1
|
Prévost J, Sloan A, Deschambault Y, Tailor N, Tierney K, Azaransky K, Kammanadiminti S, Barker D, Kodihalli S, Safronetz D. Treatment efficacy of cidofovir and brincidofovir against clade II Monkeypox virus isolates. Antiviral Res 2024; 231:105995. [PMID: 39243894 DOI: 10.1016/j.antiviral.2024.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
While historically confined to endemic areas, Monkeypox virus (MPXV) infection has increasingly garnered international attention due to sporadic outbreaks in non-endemic countries in the last two decades and its potential for human-to-human transmission. In 2022, a multi-country outbreak of mpox disease was declared by the World Health Organization (WHO) and nearly 100 000 mpox cases have been reported since the beginning of this pandemic. The clade II variant of the virus appears to be responsible for the vast majority of these infections. While there are no antiviral drugs currently approved to treat mpox specifically, the use of tecovirimat (TPOXX®) and brincidofovir (Tembexa®) is recommended by the Centers for Disease Control and Prevention (CDC) for compassionate use in severe mpox cases, since both are FDA-approved for the treatment of the closely related smallpox disease. Given the emergence of multiple tecovirimat-resistant infections, we aimed to evaluate the treatment efficacy of brincidofovir and its active compound, cidofovir, against MPXV clade II strains. Following intranasal infection, we show that cidofovir and brincidofovir can strongly reduce the viral replication of MPXV clade IIa and IIb viruses in the respiratory tract of susceptible mice when administered systemically and orally, respectively. The high antiviral activity of both compounds against historical and currently circulating MPXV strains supports their therapeutic potential for clinical application.
Collapse
Affiliation(s)
- Jérémie Prévost
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Angela Sloan
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yvon Deschambault
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Nikesh Tailor
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kevin Tierney
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kimberly Azaransky
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | - Douglas Barker
- Emergent BioSolutions Canada Inc., Winnipeg, Manitoba, Canada
| | | | - David Safronetz
- Special Pathogens Program, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
2
|
Shen Y, Li Y, Yan R. Structural basis for the inhibition mechanism of the DNA polymerase holoenzyme from mpox virus. Structure 2024; 32:654-661.e3. [PMID: 38579705 DOI: 10.1016/j.str.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
There are three key components at the core of the mpox virus (MPXV) DNA polymerase holoenzyme: DNA polymerase F8, processivity factors A22, and the Uracil-DNA glycosylase E4. The holoenzyme is recognized as a vital antiviral target because MPXV replicates in the cytoplasm of host cells. Nucleotide analogs such as cidofovir and cytarabine (Ara-C) have shown potential in curbing MPXV replication and they also display promise against other poxviruses. However, the mechanism behind their inhibitory effects remains unclear. Here, we present the cryo-EM structure of the DNA polymerase holoenzyme F8/A22/E4 bound with its competitive inhibitor Ara-C-derived cytarabine triphosphate (Ara-CTP) at an overall resolution of 3.0 Å and reveal its inhibition mechanism. Ara-CTP functions as a direct chain terminator in proximity to the deoxycytidine triphosphate (dCTP)-binding site. The extra hydrogen bond formed with Asn665 makes it more potent in binding than dCTP. Asn665 is conserved among eukaryotic B-family polymerases.
Collapse
Affiliation(s)
- Yaping Shen
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China.
| |
Collapse
|
3
|
Xu Y, Wu Y, Wu X, Zhang Y, Yang Y, Li D, Yang B, Gao K, Zhang Z, Dong C. Structural basis of human mpox viral DNA replication inhibition by brincidofovir and cidofovir. Int J Biol Macromol 2024; 270:132231. [PMID: 38735603 DOI: 10.1016/j.ijbiomac.2024.132231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Mpox virus has wildly spread over 108 non-endemic regions in the world since May 2022. DNA replication of mpox is performed by DNA polymerase machinery F8-A22-E4, which is known as a great drug target. Brincidofovir and cidofovir are reported to have broad-spectrum antiviral activity against poxviruses, including mpox virus in animal models. However, the molecular mechanism is not understood. Here we report cryogenic electron microscopy structures of mpox viral F8-A22-E4 in complex with a DNA duplex, or dCTP and the DNA duplex, or cidofovir diphosphate and the DNA duplex at resolution of 3.22, 2.98 and 2.79 Å, respectively. Our structural work and DNA replication inhibition assays reveal that cidofovir diphosphate is located at the dCTP binding position with a different conformation to compete with dCTP to incorporate into the DNA and inhibit DNA synthesis. Conformation of both F8-A22-E4 and DNA is changed from the pre-dNTP binding state to DNA synthesizing state after dCTP or cidofovir diphosphate is bound, suggesting a coupling mechanism. This work provides the structural basis of DNA synthesis inhibition by brincidofovir and cidofovir, providing a rational strategy for new therapeutical development for mpox virus and other pox viruses.
Collapse
Affiliation(s)
- Yunxia Xu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaqi Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoying Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuanyuan Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaxue Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Danyang Li
- The Cryo-EM Center, Core Facility of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Biao Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Kaiting Gao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhengyu Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Changjiang Dong
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, State Key Laboratory of Virology, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Lu J, Xing H, Wang C, Tang M, Wu C, Ye F, Yin L, Yang Y, Tan W, Shen L. Mpox (formerly monkeypox): pathogenesis, prevention, and treatment. Signal Transduct Target Ther 2023; 8:458. [PMID: 38148355 PMCID: PMC10751291 DOI: 10.1038/s41392-023-01675-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 12/28/2023] Open
Abstract
In 2022, a global outbreak of Mpox (formerly monkeypox) occurred in various countries across Europe and America and rapidly spread to more than 100 countries and regions. The World Health Organization declared the outbreak to be a public health emergency of international concern due to the rapid spread of the Mpox virus. Consequently, nations intensified their efforts to explore treatment strategies aimed at combating the infection and its dissemination. Nevertheless, the available therapeutic options for Mpox virus infection remain limited. So far, only a few numbers of antiviral compounds have been approved by regulatory authorities. Given the high mutability of the Mpox virus, certain mutant strains have shown resistance to existing pharmaceutical interventions. This highlights the urgent need to develop novel antiviral drugs that can combat both drug resistance and the potential threat of bioterrorism. Currently, there is a lack of comprehensive literature on the pathophysiology and treatment of Mpox. To address this issue, we conducted a review covering the physiological and pathological processes of Mpox infection, summarizing the latest progress of anti-Mpox drugs. Our analysis encompasses approved drugs currently employed in clinical settings, as well as newly identified small-molecule compounds and antibody drugs displaying potential antiviral efficacy against Mpox. Furthermore, we have gained valuable insights from the process of Mpox drug development, including strategies for repurposing drugs, the discovery of drug targets driven by artificial intelligence, and preclinical drug development. The purpose of this review is to provide readers with a comprehensive overview of the current knowledge on Mpox.
Collapse
Affiliation(s)
- Junjie Lu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Hui Xing
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Chunhua Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Mengjun Tang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Changcheng Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Fan Ye
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China
| | - Lijuan Yin
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Liang Shen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei Province, Xiangyang, 441021, China.
| |
Collapse
|
5
|
Garrigues JM, Hemarajata P, Espinosa A, Hacker JK, Wynn NT, Smith TG, Gigante CM, Davidson W, Vega J, Edmondson H, Karan A, Marutani AN, Kim M, Terashita D, Balter SE, Hutson CL, Green NM. Community spread of a human monkeypox virus variant with a tecovirimat resistance-associated mutation. Antimicrob Agents Chemother 2023; 67:e0097223. [PMID: 37823631 PMCID: PMC10649028 DOI: 10.1128/aac.00972-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
ABSTRACT
Collapse
Affiliation(s)
| | - Peera Hemarajata
- Los Angeles County Department of Public Health, Downey, California, USA
| | - Alex Espinosa
- California Department of Public Health, Richmond, California, USA
| | - Jill K. Hacker
- California Department of Public Health, Richmond, California, USA
| | - Nhien T. Wynn
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Todd G. Smith
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Whitni Davidson
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonte Vega
- Ventura County Public Health, Oxnard, California, USA
| | | | - Abraar Karan
- Los Angeles County Department of Public Health, Downey, California, USA
- Stanford University, Stanford, California, USA
| | - Amy N. Marutani
- Los Angeles County Department of Public Health, Downey, California, USA
| | - Moon Kim
- Los Angeles County Department of Public Health, Downey, California, USA
| | - Dawn Terashita
- Los Angeles County Department of Public Health, Downey, California, USA
| | - Sharon E. Balter
- Los Angeles County Department of Public Health, Downey, California, USA
| | | | - Nicole M. Green
- Los Angeles County Department of Public Health, Downey, California, USA
| |
Collapse
|
6
|
Hishiki T, Morita T, Akazawa D, Ohashi H, Park ES, Kataoka M, Mifune J, Shionoya K, Tsuchimoto K, Ojima S, Azam AH, Nakajima S, Kawahara M, Yoshikawa T, Shimojima M, Kiga K, Maeda K, Suzuki T, Ebihara H, Takahashi Y, Watashi K. Identification of IMP Dehydrogenase as a Potential Target for Anti-Mpox Virus Agents. Microbiol Spectr 2023; 11:e0056623. [PMID: 37409948 PMCID: PMC10434032 DOI: 10.1128/spectrum.00566-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
Mpox virus (formerly monkeypox virus [MPXV]) is a neglected zoonotic pathogen that caused a worldwide outbreak in May 2022. Given the lack of an established therapy, the development of an anti-MPXV strategy is of vital importance. To identify drug targets for the development of anti-MPXV agents, we screened a chemical library using an MPXV infection cell assay and found that gemcitabine, trifluridine, and mycophenolic acid (MPA) inhibited MPXV propagation. These compounds showed broad-spectrum anti-orthopoxvirus activities and presented lower 90% inhibitory concentrations (0.026 to 0.89 μM) than brincidofovir, an approved anti-smallpox agent. These three compounds have been suggested to target the postentry step to reduce the intracellular production of virions. Knockdown of IMP dehydrogenase (IMPDH), the rate-limiting enzyme of guanosine biosynthesis and a target of MPA, dramatically reduced MPXV DNA production. Moreover, supplementation with guanosine recovered the anti-MPXV effect of MPA, suggesting that IMPDH and its guanosine biosynthetic pathway regulate MPXV replication. By targeting IMPDH, we identified a series of compounds with stronger anti-MPXV activity than MPA. This evidence shows that IMPDH is a potential target for the development of anti-MPXV agents. IMPORTANCE Mpox is a zoonotic disease caused by infection with the mpox virus, and a worldwide outbreak occurred in May 2022. The smallpox vaccine has recently been approved for clinical use against mpox in the United States. Although brincidofovir and tecovirimat are drugs approved for the treatment of smallpox by the U.S. Food and Drug Administration, their efficacy against mpox has not been established. Moreover, these drugs may present negative side effects. Therefore, new anti-mpox virus agents are needed. This study revealed that gemcitabine, trifluridine, and mycophenolic acid inhibited mpox virus propagation and exhibited broad-spectrum anti-orthopoxvirus activities. We also suggested IMP dehydrogenase as a potential target for the development of anti-mpox virus agents. By targeting this molecule, we identified a series of compounds with stronger anti-mpox virus activity than mycophenolic acid.
