1
|
Walker LA, Bagonza V, Bobb B, Sullivan DJ. Modified dosing schedule efficacy of fosmidomycin and clindamycin against murine malaria Plasmodium berghei. Int J Parasitol Drugs Drug Resist 2024; 27:100577. [PMID: 39746289 PMCID: PMC11754493 DOI: 10.1016/j.ijpddr.2024.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Fosmidomycin and clindamycin target the Plasmodium apicoplast. Combination clinical trials have produced mixed results with the primary problem being the recrudescent infection frequency by day 28. Given that antibiotic efficacy against bacterial infections often depends on the constant drug presence over several days, we hypothesized that the antimalarial blood or liver stage efficacy of fosmidomycin and clindamycin could be improved by implementing a more frequent dosing schedule. A blood stage murine malaria P. berghei GFP-luciferase low and high parasitemia model was implemented to follow pharmacodynamics and cure for modified dose, schedule and duration of individual and combination fosmidomycin and clindamycin. P. berghei sporozoites were used to investigate fosmidomycin during the 48 h murine liver stage. Here we observed that the same total dose of fosmidomycin and clindamycin, alone and in combination, are more efficacious when scheduled in smaller, more frequent doses. Fosmidomycin added measurably small additional killing in combination with clindamycin. Despite dosing every 6 h during liver stages, fosmidomycin was inhibitory, but noncurative even with addition of atorvastatin to decrease hepatocyte production of mevalonate. We have also demonstrated in vitro efficacy of fosmidomycin and clindamycin against P. falciparum C580Y with IC50s similar to those for drug sensitive P. falciparum. The dosing schedule of quinoline and artemisinin partner drugs fosmidomycin or clindamycin targeting the apicoplast should maximize time above minimum inhibitory concentration.
Collapse
Affiliation(s)
- Leah A Walker
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21210, USA
| | - Vision Bagonza
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21210, USA
| | - Bryce Bobb
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21210, USA
| | - David J Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21210, USA.
| |
Collapse
|
2
|
Recent approaches in the drug research and development of novel antimalarial drugs with new targets. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:1-27. [PMID: 36692468 DOI: 10.2478/acph-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.
Collapse
|
3
|
Over 40 Years of Fosmidomycin Drug Research: A Comprehensive Review and Future Opportunities. Pharmaceuticals (Basel) 2022; 15:ph15121553. [PMID: 36559004 PMCID: PMC9782300 DOI: 10.3390/ph15121553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
To address the continued rise of multi-drug-resistant microorganisms, the development of novel drugs with new modes of action is urgently required. While humans biosynthesize the essential isoprenoid precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) via the established mevalonate pathway, pathogenic protozoa and certain pathogenic eubacteria use the less well-known methylerythritol phosphate pathway for this purpose. Important pathogens using the MEP pathway are, for example, Plasmodium falciparum, Mycobacterium tuberculosis, Pseudomonas aeruginosa and Escherichia coli. The enzymes of that pathway are targets for antiinfective drugs that are exempt from target-related toxicity. 2C-Methyl-D-erythritol 4-phosphate (MEP), the second enzyme of the non-mevalonate pathway, has been established as the molecular target of fosmidomycin, an antibiotic that has so far failed to be approved as an anti-infective drug. This review describes the development and anti-infective properties of a wide range of fosmidomycin derivatives synthesized over the last four decades. Here we discuss the DXR inhibitor pharmacophore, which comprises a metal-binding group, a phosphate or phosphonate moiety and a connecting linker. Furthermore, non-fosmidomycin-based DXRi, bisubstrate inhibitors and several prodrug concepts are described. A comprehensive structure-activity relationship (SAR) of nearly all inhibitor types is presented and some novel opportunities for further drug development of DXR inhibitors are discussed.
