1
|
Oleszycka E, Kwiecień K, Grygier B, Cichy J, Kwiecińska P. The many faces of DGAT1. Life Sci 2024; 362:123322. [PMID: 39709166 DOI: 10.1016/j.lfs.2024.123322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a multifaced enzyme with a wide spectrum of substrates, from lipids through waxes to retinoids, which makes it an interesting therapeutic target. DGAT1 inhibitors are currently at various stages of preclinical and clinical trials, mostly related to metabolic diseases. Interestingly, in recent years, a growing amount of research has shown the influence of DGAT1 on immune cell metabolism and functions, highlighting its important role during infections and tumorigenesis. In this review, we aim to elucidate the potential immunomodulatory effect of DGAT1 in physiological and pathological conditions.
Collapse
Affiliation(s)
- Ewa Oleszycka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Kamila Kwiecień
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Beata Grygier
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Science, Cracow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | - Patrycja Kwiecińska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland; Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland.
| |
Collapse
|
2
|
Renaud EA, Maupin AJM, Bordat Y, Graindorge A, Berry L, Besteiro S. Iron depletion has different consequences on the growth and survival of Toxoplasma gondii strains. Virulence 2024; 15:2329566. [PMID: 38509723 PMCID: PMC10962585 DOI: 10.1080/21505594.2024.2329566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite responsible for a pathology called toxoplasmosis, which primarily affects immunocompromised individuals and developing foetuses. The parasite can scavenge essential nutrients from its host to support its growth and survival. Among them, iron is one of the most important elements needed to sustain basic cellular functions as it is involved in a number of key metabolic processes, including oxygen transport, redox balance, and electron transport. We evaluated the effects of an iron chelator on the development of several parasite strains and found that they differed in their ability to tolerate iron depletion. The growth of parasites usually associated with a model of acute toxoplasmosis was strongly affected by iron depletion, whereas cystogenic strains were less sensitive as they were able to convert into persisting developmental forms that are associated with the chronic form of the disease. Ultrastructural and biochemical characterization of the impact of iron depletion on parasites also highlighted striking changes in both their metabolism and that of the host, with a marked accumulation of lipid droplets and perturbation of lipid homoeostasis. Overall, our study demonstrates that although acute iron depletion has an important effect on the growth of T. gondii, it has a more profound impact on actively dividing parasites, whereas less metabolically active parasite forms may be able to avoid some of the most detrimental consequences.
Collapse
Affiliation(s)
- Eléa A. Renaud
- LPHI, University Montpellier, Inserm, CNRS, Montpellier, France
| | | | - Yann Bordat
- LPHI, University Montpellier, Inserm, CNRS, Montpellier, France
| | | | - Laurence Berry
- LPHI, University Montpellier, Inserm, CNRS, Montpellier, France
| | | |
Collapse
|
3
|
Qin B, Fan B, Li Y, Wang Y, Shen B, Xia N. An endoplasmic reticulum localized acetyl-CoA transporter is required for efficient fatty acid synthesis in Toxoplasma gondii. Open Biol 2024; 14:240184. [PMID: 39532149 PMCID: PMC11557232 DOI: 10.1098/rsob.240184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can infect humans and diverse animals. Fatty acids are critical for the growth and proliferation of T. gondii, which has at least two pathways to synthesize fatty acids, including the type II de novo synthesis pathway in the apicoplast and the elongation pathway in the endoplasmic reticulum (ER). Acetyl-CoA is the key substrate for both fatty acid synthesis pathways. In the apicoplast, acetyl-CoA is mainly provided by the pyruvate dehydrogenase complex. However, how the ER acquires acetyl-CoA is not fully understood. Here, we identified a putative acetyl-CoA transporter (TgAT1) that localized to the ER of T. gondii. Deletion of TgAT1 impaired parasite growth and invasion in vitro and attenuated tachyzoite virulence in vivo. Metabolic tracing using 13C-acetate found that loss of TgAT1 reduced the incorporation of 13C into certain fatty acids, suggesting reduced activities of elongation. Truncation of AT1 was previously reported to confer resistance to the antimalarial compound GNF179 in Plasmodium falciparum. Interestingly, GNF179 had much weaker inhibitory effect on Toxoplasma than on Plasmodium. In addition, deletion of AT1 did not affect the susceptibility of Toxoplasma to GNF179, suggesting that this compound might be taken up differently or has different inhibitory mechanisms in these parasites. Together, our data show that TgAT1 has important roles for parasite growth and fatty acid synthesis, but its disruption does not confer GNF179 resistance in T. gondii.
Collapse
Affiliation(s)
- Biyun Qin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Bolin Fan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Yazhou Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Yidan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Bang Shen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, People’s Republic of China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong Province, People’s Republic of China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, People’s Republic of China
| | - Ningbo Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
4
|
Qiu Y, Bai Y, Wang W, Wang Q, Chen S, Zhang J. Reference Gene Selection for RT-qPCR Normalization in Toxoplasma gondii Exposed to Broxaldine. Int J Mol Sci 2024; 25:11403. [PMID: 39518956 PMCID: PMC11546418 DOI: 10.3390/ijms252111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) is widely used to accurately assess target gene expression. Evaluating gene expression requires the selection of appropriate reference genes. To identify reliable reference genes for Toxoplasma gondii (T. gondii) under varying concentrations of broxaldine (BRO), we employed the ΔCt method, BestKeeper, NormFinder, GeNorm, and the comprehensive web-based platform RefFinder to assess the expression stability of ten candidate reference genes in T. gondii. Herein, our findings reveal that the stability of these candidate reference genes is influenced by different experimental conditions. Under normal conditions, the most stable genes were TGME49_205470 and TGME49_226020. However, the most stable genes differed when BRO concentrations were at 1, 2, and 4 μg/mL. Across all samples, TGME49_247220 and TGME49_235930 were identified as the most stable reference genes. Moreover, we also confirmed the stability of TGME49_247220 and TGME49_235930 as reference genes through RT-qPCR assays. The present study provides a foundation for applying the RT-qPCR method to investigate target gene expression following BRO treatment in T. gondii.
Collapse
Affiliation(s)
- Yanhua Qiu
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (Y.B.); (W.W.); (Q.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (Y.B.); (W.W.); (Q.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (Y.B.); (W.W.); (Q.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Qing Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (Y.B.); (W.W.); (Q.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shulin Chen
- College of Veterinary Medicine, Northwest Agriculture & Forestry University, Yangling 712100, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou 730050, China; (Y.Q.); (Y.B.); (W.W.); (Q.W.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
5
|
Hryckowian ND, Ramírez-Flores CJ, Zinda C, Park SC, Kelty MT, Knoll LJ. Host cell-specific metabolism of linoleic acid controls Toxoplasma gondii growth in cell culture. Infect Immun 2024; 92:e0029924. [PMID: 39194219 PMCID: PMC11475615 DOI: 10.1128/iai.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii can infect and replicate in any warm-blooded cell tested to date, but much of our knowledge about T. gondii cell biology comes from just one host cell type: human foreskin fibroblasts (HFFs). To expand our knowledge of host-parasite lipid interactions, we studied T. gondii in intestinal epithelial cells, the first site of host-parasite contact following oral infection and the exclusive site of parasite sexual development in feline hosts. We found that highly metabolic Caco-2 cells are permissive to T. gondii growth even when treated with high levels of linoleic acid (LA), a polyunsaturated fatty acid (PUFA) that kills parasites in HFFs. Caco-2 cells appear to sequester LA away from the parasite, preventing membrane disruptions and lipotoxicity that characterize LA-induced parasite death in HFFs. Our work is an important step toward understanding host-parasite interactions in feline intestinal epithelial cells, an understudied but important cell type in the T. gondii life cycle.