Collapse
Affiliation(s)
- Takayuki Hishiki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Morita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Daisuke Akazawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Ohashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Eun-Sil Park
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Junki Mifune
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Kana Tsuchimoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Nakajima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Madoka Kawahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- MIRAI, Japan Science and Technology Agency (JST), Saitama, Japan
| |
Collapse
|
7
|
Byareddy SN, Sharma K, Sachdev S, Reddy AS, Acharya A, Klaustermeier KM, Lorson CL, Singh K. Potential therapeutic targets for Mpox: the evidence to date. Expert Opin Ther Targets 2023; 27:419-431. [PMID: 37368464 PMCID: PMC10722886 DOI: 10.1080/14728222.2023.2230361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The global Mpox (MPX) disease outbreak caused by the Mpox virus (MPXV) in 2022 alarmed the World Health Organization (WHO) and health regulation agencies of individual countries leading to the declaration of MPX as a Public Health Emergency. Owing to the genetic similarities between smallpox-causing poxvirus and MPXV, vaccine JYNNEOS, and anti-smallpox drugs Brincidofovir and Tecovirimat were granted emergency use authorization by the United States Food and Drug Administration. The WHO also included cidofovir, NIOCH-14, and other vaccines as treatment options. AREAS COVERED This article covers the historical development of EUA-granted antivirals, resistance to these antivirals, and the projected impact of signature mutations on the potency of antivirals against currently circulating MPXV. Since a high prevalence of MPXV infections in individuals coinfected with HIV and MPXV, the treatment results among these individuals have been included. EXPERT OPINION All EUA-granted drugs have been approved for smallpox treatment. These antivirals show good potency against Mpox. However, conserved resistance mutation positions in MPXV and related poxviruses, and the signature mutations in the 2022 MPXV can potentially compromise the efficacy of the EUA-granted treatments. Therefore, MPXV-specific medications are required not only for the current but also for possible future outbreaks.
Collapse
Affiliation(s)
- Siddappa N Byareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Shrikesh Sachdev
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Athreya S. Reddy
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Kamal Singh
- Department of Pharmaceutical Chemistry, DPSRU, New Delhi-110017
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
8
|
James J, A P, P K, Rani J, V S. An Update on the Pharmacological Aspects of Vaccines and Antivirals for the Management of Monkeypox. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x231156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Monkeypox is a self-limiting zoonotic disease caused by the monkeypox virus belonging to the genus of orthopox viruses. Initially considered an ‘African disease’, this infection has crossed the boundaries to affect other continents and it has raised tremendous concerns among the general public as well as the medical fraternity all over the world, particularly because of the lack of specific vaccinations and drugs for the management of the illness. Epidemiological evaluation of the current infection has reported that it is mainly transmitted through sexual contact in bisexual men, mostly whites, and in those with pre-existing human immunodeficiency virus infection. The most common presentations were skin rash, anogenital lesions, or mucosal lesions along with systemic symptoms. It has been established that the vaccines and drugs approved for the management of smallpox could be used for the management of the current monkeypox outbreak. Vaccinia Immune Globulin (VIG) and vaccines like JYNNEOS and ACAM2000 and antiviral drugs like tecovirimat, cidofovir (CDV), and brincidofovir are being considered for those patients with serious diseases. It is imperative for physicians to understand the pharmacological aspects of these drugs for delivering better care to patients with monkeypox, which is eventually essential for the containment of this infection. This review covers updates on vaccines as well as drugs for the prevention and management of monkeypox.
Collapse
|
9
|
Siegrist EA, Sassine J. Antivirals With Activity Against Mpox: A Clinically Oriented Review. Clin Infect Dis 2022; 76:155-164. [PMID: 35904001 PMCID: PMC9825831 DOI: 10.1093/cid/ciac622] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 01/12/2023] Open
Abstract
Mpox virus is an emergent human pathogen. While it is less lethal than smallpox, it can still cause significant morbidity and mortality. In this review, we explore 3 antiviral agents with activity against mpox and other orthopoxviruses: cidofovir, brincidofovir, and tecovirimat. Cidofovir, and its prodrug brincidofovir, are inhibitors of DNA replication with a broad spectrum of activity against multiple families of double-stranded DNA viruses. Tecovirimat has more specific activity against orthopoxviruses and inhibits the formation of the extracellular enveloped virus necessary for cell-to-cell transmission. For each agent, we review basic pharmacology, data from animal models, and reported experience in human patients.
Collapse
Affiliation(s)
| | - Joseph Sassine
- Correspondence: J. Sassine, Infectious Diseases Section, Department of Medicine, The University of Oklahoma Health Sciences Center, 800 Stanton L. Young Blvd, Oklahoma City, OK 73104 ()
| |
Collapse
|
10
|
Andrei G, Fiten P, Krečmerová M, Opdenakker G, Topalis D, Snoeck R. Poxviruses Bearing DNA Polymerase Mutations Show Complex Patterns of Cross-Resistance. Biomedicines 2022; 10:biomedicines10030580. [PMID: 35327382 PMCID: PMC8945813 DOI: 10.3390/biomedicines10030580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 01/06/2023] Open
Abstract
Despite the eradication of smallpox four decades ago, poxviruses continue to be a threat to humans and animals. The arsenal of anti-poxvirus agents is very limited and understanding mechanisms of resistance to agents targeting viral DNA polymerases is fundamental for the development of antiviral therapies. We describe here the phenotypic and genotypic characterization of poxvirus DNA polymerase mutants isolated under selective pressure with different acyclic nucleoside phosphonates, including HPMPC (cidofovir), cHPMPC, HPMPA, cHPMPA, HPMPDAP, HPMPO-DAPy, and PMEO-DAPy, and the pyrophosphate analogue phosphonoacetic acid. Vaccinia virus (VACV) and cowpox virus drug-resistant viral clones emerging under drug pressure were characterized phenotypically (drug-susceptibility profile) and genotypically (DNA polymerase sequencing). Different amino acid changes in the polymerase domain and in the 3′-5′ exonuclease domain were linked to drug resistance. Changes in the 3′-5′ domain emerged earlier than in the polymerase domain when viruses acquired a combination of mutations. Our study highlights the importance of poxvirus DNA polymerase residues 314, 613, 684, 688, and 851, previously linked to drug resistance, and identified several novel mutations in the 3′-5′ exonuclease domain (M313I, F354L, D480Y) and in the DNA polymerase domain (A632T, T831I, E856K, L924F) associated with different drug-susceptibility profiles. Furthermore, a combination of mutations resulted in complex patterns of cross-resistance. Modeling of the VACV DNA polymerase bearing the newly described mutations was performed to understand the effects of these mutations on the structure of the viral enzyme. We demonstrated the emergence of drug-resistant DNA polymerase mutations in complex patterns to be considered in case such mutations should eventually arise in the clinic.
Collapse
Affiliation(s)
- Graciela Andrei
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1030, 3000 Leuven, Belgium; (D.T.); (R.S.)
- Correspondence: ; Tel.: +32-16-32-19-51
| | - Pierre Fiten
- Laboratory of Immunobiology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1044, 3000 Leuven, Belgium; (P.F.); (G.O.)
| | - Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Nám. 2, 166 10 Prague, Czech Republic;
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1044, 3000 Leuven, Belgium; (P.F.); (G.O.)
| | - Dimitrios Topalis
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1030, 3000 Leuven, Belgium; (D.T.); (R.S.)
| | - Robert Snoeck
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1030, 3000 Leuven, Belgium; (D.T.); (R.S.)
| |
Collapse
|
11
|
Pires MA, Rodrigues NFS, de Oliveira DB, de Assis FL, Costa GB, Kroon EG, Mota BEF. In vitro susceptibility to ST-246 and Cidofovir corroborates the phylogenetic separation of Brazilian Vaccinia virus into two clades. Antiviral Res 2018; 152:36-44. [PMID: 29427676 DOI: 10.1016/j.antiviral.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023]
Abstract
The Orthopoxvirus (OPV) genus of the Poxviridae family contains several human pathogens, including Vaccinia virus (VACV), which have been implicating in outbreaks of a zoonotic disease called Bovine Vaccinia in Brazil. So far, no approved treatment exists for OPV infections, but ST-246 and Cidofovir (CDV) are now in clinical development. Therefore, the objective of this work was to evaluate the susceptibility of five strains of Brazilian VACV (Br-VACV) to ST-246 and Cidofovir. The susceptibility of these strains to both drugs was evaluated by plaque reduction assay, extracellular virus's quantification in the presence of ST-246 and one-step growth curve in cells treated with CDV. Besides that, the ORFs F13L and E9L were sequenced for searching of polymorphisms associated with drug resistance. The effective concentration of 50% (EC50) from both drugs varies significantly for different strains (from 0.0054 to 0.051 μM for ST-246 and from 27.14 to 61.23 μM for CDV). ST-246 strongly inhibits the production of extracellular virus for all isolates in concentrations as low as 0.1 μM and it was observed a relevant decrease of progeny production for all Br-VACV after CDV treatment. Sequencing of the F13L and E9L ORFs showed that Br-VACV do not present the polymorphism(s) associated with resistance to ST-246 and CDV. Taken together, our results showed that ST-246 and CDV are effective against diverse, wild VACV strains and that the susceptibility of Br-VACV to these drugs mirrored the phylogenetic split of these isolates into two groups. Thus, both ST-246 and CDV are of great interest as compounds to treat individuals during Bovine Vaccinia outbreaks in Brazil.
