- Purina Animal Nutrition Center, Land O' Lakes, Gray Summit, MO, United States
| | | |
Collapse
|
19
|
Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol 2023; 21:97-111. [PMID: 36042296 PMCID: PMC9903335 DOI: 10.1038/s41579-022-00780-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/20/2023]
Abstract
The coagulase-negative bacterium Staphylococcus epidermidis is a member of the human skin microbiota. S. epidermidis is not merely a passive resident on skin but actively primes the cutaneous immune response, maintains skin homeostasis and prevents opportunistic pathogens from causing disease via colonization resistance. However, it is now appreciated that S. epidermidis and its interactions with the host exist on a spectrum of potential pathogenicity derived from its high strain-level heterogeneity. S. epidermidis is the most common cause of implant-associated infections and is a canonical opportunistic biofilm former. Additional emerging evidence suggests that some strains of S. epidermidis may contribute to the pathogenesis of common skin diseases. Here, we highlight new developments in our understanding of S. epidermidis strain diversity, skin colonization dynamics and its multifaceted interactions with the host and other members of the skin microbiota.
Collapse
|
20
|
Joshi AA, Vocanson M, Nicolas JF, Wolf P, Patra V. Microbial derived antimicrobial peptides as potential therapeutics in atopic dermatitis. Front Immunol 2023; 14:1125635. [PMID: 36761743 PMCID: PMC9907850 DOI: 10.3389/fimmu.2023.1125635] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease that significantly affects the patient's quality of life. A disrupted skin barrier, type 2 cytokine-dominated inflammation, and microbial dysbiosis with increased Staphylococcus aureus colonization are critical components of AD pathogenesis. Patients with AD exhibit decreased expression of antimicrobial peptides (AMPs) which is linked to increased colonization by Staphylococcus aureus. The skin microbiome itself is a source of several AMPs. These host- and microbiome-derived AMPs define the microbial landscape of the skin based on their differential antimicrobial activity against a range of skin microbes or their quorum sensing inhibitory properties. These are particularly important in preventing and limiting dysbiotic colonization with Staphylococcus aureus. In addition, AMPs are critical for immune homeostasis. In this article, we share our perspectives about the implications of microbial derived AMPs in AD patients and their potential effects on overlapping factors involved in AD. We argue and discuss the potential of bacterial AMPs as therapeutics in AD.
Collapse
Affiliation(s)
- Aaroh Anand Joshi
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - Marc Vocanson
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
| | - Jean-Francois Nicolas
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France,Department of Allergology & Clinical Immunology, Lyon-Sud University Hospital, Lyon, France
| | - Peter Wolf
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria,BioTechMed Graz, Graz, Austria
| | - Vijaykumar Patra
- Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria,Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale, U1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, UMR 5308, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France,*Correspondence: Vijaykumar Patra,
| |
Collapse
|
21
|
Lu X, Wang G, Xie Y, Tang W, Liu B, Zhang J. Efflux pump inhibitor combined with ofloxacin decreases MRSA biofilm formation by regulating the gene expression of NorA and quorum sensing. RSC Adv 2023; 13:2707-2717. [PMID: 36741169 PMCID: PMC9850365 DOI: 10.1039/d2ra06696c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Carbonyl cyanide p-nitrophenylhydrazone (2e) displayed a lone or synergistic efficacy against MRSA (RSC Adv., 2020, 10, 17854). In this work, the synergistic mechanism of 2e with ofloxacin was studied. MRSA2858 had potential for biofilm formation, and the value of MBEC of 2e alone was 0.78-1.56 μM, while that of 2e + ofloxacin was 0.39-0.78 μM. 2e combined with ofloxacin showed a synergistic anti-biofilm effect against MRSA. Efflux pump inhibitor 2e can better bind to NorA protein. After MRSA2858 was treated with 2e of 1/2MIC (0.78 μM) and ofloxacin of 1/8MIC (0.097 μM), the transcript levels of efflux genes (norA) and quorum-sensing (QS) regulatory genes (agrA, sarA, icaA, hla) were substantially down-regulated, and alpha-hemolysin (Hla) was inhibited by 99.15%. 2e combined with ofloxacin was more effective than 2e alone in reducing bacterial load in vivo. All in all, efflux pump inhibitor 2e enhanced the bactericidal activities of antibiotics through regulating the gene expression of NorA and QS system.
