1
|
Dufresne K, DiMaggio DA, Maduta CS, Brinsmade SR, McCormick JK. Discovery of an antivirulence compound that targets the Staphylococcus aureus SaeRS two-component system to inhibit toxic shock syndrome toxin-1 production. J Biol Chem 2024; 300:107455. [PMID: 38852884 PMCID: PMC11328871 DOI: 10.1016/j.jbc.2024.107455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024] Open
Abstract
Menstrual toxic shock syndrome (mTSS) is a rare but severe disorder associated with the use of menstrual products such as high-absorbency tampons and is caused by Staphylococcus aureus strains that produce the toxic shock syndrome toxin-1 (TSST-1) superantigen. Herein, we screened a library of 3920 small bioactive molecules for the ability to inhibit transcription of the TSST-1 gene without inhibiting the growth of S. aureus. The dominant positive regulator of TSST-1 is the SaeRS two-component system (TCS), and we identified phenazopyridine hydrochloride (PP-HCl) that repressed the production of TSST-1 by inhibiting the kinase function of SaeS. PP-HCl competed with ATP for binding of the kinase SaeS leading to decreased phosphorylation of SaeR and reduced expression of TSST-1 as well as several other secreted virulence factors known to be regulated by SaeRS. PP-HCl targets the virulence of S. aureus, and it also decreases the impact of TSST-1 on human lymphocytes without affecting the healthy vaginal microbiota. Our findings demonstrate the promising potential of PP-HCl as a therapeutic strategy against mTSS.
Collapse
Affiliation(s)
- Karine Dufresne
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Dennis A DiMaggio
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Carla S Maduta
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Shaun R Brinsmade
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - John K McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
2
|
Ali L, Abdel Aziz MH. Crosstalk involving two-component systems in Staphylococcus aureus signaling networks. J Bacteriol 2024; 206:e0041823. [PMID: 38456702 PMCID: PMC11025333 DOI: 10.1128/jb.00418-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Staphylococcus aureus poses a serious global threat to human health due to its pathogenic nature, adaptation to environmental stress, high virulence, and the prevalence of antimicrobial resistance. The signaling network in S. aureus coordinates and integrates various internal and external inputs and stimuli to adapt and formulate a response to the environment. Two-component systems (TCSs) of S. aureus play a central role in this network where surface-expressed histidine kinases (HKs) receive and relay external signals to their cognate response regulators (RRs). Despite the purported high fidelity of signaling, crosstalk within TCSs, between HK and non-cognate RR, and between TCSs and other systems has been detected widely in bacteria. The examples of crosstalk in S. aureus are very limited, and there needs to be more understanding of its molecular recognition mechanisms, although some crosstalk can be inferred from similar bacterial systems that share structural similarities. Understanding the cellular processes mediated by this crosstalk and how it alters signaling, especially under stress conditions, may help decipher the emergence of antibiotic resistance. This review highlights examples of signaling crosstalk in bacteria in general and S. aureus in particular, as well as the effect of TCS mutations on signaling and crosstalk.
Collapse
Affiliation(s)
- Liaqat Ali
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| | - May H. Abdel Aziz
- Fisch College of Pharmacy, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
3
|
Verma AK, Jaiswal G, Sultana KN, Srivastava SK. 'Computational studies on coumestrol-ArlR interaction to target ArlRS signaling cascade involved in MRSA virulence'. J Biomol Struct Dyn 2024; 42:3712-3730. [PMID: 37293938 DOI: 10.1080/07391102.2023.2220028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/10/2023] [Indexed: 06/10/2023]
Abstract
Two component signaling system ArlRS (Autolysis-related locus) regulates adhesion, biofilm formation and virulence in methicillin resistant Staphylococcus aureus. It consists of a histidine kinase ArlS and response regulator ArlR. ArlR is composed of a N-terminal receiver domain and DNA-binding effector domain at C-terminal. ArlR receiver domain dimerizes upon signal recognition and activates DNA binding by effector domain and subsequent virulence expression. In silico simulation and structural data suggest that coumestrol, a phytochemical found in Pueraria montana, forges a strong intermolecular interaction with residues involved in dimer formation and destabilizes ArlR dimerization, an essential conformational switch required for downstream effector domain to bind to virulent loci. Structural and energy profiles of simulated ArlR-coumestrol complexes suggest lower affinity between ArlR monomers due to structural rigidity at the dimer interface hindering the conformational rearrangements relevant for dimer formation. These analyses could be an attractive strategy to develop therapeutics and potent leads molecules response regulators of two component systems in which are involved in MRSA virulence as well as other drug-resistant pathogens.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhishek Kumar Verma
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Grijesh Jaiswal