Collapse
Affiliation(s)
- Mariana A Pires
- Laboratório de Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, Brazil
| | - Nathália F S Rodrigues
- Laboratório de Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, Brazil
| | - Danilo B de Oliveira
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, Brazil
| | - Felipe L de Assis
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, Brazil
| | - Galileu B Costa
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, Brazil
| | - Erna G Kroon
- Laboratório de Vírus, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, Brazil
| | - Bruno E F Mota
- Laboratório de Microbiologia Clínica, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, CEP 31270-901, Belo Horizonte, Brazil.
| |
Collapse
|
12
|
Tarbouriech N, Ducournau C, Hutin S, Mas PJ, Man P, Forest E, Hart DJ, Peyrefitte CN, Burmeister WP, Iseni F. The vaccinia virus DNA polymerase structure provides insights into the mode of processivity factor binding. Nat Commun 2017; 8:1455. [PMID: 29129932 PMCID: PMC5682278 DOI: 10.1038/s41467-017-01542-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/26/2017] [Indexed: 11/12/2022] Open
Abstract
Vaccinia virus (VACV), the prototype member of the Poxviridae, replicates in the cytoplasm of an infected cell. The catalytic subunit of the DNA polymerase E9 binds the heterodimeric processivity factor A20/D4 to form the functional polymerase holoenzyme. Here we present the crystal structure of full-length E9 at 2.7 Å resolution that permits identification of important poxvirus-specific structural insertions. One insertion in the palm domain interacts with C-terminal residues of A20 and thus serves as the processivity factor-binding site. This is in strong contrast to all other family B polymerases that bind their co-factors at the C terminus of the thumb domain. The VACV E9 structure also permits rationalization of polymerase inhibitor resistance mutations when compared with the closely related eukaryotic polymerase delta–DNA complex. The catalytic subunit E9 of the vaccinia virus DNA polymerase forms a functional polymerase holoenzyme by interacting with the heterodimeric processivity factor A20/D4. Here the authors present the structure of full-length E9 and show that an insertion within its palm domain binds A20, in a mode different from other family B polymerases.
Collapse
Affiliation(s)
- Nicolas Tarbouriech
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Corinne Ducournau
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Stephanie Hutin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Philippe J Mas
- Integrated Structural Biology Grenoble (ISBG) CNRS, CEA, Université Grenoble Alpes, EMBL, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Petr Man
- BioCeV-Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, 252 50, Vestec, Czech Republic.,Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Eric Forest
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Darren J Hart
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Christophe N Peyrefitte
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge Cedex, France.,Emerging Pathogens Laboratory, Fondation Mérieux, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Wim P Burmeister
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042, Grenoble, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP 73, 91223, Brétigny-sur-Orge Cedex, France.
| |
Collapse
|
13
|
Olson VA, Shchelkunov SN. Are We Prepared in Case of a Possible Smallpox-Like Disease Emergence? Viruses 2017; 9:E242. [PMID: 32962316 PMCID: PMC5618008 DOI: 10.3390/v9090242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Smallpox was the first human disease to be eradicated, through a concerted vaccination campaign led by the World Health Organization. Since its eradication, routine vaccination against smallpox has ceased, leaving the world population susceptible to disease caused by orthopoxviruses. In recent decades, reports of human disease from zoonotic orthopoxviruses have increased. Furthermore, multiple reports of newly identified poxviruses capable of causing human disease have occurred. These facts raise concerns regarding both the opportunity for these zoonotic orthopoxviruses to evolve and become a more severe public health issue, as well as the risk of Variola virus (the causative agent of smallpox) to be utilized as a bioterrorist weapon. The eradication of smallpox occurred prior to the development of the majority of modern virological and molecular biological techniques. Therefore, there is a considerable amount that is not understood regarding how this solely human pathogen interacts with its host. This paper briefly recounts the history and current status of diagnostic tools, vaccines, and anti-viral therapeutics for treatment of smallpox disease. The authors discuss the importance of further research to prepare the global community should a smallpox-like virus emerge.
Collapse
Affiliation(s)
- Victoria A. Olson
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sergei N. Shchelkunov
- Department of Genomic Research and Development of DNA Diagnostics of Poxviruses, State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk Region, Russia
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
14
|
Czarnecki MW, Traktman P. The vaccinia virus DNA polymerase and its processivity factor. Virus Res 2017; 234:193-206. [PMID: 28159613 DOI: 10.1016/j.virusres.2017.01.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Vaccinia virus is the prototypic poxvirus. The 192 kilobase double-stranded DNA viral genome encodes most if not all of the viral replication machinery. The vaccinia virus DNA polymerase is encoded by the E9L gene. Sequence analysis indicates that E9 is a member of the B family of replicative polymerases. The enzyme has both polymerase and 3'-5' exonuclease activities, both of which are essential to support viral replication. Genetic analysis of E9 has identified residues and motifs whose alteration can confer temperature-sensitivity, drug resistance (phosphonoacetic acid, aphidicolin, cytosine arabinsode, cidofovir) or altered fidelity. The polymerase is involved both in DNA replication and in recombination. Although inherently distributive, E9 gains processivity by interacting in a 1:1 stoichiometry with a heterodimer of the A20 and D4 proteins. A20 binds to both E9 and D4 and serves as a bridge within the holoenzyme. The A20/D4 heterodimer has been purified and can confer processivity on purified E9. The interaction of A20 with D4 is mediated by the N'-terminus of A20. The D4 protein is an enzymatically active uracil DNA glycosylase. The DNA-scanning activity of D4 is proposed to keep the holoenzyme tethered to the DNA template but allow polymerase translocation. The crystal structure of D4, alone and in complex with A201-50 and/or DNA has been solved. Screens for low molecular weight compounds that interrupt the A201-50/D4 interface have yielded hits that disrupt processive DNA synthesis in vitro and/or inhibit plaque formation. The observation that an active DNA repair enzyme is an integral part of the holoenzyme suggests that DNA replication and repair may be coupled.
Collapse
Affiliation(s)
- Maciej W Czarnecki
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Paula Traktman
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Departments of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, United States; Departments of the Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| |
Collapse
|
15
|
Trindade GDS, Emerson GL, Sammons S, Frace M, Govil D, Fernandes Mota BE, Abrahão JS, de Assis FL, Olsen-Rasmussen M, Goldsmith CS, Li Y, Carroll D, Guimarães da Fonseca F, Kroon E, Damon IK. Serro 2 Virus Highlights the Fundamental Genomic and Biological Features of a Natural Vaccinia Virus Infecting Humans. Viruses 2016; 8:v8120328. [PMID: 27973399 PMCID: PMC5192389 DOI: 10.3390/v8120328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/01/2016] [Accepted: 11/24/2016] [Indexed: 01/14/2023] Open
Abstract
Vaccinia virus (VACV) has been implicated in infections of dairy cattle and humans, and outbreaks have substantially impacted local economies and public health in Brazil. During a 2005 outbreak, a VACV strain designated Serro 2 virus (S2V) was collected from a 30-year old male milker. Our aim was to phenotypically and genetically characterize this VACV Brazilian isolate. S2V produced small round plaques without associated comets when grown in BSC40 cells. Furthermore, S2V was less virulent than the prototype strain VACV-Western Reserve (WR) in a murine model of intradermal infection, producing a tiny lesion with virtually no surrounding inflammation. The genome of S2V was sequenced by primer walking. The coding region spans 184,572 bp and contains 211 predicted genes. Mutations in envelope genes specifically associated with small plaque phenotypes were not found in S2V; however, other alterations in amino acid sequences within these genes were identified. In addition, some immunomodulatory genes were truncated in S2V. Phylogenetic analysis using immune regulatory-related genes, besides the hemagglutinin gene, segregated the Brazilian viruses into two clusters, grouping the S2V into Brazilian VACV group 1. S2V is the first naturally-circulating human-associated VACV, with a low passage history, to be extensively genetically and phenotypically characterized.
Collapse
Affiliation(s)
- Giliane de Souza Trindade
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Ginny L Emerson
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Scott Sammons
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Michael Frace
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Dhwani Govil
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | | | - Jônatas Santos Abrahão
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Felipe Lopes de Assis
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Melissa Olsen-Rasmussen
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Cynthia S Goldsmith
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Yu Li
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Darin Carroll
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | | | - Erna Kroon
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Inger K Damon
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| |
Collapse
|
16
|
|
17
|
Bhanuprakash V, Prabhu M, Venkatesan G, Balamurugan V, Hosamani M, Pathak KML, Singh RK. Camelpox: epidemiology, diagnosis and control measures. Expert Rev Anti Infect Ther 2014; 8:1187-201. [DOI: 10.1586/eri.10.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Yang K, Wills E, Baines JD. A herpes simplex virus scaffold peptide that binds the portal vertex inhibits early steps in viral replication. J Virol 2013; 87:6876-87. [PMID: 23576509 PMCID: PMC3676109 DOI: 10.1128/jvi.00421-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022] Open
Abstract
Previous experiments identified a 12-amino-acid (aa) peptide that was sufficient to interact with the herpes simplex virus 1 (HSV-1) portal protein and was necessary to incorporate the portal into capsids. In the present study, cells were treated at various times postinfection with peptides consisting of a portion of the Drosophila antennapedia protein, previously shown to enter cells efficiently, fused to either wild-type HSV-1 scaffold peptide (YPYYPGEARGAP) or a control peptide that contained changes at positions 4 and 5. These 4-tyrosine and 5-proline residues are highly conserved in herpesvirus scaffold proteins and were previously shown to be critical for the portal interaction. Treatment early in infection with subtoxic levels of wild-type peptide reduced viral infectivity by over 1,000-fold, while the mutant peptide had little effect on viral yields. In cells infected for 3 h in the presence of wild-type peptide, capsids were observed to transit to the nuclear rim normally, as viewed by fluorescence microscopy. However, observation by electron microscopy in thin sections revealed an aberrant and significant increase of DNA-containing capsids compared to infected cells treated with the mutant peptide. Early treatment with peptide also prevented formation of viral DNA replication compartments. These data suggest that the antiviral peptide stabilizes capsids early in infection, causing retention of DNA within them, and that this activity correlates with peptide binding to the portal protein. The data are consistent with the hypothesis that the portal vertex is the conduit through which DNA is ejected to initiate infection.