Collapse
Affiliation(s)
- Xueer Lu
- Department of Clinical Laboratory, The Third People's Hospital of HefeiHefei230022China
| | - Guifeng Wang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's HospitalHefei230041China
| | - Yunfeng Xie
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's HospitalHefei230041China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical UniversityHefei 230032China
| | - Biyong Liu
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's HospitalHefei230041China
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's HospitalHefei230041China
| |
Collapse
|
22
|
Staphylococcal Corneocyte Adhesion: Assay Optimization and Roles of Aap and SasG Adhesins in the Establishment of Healthy Skin Colonization. Microbiol Spectr 2022; 10:e0246922. [PMID: 36219106 PMCID: PMC9769725 DOI: 10.1128/spectrum.02469-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes the majority of wound and soft tissue infections. The accumulation-associated protein (Aap) from S. epidermidis and surface protein G (SasG) from S. aureus are cell wall-anchored (CWA) proteins known to be important in adhesion to healthy corneocytes from human skin. We investigated the mechanisms by which S. aureus colonizes healthy human skin by developing an optimized corneocyte adhesion assay. Trypan blue was used for enhanced red autofluorescent visualization of corneocytes with an overlay of green-fluorescent bacteria. The percent area of bacterial adhesion for images acquired by a fluorescence microscope was quantified using Fiji ImageJ. Using this optimized imaging procedure, differences in adhesion between various species and strains of staphylococci were measured. The ability of purified SasG to reduce Staphylococcus epidermidis adhesion was investigated in order to determine if these CWA proteins can compete for binding sites. To further test CWA-mediated adhesion, we engineered a nonadhering S. carnosus strain to express full-length SasG from two methicillin-resistant S. aureus (MRSA) strains. Finally, we demonstrated that the SasG A domain was a critical region of this surface protein for adherence to healthy human corneocytes. The developed imaging and expression methods are useful for studying staphylococcal adhesion to healthy human skin and have the potential to be used with a wide variety of fluorescently labeled organisms on both healthy and disease-state (such as atopic dermatitis) corneocytes. IMPORTANCE The skin is the largest organ of the human body and acts as a shield against hazards such as harmful bacteria like Staphylococcus aureus. A diverse skin microbiota and immune cross talk control S. aureus numbers. S. aureus can bind to healthy skin and subsequently proliferate when the skin barrier is compromised, such as in a wound or in patients with atopic dermatitis (AD). It is important to understand these mechanisms in an effort to prevent pathogenic bacteria from causing infection. We describe an augmented corneocyte adhesion assay using fluorescence microscopy to study binding of various staphylococcal species to healthy human skin cells. In addition, we tested the ability of homologous proteins from different staphylococcal species to reduce binding, and developed a new S. carnosus expression system to test individual protein binding properties. Our newly developed methods and findings will enhance the understanding of how staphylococci bind to healthy human skin.
Collapse
|
23
|
Guéneau V, Plateau-Gonthier J, Arnaud L, Piard JC, Castex M, Briandet R. Positive biofilms to guide surface microbial ecology in livestock buildings. Biofilm 2022; 4:100075. [PMID: 35494622 PMCID: PMC9039864 DOI: 10.1016/j.bioflm.2022.100075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 12/12/2022] Open
Abstract
The increase in human consumption of animal proteins implies changes in the management of meat production. This is followed by increasingly restrictive regulations on antimicrobial products such as chemical biocides and antibiotics, used in particular to control pathogens that can spread zoonotic diseases. Aligned with the One Health concept, alternative biological solutions are under development and are starting to be used in animal production. Beneficial bacteria able to form positive biofilms and guide surface microbial ecology to limit microbial pathogen settlement are promising tools that could complement existing biosecurity practices to maintain the hygiene of livestock buildings. Although the benefits of positive biofilms have already been documented, the associated fundamental mechanisms and the rationale of the microbial composition of these new products are still sparce. This review provides an overview of the envisioned modes of action of positive biofilms used on livestock building surfaces and the resulting criteria for the selection of the appropriate microorganisms for this specific application. Limits and advantages of this biosecurity approach are discussed as well as the impact of such practices along the food chain, from farm to fork.
Collapse
Affiliation(s)
- Virgile Guéneau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Lallemand SAS, 31702, Blagnac, France
| | | | | | - Jean-Christophe Piard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
24
|
Rizzetto G, Molinelli E, Radi G, Cirioni O, Brescini L, Giacometti A, Offidani A, Simonetti O. MRSA and Skin Infections in Psoriatic Patients: Therapeutic Options and New Perspectives. Antibiotics (Basel) 2022; 11:1504. [PMID: 36358159 PMCID: PMC9686594 DOI: 10.3390/antibiotics11111504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
Psoriatic patients present various infectious risk factors, but there are few studies in the literature evaluating the actual impact of psoriasis in severe staphylococcal skin infections. Our narrative review of the literature suggests that psoriatic patients are at increased risk of both colonization and severe infection, during hospitalization, by S. aureus. The latter also appears to play a role in the pathogenesis of psoriasis through the production of exotoxins. Hospitalized psoriatic patients are also at increased risk of MRSA skin infections. For this reason, new molecules are needed that could both overcome bacterial resistance and inhibit exotoxin production. In our opinion, in the near future, topical quorum sensing inhibitors in combination with current anti-MRSA therapies will be able to overcome the increasing resistance and block exotoxin production. Supplementation with Vitamin E (VE) or derivatives could also enhance the effect of anti-MRSA antibiotics, considering that psoriatic patients with metabolic comorbidities show a low intake of VE and low serum levels, making VE supplementation an interesting new perspective.
Collapse
Affiliation(s)
- Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Giulia Radi
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Lucia Brescini
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Andrea Giacometti
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy
| |
Collapse
|
25
|
Sahreen S, Mukhtar H, Imre K, Morar A, Herman V, Sharif S. Exploring the Function of Quorum Sensing Regulated Biofilms in Biological Wastewater Treatment: A Review. Int J Mol Sci 2022; 23:ijms23179751. [PMID: 36077148 PMCID: PMC9456111 DOI: 10.3390/ijms23179751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Quorum sensing (QS), a type of bacterial cell–cell communication, produces autoinducers which help in biofilm formation in response to cell population density. In this review, biofilm formation, the role of QS in biofilm formation and development with reference to biological wastewater treatment are discussed. Autoinducers, for example, acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2, present in both Gram-negative and Gram-positive bacteria, with their mechanism, are also explained. Over the years, wastewater treatment (WWT) by QS-regulated biofilms and their optimization for WWT have gained much attention. This article gives a comprehensive review of QS regulation methods, QS enrichment methods and QS inhibition methods in biological waste treatment systems. Typical QS enrichment methods comprise adding QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods consist of additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. Potential applications of QS regulated biofilms for WWT have also been summarized. At last, the knowledge gaps present in current researches are analyzed, and future study requirements are proposed.