Collapse
Affiliation(s)
- Nicole D. Hryckowian
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carlos J. Ramírez-Flores
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caitlin Zinda
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sung Chul Park
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Martin T. Kelty
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura J. Knoll
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Dass S, Shunmugam S, Charital S, Duley S, Arnold CS, Katris NJ, Cavaillès P, Cesbron-Delauw MF, Yamaryo-Botté Y, Botté CY. Toxoplasma acyl-CoA synthetase TgACS3 is crucial to channel host fatty acids in lipid droplets and for parasite propagation. J Lipid Res 2024; 65:100645. [PMID: 39306040 PMCID: PMC11526091 DOI: 10.1016/j.jlr.2024.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 10/18/2024] Open
Abstract
Apicomplexa comprise important pathogenic parasitic protists that heavily depend on lipid acquisition to survive within their human host cells. Lipid synthesis relies on the incorporation of an essential combination of fatty acids (FAs) either generated by a metabolically adaptable de novo synthesis in the parasite or by scavenging from the host cell. The incorporation of FAs into membrane lipids depends on their obligate metabolic activation by specific enzyme groups, acyl-CoA synthetases (ACSs). Each ACS has its own specificity, so it can fulfill specific metabolic functions. Whilst such functionalities have been well studied in other eukaryotic models, their roles and importance in Apicomplexa are currently very limited, especially for Toxoplasma gondii. Here, we report the identification of seven putative ACSs encoded by the genome of T. gondii (TgACS), which localize to different sub-cellular compartments of the parasite, suggesting exclusive functions. We show that the perinuclear/cytoplasmic TgACS3 regulates the replication and growth of Toxoplasma tachyzoites. Conditional disruption of TgACS3 shows that the enzyme is required for parasite propagation and survival, especially under high host nutrient content. Lipidomic analysis of parasites lacking TgACS3 reveals its role in the activation of host-derived FAs that are used for i) parasite membrane phospholipid and ii) storage triacylglycerol (TAG) syntheses, allowing proper membrane biogenesis of parasite progenies. Altogether, our results reveal the role of TgACS3 as the bulk FA activator for membrane biogenesis allowing intracellular division and survival in T. gondii tachyzoites, further pointing to the importance of ACS and FA metabolism for the parasite.
Collapse
Affiliation(s)
- Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Sarah Charital
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Samuel Duley
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Christophe-Sébastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Nicholas J Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Pierre Cavaillès
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Marie-France Cesbron-Delauw
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France.
| | - Cyrille Y Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France.
| |
Collapse
|
7
|
Rahman SU, Weng TN, Qadeer A, Nawaz S, Ullah H, Chen CC. Omega-3 and omega-6 polyunsaturated fatty acids and their potential therapeutic role in protozoan infections. Front Immunol 2024; 15:1339470. [PMID: 38633251 PMCID: PMC11022163 DOI: 10.3389/fimmu.2024.1339470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Protozoa exert a serious global threat of growing concern to human, and animal, and there is a need for the advancement of novel therapeutic strategies to effectively treat or mitigate the impact of associated diseases. Omega polyunsaturated fatty acids (ω-PUFAs), including Omega-3 (ω-3) and omega-6 (ω-6), are constituents derived from various natural sources, have gained significant attention for their therapeutic role in parasitic infections and a variety of essential structural and regulatory functions in animals and humans. Both ω-3 and ω-6 decrease the growth and survival rate of parasites through metabolized anti-inflammatory mediators, such as lipoxins, resolvins, and protectins, and have both in vivo and in vitro protective effects against various protozoan infections. The ω-PUFAs have been shown to modulate the host immune response by a commonly known mechanism such as (inhibition of arachidonic acid (AA) metabolic process, production of anti-inflammatory mediators, modification of intracellular lipids, and activation of the nuclear receptor), and promotion of a shift towards a more effective immune defense against parasitic invaders by regulation the inflammation like prostaglandins, leukotrienes, thromboxane, are involved in controlling the inflammatory reaction. The immune modulation may involve reducing inflammation, enhancing phagocytosis, and suppressing parasitic virulence factors. The unique properties of ω-PUFAs could prevent protozoan infections, representing an important area of study. This review explores the clinical impact of ω-PUFAs against some protozoan infections, elucidating possible mechanisms of action and supportive therapy for preventing various parasitic infections in humans and animals, such as toxoplasmosis, malaria, coccidiosis, and chagas disease. ω-PUFAs show promise as a therapeutic approach for parasitic infections due to their direct anti-parasitic effects and their ability to modulate the host immune response. Additionally, we discuss current treatment options and suggest perspectives for future studies. This could potentially provide an alternative or supplementary treatment option for these complex global health problems.
Collapse
Affiliation(s)
- Sajid Ur Rahman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tzu-Nin Weng
- Department of Stomatology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Abdul Qadeer
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China Hospital, School of Nursing, Sichuan University, Chengdu, China
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
8
|
Hryckowian ND, Zinda C, Park SC, Kelty MT, Knoll LJ. Host cell-specific metabolism of linoleic acid controls Toxoplasma gondii growth in cell culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586332. [PMID: 38562845 PMCID: PMC10983968 DOI: 10.1101/2024.03.22.586332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The obligate intracellular parasite Toxoplasma gondii can infect and replicate in any warm-blooded cell tested to date, but much of our knowledge about T. gondii cell biology comes from just one host cell type: human foreskin fibroblasts (HFFs). To expand our knowledge of host-parasite lipid interactions, we studied T. gondii in intestinal epithelial cells, the first site of host-parasite contact following oral infection and the exclusive site of parasite sexual development in feline hosts. We found that highly metabolic Caco-2 cells are permissive to T. gondii growth even when treated with high levels of linoleic acid (LA), a polyunsaturated fatty acid (PUFA) that kills parasites in HFFs. Caco-2 cells appear to sequester LA away from the parasite, preventing membrane disruptions and lipotoxicity that characterize LA-induced parasite death in HFFs. Our work is an important step toward understanding host-parasite interactions in feline intestinal epithelial cells, an understudied but important cell type in the T. gondii life cycle.
Collapse
Affiliation(s)
- Nicole D. Hryckowian
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlin Zinda
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sung Chul Park
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin T. Kelty
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura J. Knoll
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
9
|
He TY, Li YT, Liu ZD, Cheng H, Bao YF, Zhang JL. Lipid metabolism: the potential targets for toxoplasmosis treatment. Parasit Vectors 2024; 17:111. [PMID: 38448975 PMCID: PMC10916224 DOI: 10.1186/s13071-024-06213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Toxoplasmosis is a zoonosis caused by Toxoplasma gondii (T. gondii). The current treatment for toxoplasmosis remains constrained due to the absence of pharmaceutical interventions. Thus, the pursuit of more efficient targets is of great importance. Lipid metabolism in T. gondii, including fatty acid metabolism, phospholipid metabolism, and neutral lipid metabolism, assumes a crucial function in T. gondii because those pathways are largely involved in the formation of the membranous structure and cellular processes such as division, invasion, egress, replication, and apoptosis. The inhibitors of T. gondii's lipid metabolism can directly lead to the disturbance of various lipid component levels and serious destruction of membrane structure, ultimately leading to the death of the parasites. In this review, the specific lipid metabolism pathways, correlative enzymes, and inhibitors of lipid metabolism of T. gondii are elaborated in detail to generate novel ideas for the development of anti-T. gondii drugs that target the parasites' lipid metabolism.