Collapse
Affiliation(s)
- Kui Yang
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|
19
|
Magee WC, Evans DH. The antiviral activity and mechanism of action of (S)-[3-hydroxy-2-(phosphonomethoxy)propyl] (HPMP) nucleosides. Antiviral Res 2012; 96:169-80. [PMID: 22960154 DOI: 10.1016/j.antiviral.2012.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/20/2012] [Accepted: 08/27/2012] [Indexed: 12/18/2022]
Abstract
One class of compounds that has shown promise as antiviral agents are the (S)-[3-hydroxy-2-(phosphonomethoxy)propyl] (HPMP) nucleosides, members of the broader class of acyclic nucleoside phosphonates. These HPMP nucleosides are nucleotide analogs and have been shown to be effective inhibitors of a wide range of DNA viruses. Prodrugs of these compounds, which achieve higher levels of the active metabolites within the cell, have an expanded activity spectrum that also includes RNA viruses and retroviruses. Because they are analogs of natural nucleotide substrates, HPMP nucleosides are predicted to target polymerases (DNA polymerases, RNA polymerases and reverse transcriptases), resulting in the inhibition of viral genome replication. Previous work using the replicative enzymes of different viruses including human cytomegalovirus (HCMV) and vaccinia virus DNA polymerases and human immunodeficiency virus type 1 (HIV-1) reverse transcriptase has shown that the activated forms of these compounds are substrates for viral polymerases and that incorporation of these compounds into either the primer strand or the template strand inhibits, but does not necessarily terminate, further nucleic acid synthesis. The activity of these compounds against other viruses that do not encode their own polymerases, like polyoma viruses and papilloma viruses, suggests that host cell DNA polymerases are also targeted. This complex mechanism of action and broad activity spectrum has implications for the development of resistance and host cell genome replication, and suggests these compounds may be effective against other viruses such as influenza virus, respiratory syncytial virus and Dengue virus. This class of nucleotide analogs also points to a potential avenue for the development of newer antivirals.
Collapse
Affiliation(s)
- Wendy C Magee
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, 6-020 Katz Group Centre, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | | |
Collapse
|
20
|
Flusin O, Saccucci L, Contesto-Richefeu C, Hamdi A, Bardou C, Poyot T, Peinnequin A, Crance JM, Colas P, Iseni F. A small molecule screen in yeast identifies inhibitors targeting protein-protein interactions within the vaccinia virus replication complex. Antiviral Res 2012; 96:187-95. [PMID: 22884885 DOI: 10.1016/j.antiviral.2012.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
Abstract
Genetic and biochemical data have identified at least four viral proteins essential for vaccinia virus (VACV) DNA synthesis: the DNA polymerase E9, its processivity factor (the heterodimer A20/D4) and the primase/helicase D5. These proteins are part of the VACV replication complex in which A20 is a central subunit interacting with E9, D4 and D5. We hypothesised that molecules able to modulate protein-protein interactions within the replication complex may represent a new class of compounds with anti-orthopoxvirus activities. In this study, we adapted a forward duplex yeast two-hybrid assay to screen more than 27,000 molecules in order to identify inhibitors of A20/D4 and/or A20/D5 interactions. We identified two molecules that specifically inhibited both interactions in yeast. Interestingly, we observed that these compounds displayed a similar antiviral activity to cidofovir (CDV) against VACV in cell culture. We further showed that these molecules were able to inhibit the replication of another orthopoxvirus (i.e. cowpox virus), but not the herpes simplex virus type 1 (HSV-1), an unrelated DNA virus. We also demonstrated that the antiviral activity of both compounds correlated with an inhibition of VACV DNA synthesis. Hence, these molecules may represent a starting point for the development of new anti-orthopoxvirus drugs.
Collapse
Affiliation(s)
- Olivier Flusin
- Unité de virologie, Institut de Recherche Biomédicale des Armées (IRBA), 24 avenue des Maquis du Grésivaudan, 38702 La Tronche, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Prichard MN, Kern ER. Orthopoxvirus targets for the development of new antiviral agents. Antiviral Res 2012; 94:111-25. [PMID: 22406470 PMCID: PMC3773844 DOI: 10.1016/j.antiviral.2012.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
Investments in the development of new drugs for orthopoxvirus infections have fostered new avenues of research, provided an improved understanding of orthopoxvirus biology and yielded new therapies that are currently progressing through clinical trials. These broad-based efforts have also resulted in the identification of new inhibitors of orthopoxvirus replication that target many different stages of viral replication cycle. This review will discuss progress in the development of new anti-poxvirus drugs and the identification of new molecular targets that can be exploited for the development of new inhibitors. The prototype of the orthopoxvirus group is vaccinia virus and its replication cycle will be discussed in detail noting specific viral functions and their associated gene products that have the potential to serve as new targets for drug development. Progress that has been achieved in recent years should yield new drugs for the treatment of these infections and might also reveal new approaches for antiviral drug development with other viruses.
Collapse
Affiliation(s)
- Mark N Prichard
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, United States.
| | | |
Collapse
|
22
|
Mutations conferring resistance to viral DNA polymerase inhibitors in camelpox virus give different drug-susceptibility profiles in vaccinia virus. J Virol 2012; 86:7310-25. [PMID: 22532673 DOI: 10.1128/jvi.00355-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cidofovir or (S)-HPMPC is one of the three antiviral drugs that might be used for the treatment of orthopoxvirus infections. (S)-HPMPC and its 2,6-diaminopurine counterpart, (S)-HPMPDAP, have been described to select, in vitro, for drug resistance mutations in the viral DNA polymerase (E9L) gene of vaccinia virus (VACV). Here, to extend our knowledge of drug resistance development among orthopoxviruses, we selected, in vitro, camelpox viruses (CMLV) resistant to (S)-HPMPDAP and identified a single amino acid change, T831I, and a double mutation, A314V+A684V, within E9L. The production of recombinant CMLV and VACV carrying these amino acid substitutions (T831I, A314V, or A314V+A684V) demonstrated clearly their involvement in conferring reduced sensitivity to viral DNA polymerase inhibitors, including (S)-HPMPDAP. Both CMLV and VACV harboring the A314V change showed comparable drug-susceptibility profiles to various antivirals and similar impairments in viral growth. In contrast, the single change T831I and the double change A314V+A684V in VACV were responsible for increased levels of drug resistance and for cross-resistance to viral DNA polymerase antivirals that were not observed with their CMLV counterparts. Each amino acid change accounted for an attenuated phenotype of VACV in vivo. Modeling of E9L suggested that the T→I change at position 831 might abolish hydrogen bonds between E9L and the DNA backbone and have a direct impact on the incorporation of the acyclic nucleoside phosphonates. Our findings demonstrate that drug-resistance development in two related orthopoxvirus species may impact drug-susceptibility profiles and viral fitness differently.