Collapse
Affiliation(s)
- Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Sundas Sharif
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
26
|
Genomic Study on Blood Culture Isolates From Patients With Staphylococcus Infection-associated Glomerulonephritis. Kidney Int Rep 2022; 7:2264-2278. [PMID: 36217522 PMCID: PMC9546744 DOI: 10.1016/j.ekir.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
|
27
|
Masters EA, Ricciardi BF, Bentley KLDM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol 2022; 20:385-400. [PMID: 35169289 PMCID: PMC8852989 DOI: 10.1038/s41579-022-00686-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
28
|
Abstract
Staphylococcus hominis is frequently isolated from human skin, and we hypothesize that it may protect the cutaneous barrier from opportunistic pathogens. We determined that S. hominis makes six unique autoinducing peptide (AIP) signals that inhibit the major virulence factor accessory gene regulator (agr) quorum sensing system of Staphylococcus aureus. We solved and confirmed the structures of three novel AIP signals in conditioned medium by mass spectrometry and then validated synthetic AIP activity against all S. aureus agr classes. Synthetic AIPs also inhibited the conserved agr system in a related species, Staphylococcus epidermidis. We determined the distribution of S. hominis agr types on healthy human skin and found S. hominis agr-I and agr-II were highly represented across subjects. Further, synthetic AIP-II was protective in vivo against S. aureus-associated dermonecrotic or epicutaneous injury. Together, these findings demonstrate that a ubiquitous colonizer of human skin has a fundamentally protective role against opportunistic damage. IMPORTANCE Human skin is home to a variety of commensal bacteria, including many species of coagulase-negative staphylococci (CoNS). While it is well established that the microbiota as a whole maintains skin homeostasis and excludes pathogens (i.e., colonization resistance), relatively little is known about the unique contributions of individual CoNS species to these interactions. Staphylococcus hominis is the second most frequently isolated CoNS from healthy skin, and there is emerging evidence to suggest that it may play an important role in excluding pathogens, including Staphylococcus aureus, from colonizing or infecting the skin. Here, we identified that S. hominis makes 6 unique peptide inhibitors of the S. aureus global virulence factor regulation system (agr). Additionally, we found that one of these peptides can prevent topical or necrotic S. aureus skin injury in a mouse model. Our results demonstrate a specific and broadly protective role for this ubiquitous, yet underappreciated skin commensal.
Collapse
|
29
|
West KHJ, Gahan CG, Kierski PR, Calderon DF, Zhao K, Czuprynski CJ, McAnulty JF, Lynn DM, Blackwell HE. Sustained Release of a Synthetic Autoinducing Peptide Mimetic Blocks Bacterial Communication and Virulence In Vivo. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Curran G. Gahan
- University of Wisconsin-Madison Chemical and Biological Engineering UNITED STATES
| | | | - Diego F. Calderon
- University of Wisconsin-Madison Pathobiological Sciences UNITED STATES
| | - Ke Zhao
- University of Wisconsin-Madison Chemistry 1101 University Ave. 53706 Madison UNITED STATES
| | | | | | - David M. Lynn
- University of Wisconsin-Madison Chemical and Biological Engineering UNITED STATES
| | - Helen E. Blackwell
- University of Wisconsin Department of Chemistry 1101 University Ave.Room 5211a Chemistry 53706-1322 Madison UNITED STATES
| |
Collapse
|
30
|
West KHJ, Gahan CG, Kierski PR, Calderon DF, Zhao K, Czuprynski CJ, McAnulty JF, Lynn DM, Blackwell HE. Sustained Release of a Synthetic Autoinducing Peptide Mimetic Blocks Bacterial Communication and Virulence In Vivo. Angew Chem Int Ed Engl 2022; 61:e202201798. [PMID: 35334139 PMCID: PMC9322450 DOI: 10.1002/anie.202201798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 11/07/2022]
Abstract
A synthetic peptide was found to block cell-to-cell signalling, or quorum sensing, in bacteria and be highly bioavailable in mouse tissue. The controlled release of this agent from degradable polymeric microparticles strongly inhibited skin infection in a wound model at levels that far surpassed the potency of the peptide when delivered conventionally.
Collapse
Affiliation(s)
- Korbin H. J. West
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
| | - Curran G. Gahan
- Department of Chemical and Biological EngineeringUniversity of Wisconsin-Madison1415 Engineering Dr.MadisonWI 53706USA
| | - Patricia R. Kierski
- Department of Surgical SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - Diego F. Calderon
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - Ke Zhao
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
| | - Charles J. Czuprynski
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - Jonathan F. McAnulty
- Department of Surgical SciencesSchool of Veterinary MedicineUniversity of Wisconsin-Madison2015 Linden Dr.MadisonWI 53706USA
| | - David M. Lynn
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
- Department of Chemical and Biological EngineeringUniversity of Wisconsin-Madison1415 Engineering Dr.MadisonWI 53706USA
| | - Helen E. Blackwell
- Department of ChemistryUniversity of Wisconsin-Madison1101 University Ave.MadisonWI 53706USA
| |
Collapse
|
31
|
Simonetti O, Rizzetto G, Cirioni O, Molinelli E, Morroni G, Giacometti A, Offidani A. New insight into old and new antimicrobial molecules targeting quorum sensing for MRSA wound infection. Future Microbiol 2022; 17:177-183. [PMID: 35040689 DOI: 10.2217/fmb-2021-0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
MRSA represents one of the largest problems in wound healing as a result of its increasing incidence and the complex therapeutic approach required to treat it. The need for new solutions to overcome antibiotic resistance led to the development of antimicrobial molecules that are effective at blocking quorum sensing. This special report provides an up-to-date review, based on the latest evidence in the literature, of old and new molecules that can positively influence the process of wound healing via their action on MRSA quorum sensing. Quorum sensing-inhibiting molecules, applied topically or injected in situ, have excellent potential to improve both MRSA eradication and quality of wound healing, especially when combined with conventional systemic MRSA therapy. Further human studies are needed to evaluate the efficacy of these molecules.