Collapse
Affiliation(s)
- Tian-Yi He
- Health Science Center, Ningbo University, Ningbo, China
| | - Ye-Tian Li
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhen-Di Liu
- Health Science Center, Ningbo University, Ningbo, China
| | - Hao Cheng
- Health Science Center, Ningbo University, Ningbo, China
| | - Yi-Feng Bao
- Health Science Center, Ningbo University, Ningbo, China
| | - Ji-Li Zhang
- Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
10
|
Almurshidi BH, Fahmy Z, El-Shennawy A, Selim EAH, Hammam OA, Okasha H, Al-Hajj W, Mahmoud SA, Abuelenain GL. A multimodality therapeutic application on Toxoplasma gondii encephalitis utilizing Spiramycin and 'de novo' Ferula asafetida in immunodeficient mice. Parasite Immunol 2023; 45:e13014. [PMID: 37807942 DOI: 10.1111/pim.13014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
This study investigated a 'de Novo' medicinal herb, Ferula asafetida (FA), against toxoplasma encephalitis either alone or combined with spiramycin (SP). Female Swiss-Webster mice (n = 72) were divided into three batches. Batch-I received no DMS to serve as an immunocompetent control, batch-II was immune-suppressed with the DMS (0.25 mg/g/day) for 14 days pre-infection, whilst batch-III was immune-suppressed with the DMS on the same day of infection. All experimental mice were inoculated with Toxoplasma gondii ME49 cysts (n = 75). Each batch was split into four subgroups: Mono-SP, mono-FA, combined drug (SP + FA), or neither. Therapies were administered on day zero of infection in batches (I and II) and 35 days post-infection in batch (III). Treatments lasted for 14 days, and mice were sacrificed 60 days post-infection. Histopathological changes, cysts load, and CD4 and CD8 T-cells were counted in brain tissues. The cyst-load count in mice receiving SP + FA was significantly (p < .0001) the least compared to the mono treatments in all protocols. Interestingly, the combined therapy demolished the T-cell subsets to zero in immunocompetent and immunocompromised infected mice. In conclusion, F. asafetida might be a powerfully natural, safe vehicle of SP in the digestive system and/or across the brain-blood barrier to control toxoplasmosis even through immunodeficient conditions.
Collapse
Affiliation(s)
| | - Zeinab Fahmy
- Immunology and Therapeutic Evaluation Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Amal El-Shennawy
- Immunology and Therapeutic Evaluation Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Eman A H Selim
- Immunology and Therapeutic Evaluation Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Olfat Ali Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Hend Okasha
- Biochemistry and Molecular Biology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Salma Awad Mahmoud
- Fatima College of Health Sciences, IAT, Abu Dhabi, UAE
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Gehan Labib Abuelenain
- Immunology and Therapeutic Evaluation Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
11
|
Machado H, Hofer P, Zechner R, Smith TK, Figueiredo LM. Adipocyte lipolysis protects mice against Trypanosoma brucei infection. Nat Microbiol 2023; 8:2020-2032. [PMID: 37828246 PMCID: PMC10627827 DOI: 10.1038/s41564-023-01496-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Trypanosoma brucei causes African trypanosomiasis, colonizing adipose tissue and inducing weight loss. Here we investigated the molecular mechanisms responsible for adipose mass loss and its impact on disease pathology. We found that lipolysis is activated early in infection. Mice lacking B and T lymphocytes fail to upregulate adipocyte lipolysis, resulting in higher fat mass retention. Genetic ablation of the rate-limiting adipose triglyceride lipase specifically from adipocytes (AdipoqCre/+-Atglfl/fl) prevented the stimulation of adipocyte lipolysis during infection, reducing fat mass loss. Surprisingly, these mice succumbed earlier and presented a higher parasite burden in the gonadal adipose tissue, indicating that host lipolysis limits parasite growth. Consistently, free fatty acids comparable with those of adipose interstitial fluid induced loss of parasite viability. Adipocyte lipolysis emerges as a mechanism controlling local parasite burden and affecting the loss of fat mass in African trypanosomiasis.
Collapse
Affiliation(s)
- Henrique Machado
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Terry K Smith
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, UK
| | - Luísa M Figueiredo
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
12
|
Alanazi AD, Majeed QAH, Alnomasy SF, Almohammed HI. Potent In Vitro and In Vivo Effects of Stachys lavandulifolia Methanolic Extract against Toxoplasma gondii Infection. Trop Med Infect Dis 2023; 8:355. [PMID: 37505651 PMCID: PMC10384536 DOI: 10.3390/tropicalmed8070355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
The present study aimed to evaluate the in vitro, in vivo, and safety of Stachys lavandulifolia Vahl. methanolic extract (SLME) against acute toxoplasmosis caused by Toxoplasma gondii RH strain in mice. METHODS MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the in vitro effect of the SLME on T. gondii tachyzoites. Totally, 72 male BALB/c mice (40 mice for in vivo evaluation of SLME and 32 mice for its toxicity effects on liver and kidney serum enzymes) were used for the present investigation. At first, 40 mice were orally pre-treated with the SLME at doses of 25, 50, and 75 mg/kg/day for two weeks. Mice were checked daily, and the rate of survival and the mean number of tachyzoites were recorded. Liver lipid peroxidation (LPO) and nitric oxide (NO) levels, the effects on kidney and liver function, as well as the expression level of the proinflammatory cytokines such as interleukin-1β (IL-1β) and interferon-γ (IFN-γ), were studied by the quantitative real-time PCR. Flow cytometry analysis was performed on the effects of SLME on the detection of apoptotic and necrotic cells in T. gondii tachyzoites. RESULTS The SLME at the concentrations 75 and 150 µg/mL completely killed the tachyzoites after 2 hr of incubation. SLME at 25, 50, and 75 mg/kg/day increased the survival rate of infected mice by the sixth, seventh, and eighth days, respectively. SLME also significantly (p < 0.05) decreased the LPO and NO levels and upregulated the IL-1β and IFN-γ mRNA gene expression levels, whereas no considerable change was observed in the serum level of kidney and liver enzymes. Flow cytometry analysis revealed the prompted early and late apoptosis after exposure to T. gondii tachyzoites with various concentrations of SLME. CONCLUSION We found the relevant in vitro anti-Toxoplasma effects of SLME against T. gondii. Moreover, the results confirmed the promising in vivo prophylactic effects of SLME. SLME provokes the innate immune system, induces apoptosis, modulates the proinflammatory cytokines, and inhibits hepatic injury in infected mice. With all these descriptions, further surveys are required to support these findings and elucidate this plant's possible mechanisms of action.