Collapse
|
23
|
Xu RH, Rubio D, Roscoe F, Krouse TE, Truckenmiller ME, Norbury CC, Hudson PN, Damon IK, Alcamí A, Sigal LJ. Antibody inhibition of a viral type 1 interferon decoy receptor cures a viral disease by restoring interferon signaling in the liver. PLoS Pathog 2012; 8:e1002475. [PMID: 22241999 PMCID: PMC3252373 DOI: 10.1371/journal.ppat.1002475] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/22/2011] [Indexed: 02/04/2023] Open
Abstract
Type 1 interferons (T1-IFNs) play a major role in antiviral defense, but when or how they protect during infections that spread through the lympho-hematogenous route is not known. Orthopoxviruses, including those that produce smallpox and mousepox, spread lympho-hematogenously. They also encode a decoy receptor for T1-IFN, the T1-IFN binding protein (T1-IFNbp), which is essential for virulence. We demonstrate that during mousepox, T1-IFNs protect the liver locally rather than systemically, and that the T1-IFNbp attaches to uninfected cells surrounding infected foci in the liver and the spleen to impair their ability to receive T1-IFN signaling, thus facilitating virus spread. Remarkably, this process can be reversed and mousepox cured late in infection by treating with antibodies that block the biological function of the T1-IFNbp. Thus, our findings provide insights on how T1-IFNs function and are evaded during a viral infection in vivo, and unveil a novel mechanism for antibody-mediated antiviral therapy. Type 1 interferons are molecules important in the defense against viruses. Orthopoxviruses encode a Type 1 interferon binding protein that acts as a decoy for the Type 1 interferon receptor. Here we show that during infection with the Orthopoxvirus ectromelia virus, the agent of mousepox, Type 1 interferons protect the liver locally rather than systemically. We also show that the Type 1 interferon binding protein of ectromelia virus attaches to uninfected cells surrounding infected foci in the liver to impair their ability to receive Type 1 interferon signaling and facilitate virus spread and disease progression. We also show that this process can be reversed and mousepox cured late in infection by treating mice with antibodies that block the biological function of the Type 1 interferon binding protein. Because the Type 1 interferon binding proteins of different Orthopoxviruses are very well conserved, the antibodies also block the biological function of the Type 1 interferon binding proteins from variola virus (the virus of smallpox) and monkeypoxvirus. Thus, our findings provide insights on how Type 1 interferons function and are evaded during a viral infection in vivo, and unveil a novel mechanism for antibody-mediated antiviral therapy.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- Cell Line
- Cricetinae
- Ectromelia virus/immunology
- Ectromelia virus/metabolism
- Ectromelia virus/pathogenicity
- Ectromelia, Infectious/drug therapy
- Ectromelia, Infectious/immunology
- Ectromelia, Infectious/metabolism
- Female
- Liver/immunology
- Liver/metabolism
- Liver/virology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Receptor, Interferon alpha-beta/antagonists & inhibitors
- Receptor, Interferon alpha-beta/immunology
- Receptor, Interferon alpha-beta/metabolism
- Spleen/immunology
- Spleen/metabolism
- Spleen/virology
- Variola virus/immunology
- Variola virus/metabolism
- Viral Proteins/antagonists & inhibitors
- Viral Proteins/immunology
- Viral Proteins/metabolism
- Virulence Factors/antagonists & inhibitors
- Virulence Factors/immunology
- Virulence Factors/metabolism
- Virus Attachment/drug effects
Collapse
Affiliation(s)
- Ren-Huan Xu
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Daniel Rubio
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Felicia Roscoe
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
| | - Tracy E. Krouse
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Mary Ellen Truckenmiller
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Christopher C. Norbury
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Paul N. Hudson
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, NCEZID, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Inger K. Damon
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, NCEZID, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis J. Sigal
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Inhibition of HIV-1 by octadecyloxyethyl esters of (S)-[3-hydroxy-2-(phosphonomethoxy)propyl] nucleosides and evaluation of their mechanism of action. Antimicrob Agents Chemother 2011; 55:5063-72. [PMID: 21896914 DOI: 10.1128/aac.05161-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
(S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC [cidofovir]) and (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA) are potent inhibitors of a variety of DNA viruses. These drugs possess a 3'-hydroxyl equivalent which could support chain extension from an incorporated drug molecule. HPMPC and HPMPA were initially reported to lack activity against human immunodeficiency virus type 1 (HIV-1); more recent results have shown that the octadecyloxyethyl (ODE) and hexadecyloxypropyl (HDP) esters of HPMPA are potent inhibitors of the virus. We have synthesized the ODE esters of a series of (S)-[3-hydroxy-2-(phosphonomethoxy)propyl] (HPMP) nucleosides, including HPMPC, HPMP-guanine (HPMPG), HPMP-thymine (HPMPT), and HPMP-diaminopurine (HPMPDAP), as well as the ODE ester of the obligate chain terminator (S)-9-[3-methoxy-2-(phosphonomethoxy)-propyl]adenine (MPMPA). All compounds except ODE-HPMPT were inhibitors of HIV-1 replication at low nanomolar concentrations. These compounds were also inhibitors of the replication of HIV-1 variants that are resistant to various nucleoside reverse transcriptase (RT) inhibitors at concentrations several times lower than would be expected to be achieved in vivo. To investigate the mechanism of the antiviral activity, the active metabolites of HPMPC and HPMPA were studied for their effects on reactions catalyzed by HIV-1 RT. Incorporation of HPMPC and HPMPA into a DNA primer strand resulted in multiple inhibitory effects exerted on the enzyme and showed that neither compound acts as an absolute chain terminator. Further, inhibition of HIV-1 RT also occurred when these drugs were located in the template strand. These results indicate that HPMPC and HPMPA inhibit HIV-1 by a complex mechanism and suggest that this class of drugs has a broader spectrum of activity than previously shown.
Collapse
|
25
|
Beadle JR, Hostetler KY. Alkoxyalkyl Ester Prodrugs of Antiviral Nucleoside Phosphates and Phosphonates. ANTIVIRAL DRUG STRATEGIES 2011. [DOI: 10.1002/9783527635955.ch8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Rice AD, Adams MM, Lampert B, Foster S, Lanier R, Robertson A, Painter G, Moyer RW. Efficacy of CMX001 as a prophylactic and presymptomatic antiviral agent in New Zealand white rabbits infected with rabbitpox virus, a model for orthopoxvirus infections of humans. Viruses 2011; 3:63-82. [PMID: 21369346 PMCID: PMC3045966 DOI: 10.3390/v3020063] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 01/04/2011] [Indexed: 01/24/2023] Open
Abstract
CMX001, a lipophilic nucleotide analog formed by covalently linking 3-(hexdecyloxy)propan-1-ol to cidofovir (CDV), is being developed as a treatment for smallpox. CMX001 has dramatically increased potency versus CDV against all dsDNA viruses and, in contrast to CDV, is orally available and has shown no evidence of nephrotoxicity in healthy volunteers or severely ill transplant patients to date. Although smallpox has been eliminated from the environment, treatments are urgently being sought due to the risk of smallpox being used as a bioterrorism agent and for monkeypox virus, a zoonotic disease of Africa, and adverse reactions to smallpox virus vaccinations. In the absence of human cases of smallpox, new treatments must be tested for efficacy in animal models. Here we first review and discuss the rabbitpox virus (RPV) infection of New Zealand White rabbits as a model for smallpox to test the efficacy of CMX001 as a prophylactic and early disease antiviral. Our results should also be applicable to monkeypox virus infections and for treatment of adverse reactions to smallpox vaccination.
Collapse
Affiliation(s)
- Amanda D. Rice
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.)
| | - Mathew M. Adams
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.)
| | - Bernhard Lampert
- Chimerix, Inc., 2505 Meridian Parkway Suite, 340 Durham, NC 27713, USA; E-Mails: (B.L.); (S.F.); (R.L.); (A.R.); (G.P.)
| | - Scott Foster
- Chimerix, Inc., 2505 Meridian Parkway Suite, 340 Durham, NC 27713, USA; E-Mails: (B.L.); (S.F.); (R.L.); (A.R.); (G.P.)
| | - Randall Lanier
- Chimerix, Inc., 2505 Meridian Parkway Suite, 340 Durham, NC 27713, USA; E-Mails: (B.L.); (S.F.); (R.L.); (A.R.); (G.P.)
| | - Alice Robertson
- Chimerix, Inc., 2505 Meridian Parkway Suite, 340 Durham, NC 27713, USA; E-Mails: (B.L.); (S.F.); (R.L.); (A.R.); (G.P.)
| | - George Painter
- Chimerix, Inc., 2505 Meridian Parkway Suite, 340 Durham, NC 27713, USA; E-Mails: (B.L.); (S.F.); (R.L.); (A.R.); (G.P.)
| | - Richard W. Moyer
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.)
| |
Collapse
|
27
|
Julien O, Beadle JR, Magee WC, Chatterjee S, Hostetler KY, Evans DH, Sykes BD. Solution structure of a DNA duplex containing the potent anti-poxvirus agent cidofovir. J Am Chem Soc 2011; 133:2264-74. [PMID: 21280608 DOI: 10.1021/ja109823e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cidofovir (1(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine, CDV) is a potent inhibitor of orthopoxvirus DNA replication. Prior studies have shown that, when CDV is incorporated into a growing primer strand, it can inhibit both the 3'-to-5' exonuclease and the 5'-to-3' chain extension activities of vaccinia virus DNA polymerase. This drug can also be incorporated into DNA, creating a significant impediment to trans-lesion DNA synthesis in a manner resembling DNA damage. CDV and deoxycytidine share a common nucleobase, but CDV lacks the deoxyribose sugar. The acyclic phosphonate bears a hydroxyl moiety that is equivalent to the 3'-hydroxyl of dCMP and permits CDV incorporation into duplex DNA. To study the structural consequences of inserting CDV into DNA, we have used (1)H NMR to solve the solution structures of a dodecamer DNA duplex containing a CDV molecule at position 7 and of a control DNA duplex. The overall structures of both DNA duplexes were found to be very similar. We observed a decrease of intensity (>50%) for the imino protons neighboring the CDV (G6, T8) and the cognate base G18 and a large chemical shift change for G18. This indicates higher proton exchange rates for this region, which were confirmed using NMR-monitored melting experiments. DNA duplex melting experiments monitored by circular dichroism revealed a lower T(m) for the CDV DNA duplex (46 °C) compared to the control (58 °C) in 0.2 M salt. Our results suggest that the CDV drug is well accommodated and stable within the dodecamer DNA duplex, but the stability of the complex is less than that of the control, suggesting increased dynamics around the CDV.
Collapse
Affiliation(s)
- Olivier Julien
- Department of Biochemistry, University of Alberta, 4-19 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Rice AD, Adams MM, Wallace G, Burrage AM, Lindsey SF, Smith AJ, Swetnam D, Manning BR, Gray SA, Lampert B, Foster S, Lanier R, Robertson A, Painter G, Moyer RW. Efficacy of CMX001 as a post exposure antiviral in New Zealand White rabbits infected with rabbitpox virus, a model for orthopoxvirus infections of humans. Viruses 2011; 3:47-62. [PMID: 21373379 PMCID: PMC3046869 DOI: 10.3390/v3010047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 11/30/2022] Open
Abstract
CMX001, a lipophilic nucleotide analog formed by covalently linking 3-(hexdecyloxy)propan-1-ol to cidofovir (CDV), is being developed as a treatment for smallpox. In the absence of human cases of smallpox, new treatments must be tested for efficacy in animal models. Previously, we demonstrated the efficacy of CMX001 in protecting New Zealand White rabbits from mortality following intradermal infection with rabbitpox virus as a model for smallpox, monkeypox and for treatment of adverse reactions to smallpox vaccination. Here we extend these studies by exploring different dosing regimens and performing randomized, blinded, placebo-controlled studies. In addition, because rabbitpox virus can be transmitted via naturally generated aerosols (animal to animal transmission), we report on studies to test the efficacy of CMX001 in protecting rabbits from lethal rabbitpox virus disease when infection occurs by animal to animal transmission. In all cases, CMX001 treatment was initiated at the onset of observable lesions in the ears to model the use of CMX001 as a treatment for symptomatic smallpox. The results demonstrate that CMX001 is an effective treatment for symptomatic rabbitpox virus infection. The rabbitpox model has key similarities to human smallpox including an incubation period, generalized systemic disease, the occurrence of lesions which may be used as a trigger for initiating therapy, and natural animal to animal spread, making it an appropriate model.