Collapse
Affiliation(s)
- Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Giulio Rizzetto
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Elisa Molinelli
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Gianluca Morroni
- Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Andrea Giacometti
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, 60121, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, 60121, Italy
| |
Collapse
|
32
|
Guo HN, Tong YC, Wang HL, Zhang J, Li ZX, Abbas Z, Yang TT, Liu MY, Chen PY, Hua ZC, Yan XN, Cheng Q, Ahmat M, Wang JY, Zhang LL, Wei XB, Liao XD, Zhang RJ. Novel Hybrid Peptide Cathelicidin 2 (1-13)-Thymopentin (TP5) and Its Derived Peptides with Effective Antibacterial, Antibiofilm, and Anti-Adhesion Activities. Int J Mol Sci 2021; 22:11681. [PMID: 34769113 PMCID: PMC8583881 DOI: 10.3390/ijms222111681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 02/08/2023] Open
Abstract
The increasing numbers of infections caused by multidrug-resistant (MDR) pathogens highlight the urgent need for new alternatives to conventional antibiotics. Antimicrobial peptides have the potential to be promising alternatives to antibiotics because of their effective bactericidal activity and highly selective toxicity. The present study was conducted to investigate the antibacterial, antibiofilm, and anti-adhesion activities of different CTP peptides (CTP: the original hybrid peptide cathelicidin 2 (1-13)-thymopentin (TP5); CTP-NH2: C-terminal amidated derivative of cathelicidin 2 (1-13)-TP5; CTPQ: glutamine added at the C-terminus of cathelicidin 2 (1-13)-TP5) by determining the minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), propidium iodide uptake, and analysis by scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy). The results showed that CTPs had broad-spectrum antibacterial activity against different gram-positive and gram-negative bacteria, with MICs against the tested strains varying from 2 to 64 μg/mL. CTPs at the MBC (2 × MIC 64 μg/mL) showed strong bactericidal effects on a standard methicillin-resistant Staphylococcus aureus strain ATCC 43300 after co-incubation for 6 h through disruption of the bacterial membrane. In addition, CTPs at 2 × MIC also displayed effective inhibition activity of several S. aureus strains with a 40-90% decrease in biofilm formation by killing the bacteria embedded in the biofilms. CTPs had low cytotoxicity on the intestinal porcine epithelial cell line (IPEC-J2) and could significantly decrease the rate of adhesion of S. aureus ATCC 43300 on IPEC-J2 cells. The current study proved that CTPs have effective antibacterial, antibiofilm, and anti-adhesion activities. Overall, this study contributes to our understanding of the possible antibacterial and antibiofilm mechanisms of CTPs, which might be an effective anti-MDR drug candidate.
Collapse
Affiliation(s)
- He-Nan Guo
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Yu-Cui Tong
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Hui-Li Wang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Jing Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Zhong-Xuan Li
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China;
| | - Zaheer Abbas
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Tian-Tian Yang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Meng-Yao Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Pei-Yao Chen
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Zheng-Chang Hua
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Xiao-Na Yan
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China;
| | - Qiang Cheng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Marhaba Ahmat
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Jun-Yong Wang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| | - Lu-Lu Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (L.-L.Z.); (X.-B.W.)
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xu-Biao Wei
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; (L.-L.Z.); (X.-B.W.)
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiu-Dong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Ri-Jun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.-N.G.); (Y.-C.T.); (H.-L.W.); (J.Z.); (Z.A.); (T.-T.Y.); (M.-Y.L.); (P.-Y.C.); (Z.-C.H.); (Q.C.); (M.A.); (J.-Y.W.)
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Staphylococcus aureus is the most common invasive bacterial pathogen infecting children in the U.S. and many parts of the world. This major human pathogen continues to evolve, and recognition of recent trends in epidemiology, therapeutics and future horizons is of high importance. RECENT FINDINGS Over the past decade, a relative rise of methicillin-susceptible S. aureus (MSSA) has occurred, such that methicillin-resistant S. aureus (MRSA) no longer dominates the landscape of invasive disease. Antimicrobial resistance continues to develop, however, and novel therapeutics or preventive modalities are urgently needed. Unfortunately, several recent vaccine attempts proved unsuccessful in humans. SUMMARY Recent scientific breakthroughs highlight the opportunity for novel interventions against S. aureus by interfering with virulence rather than by traditional antimicrobial mechanisms. A S. aureus vaccine remains elusive; the reasons for this are multifactorial, and lessons learned from prior unsuccessful attempts may create a path toward an effective preventive. Finally, new diagnostic modalities have the potential to greatly enhance clinical care for invasive S. aureus disease in children.