Collapse
Affiliation(s)
- Abdullah D Alanazi
- Departmentof Biological Sciences, Faculty of Science and Humanities, Shaqra University, P.O. Box 1040, Ad-Dawadimi 11911, Saudi Arabia
| | - Qais A H Majeed
- Department of Science, College of Basic Education, PAAET, Aridiya, Kuwait City 23167, Kuwait
| | - Sultan F Alnomasy
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah 19257, Saudi Arabia
| | - Hamdan I Almohammed
- Department of Basic Science, Faculty of Medicine, Almaarfa University, Riyadh 11597, Saudi Arabia
| |
Collapse
|
13
|
Anacleto-Santos J, Calzada F, López-Camacho PY, López-Pérez TDJ, Carrasco-Ramírez E, Casarrubias-Tabarez B, Fortoul TI, Rojas-Lemus M, López-Valdés N, Rivera-Fernández N. Evaluation of the Anti- Toxoplasma gondii Efficacy, Cytotoxicity, and GC/MS Profile of Pleopeltis crassinervata Active Subfractions. Antibiotics (Basel) 2023; 12:antibiotics12050889. [PMID: 37237792 DOI: 10.3390/antibiotics12050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Pleopeltis crassinervata (Pc) is a fern that, according to ethnobotanical records, is used in Mexican traditional medicine to treat gastrointestinal ailments. Recent reports indicate that the hexane fraction (Hf) obtained from Pc methanolic frond extract affects Toxoplasma gondii tachyzoite viability in vitro; therefore, in the present study, the activity of different Pc hexane subfractions (Hsf) obtained by chromatographic methods was evaluated in the same biological model. Gas chromatography/mass spectrometry (GC/MS) analysis was carried out for hexane subfraction number one (Hsf1), as it showed the highest anti-Toxoplasma activity with a half-maximal inhibitory concentration (IC50) of 23.6 µg/mL, a 50% cytotoxic concentration (CC50) of 398.7 µg/mL in Vero cells, and a selective index (SI) of 16.89. Eighteen compounds were identified by Hsf1 GC/MS analysis, with the majority being fatty acids and terpenes. Hexadecanoic acid, methyl ester was the most commonly found compound (18.05%) followed by olean-13(18)-ene, 2,2,4a,8a,9,12b,14a-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-eicosahydropicene, and 8-octadecenoid acid, methyl ester, which were detected at 16.19%, 12.53%, and 12.99%, respectively. Based on the mechanisms of action reported for these molecules, Hsf1 could exert its anti-Toxoplasma activity mainly on T. gondii lipidomes and membranes.
Collapse
Affiliation(s)
- Jhony Anacleto-Santos
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, Unidad Médica de Alta Especialidad, Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Col. Doctores, Cuauhtémoc 06725, Mexico
| | - Perla Yolanda López-Camacho
- Unidad Cuajimalpa, Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana (UAM), Cuajimalpa 05348, Mexico
| | - Teresa de Jesús López-Pérez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Elba Carrasco-Ramírez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Brenda Casarrubias-Tabarez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Teresa I Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Marcela Rojas-Lemus
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Nelly López-Valdés
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
14
|
Ezzatkhah F, Mahmoudvand H, Raziani Y. The role of Curcuma longa essential oil in controlling acute toxoplasmosis by improving the immune system and reducing inflammation and oxidative stress. Front Cell Infect Microbiol 2023; 13:1161133. [PMID: 37249978 PMCID: PMC10214415 DOI: 10.3389/fcimb.2023.1161133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Background Chemotherapy with synthetic drugs is the principal approach for toxoplasmosis treatment; however, recent studies reported the limitations and adverse side effects of these chemical drugs. Objective This study aimed to examine the in vitro and in vivo effects of Curcuma longa essential oil (CLE) against the Toxoplasma gondii RH strain. Methods The in vitro effect of different concentrations of CLE on T. gondii tachyzoites was assessed by cell viability assay. Flow cytometry and apoptosis analysis were performed, and nitric oxide production by CLE was also evaluated in tachyzoites. BALB/c mice were orally treated with various doses (1.25, 2.5, and 5 mg·kg-1·day-1) of CLE for 2 weeks. After the induction of acute toxoplasmosis in the mice, their survival rate and the mean number of peritoneal parasites were checked. The hepatic level of antioxidant enzymes and oxidative stress markers was evaluated by commercial kits. The mRNA expression level of proinflammatory cytokines such as interleukin 1-beta (IL-1β) and interferon-gamma (IFN-γ) was evaluated by quantitative real-time PCR. Results CLE, especially at 50 µg/ml, showed potent inhibitory effects on T. gondii tachyzoites. It increased the survival rate (ninth day) and reduced the mean number of peritoneal tachyzoites in the infected mice. CLE dependently increased (p < 0.01) the number of necrotic and apoptotic cells as well as NO production. CLE significantly (p < 0.05) reduced the hepatic level of oxidative stress markers but increased (p < 0.001) the antioxidant enzymes and proinflammatory cytokines in the infected mice, with no important toxicity for vital organs. Conclusion The findings of this survey revealed the significant in vitro inhibitory effects of CLE on T. gondii tachyzoites. The results also exhibited promising in vivo effects of CLE. CLE improved the survival rate of infected mice and reduced the parasite number in them. Although the mechanisms of action of CLE are not clear, our study demonstrated its beneficial effects on acute toxoplasmosis by strengthening the immune system and reducing inflammation and oxidative stress. Still, more studies are required to confirm these results.
Collapse
Affiliation(s)
- Fatemeh Ezzatkhah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Hossein Mahmoudvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Yosra Raziani
- Nursing Department, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| |
Collapse
|
15
|
Desiatkina O, Anghel N, Boubaker G, Amdouni Y, Hemphill A, Furrer J, Păunescu E. Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Conjugates Tethered with Lipophilic Units: Synthesis and Toxoplasma gondii Antiparasitic Activity. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Shunmugam S, Arnold CS, Dass S, Katris NJ, Botté CY. The flexibility of Apicomplexa parasites in lipid metabolism. PLoS Pathog 2022; 18:e1010313. [PMID: 35298557 PMCID: PMC8929637 DOI: 10.1371/journal.ppat.1010313] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Apicomplexa are obligate intracellular parasites responsible for major human infectious diseases such as toxoplasmosis and malaria, which pose social and economic burdens around the world. To survive and propagate, these parasites need to acquire a significant number of essential biomolecules from their hosts. Among these biomolecules, lipids are a key metabolite required for parasite membrane biogenesis, signaling events, and energy storage. Parasites can either scavenge lipids from their host or synthesize them de novo in a relict plastid, the apicoplast. During their complex life cycle (sexual/asexual/dormant), Apicomplexa infect a large variety of cells and their metabolic flexibility allows them to adapt to different host environments such as low/high fat content or low/high sugar levels. In this review, we discuss the role of lipids in Apicomplexa parasites and summarize recent findings on the metabolic mechanisms in host nutrient adaptation.
Collapse
Affiliation(s)
- Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Christophe-Sébastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Nicholas J. Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| |
Collapse
|
17
|
Tan S, Tong WH, Vyas A. Impact of Plant-Based Foods and Nutraceuticals on Toxoplasma gondii Cysts: Nutritional Therapy as a Viable Approach for Managing Chronic Brain Toxoplasmosis. Front Nutr 2022; 9:827286. [PMID: 35284438 PMCID: PMC8914227 DOI: 10.3389/fnut.2022.827286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that mainly infects warm-blooded animals including humans. T. gondii can encyst and persist chronically in the brain, leading to a broad spectrum of neurological sequelae. Despite the associated health threats, no clinical drug is currently available to eliminate T. gondii cysts. In a continuous effort to uncover novel therapeutic agents for these cysts, the potential of nutritional products has been explored. Herein, we describe findings from in vitro and in vivo studies that support the efficacy of plant-based foods and nutraceuticals against brain cyst burden and cerebral pathologies associated with chronic toxoplasmosis. Finally, we discuss strategies to increase the translatability of preclinical studies and nutritional products to address whether nutritional therapy can be beneficial for coping with chronic T. gondii infections in humans.