Collapse
Affiliation(s)
- Amanda D. Rice
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.); (G.W.); (A.M.B.); (S.F.L.); (A.J.S.); (D.S.); (B.R.M.); (S.A.G.)
| | - Mathew M. Adams
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.); (G.W.); (A.M.B.); (S.F.L.); (A.J.S.); (D.S.); (B.R.M.); (S.A.G.)
| | - Greg Wallace
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.); (G.W.); (A.M.B.); (S.F.L.); (A.J.S.); (D.S.); (B.R.M.); (S.A.G.)
| | - Andrew M. Burrage
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.); (G.W.); (A.M.B.); (S.F.L.); (A.J.S.); (D.S.); (B.R.M.); (S.A.G.)
| | - Scott F. Lindsey
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.); (G.W.); (A.M.B.); (S.F.L.); (A.J.S.); (D.S.); (B.R.M.); (S.A.G.)
| | - Andrew J. Smith
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.); (G.W.); (A.M.B.); (S.F.L.); (A.J.S.); (D.S.); (B.R.M.); (S.A.G.)
| | - Daniele Swetnam
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.); (G.W.); (A.M.B.); (S.F.L.); (A.J.S.); (D.S.); (B.R.M.); (S.A.G.)
| | - Brandi R. Manning
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.); (G.W.); (A.M.B.); (S.F.L.); (A.J.S.); (D.S.); (B.R.M.); (S.A.G.)
| | - Stacey A. Gray
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.); (G.W.); (A.M.B.); (S.F.L.); (A.J.S.); (D.S.); (B.R.M.); (S.A.G.)
| | - Bernhard Lampert
- Chimerix, Inc., 2505 Meridian Parkway Suite, 340 Durham, NC 27713, USA; E-Mails: (B.L.); (S.F.); (R.L.); (A.R.); (G.P.)
| | - Scott Foster
- Chimerix, Inc., 2505 Meridian Parkway Suite, 340 Durham, NC 27713, USA; E-Mails: (B.L.); (S.F.); (R.L.); (A.R.); (G.P.)
| | - Randall Lanier
- Chimerix, Inc., 2505 Meridian Parkway Suite, 340 Durham, NC 27713, USA; E-Mails: (B.L.); (S.F.); (R.L.); (A.R.); (G.P.)
| | - Alice Robertson
- Chimerix, Inc., 2505 Meridian Parkway Suite, 340 Durham, NC 27713, USA; E-Mails: (B.L.); (S.F.); (R.L.); (A.R.); (G.P.)
| | - George Painter
- Chimerix, Inc., 2505 Meridian Parkway Suite, 340 Durham, NC 27713, USA; E-Mails: (B.L.); (S.F.); (R.L.); (A.R.); (G.P.)
| | - Richard W. Moyer
- Department of Molecular Genetics and Microbiology, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; E-Mails: (A.D.R.); (M.M.A.); (G.W.); (A.M.B.); (S.F.L.); (A.J.S.); (D.S.); (B.R.M.); (S.A.G.)
| |
Collapse
|
29
|
Cidofovir Activity against Poxvirus Infections. Viruses 2010; 2:2803-30. [PMID: 21994641 PMCID: PMC3185586 DOI: 10.3390/v2122803] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 01/26/2023] Open
Abstract
Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, HPMPC] is an acyclic nucleoside analog approved since 1996 for clinical use in the treatment of cytomegalovirus (CMV) retinitis in AIDS patients. Cidofovir (CDV) has broad-spectrum activity against DNA viruses, including herpes-, adeno-, polyoma-, papilloma- and poxviruses. Among poxviruses, cidofovir has shown in vitro activity against orthopox [vaccinia, variola (smallpox), cowpox, monkeypox, camelpox, ectromelia], molluscipox [molluscum contagiosum] and parapox [orf] viruses. The anti-poxvirus activity of cidofovir in vivo has been shown in different models of infection when the compound was administered either intraperitoneal, intranasal (aerosolized) or topically. In humans, cidofovir has been successfully used for the treatment of recalcitrant molluscum contagiosum virus and orf virus in immunocompromised patients. CDV remains a reference compound against poxviruses and holds potential for the therapy and short-term prophylaxis of not only orthopox- but also parapox- and molluscipoxvirus infections.
Collapse
|
30
|
Lanier R, Trost L, Tippin T, Lampert B, Robertson A, Foster S, Rose M, Painter W, O’Mahony R, Almond M, Painter G. Development of CMX001 for the Treatment of Poxvirus Infections. Viruses 2010; 2:2740-2762. [PMID: 21499452 PMCID: PMC3077800 DOI: 10.3390/v2122740] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 12/29/2022] Open
Abstract
CMX001 (phosphonic acid, [[(S)-2-(4-amino-2-oxo-1(2H)-pyrimidinyl)-1-(hydroxymethyl)ethoxy]methyl]mono[3-(hexadecyloxy)propyl] ester) is a lipid conjugate of the acyclic nucleotide phosphonate, cidofovir (CDV). CMX001 is currently in Phase II clinical trials for the prophylaxis of human cytomegalovirus infection and under development using the Animal Rule for smallpox infection. It has proven effective in reduction of morbidity and mortality in animal models of human smallpox, even after the onset of lesions and other clinical signs of disease. CMX001 and CDV are active against all five families of double-stranded DNA (dsDNA) viruses that cause human morbidity and mortality, including orthopoxviruses such as variola virus, the cause of human smallpox. However, the clinical utility of CDV is limited by the requirement for intravenous dosing and a high incidence of acute kidney toxicity. The risk of nephrotoxicity necessitates pre-hydration and probenecid administration in a health care facility, further complicating high volume CDV use in an emergency situation. Compared with CDV, CMX001 has a number of advantages for treatment of smallpox in an emergency including greater potency in vitro against all dsDNA viruses that cause human disease, a high genetic barrier to resistance, convenient oral administration as a tablet or liquid, and no evidence to date of nephrotoxicity in either animals or humans. The apparent lack of nephrotoxicity observed with CMX001 in vivo is because it is not a substrate for the human organic anion transporters that actively secrete CDV into kidney cells. The ability to test the safety and efficacy of CMX001 in patients with life-threatening dsDNA virus infections which share many basic traits with variola is a major advantage in the development of this antiviral for a smallpox indication.
Collapse
Affiliation(s)
- Randall Lanier
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Lawrence Trost
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Tim Tippin
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Bernhard Lampert
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Alice Robertson
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Scott Foster
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Michelle Rose
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Wendy Painter
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Rose O’Mahony
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - Merrick Almond
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| | - George Painter
- Chimerix, Inc., 2505 Meridian Parkway, Suite 340, Durham, North Carolina, NC 27713, USA; E-Mails: (L.T.); (T.T.); (B.L.); (A.R.); (S.F.); (M.R.); (W.P.); (R.O.); (M.A.); (G.P.)
| |
Collapse
|
31
|
Farlow J, Ichou MA, Huggins J, Ibrahim S. Comparative whole genome sequence analysis of wild-type and cidofovir-resistant monkeypoxvirus. Virol J 2010; 7:110. [PMID: 20509894 PMCID: PMC2890524 DOI: 10.1186/1743-422x-7-110] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/28/2010] [Indexed: 11/10/2022] Open
Abstract
We performed whole genome sequencing of a cidofovir {[(S)-1-(3-hydroxy-2-phosphonylmethoxy-propyl) cytosine] [HPMPC]}-resistant (CDV-R) strain of Monkeypoxvirus (MPV). Whole-genome comparison with the wild-type (WT) strain revealed 55 single-nucleotide polymorphisms (SNPs) and one tandem-repeat contraction. Over one-third of all identified SNPs were located within genes comprising the poxvirus replication complex, including the DNA polymerase, RNA polymerase, mRNA capping methyltransferase, DNA processivity factor, and poly-A polymerase. Four polymorphic sites were found within the DNA polymerase gene. DNA polymerase mutations observed at positions 314 and 684 in MPV were consistent with CDV-R loci previously identified in Vaccinia virus (VACV). These data suggest the mechanism of CDV resistance may be highly conserved across Orthopoxvirus (OPV) species. SNPs were also identified within virulence genes such as the A-type inclusion protein, serine protease inhibitor-like protein SPI-3, Schlafen ATPase and thymidylate kinase, among others. Aberrant chain extension induced by CDV may lead to diverse alterations in gene expression and viral replication that may result in both adaptive and attenuating mutations. Defining the potential contribution of substitutions in the replication complex and RNA processing machinery reported here may yield further insight into CDV resistance and may augment current therapeutic development strategies.
Collapse
Affiliation(s)
- Jason Farlow
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | | | | | | |
Collapse
|
32
|
Alkhalil A, Strand S, Mucker E, Huggins JW, Jahrling PB, Ibrahim SM. Inhibition of monkeypox virus replication by RNA interference. Virol J 2009; 6:188. [PMID: 19889227 PMCID: PMC2777875 DOI: 10.1186/1743-422x-6-188] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/04/2009] [Indexed: 02/05/2023] Open
Abstract
The Orthopoxvirus genus of Poxviridae family is comprised of several human pathogens, including cowpox (CPXV), Vaccinia (VACV), monkeypox (MPV) and Variola (VARV) viruses. Species of this virus genus cause human diseases with various severities and outcome ranging from mild conditions to death in fulminating cases. Currently, vaccination is the only protective measure against infection with these viruses and no licensed antiviral drug therapy is available. In this study, we investigated the potential of RNA interference pathway (RNAi) as a therapeutic approach for orthopox virus infections using MPV as a model. Based on genome-wide expression studies and bioinformatic analysis, we selected 12 viral genes and targeted them by small interference RNA (siRNA). Forty-eight siRNA constructs were developed and evaluated in vitro for their ability to inhibit viral replication. Two genes, each targeted with four different siRNA constructs in one pool, were limiting to viral replication. Seven siRNA constructs from these two pools, targeting either an essential gene for viral replication (A6R) or an important gene in viral entry (E8L), inhibited viral replication in cell culture by 65-95% with no apparent cytotoxicity. Further analysis with wild-type and recombinant MPV expressing green fluorescence protein demonstrated that one of these constructs, siA6-a, was the most potent and inhibited viral replication for up to 7 days at a concentration of 10 nM. These results emphasis the essential role of A6R gene in viral replication, and demonstrate the potential of RNAi as a therapeutic approach for developing oligonucleotide-based drug therapy for MPV and other orthopox viruses.