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Kazi Nasrin Sultana
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sandeep Kumar Srivastava
- Structural Biology & Bioinformatics Laboratory, Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
4
|
Wang Z, Wang H, Bai J, Cai S, Qu D, Xie Y, Wu Y. The Staphylococcus aureus ArlS Kinase Inhibitor Tilmicosin Has Potent Anti-Biofilm Activity in Both Static and Flow Conditions. Microorganisms 2024; 12:256. [PMID: 38399660 PMCID: PMC10891534 DOI: 10.3390/microorganisms12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Staphylococcus aureus can form biofilms on biotic surfaces or implanted materials, leading to biofilm-associated diseases in humans and animals that are refractory to conventional antibiotic treatment. Recent studies indicate that the unique ArlRS regulatory system in S. aureus is a promising target for screening inhibitors that may eradicate formed biofilms, retard virulence and break antimicrobial resistance. In this study, by screening in the library of FDA-approved drugs, tilmicosin was found to inhibit ArlS histidine kinase activity (IC50 = 1.09 μM). By constructing a promoter-fluorescence reporter system, we found that tilmicosin at a concentration of 0.75 μM or 1.5 μM displayed strong inhibition on the expression of the ArlRS regulon genes spx and mgrA in the S. aureus USA300 strain. Microplate assay and confocal laser scanning microscopy showed that tilmicosin at a sub-minimal inhibitory concentration (MIC) had a potent inhibitory effect on biofilms formed by multiple S. aureus strains and a strong biofilm-forming strain of S. epidermidis. In addition, tilmicosin at three-fold of MIC disrupted USA300 mature biofilms and had a strong bactericidal effect on embedded bacteria. Furthermore, in a BioFlux flow biofilm assay, tilmicosin showed potent anti-biofilm activity and synergized with oxacillin against USA300.
Collapse
Affiliation(s)
| | | | | | | | | | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China (S.C.)
| |
Collapse
|
5
|
Mansour KE, Qi Y, Yan M, Ramström O, Priebe GP, Schaefers MM. Small-molecule activators of a bacterial signaling pathway inhibit virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.02.569726. [PMID: 38076823 PMCID: PMC10705554 DOI: 10.1101/2023.12.02.569726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The Burkholderia genus encompasses multiple human pathogens, including potential bioterrorism agents, that are often extensively antibiotic resistant. The FixLJ pathway in Burkholderia is a two-component system that regulates virulence. Previous work showed that fixLJ mutations arising during chronic infection confer increased virulence while decreasing the activity of the FixLJ pathway. We hypothesized that small-molecule activators of the FixLJ pathway could serve as anti-virulence therapies. Here, we developed a high-throughput assay that screened over 28,000 compounds and identified 11 that could specifically active the FixLJ pathway. Eight of these compounds, denoted Burkholderia Fix Activator (BFA) 1-8, inhibited the intracellular survival of Burkholderia in THP-1-dervived macrophages in a fixLJ-dependent manner without significant toxicity. One of the compounds, BFA1, inhibited the intracellular survival in macrophages of multiple Burkholderia species. Predictive modeling of the interaction of BFA1 with Burkholderia FixL suggests that BFA1 binds to the putative ATP/ADP binding pocket in the kinase domain, indicating a potential mechanism for pathway activation. These results indicate that small-molecule FixLJ pathway activators are promising anti-virulence agents for Burkholderia and define a new paradigm for antibacterial therapeutic discovery.
Collapse
Affiliation(s)
- Kathryn E. Mansour
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital; Boston, MA, USA
| | - Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Gregory P. Priebe
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital; Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School; Boston, MA, USA
| | - Matthew M. Schaefers
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital; Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
6
|
Weig AW, O'Conner PM, Kwiecinski JM, Marciano OM, Nunag A, Gutierrez AT, Melander RJ, Horswill AR, Melander C. A structure activity relationship study of 3,4'-dimethoxyflavone for ArlRS inhibition in Staphylococcus aureus. Org Biomol Chem 2023; 21:3373-3380. [PMID: 37013457 PMCID: PMC10192164 DOI: 10.1039/d3ob00123g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are difficult to treat due to their resistance to many β-lactam antibiotics, and their highly coordinated excretion of virulence factors. One way in which MRSA accomplishes this is by responding to environmental stimuli using two-component systems (TCS). The ArlRS TCS has been identified as having a key role in regulating virulence in both systemic and local infections caused by S. aureus. We recently disclosed 3,4'-dimethoxyflavone as a selective ArlRS inhibitor. In this study we explore the structure-activity relationship (SAR) of the flavone scaffold for ArlRS inhibition and identify several compounds with increased activity compared to the parent. Additionally, we identify a compound that suppresses oxacillin resistance in MRSA, and begin to probe the mechanism of action behind this activity.