Collapse
|
18
|
Zhou Z, Liang S, Zhou Z, Liu J, Meng X, Zou F, Yu C, Cai S. Avasimibe Alleviates Disruption of the Airway Epithelial Barrier by Suppressing the Wnt/β-Catenin Signaling Pathway. Front Pharmacol 2022; 13:795934. [PMID: 35222024 PMCID: PMC8874122 DOI: 10.3389/fphar.2022.795934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 11/28/2022] Open
Abstract
Avasimibe (Ava) is an acetyl-CoA acetyltransferase 1 (ACAT1) specific inhibitor and an established medicine for atherosclerosis, owing to its excellent and safe anti-inflammation effects in humans. However, its efficacy in asthma has not yet been reported. We first administered varying concentrations of avasimibe to house dust mite (HDM)-induced asthmatic mice; results showed that 20 mg/kg avasimibe most significantly reduced IL-4 and IL-5 production in bronchoalveolar lavage fluid (BALF) and total IgE in serum, and the avasimibe treatment also exhibited lower mucus secretion, decreased goblet and basal cells but increased ciliated cells compared to the HDM group. And the redistribution of adherens junction (AJ) proteins induced by HDM was far more less upon avasimibe administration. However, avasimibe did not reduce the cholesterol ester ratio in lung tissues or intracellular cholesterol ester, which is avasimibe’s main effect. Further analysis confirmed that avasimibe impaired epithelial basal cell proliferation independent of regulating cholesterol metabolism and we analyzed datasets using the Gene Expression Omnibus (GEO) database and then found that the KRT5 gene (basal cell marker) expression is correlated with the β-catenin gene. Moreover, we found that β-catenin localized in cytomembrane upon avasimibe treatment. Avasimibe also reduced β-catenin phosphorylation in the cytoplasm and inactivated the Wnt/β-catenin signaling pathway induced by HDMs, thereby alleviating the airway epithelial barrier disruption. Taken together, these findings indicated that avasimibe has potential as a new therapeutic option for allergic asthma.
Collapse
Affiliation(s)
- Zicong Zhou
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shixiu Liang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zili Zhou
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jieyi Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine School of Public Health, Southern Medical University, Guangzhou, China
| | - Changhui Yu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Shaoxi Cai, ; Changhui Yu,
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Shaoxi Cai, ; Changhui Yu,
| |
Collapse
|
19
|
Alnomasy SF. In vitro and in vivo Anti- Toxoplasma Effects of Allium sativum Essential Oil Against Toxoplasma gondii RH Strain. Infect Drug Resist 2021; 14:5057-5068. [PMID: 34876824 PMCID: PMC8643149 DOI: 10.2147/idr.s337905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background Since no effective vaccine has been developed for toxoplasmosis, prophylaxis in seronegative pregnant women and immunocompromised patients with a CD4 <100 cells/μL is highly recommended as an ideal strategy to prevent this disease. This study aimed to assess the chemical composition, in vitro, and in vivo effects of Allium sativum essential oil (ASEO) against Toxoplasma gondii RH strain. Methods The in vitro anti-Toxoplasma effects of different concentrations of ASEO (32.5, 75, 150 µg/mL) were measured by MTT assay for 0.5, 1, 2, and 3 h. Male Balb/c mice were orally administrated ASEO at the doses of 200, 400, and 600 µg/kg/day for 14 days. One day after the completion of oral drug administration, the mice in all groups were infected intraperitoneally with 1×104 tachyzoites. They were checked daily and the rate of survival was recorded. The peritoneal fluids of the mice were collected and the mean number of tachyzoites was calculated via a light microscope. The level of liver lipid peroxidation (LPO) and nitric oxide (NO), toxicity effects on the liver and kidney, and the mRNA expression levels of some pro-inflammatory cytokines such as IL-1β and IFN-γ were determined by quantitative real-time PCR. Results Different concentrations of ASEO showed a significant (p < 0.001) anti-Toxoplasma activity against T. gondii tachyzoites, and the highest efficacy was observed at the concentration of 150 µg/mL. Fourteen days of pre-treatment of infected mice with ASEO at the doses of 200, 400, and 600 µg/kg/day significantly (p < 0.001) decreased the mean number of tachyzoites and mortality rate by the 6th, 7th, and 8th days after infection, respectively. ASEO at the doses of 200, 400, and 600 µg/kg/day significantly (p < 0.05) improved the increase in the LPO and NO. Pre-treatment of mice with different doses of ASEO provoked a considerable (P < 0.001) downregulation of IL-1β and IFN-γ mRNA gene expression levels, but it had no significant toxicity on the serum levels of some liver and kidney enzymes. Conclusion The present study demonstrated the considerable prophylactic effects of ASEO that increased the survival rate of mice and reduced the parasite load in them. Our findings also showed that ASEO promotes the innate immune system, pro-inflammatory cytokines, inhibition of hepatic injury, etc. in the mice with acute toxoplasmosis. However, additional investigations are mandatory to clarify the accurate prophylactic and therapeutic anti-Toxoplasma mechanisms of ASEO as well as all its toxicity aspects, especially in clinical settings.
Collapse
Affiliation(s)
- Sultan F Alnomasy
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences in Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Dumoulin PC, Burleigh BA. Metabolic flexibility in Trypanosoma cruzi amastigotes: implications for persistence and drug sensitivity. Curr Opin Microbiol 2021; 63:244-249. [PMID: 34455305 DOI: 10.1016/j.mib.2021.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/18/2022]
Abstract
Throughout their life cycle, parasitic organisms experience a variety of environmental conditions. To ensure persistence and transmission, some protozoan parasites are capable of adjusting their replication or converting to distinct life cycle stages. Trypanosoma cruzi is a 'generalist' parasite that is competent to infect various insect (triatomine) vectors and mammalian hosts. Within the mammalian host, T. cruzi replicates intracellularly as amastigotes and can persist for the lifetime of the host. The persistence of the parasites in tissues can lead to the development of Chagas disease. Recent work has identified growth plasticity and metabolic flexibility as aspects of amastigote biology that are important determinants of persistence in varied growth conditions and under drug pressure. A better understanding of the link between amastigote and host/tissue metabolism will aid in the development of new drugs or therapies that can limit disease pathology.
Collapse
Affiliation(s)
- Peter C Dumoulin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States.
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States
| |
Collapse
|
21
|
Onguka O, Babin BM, Lakemeyer M, Foe IT, Amara N, Terrell SM, Lum KM, Cieplak P, Niphakis MJ, Long JZ, Bogyo M. Toxoplasma gondii serine hydrolases regulate parasite lipid mobilization during growth and replication within the host. Cell Chem Biol 2021; 28:1501-1513.e5. [PMID: 34043961 DOI: 10.1016/j.chembiol.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022]
Abstract
The intracellular protozoan parasite Toxoplasma gondii must scavenge cholesterol and other lipids from the host to facilitate intracellular growth and replication. Enzymes responsible for neutral lipid synthesis have been identified but there is no evidence for enzymes that catalyze lipolysis of cholesterol esters and esterified lipids. Here, we characterize several T. gondii serine hydrolases with esterase and thioesterase activities that were previously thought to be depalmitoylating enzymes. We find they do not cleave palmitoyl thiol esters but rather hydrolyze short-chain lipid esters. Deletion of one of the hydrolases results in alterations in levels of multiple lipids species. We also identify small-molecule inhibitors of these hydrolases and show that treatment of parasites results in phenotypic defects reminiscent of parasites exposed to excess cholesterol or oleic acid. Together, these data characterize enzymes necessary for processing lipids critical for infection and highlight the potential for targeting parasite hydrolases for therapeutic applications.