Collapse
Affiliation(s)
- Abdulnaser Alkhalil
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick MD, 21702, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Cidofovir inhibits genome encapsidation and affects morphogenesis during the replication of vaccinia virus. J Virol 2009; 83:11477-90. [PMID: 19726515 DOI: 10.1128/jvi.01061-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cidofovir (CDV) is one of the most effective antiorthopoxvirus drugs, and it is widely accepted that viral DNA replication is the main target of its activity. In the present study, we report a detailed analysis of CDV effects on the replicative cycles of distinct vaccinia virus (VACV) strains: Cantagalo virus, VACV-IOC, and VACV-WR. We show that despite the approximately 90% inhibition of production of virus progeny, virus DNA accumulation was reduced only 30%, and late gene expression and genome resolution were unaltered. The level of proteolytic cleavage of the major core proteins was diminished in CDV-treated cells. Electron microscopic analysis of virus-infected cells in the presence of CDV revealed reductions as great as 3.5-fold in the number of mature forms of virus particles, along with a 3.2-fold increase in the number of spherical immature particles. A detailed analysis of purified virions recovered from CDV-treated cells demonstrated the accumulation of unprocessed p4a and p4b and nearly 67% inhibition of DNA encapsidation. However, these effects of CDV on virus morphogenesis resulted from a primary effect on virus DNA synthesis, which led to later defects in genome encapsidation and virus assembly. Analysis of virus DNA by atomic force microscopy revealed that viral cytoplasmic DNA synthesized in the presence of CDV had an altered structure, forming aggregates with increased strand overlapping not observed in the absence of the drug. These aberrant DNA aggregations were not encapsidated into virus particles.
Collapse
|
34
|
Inhibition of vaccinia virus replication by peptide aptamers. Antiviral Res 2009; 82:134-40. [DOI: 10.1016/j.antiviral.2009.02.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/22/2009] [Accepted: 02/16/2009] [Indexed: 11/17/2022]
|
35
|
Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: current state of the art. Antiviral Res 2009; 82:A84-98. [PMID: 19425198 DOI: 10.1016/j.antiviral.2009.01.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although the acyclic nucleoside phosphonates cidofovir, adefovir and tenofovir are approved for treating human cytomegalovirus, hepatitis B and HIV infections, respectively, their utility is limited by low oral bioavailability, renal toxicity and poor cell penetration. Research over the past decade has shown that these undesirable features can be eliminated by esterifying the compounds with an alkoxyalkyl group, in effect disguising them as lysophospholipids. In this modified form, the drugs are readily taken up in the gastrointestinal tract and have a prolonged circulation time in plasma. The active metabolite also has a long half life within cells, permitting infrequent dosing. Because these modified drugs are not recognized by the transport mechanisms that cause the accumulation of acyclic nucleoside phosphonates in renal tubular cells, they lack nephrotoxicity. Alkoxyalkyl esterification also markedly increases the in vitro antiviral activity of acyclic nucleoside phosphonates by improving their delivery into cells. For example, an alkoxyalkyl ester of cyclic-cidofovir, a less soluble compound, retains anti-CMV activity for 3 months following a single intravitreal injection. Two of these novel compounds, hexadecyloxypropyl-cidofovir (CMX001) and hexadecyloxypropyl-tenofovir (CMX157) are now in clinical development. This article focuses on the hexadecyloxypropyl and octadecyloxyethyl esters of cidofovir and (S)-HPMPA, describing their synthesis and the evaluation of their in vitro and in vivo activity against a range of orthopoxviruses, herpesviruses, adenoviruses and other double-stranded DNA viruses. The extension to other nucleoside phosphonate antivirals is highlighted, demonstrating that this novel approach can markedly improve the medicinal properties of these drugs.
Collapse
|
36
|
Inhibition of vaccinia virus replication by two small interfering RNAs targeting B1R and G7L genes and their synergistic combination with cidofovir. Antimicrob Agents Chemother 2009; 53:2579-88. [PMID: 19307376 DOI: 10.1128/aac.01626-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In view of the threat of the potential use of variola virus in a terrorist attack, considerable efforts have been performed to develop new antiviral strategies against orthopoxviruses. Here we report on the use of RNA interference, either alone or in combination with cidofovir, as an approach to inhibit orthopoxvirus replication. Two selected small interfering RNAs (siRNAs), named siB1R-2 and siG7L-1, and a previously reported siRNA, i.e., siD5R-2 (which targets the viral D5R mRNA), were evaluated for antiviral activity against vaccinia virus (VACV) by plaque reduction and virus yield assays. siB1R-2 and siG7L-1, administered before or after viral infection, reduced VACV replication by more than 90%. Also, these two siRNAs decreased monkeypox virus replication by 95% at a concentration of 1 nM. siB1R-2 and siG7L-1 were demonstrated to specifically silence their corresponding transcripts, i.e., B1R and G7L mRNAs, without induction of a beta interferon response. Strong synergistic effects were observed when siB1R-2, siG7L-1, or siD5R-2 was combined with cidofovir. In addition, the antiviral activities of these three siRNAs were evaluated against VACV resistant to cidofovir and other acyclic nucleoside phosphonates. siG7L-1 and siD5R-2 remained active against four of five VACV mutants, while siB1R-2 showed activity against only one of the mutants. Our results showed that siRNAs are potent inhibitory agents in vitro, not only against wild-type VACV but also against several cidofovir-resistant VACV. Furthermore, we showed that a combined therapy using siRNA and cidofovir may be useful in the treatment of poxvirus infections.
Collapse
|
37
|
Activities of certain 5-substituted 4'-thiopyrimidine nucleosides against orthopoxvirus infections. Antimicrob Agents Chemother 2008; 53:572-9. [PMID: 19029322 DOI: 10.1128/aac.01257-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As part of a program to identify new compounds that have activity against orthopoxviruses, a number of 4'-thionucleosides were synthesized and evaluated for their efficacies against vaccinia and cowpox viruses. Seven compounds that were active at about 1 microM against both viruses in human cells but that did not have significant toxicity were identified. The 5-iodo analog, 1-(2-deoxy-4-thio-beta-d-ribofuranosyl)-5-iodouracil (4'-thioIDU), was selected as a representative molecule; and this compound also inhibited viral DNA synthesis at less than 1 microM but only partially inhibited the replication of a recombinant vaccinia virus that lacked a thymidine kinase. This compound retained complete activity against cidofovir- and ST-246-resistant mutants. To determine if this analog had activity in an animal model, mice were infected intranasally with vaccinia or cowpox virus and treatment with 4'-thioIDU was given intraperitoneally or orally twice daily at 50, 15, 5, or 1.5 mg/kg of body weight beginning at 24 to 120 h postinfection and was continued for 5 days. Almost complete protection (87%) was observed when treatment with 1.5 mg/kg was begun at 72 h postinfection, and significant protection (73%) was still obtained when treatment with 5 mg/kg was initiated at 96 h. Virus titers in the liver, spleen, and kidney were reduced by about 4 log(10) units and about 2 log(10) units in mice infected with vaccinia virus and cowpox virus, respectively. These results indicate that 4'-thioIDU is a potent, nontoxic inhibitor of orthopoxvirus replication in cell culture and experimental animal infections and suggest that it may have potential for use in the treatment of orthopoxvirus infections in animals and humans.
Collapse
|
38
|
Parker S, Handley L, Buller RM. Therapeutic and prophylactic drugs to treat orthopoxvirus infections. Future Virol 2008; 3:595-612. [PMID: 19727418 DOI: 10.2217/17460794.3.6.595] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the global eradication of smallpox in 1979, the causative agent, variola, no longer circulates in human populations. Other human poxvirus infections, such as those caused by vaccinia, cowpox virus and molluscum, are usually relatively benign in immunocompetent individuals. Conversely, monkeypox virus infections cause high levels of mortality and morbidity in Africa and the virus appears to be increasing its host range, virulence and demographic environs. Furthermore, there are concerns that clandestine stocks of variola virus exist. The re-introduction of aerosolized variola (or perhaps monkeypox virus) into human populations would result in high levels of morbidity and mortality. The attractiveness of variola as a bioweapon and, to a certain extent, monkeypox virus is its inherent ability to spread from person-to-person. The threat posed by the intentional release of variola or monkeypox virus, or a monkeypox virus epizoonosis, will require the capacity to rapidly diagnose the disease and to intervene with antivirals, as intervention is likely to take place during the initial diagnosis, approximately 10-15 days postinfection. Preimmunization of 'at-risk populations' with vaccines will likely not be practical, and the therapeutic use of vaccines has been shown to be ineffective after 4 days of infection with variola. However, a combination of vaccine and antivirals for those infected may be an option. Here we describe historical, current and future therapies to treat orthopoxvirus diseases.