Collapse
Affiliation(s)
- James E. Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Isaac Thomsen
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Nashville, Tennessee, USA
| |
Collapse
|
34
|
Patel S, Vlasblom AA, Verstappen KM, Zomer AL, Fluit AC, Rogers MRC, Wagenaar JA, Claesson MJ, Duim B. Differential Analysis of Longitudinal Methicillin-Resistant Staphylococcus aureus Colonization in Relation to Microbial Shifts in the Nasal Microbiome of Neonatal Piglets. mSystems 2021; 6:e0015221. [PMID: 34282937 PMCID: PMC8407314 DOI: 10.1128/msystems.00152-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen and often colonizes pigs. To lower the risk of MRSA transmission to humans, a reduction of MRSA prevalence and/or load in pig farms is needed. The nasal microbiome contains commensal species that may protect against MRSA colonization and may be used to develop competitive exclusion strategies. To obtain a comprehensive understanding of the species that compete with MRSA in the developing porcine nasal microbiome, and the moment of MRSA colonization, we analyzed nasal swabs from piglets in two litters. The swabs were taken longitudinally, starting directly after birth until 6 weeks. Both 16S rRNA and tuf gene sequencing data with different phylogenetic resolutions and complementary culture-based and quantitative real-time PCR (qPCR)-based MRSA quantification data were collected. We employed a compositionally aware bioinformatics approach (CoDaSeq + rmcorr) for analysis of longitudinal measurements of the nasal microbiota. The richness and diversity in the developing nasal microbiota increased over time, albeit with a reduction of Firmicutes and Actinobacteria, and an increase of Proteobacteria. Coabundant groups (CAGs) of species showing strong positive and negative correlation with colonization of MRSA and S. aureus were identified. Combining 16S rRNA and tuf gene sequencing provided greater Staphylococcus species resolution, which is necessary to inform strategies with potential protective effects against MRSA colonization in pigs. IMPORTANCE The large reservoir of methicillin-resistant Staphylococcus aureus (MRSA) in pig farms imposes a significant zoonotic risk. An effective strategy to reduce MRSA colonization in pig farms is competitive exclusion whereby MRSA colonization can be reduced by the action of competing bacterial species. We complemented 16S rRNA gene sequencing with Staphylococcus-specific tuf gene sequencing to identify species anticorrelating with MRSA colonization. This approach allowed us to elucidate microbiome dynamics and identify species that are negatively and positively associated with MRSA, potentially suggesting a route for its competitive exclusion.
Collapse
Affiliation(s)
- Shriram Patel
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Abel A. Vlasblom
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Koen M. Verstappen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aldert L. Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Ad C. Fluit
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Malbert R. C. Rogers
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | | | - Birgitta Duim
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
35
|
Mutations in a Membrane Permease or hpt Lead to 6-Thioguanine Resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2021; 65:e0076021. [PMID: 34125595 DOI: 10.1128/aac.00760-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We recently discovered that 6-thioguanine (6-TG) is an antivirulence compound that is produced by a number of coagulase-negative staphylococci. In Staphylococcus aureus, it inhibits de novo purine biosynthesis and ribosomal protein expression, thus inhibiting growth and abrogating toxin production. Mechanisms by which S. aureus may develop resistance to this compound are currently unknown. Here, we show that 6-TG-resistant S. aureus mutants emerge spontaneously when the bacteria are subjected to high concentrations of 6-TG in vitro. Whole-genome sequencing of these mutants revealed frameshift and missense mutations in a xanthine-uracil permease family protein (stgP [six thioguanine permease]) and single nucleotide polymorphisms in hypoxanthine phosphoribosyltransferase (hpt). These mutations engender S. aureus the ability to resist both the growth inhibitory and toxin downregulation effects of 6-TG. While prophylactic administration of 6-TG ameliorates necrotic lesions in subcutaneous infection of mice with methicillin-resistant S. aureus (MRSA) strain USA300 LAC, the drug did not reduce lesion size formed by the 6-TG-resistant strains. These findings identify mechanisms of 6-TG resistance, and this information can be leveraged to inform strategies to slow the evolution of resistance.
Collapse
|
36
|
Torres Salazar BO, Heilbronner S, Peschel A, Krismer B. Secondary Metabolites Governing Microbiome Interaction of Staphylococcal Pathogens and Commensals. Microb Physiol 2021; 31:198-216. [PMID: 34325424 DOI: 10.1159/000517082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022]
Abstract
Various Staphylococcus species colonize skin and upper airways of warm-blooded animals. They compete successfully with many other microorganisms under the hostile and nutrient-poor conditions of these habitats using mechanisms that we are only beginning to appreciate. Small-molecule mediators, whose biosynthesis requires complex enzymatic cascades, so-called secondary metabolites, have emerged as crucial components of staphylococcal microbiome interactions. Such mediators belong to a large variety of compound classes and several of them have attractive properties for future drug development. They include, for instance, bacteriocins such as lanthipeptides, thiopeptides, and fibupeptides that inhibit bacterial competitor species; signaling molecules such as thiolactone peptides that induce or inhibit sensory cascades in other bacteria; or metallophores such as staphyloferrins and staphylopine that scavenge scant transition metal ions. For some secondary metabolites such as the aureusimines, the exact function remains to be elucidated. How secondary metabolites shape the fitness of Staphylococcus species in the complex context of other microbial and host defense factors remains a challenging field of future research. A detailed understanding will help to harness staphylococcal secondary metabolites for excluding the pathogenic species Staphylococcus aureus from the nasal microbiomes of at-risk patients, and it will be instrumental for the development of advanced anti-infective interventions.