Collapse
Affiliation(s)
- Ouma Onguka
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brett M Babin
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Markus Lakemeyer
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian T Foe
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Neri Amara
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie M Terrell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Kenneth M Lum
- Lundbeck La Jolla Research Center, San Diego, CA 92121, USA
| | - Piotr Cieplak
- Infectious & Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Dass S, Shunmugam S, Berry L, Arnold CS, Katris NJ, Duley S, Pierrel F, Cesbron-Delauw MF, Yamaryo-Botté Y, Botté CY. Toxoplasma LIPIN is essential in channeling host lipid fluxes through membrane biogenesis and lipid storage. Nat Commun 2021; 12:2813. [PMID: 34001876 PMCID: PMC8129101 DOI: 10.1038/s41467-021-22956-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/24/2021] [Indexed: 01/20/2023] Open
Abstract
Apicomplexa are obligate intracellular parasites responsible for major human diseases. Their intracellular survival relies on intense lipid synthesis, which fuels membrane biogenesis. Parasite lipids are generated as an essential combination of fatty acids scavenged from the host and de novo synthesized within the parasite apicoplast. The molecular and metabolic mechanisms allowing regulation and channeling of these fatty acid fluxes for intracellular parasite survival are currently unknown. Here, we identify an essential phosphatidic acid phosphatase in Toxoplasma gondii, TgLIPIN, as the central metabolic nexus responsible for controlled lipid synthesis sustaining parasite development. Lipidomics reveal that TgLIPIN controls the synthesis of diacylglycerol and levels of phosphatidic acid that regulates the fine balance of lipids between storage and membrane biogenesis. Using fluxomic approaches, we uncover the first parasite host-scavenged lipidome and show that TgLIPIN prevents parasite death by 'lipotoxicity' through effective channeling of host-scavenged fatty acids to storage triacylglycerols and membrane phospholipids.
Collapse
Affiliation(s)
- Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Laurence Berry
- Laboratory of Pathogen Host Interactions, UMR 5235, Université de Montpellier, Montpellier, France
| | - Christophe-Sebastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Nicholas J Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Samuel Duley
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Fabien Pierrel
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Marie-France Cesbron-Delauw
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France.
| | - Cyrille Y Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France.
| |
Collapse
|
23
|
Augusto L, Wek RC, Sullivan WJ. Host sensing and signal transduction during Toxoplasma stage conversion. Mol Microbiol 2021; 115:839-848. [PMID: 33118234 PMCID: PMC9364677 DOI: 10.1111/mmi.14634] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022]
Abstract
The intracellular parasite Toxoplasma gondii infects nucleated cells in virtually all warm-blooded vertebrates, including one-third of the human population. While immunocompetent hosts do not typically show symptoms of acute infection, parasites are retained in latent tissue cysts that can be reactivated upon immune suppression, potentially damaging key organ systems. Toxoplasma has a multistage life cycle that is intimately linked to environmental stresses and host signals. As this protozoan pathogen is transmitted between multiple hosts and tissues, it evaluates these external signals to appropriately differentiate into distinct life cycle stages, such as the transition from its replicative stage (tachyzoite) to the latent stage (bradyzoite) that persists as tissue cysts. Additionally, in the gut of its definitive host, felines, Toxoplasma converts into gametocytes that produce infectious oocysts (sporozoites) that are expelled into the environment. In this review, we highlight recent advances that have illuminated the interfaces between Toxoplasma and host and how these interactions control parasite stage conversion. Mechanisms underlying these stage transitions are important targets for therapeutic intervention aimed at thwarting parasite transmission and pathogenesis.
Collapse
Affiliation(s)
- Leonardo Augusto
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Ronald C. Wek
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - William J. Sullivan
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| |
Collapse
|
24
|
Nie C, Li Y, Guan Y, Zhang K, Liu J, Fan M, Qian H, Wang L. Highland barley tea represses palmitic acid-induced apoptosis and mitochondrial dysfunction via regulating AMPK/SIRT3/FoxO3a in myocytes. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Advances and Discoveries in Myxozoan Genomics. Trends Parasitol 2021; 37:552-568. [PMID: 33619004 DOI: 10.1016/j.pt.2021.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
Myxozoans are highly diverse and globally distributed cnidarian endoparasites in freshwater and marine habitats. They have adopted a heteroxenous life cycle, including invertebrate and fish hosts, and have been associated with diseases in aquaculture and wild fish stocks. Despite their importance, genomic resources of myxozoans have proven difficult to obtain due to their miniaturized and derived genome character and close associations with fish tissues. The first 'omic' datasets have now become the main resource for a better understanding of host-parasite interactions, virulence, and diversity, but also the evolutionary history of myxozoans. In this review, we discuss recent genomic advances in the field and outline outstanding questions to be answered with continuous and improved efforts of generating myxozoan genomic data.
Collapse
|
26
|
Kannan G, Thaprawat P, Schultz TL, Carruthers VB. Acquisition of Host Cytosolic Protein by Toxoplasma gondii Bradyzoites. mSphere 2021; 6:e00934-20. [PMID: 33504659 PMCID: PMC7885318 DOI: 10.1128/msphere.00934-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Toxoplasma gondii is a protozoan parasite that persists in the central nervous system as intracellular chronic-stage bradyzoites that are encapsulated by a thick cyst wall. While the cyst wall separates bradyzoites from the host cytosol, it has been posited that small solutes can traverse the cyst wall to sustain bradyzoites. Recently, it was found that host cytosolic macromolecules can cross the parasitophorous vacuole and are ingested and digested by actively replicating acute-stage tachyzoites. However, the extent to which bradyzoites have an active ingestion pathway remained unknown. To interrogate this, we modified previously published protocols that look at tachyzoite acquisition and digestion of host proteins by measuring parasite accumulation of a host-expressed reporter protein after impairment of an endolysosomal protease (cathepsin protease L [CPL]). Using two cystogenic parasite strains (ME49 and Pru), we demonstrate that T. gondii bradyzoites can ingest host-derived cytosolic mCherry. Bradyzoites acquire host mCherry within 4 h of invasion and after cyst wall formation. This study provides direct evidence that host macromolecules can be internalized by T. gondii bradyzoites across the cyst wall in infected cells.IMPORTANCE Chronic infection of humans with Toxoplasma gondii is common, but little is known about how this intracellular parasite obtains the resources that it needs to persist indefinitely inside neurons and muscle cells. Here, we provide evidence that the chronic-stage form of T. gondii can internalize proteins from the cytosol of infected cells despite residing within an intracellular cyst that is surrounded by a cyst wall. We also show that accumulation of host-derived protein within the chronic-stage parasites is enhanced by disruption of a parasite protease, suggesting that such protein is normally degraded to generate peptides and amino acids. Taken together, our findings imply that chronic-stage T. gondii can ingest and digest host proteins, potentially to support its persistence.