Collapse
Affiliation(s)
- Scott Parker
- Department of Molecular Microbiology & Immunology, Saint Louis University Health Sciences Center, St Louis, MO 63104, USA
| | | | | |
Collapse
|
39
|
Mechanism of antiviral drug resistance of vaccinia virus: identification of residues in the viral DNA polymerase conferring differential resistance to antipoxvirus drugs. J Virol 2008; 82:12520-34. [PMID: 18842735 DOI: 10.1128/jvi.01528-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acyclic nucleoside phosphonate (ANP) family of drugs shows promise as therapeutics for treating poxvirus infections. However, it has been questioned whether the utility of these compounds could be compromised through the intentional genetic modification of viral sequences by bioterrorists or the selection of drug resistance viruses during the course of antiviral therapy. To address these concerns, vaccinia virus (strain Lederle) was passaged 40 times in medium containing an escalating dose of (S)-1-[3-hydroxy-2-(phosphonomethoxypropyl)-2,6-diaminopurine [(S)-HPMPDAP], which selected for mutant viruses exhibiting a approximately 15-fold-increased resistance to the drug. (S)-HPMPDAP-resistant viruses were generated because this compound was shown to be one of the most highly selective and effective ANPs for the treatment of poxvirus infections. DNA sequence analysis revealed that these viruses encoded mutations in the E9L (DNA polymerase) gene, and marker rescue studies showed that the phenotype was produced by a combination of two (A684V and S851Y) substitution mutations. The effects of these mutations on drug resistance were tested against various ANPs, both separately and collectively, and compared with E9L A314T and A684V mutations previously isolated using selection for resistance to cidofovir, i.e., (S)-1-[3-hydroxy-2-(phosphonomethoxypropyl)cytosine]. These studies demonstrated a complex pattern of resistance, although as a general rule, the double-mutant viruses exhibited greater resistance to the deoxyadenosine than to deoxycytidine nucleotide analogs. The S851Y mutant virus exhibited a low level of resistance to dCMP analogues but high-level resistance to dAMP analogues and to 6-[3-hydroxy-2-(phosphonomethoxy)propoxy]-2,4-diaminopyrimidine, which is considered to mimic the purine ring system. Notably, (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-3-deazaadenine retained marked activity against most of these mutant viruses. In vitro studies showed that the A684V mutation partially suppressed a virus growth defect and mutator phenotype created by the S851Y mutation, but all of the mutant viruses still exhibited a variable degree of reduced virulence in a mouse intranasal challenge model. Infections caused by these drug-resistant viruses in mice were still treatable with higher concentrations of the ANPs. These studies have identified a novel mechanism for the development of mutator DNA polymerases and provide further evidence that antipoxviral therapeutic strategies would not readily be undermined by selection for resistance to ANP drugs.
Collapse
|
40
|
Stommel E. TERRESTRIAL BIOTOXINS. Continuum (Minneap Minn) 2008. [DOI: 10.1212/01.con.0000337994.00915.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Silverman JEY, Ciustea M, Shudofsky AMD, Bender F, Shoemaker RH, Ricciardi RP. Identification of polymerase and processivity inhibitors of vaccinia DNA synthesis using a stepwise screening approach. Antiviral Res 2008; 80:114-23. [PMID: 18621425 DOI: 10.1016/j.antiviral.2008.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/08/2008] [Accepted: 05/14/2008] [Indexed: 12/16/2022]
Abstract
Nearly all DNA polymerases require processivity factors to ensure continuous incorporation of nucleotides. Processivity factors are specific for their cognate DNA polymerases. For this reason, the vaccinia DNA polymerase (E9) and the proteins associated with processivity (A20 and D4) are excellent therapeutic targets. In this study, we show the utility of stepwise rapid plate assays that (i) screen for compounds that block vaccinia DNA synthesis, (ii) eliminate trivial inhibitors, e.g. DNA intercalators, and (iii) distinguish whether inhibitors are specific for blocking DNA polymerase activity or processivity. The sequential plate screening of 2222 compounds from the NCI Diversity Set library yielded a DNA polymerase inhibitor (NSC 55636) and a processivity inhibitor (NSC 123526) that were capable of reducing vaccinia viral plaques with minimal cellular cytotoxicity. These compounds are predicted to block cellular infection by the smallpox virus, variola, based on the very high sequence identity between A20, D4 and E9 of vaccinia and the corresponding proteins of variola.
Collapse
Affiliation(s)
- Janice Elaine Y Silverman
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
42
|
Smee DF. Progress in the Discovery of Compounds Inhibiting Orthopoxviruses in Animal Models. ACTA ACUST UNITED AC 2008; 19:115-24. [DOI: 10.1177/095632020801900302] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surrogate animal models must be used for testing antiviral agents against variola (smallpox) virus infections. Once developed, these compounds can be stockpiled for use in the event of a bioterrorist incident involving either variola or monkeypox virus, or used to treat an occasional serious orthopoxvirus infection, such as disseminated vaccinia complication following expo-sure to the live virus vaccine. Recently, considerable progress has been made in the discovery of novel anti-viral agents found active against orthopoxviruses in vivo. This includes the development of new animal models or refinement of existing ones for compound efficacy testing. Current mouse models employ ectromelia, cowpox and vaccinia (WR and IHD strains) viruses with respiratory (lung) or tail lesion infections commonly studied. Rabbitpox and vaccinia (WR strain) viruses are available for rabbit infections. Monkeypox and variola viruses are used for infecting monkeys. This review describes these and other animal models, and covers compounds found active in vivo from 2003 to date. Cidofovir, known to be active against orthopox virus infections prior to 2003, has been studied extensively over recent years. New compounds showing promise are orally active inhibitors of orthopoxvirus infections that include ether lipid prodrugs of cidofovir and ( S)-HPMPA, ST-246, N-meth-anocarbathymidine ( N-MCT) and SRI 21950 (a 4'-thio derivative of iododeoxyuridine). Another compound with high activity but requiring parenteral administration is HPMPO-DAPy. Further development of these compounds is warranted.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
43
|
Becker MN, Obraztsova M, Kern ER, Quenelle DC, Keith KA, Prichard MN, Luo M, Moyer RW. Isolation and characterization of cidofovir resistant vaccinia viruses. Virol J 2008; 5:58. [PMID: 18479513 PMCID: PMC2397383 DOI: 10.1186/1743-422x-5-58] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 05/14/2008] [Indexed: 12/04/2022] Open
Abstract
Background The emergence of drug resistant viruses, together with the possibility of increased virulence, is an important concern in the development of new antiviral compounds. Cidofovir (CDV) is a phosphonate nucleotide that is approved for use against cytomegalovirus retinitis and for the emergency treatment of smallpox or complications following vaccination. One mode of action for CDV has been demonstrated to be the inhibition of the viral DNA polymerase. Results We have isolated several CDV resistant (CDVR) vaccinia viruses through a one step process, two of which have unique single mutations within the DNA polymerase. An additional resistant virus isolate provides evidence of a second site mutation within the genome involved in CDV resistance. The CDVR viruses were 3–7 fold more resistant to the drug than the parental viruses. The virulence of the CDVR viruses was tested in mice inoculated intranasally and all were found to be attenuated. Conclusion Resistance to CDV in vaccinia virus can be conferred individually by at least two different mutations within the DNA polymerase gene. Additional genes may be involved. This one step approach for isolating resistant viruses without serial passage and in the presence of low doses of drug minimizes unintended secondary mutations and is applicable to other potential antiviral agents.
Collapse
|
44
|
Identification of novel antipoxviral agents: mitoxantrone inhibits vaccinia virus replication by blocking virion assembly. J Virol 2007; 81:13392-402. [PMID: 17928345 DOI: 10.1128/jvi.00770-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bioterror threat of a smallpox outbreak in an unvaccinated population has mobilized efforts to develop new antipoxviral agents. By screening a library of known drugs, we identified 13 compounds that inhibited vaccinia virus replication at noncytotoxic doses. The anticancer drug mitoxantrone is unique among the inhibitors identified in that it has no apparent impact on viral gene expression. Rather, it blocks processing of viral structural proteins and assembly of mature progeny virions. The isolation of mitoxantrone-resistant vaccinia strains underscores that a viral protein is the likely target of the drug. Whole-genome sequencing of mitoxantrone-resistant viruses pinpointed missense mutations in the N-terminal domain of vaccinia DNA ligase. Despite its favorable activity in cell culture, mitoxantrone administered intraperitoneally at the maximum tolerated dose failed to protect mice against a lethal intranasal infection with vaccinia virus.
Collapse
|
45
|
Quenelle DC, Prichard MN, Keith KA, Hruby DE, Jordan R, Painter GR, Robertson A, Kern ER. Synergistic efficacy of the combination of ST-246 with CMX001 against orthopoxviruses. Antimicrob Agents Chemother 2007; 51:4118-24. [PMID: 17724153 PMCID: PMC2151443 DOI: 10.1128/aac.00762-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The combination of ST-246 and hexadecyloxypropyl-cidofovir or CMX001 was evaluated for synergistic activity in vitro against vaccinia virus and cowpox virus (CV) and in vivo against CV. In cell culture the combination was highly synergistic against both viruses, and the results suggested that combined treatment with these agents might offer superior efficacy in vivo. For animal models, ST-246 was administered orally with or without CMX001 to mice lethally infected with CV. Treatments began 1, 3, or 6 days postinfection using lower dosages than previously used for single-drug treatment. ST-246 was given at 10, 3, or 1 mg/kg of body weight with or without CMX001 at 3, 1, or 0.3 mg/kg to evaluate potential synergistic interactions. Treatment beginning 6 days post-viral inoculation with ST-246 alone only increased the mean day to death at 10 or 3 mg/kg but had no effect on survival. CMX001 alone also had no effect on survival. When the combination of the two drugs was begun 6 days after viral infection using various dosages of the two, a synergistic reduction in mortality was observed. No evidence of increased toxicity was noted with the combination either in vitro or in vivo. These results indicate that combinations of ST-246 and CMX001 are synergistic both in vitro and in vivo and suggest that combination therapy using ST-246 and CMX001 for treatment of orthopoxvirus disease in humans or animals may provide an additional benefit over the use of the two drugs by themselves.
Collapse
Affiliation(s)
- Debra C Quenelle
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
De Clercq E. Status Presens of Antiviral Drugs And Strategies: Part I: DNA Viruses and Retroviruses. ADVANCES IN ANTIVIRAL DRUG DESIGN 2007; 5:1-58. [PMID: 32288472 PMCID: PMC7146823 DOI: 10.1016/s1075-8593(06)05001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
More than 40 compounds have been formally licensed for clinical use as antiviral drugs, and half of these are used for the treatment of HIV infections. The others have been approved for the therapy of herpesvirus (HSV, VZV, CMV), hepadnavirus (HBV), hepacivirus (HCV) and myxovirus (influenza, RSV) infections. New compounds are in clinical development or under preclinical evaluation, and, again, half of these are targeting HIV infections. Yet, quite a number of important viral pathogens (i.e. HPV, HCV, hemorrhagic fever viruses) remain in need of effective and/or improved antiviral therapies.
Collapse
|