Collapse
Affiliation(s)
- Benjamin O Torres Salazar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Simon Heilbronner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Bernhard Krismer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Ahle CM, Stødkilde-Jørgensen K, Poehlein A, Streit WR, Hüpeden J, Brüggemann H. Comparison of three amplicon sequencing approaches to determine staphylococcal populations on human skin. BMC Microbiol 2021; 21:221. [PMID: 34320945 PMCID: PMC8320028 DOI: 10.1186/s12866-021-02284-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background Staphylococci are important members of the human skin microbiome. Many staphylococcal species and strains are commensals of the healthy skin microbiota, while few play essential roles in skin diseases such as atopic dermatitis. To study the involvement of staphylococci in health and disease, it is essential to determine staphylococcal populations in skin samples beyond the genus and species level. Culture-independent approaches such as amplicon next-generation sequencing (NGS) are time- and cost-effective options. However, their suitability depends on the power of resolution. Results Here we compare three amplicon NGS schemes that rely on different targets within the genes tuf and rpsK, designated tuf1, tuf2 and rpsK schemes. The schemes were tested on mock communities and on human skin samples. To obtain skin samples and build mock communities, skin swab samples of healthy volunteers were taken. In total, 254 staphylococcal strains were isolated and identified to the species level by MALDI-TOF mass spectrometry. A subset of ten strains belonging to different staphylococcal species were genome-sequenced. Two mock communities with nine and eighteen strains, respectively, as well as eight randomly selected skin samples were analysed with the three amplicon NGS methods. Our results imply that all three methods are suitable for species-level determination of staphylococcal populations. However, the novel tuf2-NGS scheme was superior in resolution power. It unambiguously allowed identification of Staphylococcus saccharolyticus and distinguish phylogenetically distinct clusters of Staphylococcus epidermidis. Conclusions Powerful amplicon NGS approaches for the detection and relative quantification of staphylococci in human samples exist that can resolve populations to the species and, to some extent, to the subspecies level. Our study highlights strengths, weaknesses and pitfalls of three currently available amplicon NGS approaches to determine staphylococcal populations. Applied to the analysis of healthy and diseased skin, these approaches can be useful to attribute host-beneficial and -detrimental roles to skin-resident staphylococcal species and subspecies. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02284-1.
Collapse
Affiliation(s)
- Charlotte Marie Ahle
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany.,Department of Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany
| | | | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, 37073, Göttingen, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, 22609, Hamburg, Germany
| | - Jennifer Hüpeden
- Beiersdorf AG, Research & Development, Front End Innovation, 20245, Hamburg, Germany
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
38
|
Hwang J, Thompson A, Jaros J, Blackcloud P, Hsiao J, Shi VY. Updated understanding of Staphylococcus aureus in atopic dermatitis: From virulence factors to commensals and clonal complexes. Exp Dermatol 2021; 30:1532-1545. [PMID: 34293242 DOI: 10.1111/exd.14435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/18/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory dermatosis that has multiple contributing factors including genetic, immunologic and environmental. Staphylococcus aureus (SA) has long been associated with exacerbation of AD. SA produces many virulence factors that interact with the human skin and immune system. These superantigens and toxins have been shown to contribute to adhesion, inflammation and skin barrier destruction. Recent advances in genome sequencing techniques have led to a broadened understanding of the multiple ways SA interacts with the cutaneous environment in AD hosts. For example, temporal shifts in the microbiome, specifically in clonal complexes of SA, have been identified during AD flares and remission. Herein, we review mechanisms of interaction between the cutaneous microbiome and SA and highlight known differences in SA clonal complexes that contribute to AD pathogenesis. Detailed knowledge of the genetic strains of SA and cutaneous dysbiosis is becoming increasingly relevant in paving the way for microbiome-modulating and precision therapies for AD.
Collapse
Affiliation(s)
- Jonwei Hwang
- University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Alyssa Thompson
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Joanna Jaros
- John H. Stroger Hospital Cook County Health Dermatology, Chicago, Illinois, USA
| | - Paul Blackcloud
- Division of Dermatology, University of California, Los Angeles, Los Angeles, California, USA
| | - Jennifer Hsiao
- Division of Dermatology, University of California, Los Angeles, Los Angeles, California, USA
| | - Vivian Y Shi
- Department of Dermatology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
39
|
Chinnappan M, Harris-Tryon TA. Novel mechanisms of microbial crosstalk with skin innate immunity. Exp Dermatol 2021; 30:1484-1495. [PMID: 34252227 DOI: 10.1111/exd.14429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Skin is an organ with a dynamic ecosystem that harbours pathogenic and commensal microbes, which constantly communicate amongst each other and with the host immune system. Evolutionarily, skin and its microbiota have evolved to remain in homeostasis. However, frequently this homeostatic relationship is disturbed by a variety of factors such as environmental stress, diet, genetic mutations, and the microbiome itself. Commensal microbes also play a major role in the maintenance of microbial homeostasis. In addition to their ability to limit pathogens, many skin commensals such as Staphylococcus epidermidis and Cutibacterium acnes have recently been implicated in disease pathogenesis either by directly modulating the host immune components or by supporting the expansion of other pathogenic microbes. Likewise, opportunistic skin pathogens such as Staphylococcus aureus and Staphylococcus lugdunensis are able to breach the skin and cause disease. Though much has been established about the microbiota's function in skin immunity, we are in a time where newer mechanistic insights rapidly redefine our understanding of the host/microbial interface in the skin. In this review, we provide a concise summary of recent advances in our understanding of the interplay between host defense strategies and the skin microbiota.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tamia A Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
40
|
Nasser A, Dallal MMS, Jahanbakhshi S, Azimi T, Nikouei L. Staphylococcus aureus: biofilm formation and strategies against it. Curr Pharm Biotechnol 2021; 23:664-678. [PMID: 34238148 DOI: 10.2174/1389201022666210708171123] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/09/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