Collapse
Affiliation(s)
- Geetha Kannan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pariyamon Thaprawat
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Comparative transcriptomics and host-specific parasite gene expression profiles inform on drivers of proliferative kidney disease. Sci Rep 2021; 11:2149. [PMID: 33495500 PMCID: PMC7835236 DOI: 10.1038/s41598-020-77881-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/12/2020] [Indexed: 01/24/2023] Open
Abstract
The myxozoan parasite, Tetracapsuloidesbryosalmonae has a two-host life cycle alternating between freshwater bryozoans and salmonid fish. Infected fish can develop Proliferative Kidney Disease, characterised by a gross lymphoid-driven kidney pathology in wild and farmed salmonids. To facilitate an in-depth understanding of T.bryosalmonae-host interactions, we have used a two-host parasite transcriptome sequencing approach in generating two parasite transcriptome assemblies; the first derived from parasite spore sacs isolated from infected bryozoans and the second from infected fish kidney tissues. This approach was adopted to minimize host contamination in the absence of a complete T.bryosalmonae genome. Parasite contigs common to both infected hosts (the intersect transcriptome; 7362 contigs) were typically AT-rich (60–75% AT). 5432 contigs within the intersect were annotated. 1930 unannotated contigs encoded for unknown transcripts. We have focused on transcripts encoding proteins involved in; nutrient acquisition, host–parasite interactions, development, cell-to-cell communication and proteins of unknown function, establishing their potential importance in each host by RT-qPCR. Host-specific expression profiles were evident, particularly in transcripts encoding proteases and proteins involved in lipid metabolism, cell adhesion, and development. We confirm for the first time the presence of homeobox proteins and a frizzled homologue in myxozoan parasites. The novel insights into myxozoan biology that this study reveals will help to focus research in developing future disease control strategies.
Collapse
|
28
|
Tavares VDS, de Castro MV, Souza RDSO, Gonçalves IKA, Lima JB, Borges VDM, Araújo-Santos T. Lipid droplets of protozoan parasites: survival and pathogenicity. Mem Inst Oswaldo Cruz 2021; 116:e210270. [PMID: 35195194 PMCID: PMC8851939 DOI: 10.1590/0074-02760210270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Lipid droplets (LDs; lipid bodies) are intracellular sites of lipid storage and metabolism present in all cell types. Eukaryotic LDs are involved in eicosanoid production during several inflammatory conditions, including infection by protozoan parasites. In parasites, LDs play a role in the acquisition of cholesterol and other neutral lipids from the host. The number of LDs increases during parasite differentiation, and the biogenesis of these organelles use specific signaling pathways involving protein kinases. In addition, LDs are important in cellular protection against lipotoxicity. Recently, these organelles have been implicated in eicosanoid and specialised lipid metabolism. In this article, we revise the main functions of protozoan parasite LDs and discuss future directions in the comprehension of these organelles in the context of pathogen virulence.
Collapse
Affiliation(s)
| | | | | | | | - Jonilson Berlink Lima
- Universidade Federal do Oeste da Bahia, Brasil; Fundação Oswaldo Cruz-Fiocruz, Brasil
| | | | - Théo Araújo-Santos
- Universidade Federal do Oeste da Bahia, Brasil; Fundação Oswaldo Cruz-Fiocruz, Brasil
| |
Collapse
|
29
|
Metabolite salvage and restriction during infection - a tug of war between Toxoplasma gondii and its host. Curr Opin Biotechnol 2020; 68:104-114. [PMID: 33202353 DOI: 10.1016/j.copbio.2020.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/28/2020] [Indexed: 02/03/2023]
Abstract
The apicomplexans, including the coccidian pathogen Toxoplasma gondii, are obligate intracellular parasites whose growth and development are intricately linked to the metabolism of their host. T. gondii depends on its host for the salvage of energy sources, building blocks, vitamins and cofactors to survive and replicate. Additionally, host metabolites directly impact on the parasite life cycle development by triggering or halting differentiation. Although T. gondii infects a wide range of host cells, it has evolved to modulate and maximally exploit its host's metabolism. In return the host has developed strategies to restrict parasite access to metabolites. Here we discuss recent findings which have shed light on the battle over metabolites between T. gondii and its host.
Collapse
|
30
|
Wang Y, Sangaré LO, Paredes-Santos TC, Hassan MA, Krishnamurthy S, Furuta AM, Markus BM, Lourido S, Saeij JPJ. Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages. Nat Commun 2020; 11:5258. [PMID: 33067458 PMCID: PMC7567896 DOI: 10.1038/s41467-020-18991-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages play an essential role in the early immune response against Toxoplasma and are the cell type preferentially infected by the parasite in vivo. Interferon gamma (IFNγ) elicits a variety of anti-Toxoplasma activities in macrophages. Using a genome-wide CRISPR screen we identify 353 Toxoplasma genes that determine parasite fitness in naїve or IFNγ-activated murine macrophages, seven of which are further confirmed. We show that one of these genes encodes dense granule protein GRA45, which has a chaperone-like domain, is critical for correct localization of GRAs into the PVM and secretion of GRA effectors into the host cytoplasm. Parasites lacking GRA45 are more susceptible to IFNγ-mediated growth inhibition and have reduced virulence in mice. Together, we identify and characterize an important chaperone-like GRA in Toxoplasma and provide a resource for the community to further explore the function of Toxoplasma genes that determine fitness in IFNγ-activated macrophages.
Collapse
Affiliation(s)
- Yifan Wang
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Lamba Omar Sangaré
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Tatiana C. Paredes-Santos
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Musa A. Hassan
- grid.4305.20000 0004 1936 7988College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988The Roslin Institute, The University of Edinburgh, Edinburgh, UK ,grid.4305.20000 0004 1936 7988Center for Tropical Livestock Health and Genetics, The University of Edinburgh, Edinburgh, UK
| | - Shruthi Krishnamurthy
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Anna M. Furuta
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Benedikt M. Markus
- grid.270301.70000 0001 2292 6283Whitehead Institute for Biomedical Research, Cambridge, MA USA ,grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sebastian Lourido
- grid.270301.70000 0001 2292 6283Whitehead Institute for Biomedical Research, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jeroen P. J. Saeij
- grid.27860.3b0000 0004 1936 9684Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| |
Collapse
|
31
|
Kloehn J, Harding CR, Soldati-Favre D. Supply and demand-heme synthesis, salvage and utilization by Apicomplexa. FEBS J 2020; 288:382-404. [PMID: 32530125 DOI: 10.1111/febs.15445] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
The Apicomplexa phylum groups important human and animal pathogens that cause severe diseases, encompassing malaria, toxoplasmosis, and cryptosporidiosis. In common with most organisms, apicomplexans rely on heme as cofactor for several enzymes, including cytochromes of the electron transport chain. This heme derives from de novo synthesis and/or the development of uptake mechanisms to scavenge heme from their host. Recent studies have revealed that heme synthesis is essential for Toxoplasma gondii tachyzoites, as well as for the mosquito and liver stages of Plasmodium spp. In contrast, the erythrocytic stages of the malaria parasites rely on scavenging heme from the host red blood cell. The unusual heme synthesis pathway in Apicomplexa spans three cellular compartments and comprises enzymes of distinct ancestral origin, providing promising drug targets. Remarkably given the requirement for heme, T. gondii can tolerate the loss of several heme synthesis enzymes at a high fitness cost, while the ferrochelatase is essential for survival. These findings indicate that T. gondii is capable of salvaging heme precursors from its host. Furthermore, heme is implicated in the activation of the key antimalarial drug artemisinin. Recent findings established that a reduction in heme availability corresponds to decreased sensitivity to artemisinin in T. gondii and Plasmodium falciparum, providing insights into the possible development of combination therapies to tackle apicomplexan parasites. This review describes the microeconomics of heme in Apicomplexa, from supply, either from de novo synthesis or scavenging, to demand by metabolic pathways, including the electron transport chain.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Switzerland