Collapse
Affiliation(s)
- Alexander W Weig
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Patrick M O'Conner
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Orry M Marciano
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Angelica Nunag
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Andrew T Gutierrez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
7
|
Lim S. A Review of the Bacterial Phosphoproteomes of Beneficial Microbes. Microorganisms 2023; 11:microorganisms11040931. [PMID: 37110354 PMCID: PMC10145908 DOI: 10.3390/microorganisms11040931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The number and variety of protein post-translational modifications (PTMs) found and characterized in bacteria over the past ten years have increased dramatically. Compared to eukaryotic proteins, most post-translational protein changes in bacteria affect relatively few proteins because the majority of modified proteins exhibit substoichiometric modification levels, which makes structural and functional analyses challenging. In addition, the number of modified enzymes in bacterial species differs widely, and degrees of proteome modification depend on environmental conditions. Nevertheless, evidence suggests that protein PTMs play essential roles in various cellular processes, including nitrogen metabolism, protein synthesis and turnover, the cell cycle, dormancy, spore germination, sporulation, persistence, and virulence. Additional investigations on protein post-translational changes will undoubtedly close knowledge gaps in bacterial physiology and create new means of treating infectious diseases. Here, we describe the role of the post-translation phosphorylation of major bacterial proteins and review the progress of research on phosphorylated proteins depending on bacterial species.
Collapse
Affiliation(s)
- Sooa Lim
- Department of Pharmaceutical Engineering, Hoseo University, Asan-si 31499, Republic of Korea
| |
Collapse
|
8
|
Martinez J, Ramírez C, Gil J, Quiñones W, Durango D. Antifungal activity against anthracnose-causing species of homopterocarpin derivatives. Heliyon 2023; 9:e13082. [PMID: 36798775 PMCID: PMC9925875 DOI: 10.1016/j.heliyon.2023.e13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2023] Open
Abstract
Derivatives of 3,9-dimethoxypterocarpan (1, homopterocarpin) were prepared by nitration, amination, and oxidation reactions, among others, and their antifungal activity was evaluated against the phytopathogenic fungi Colletotrichum gloeosporioides and C. lindemuthianum. Derivatives were purified by chromatographic techniques and identified by nuclear magnetic resonance spectroscopy. Eight derivatives were obtained from 1 corresponding to 3,9-dimethoxy-8-nitropterocarpan (2), 3,9-dimethoxy-2,8-dinitropterocarpan (3), 3,9-dimethoxy-2,8,10-trinitropterocarpan (4), 2,8-diamino-3,9-dimethoxypterocarpan (5), 3,9-dimethylcoumestan (6), medicarpin (7), 2'-hydroxy-4-(2-hydroxyethylsulfanyl)-7,4'-dimethoxyisoflavan (8), and 4-(2-hydroxyethylsulfanyl)-7,2',4'-trimethoxyisoflavan (9). The in vitro antifungal activity of the derivatives was determined at concentrations between 35 and 704 μM. Compounds 7 and 8 at 704 μM, showed an inhibition of radial growth and spore germination close to 100%, exceeding that found for the starting compound 1, which was 46%. Growth inhibition assays were also performed for the derivative 8 on papaya fruits (Carica papaya L. cv. Hawaiana) and mango (Mangifera indica L. cv. Hilacha) infected with C. gloeosporioides. Compound 8 showed fungal growth inhibition in fruits higher than that found for 1 and thymol (a recognized natural antifungal), under the same conditions. In general, derivatives that exhibited greater antifungal activity correspond to the compounds containing hydroxyl groups in the structure. Some of the compounds obtained could be considered promising for the control of phytopathogenic fungi.
Collapse
Affiliation(s)
- Janio Martinez
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias, Escuela de Química, Carrera 65, 59a-110, Medellín, Colombia,Corresponding author.
| | - Cesar Ramírez
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias, Escuela de Química, Carrera 65, 59a-110, Medellín, Colombia
| | - Jesús Gil
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Carrera 65, 59a-110, Medellín, Colombia
| | - Winston Quiñones
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 70, Medellín P.O. Box 1226, Colombia
| | - Diego Durango
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias, Escuela de Química, Carrera 65, 59a-110, Medellín, Colombia,Corresponding author.
| |
Collapse
|