The formation of Staphylococcus aureus biofilm causes significant infections in the human body. Biofilm forms through the aggregation of bacterial species and brings about many complications. It mediates drug resistance and persistence and facilitates the recurrence of infection at the end of antimicrobial therapy. Biofilm formation goes through a series of steps to complete, and any interference in these steps can disrupt its formation. Such interference may occur at any stage of biofilm production, including attachment, monolayer formation, and accumulation. Interfering agents can act as quorum sensing inhibitors and interfere in the functionality of quorum sensing receptors, attachment inhibitors and affect the cell hydrophobicity. Among these inhibiting strategies, attachment inhibitors could serve as the best agents against biofilm formation. If pathogens abort the attachment, the following stages of biofilm formation, e.g., accumulation and dispersion, will fail to materialize. Inhibition at this stage leads to suppression of virulence factors and invasion. One of the best-known inhibitors is a chelator that collects metal, Fe+, Zn+, and magnesium critical for biofilm formation. These influential factors in the binding and formation of biofilm are investigated, and the coping strategy is discussed. This review examines the stages of biofilm formation and determines what factors interfere in the continuity of these steps. Finally, the inhibition strategies are investigated, reviewed, and discussed. Keywords: Biofilm, Staphylococcus, Biofilm inhibitor, Dispersion, Antibiofilm agent, EPS, PIA.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shiva Jahanbakhshi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Nikouei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
West KHJ, Shen W, Eisenbraun EL, Yang T, Vasquez JK, Horswill AR, Blackwell HE. Non-Native Peptides Capable of Pan-Activating the agr Quorum Sensing System across Multiple Specificity Groups of Staphylococcus epidermidis. ACS Chem Biol 2021; 16:1070-1078. [PMID: 33988969 DOI: 10.1021/acschembio.1c00240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Staphylococcus epidermidis is a leading cause of hospital-acquired infections. Traditional antibiotics have significantly reduced efficacy against this pathogen due to its ability to form biofilms on abiotic surfaces and drug resistance. The accessory gene regulator (agr) quorum sensing system is directly involved in S. epidermidis pathogenesis. Activation of agr is achieved via binding of the autoinducing peptide (AIP) signal to the extracellular sensor domain of its cognate receptor, AgrC. Divergent evolution has given rise to four agr specificity groups in S. epidermidis defined by the unique AIP sequence used by each group (AIPs-I-IV) with observed cross-group activities. As agr agonism has been shown to reduce biofilm growth in S. epidermidis, the development of pan-group activators of the agr system is of interest as a potential antivirulence strategy. To date, no synthetic compounds have been identified that are capable of appreciably activating the agr system of more than one specificity group of S. epidermidis or, to our knowledge, of any of the other Staphylococci. Here, we report the characterization of the structure-activity relationships for agr agonism by S. epidermidis AIP-II and AIP-III and the application of these new SAR data and those previously reported for AIP-I for the design and synthesis of the first multigroup agr agonists. These non-native peptides were capable of inducing the expression of critical biofilm dispersal agents (i.e., phenol-soluble modulins) in cell culture and represent new tools to study the role of quorum sensing in S. epidermidis infections.
Collapse
Affiliation(s)
- Korbin H. J. West
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Wenqi Shen
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Emma L. Eisenbraun
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tian Yang
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Joseph K. Vasquez
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colorado 80045, United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Bier K, Schittek B. Beneficial effects of coagulase-negative Staphylococci on Staphylococcus aureus skin colonization. Exp Dermatol 2021; 30:1442-1452. [PMID: 33960019 DOI: 10.1111/exd.14381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Our skin is constantly exposed to a large number of pathogens while at the same time undergoing selective colonization by commensal microorganisms such as coagulase-negative Staphylococci. Staphylococcus aureus, however, is a facultative pathogen that is usually absent from healthy skin but frequently colonizes the inflamed skin of atopic dermatitis patients, where it further promotes inflammation. Enhanced S. aureus skin colonization was shown to correlate with a loss of microbiome diversity indicating a role for skin commensals to shape pathogen colonization. Together, keratinocytes and immune cells in the skin need to discriminate commensals from pathogens and orchestrate subsequent immune reactions in response to colonizing microbes. However, the mechanisms how individual commensals cooperate with keratinocytes and the immune system of the skin to prevent pathogen colonization are barely understood. In this review, we discuss the current knowledge on the functional effects of coagulase-negative staphylococci, the most frequently isolated skin commensals, on S. aureus skin colonization.
Collapse
Affiliation(s)
- Katharina Bier
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
43
|
Nakatsuji T, Hata TR, Tong Y, Cheng JY, Shafiq F, Butcher AM, Salem SS, Brinton SL, Rudman Spergel AK, Johnson K, Jepson B, Calatroni A, David G, Ramirez-Gama M, Taylor P, Leung DYM, Gallo RL. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat Med 2021; 27:700-709. [PMID: 33619370 PMCID: PMC8052297 DOI: 10.1038/s41591-021-01256-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Staphylococcus aureus colonizes patients with atopic dermatitis (AD) and exacerbates disease by promoting inflammation. The present study investigated the safety and mechanisms of action of Staphylococcus hominis A9 (ShA9), a bacterium isolated from healthy human skin, as a topical therapy for AD. ShA9 killed S. aureus on the skin of mice and inhibited expression of a toxin from S. aureus (psmα) that promotes inflammation. A first-in-human, phase 1, double-blinded, randomized 1-week trial of topical ShA9 or vehicle on the forearm skin of 54 adults with S. aureus-positive AD (NCT03151148) met its primary endpoint of safety, and participants receiving ShA9 had fewer adverse events associated with AD. Eczema severity was not significantly different when evaluated in all participants treated with ShA9 but a significant decrease in S. aureus and increased ShA9 DNA were seen and met secondary endpoints. Some S. aureus strains on participants were not directly killed by ShA9, but expression of mRNA for psmα was inhibited in all strains. Improvement in local eczema severity was suggested by post-hoc analysis of participants with S. aureus directly killed by ShA9. These observations demonstrate the safety and potential benefits of bacteriotherapy for AD.