| | - Clare R Harding
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, UK
| | | |
Collapse
|
32
|
Leishmania Encodes a Bacterium-like 2,4-Dienoyl-Coenzyme A Reductase That Is Required for Fatty Acid β-Oxidation and Intracellular Parasite Survival. mBio 2020; 11:mBio.01057-20. [PMID: 32487758 PMCID: PMC7267886 DOI: 10.1128/mbio.01057-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Leishmania spp. are protozoan parasites that cause a spectrum of important diseases in humans. These parasites develop as extracellular promastigotes in the digestive tract of their insect vectors and as obligate intracellular amastigotes that infect macrophages and other phagocytic cells in their vertebrate hosts. Promastigote-to-amastigote differentiation is associated with marked changes in metabolism, including the upregulation of enzymes involved in fatty acid β-oxidation, which may reflect adaptation to the intracellular niche. Here, we have investigated the function of one of these enzymes, a putative 2,4-dienoyl-coenzyme A (CoA) reductase (DECR), which is specifically required for the β-oxidation of polyunsaturated fatty acids. The Leishmania DECR shows close homology to bacterial DECR proteins, suggesting that it was acquired by lateral gene transfer. It is present in other trypanosomatids that have obligate intracellular stages (i.e., Trypanosoma cruzi and Angomonas) but is absent from dixenous parasites with an exclusively extracellular lifestyle (i.e., Trypanosoma brucei). A DECR-green fluorescent protein (GFP) fusion protein was localized to the mitochondrion in both promastigote and amastigote stages, and the levels of expression increased in the latter stages. A Leishmania major Δdecr null mutant was unable to catabolize unsaturated fatty acids and accumulated the intermediate 2,4-decadienoyl-CoA, confirming DECR's role in β-oxidation. Strikingly, the L. major Δdecr mutant was unable to survive in macrophages and was avirulent in BALB/c mice. These findings suggest that β-oxidation of polyunsaturated fatty acids is essential for intracellular parasite survival and that the bacterial origin of key enzymes in this pathway could be exploited in developing new therapies.IMPORTANCE The Trypanosomatidae are protozoan parasites that infect insects, plants, and animals and have evolved complex monoxenous (single host) and dixenous (two hosts) lifestyles. A number of species of Trypanosomatidae, including Leishmania spp., have evolved the capacity to survive within intracellular niches in vertebrate hosts. The adaptations, metabolic and other, that are associated with development of intracellular lifestyles remain poorly defined. We show that genomes of Leishmania and Trypanosomatidae that can survive intracellularly encode a 2,4-dienoyl-CoA reductase that is involved in catabolism of a subclass of fatty acids. The trypanosomatid enzyme shows closest similarity to the corresponding bacterial enzymes and is located in the mitochondrion and essential for intracellular growth of Leishmania The findings suggest that acquisition of this gene by lateral gene transfer from bacteria by ancestral monoxenous Trypanosomatidae likely contributed to the development of a dixenous lifestyle of these parasites.
Collapse
|
33
|
The Bradyzoite: A Key Developmental Stage for the Persistence and Pathogenesis of Toxoplasmosis. Pathogens 2020; 9:pathogens9030234. [PMID: 32245165 PMCID: PMC7157559 DOI: 10.3390/pathogens9030234] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous parasitic protist found in a wide variety of hosts, including a large proportion of the human population. Beyond an acute phase which is generally self-limited in immunocompetent individuals, the ability of the parasite to persist as a dormant stage, called bradyzoite, is an important aspect of toxoplasmosis. Not only is this stage not eliminated by current treatments, but it can also reactivate in immunocompromised hosts, leading to a potentially fatal outcome. Yet, despite its critical role in the pathology, the bradyzoite stage is relatively understudied. One main explanation is that it is a considerably challenging model, which essentially has to be derived from in vivo sources. However, recent progress on genetic manipulation and in vitro differentiation models now offers interesting perspectives for tackling key biological questions related to this particularly important developmental stage.
Collapse
|
34
|
Guevara RB, Fox BA, Bzik DJ. Toxoplasma gondii Parasitophorous Vacuole Membrane-Associated Dense Granule Proteins Regulate Maturation of the Cyst Wall. mSphere 2020; 5:e00851-19. [PMID: 31941814 PMCID: PMC6968655 DOI: 10.1128/msphere.00851-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
After differentiation is triggered, the tachyzoite-stage Toxoplasma gondii parasitophorous vacuole membrane (PVM) has been hypothesized to transition into the cyst membrane that surrounds the cyst wall and encloses bradyzoites. Here, we tracked the localization of two PVM dense granule (GRA) proteins (GRA5 and GRA7) after in vitro differentiation of the tachyzoite stage parasitophorous vacuole into the mature cyst. GRA5 and GRA7 were visible at the cyst periphery at 6 h and at all later times after differentiation, suggesting that the PVM remained intact as it transitioned into the cyst membrane. By day 3 postdifferentiation, GRA5 and GRA7 were visible in a continuous pattern at the cyst periphery. In mature 7- and 10-day-old cysts permeabilized with a saponin pulse, GRA5 and GRA7 were localized to the cyst membrane and the cyst wall regions. Cysts at different stages of cyst development exhibited differential susceptibility to saponin permeabilization, and, correspondingly, saponin selectively removed GRA5 from the cyst membrane and cyst wall region in 10-day-old cysts. GRA5 and GRA7 were localized at the cyst membrane and cyst wall region at all times after differentiation of the parasitophorous vacuole, which supports a previous model proposing that the PVM develops into the cyst membrane. In addition, evaluation of Δgra3, Δgra5, Δgra7, Δgra8, and Δgra14 mutants revealed that PVM-localized GRAs were crucial to support the normal rate of accumulation of cyst wall proteins at the cyst periphery.IMPORTANCEToxoplasma gondii establishes chronic infection in humans by forming thick-walled cysts that persist in the brain. Once host immunity wanes, cysts reactivate to cause severe, and often lethal, toxoplasmic encephalitis. There is no available therapy to eliminate cysts or to prevent their reactivation. Furthermore, how the cyst membrane and cyst wall structures develop is poorly understood. Here, we visualized and tracked the localization of Toxoplasma parasitophorous vacuole membrane (PVM) dense granules (GRA) proteins during cyst development in vitro. PVM-localized GRA5 and GRA7 were found at the cyst membrane and cyst wall region throughout cyst development, suggesting that the PVM remains intact and develops into the cyst membrane. In addition, our results show that genetic deletion of PVM GRAs reduced the rate of accumulation of cyst wall cargo at the cyst periphery and suggest that PVM-localized GRAs mediate the development and maturation of the cyst wall and cyst membrane.
Collapse
Affiliation(s)
- Rebekah B Guevara
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - David J Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
35
|
Abstract
Toxoplasma gondii is an obligate intracellular parasite belonging to the phylum Apicomplexa that infects all warm-blooded animals, including humans. T. gondii can replicate in every nucleated host cell by orchestrating metabolic interactions to derive crucial nutrients. In this review, we summarize the current status of known metabolic interactions of T. gondii with its host cell and discuss open questions and promising experimental approaches that will allow further dissection of the host-parasite interface and discovery of ways to efficiently target both tachyzoite and bradyzoite forms of T. gondii, which are associated with acute and chronic infection, respectively.
Collapse
Affiliation(s)
- Martin Blume
- NG2 - Metabolism of Microbial Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Frank Seeber
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|