Collapse
Affiliation(s)
- Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Tissa R Hata
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Yun Tong
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Joyce Y Cheng
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Faiza Shafiq
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Anna M Butcher
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Secilia S Salem
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Samantha L Brinton
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Amanda K Rudman Spergel
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keli Johnson
- Rho Federal Systems Division, Inc., Durham, NC, USA
| | - Brett Jepson
- Rho Federal Systems Division, Inc., Durham, NC, USA
| | | | - Gloria David
- Rho Federal Systems Division, Inc., Durham, NC, USA
| | - Marco Ramirez-Gama
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Patricia Taylor
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Donald Y M Leung
- Division of Allergy and Immunology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Coagulase-negative staphylococci release a purine analog that inhibits Staphylococcus aureus virulence. Nat Commun 2021; 12:1887. [PMID: 33767207 PMCID: PMC7994395 DOI: 10.1038/s41467-021-22175-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Coagulase-negative staphylococci and Staphylococcus aureus colonize similar niches in mammals and conceivably compete for space and nutrients. Here, we report that a coagulase-negative staphylococcus, Staphylococcus chromogenes ATCC43764, synthesizes and secretes 6-thioguanine (6-TG), a purine analog that suppresses S. aureus growth by inhibiting de novo purine biosynthesis. We identify a 6-TG biosynthetic gene cluster in S. chromogenes and other coagulase-negative staphylococci including S. epidermidis, S. pseudintermedius and S. capitis. Recombinant S. aureus strains harbouring this operon produce 6-TG and, when used in subcutaneous co-infections in mice with virulent S. aureus USA300, protect the host from necrotic lesion formation. Used prophylactically, 6-TG reduces necrotic skin lesions in mice infected with USA300, and this effect is mediated by abrogation of toxin production. RNAseq analyses reveal that 6-TG downregulates expression of genes coding for purine biosynthesis, the accessory gene regulator (agr) and ribosomal proteins in S. aureus, providing an explanation for its effect on toxin production. Coagulase-negative staphylococci and Staphylococcus aureus colonize similar niches in mammals. Here, Chin et al. show that a coagulase-negative staphylococcus secretes 6-thioguanine, a purine analog that suppresses S. aureus growth and virulence by inhibiting de novo purine biosynthesis and toxin production.
Collapse
|
45
|
Boopathi S, Liu D, Jia AQ. Molecular trafficking between bacteria determines the shape of gut microbial community. Gut Microbes 2021; 13:1959841. [PMID: 34455923 PMCID: PMC8432619 DOI: 10.1080/19490976.2021.1959841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 02/04/2023] Open
Abstract
Complex inter-bacterial interactions largely influence the structure and function of the gut microbial community. Though several host-associated phenomena have often been shown to be involved in the stability, structure, and function of the gut microbial community, the implication of contact-dependent and contact-independent inter-bacterial interactions has been overlooked. Such interactions are tightly governed at multiple layers through several extracellular organelles, including contact-dependent inhibition (CDI), nanotubes, type VI secretion system (T6SS), and membrane vesicles (MVs). Recent advancements in molecular techniques have revealed that such extracellular organelles function beyond exhibiting competitive behavior and are also involved in manifesting cooperative behaviors. Cooperation between bacteria occurs through the sharing of several beneficial molecules including nucleic acids, proteins, metabolites, and nutrients among the members of the community, while competition occurs by means of multiple toxins. Intrinsic coordination between contact-dependent and contact-independent mechanisms collectively provides a fitness advantage and increased colonization resistance to the gut microbiota, where molecular trafficking plays a key role. This review is intended to provide a comprehensive view of the salient features of the different bacterial interactions and to highlight how microbiota deploy multifaceted organelles, for exerting both cooperative and competitive behaviors. We discuss the current knowledge of bacterial molecular trafficking and its impact on shaping the gut microbial community.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Danrui Liu
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ai-Qun Jia
- School of Life and Pharmaceutical Sciences, Key Laboratory of Tropical Biological Resources of Ministry Education, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| |
Collapse
|
46
|
Butrico CE, Cassat JE. Quorum Sensing and Toxin Production in Staphylococcus aureus Osteomyelitis: Pathogenesis and Paradox. Toxins (Basel) 2020; 12:toxins12080516. [PMID: 32806558 PMCID: PMC7471978 DOI: 10.3390/toxins12080516] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive pathogen capable of infecting nearly every vertebrate organ. Among these tissues, invasive infection of bone (osteomyelitis) is particularly common and induces high morbidity. Treatment of osteomyelitis is notoriously difficult and often requires debridement of diseased bone in conjunction with prolonged antibiotic treatment to resolve infection. During osteomyelitis, S. aureus forms characteristic multicellular microcolonies in distinct niches within bone. Virulence and metabolic responses within these multicellular microcolonies are coordinated, in part, by quorum sensing via the accessory gene regulator (agr) locus, which allows staphylococcal populations to produce toxins and adapt in response to bacterial density. During osteomyelitis, the Agr system significantly contributes to dysregulation of skeletal homeostasis and disease severity but may also paradoxically inhibit persistence in the host. Moreover, the Agr system is subject to complex crosstalk with other S. aureus regulatory systems, including SaeRS and SrrAB, which can significantly impact the progression of osteomyelitis. The objective of this review is to highlight Agr regulation, its implications on toxin production, factors that affect Agr activation, and the potential paradoxical influences of Agr regulation on disease progression during osteomyelitis.
Collapse
Affiliation(s)
- Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-936-6494
| |
Collapse
|