Collapse
|
4
|
Sharma D, Pareek A, Arya H, Soni R, Rai P, Agrawal A, Nimesh S, Kumar D, Yaragorla S, Bhatt TK. Synthesis and inhibition studies towards the discovery of benzodiazepines as potential antimalarial compounds. Exp Parasitol 2022; 243:108411. [DOI: 10.1016/j.exppara.2022.108411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
5
|
Bofill Verdaguer I, Sussmann RAC, Santiago VF, Palmisano G, Moura GC, Mesquita JT, Yamaguchi LF, Kato MJ, Katzin AM, Crispim M. Isoprenoid alcohols utilization by malaria parasites. Front Chem 2022; 10:1035548. [PMID: 36531309 PMCID: PMC9751614 DOI: 10.3389/fchem.2022.1035548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/15/2022] [Indexed: 05/14/2024] Open
Abstract
Plasmodium falciparum is the etiological agent of human malaria, one of the most widespread diseases in tropical and subtropical regions. Drug resistance is one of the biggest problems in controlling the disease, which leads to the need to discover new antimalarial compounds. One of the most promissory drugs purposed is fosmidomycin, an inhibitor of the biosynthesis of isoprene units by the methylerythritol 4-phosphate (MEP) pathway, which in some cases failed in clinical studies. Once formed, isoprene units are condensed to form longer structures such as farnesyl and geranylgeranyl pyrophosphate, which are necessary for Heme O and A formation, ubiquinone, and dolichyl phosphate biosynthesis as well as for protein isoprenylation. Even though the natural substrates of polyprenyl transferases and synthases are polyprenyl pyrophosphates, it was already demonstrated that isoprenoid alcohols (polyprenols) such as farnesol (FOH) and geranylgeraniol (GGOH) can rescue parasites from fosmidomycin. This study better investigated how this rescue phenomenon occurs by performing drug-rescue assays. Similarly, to FOH and GGOH, it was observed that phytol (POH), a 20-carbon plant isoprenoid, as well as unsaponifiable lipid extracts from foods rescue parasites from the antimalarial effect of fosmidomycin. Contrarily, neither dolichols nor nonaprenol rescue parasites from fosmidomycin. Considering this, here we characterized the transport of FOH, GGOH, and POH. Once incorporated, it was observed that these substances are phosphorylated, condensed into longer isoprenoid alcohols, and incorporated into proteins and dolichyl phosphates. Through proteomic and radiolabelling approaches, it was found that prenylated proteins are naturally attached to several isoprenoids, derived from GGOH, dolichol, and POH if exogenously added. Furthermore, the results suggest the presence of at least two promiscuous protein prenyltransferases in the parasite: one enzyme which can use FPP among other unidentified substrates and another enzyme that can use GGPP, phytyl pyrophosphate (PPP), and dolichols, among other substrates not identified here. Thus, further evidence was obtained for dolichols and other isoprenoid products attached to proteins. This study helps to better understand the apicoplast-targeting antimalarial mechanism of action and a novel post-translational modification of proteins in P. falciparum.
Collapse
Affiliation(s)
- Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Rodrigo A C Sussmann
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
- Center for Environmental Sciences, Institute of Humanities, Arts and Sciences, Federal University of Southern Bahia, Bahia, Brazil
| | - Verônica Feijoli Santiago
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Gabriel Cândido Moura
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Juliana Tonini Mesquita
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Lydia Fumiko Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Massuo Jorge Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alejandro Miguel Katzin
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Wroblewski K, Karrison T, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Padrieu G, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Holfels E, Frim D, McLone D, Penn R, Cohen W, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part I: Introduction and Overview. CURRENT PEDIATRICS REPORTS 2022; 10:57-92. [PMID: 36034212 PMCID: PMC9395898 DOI: 10.1007/s40124-022-00269-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Purpose of Review Review building of programs to eliminate Toxoplasma infections. Recent Findings Morbidity and mortality from toxoplasmosis led to programs in USA, Panama, and Colombia to facilitate understanding, treatment, prevention, and regional resources, incorporating student work. Summary Studies foundational for building recent, regional approaches/programs are reviewed. Introduction provides an overview/review of programs in Panamá, the United States, and other countries. High prevalence/risk of exposure led to laws mandating testing in gestation, reporting, and development of broad-based teaching materials about Toxoplasma. These were tested for efficacy as learning tools for high-school students, pregnant women, medical students, physicians, scientists, public health officials and general public. Digitized, free, smart phone application effectively taught pregnant women about toxoplasmosis prevention. Perinatal infection care programs, identifying true regional risk factors, and point-of-care gestational screening facilitate prevention and care. When implemented fully across all demographics, such programs present opportunities to save lives, sight, and cognition with considerable spillover benefits for individuals and societies. Supplementary Information The online version contains supplementary material available at 10.1007/s40124-022-00269-w.
Collapse
Affiliation(s)
| | - Kanix Wang
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Aliya Moreira
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Andrew Grose
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Karen Leahy
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ying Zhou
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Fatima Alibana Clouser
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Maryam Siddiqui
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Nicole Leong
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Perpetua Goodall
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Mahmoud Ismail
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Monica Christmas
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Stephen Schrantz
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Zuleima Caballero
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Ximena Norero
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Dora Estripeaut
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - David Ellis
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Catalina Raggi
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Catherine Castro
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Davina Moossazadeh
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Margarita Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Abhinav Pandey
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Kevin Ashi
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Samantha Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ashtyn Dixon
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Xuan Li
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Ian Begeman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Sharon Heichman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Joseph Lykins
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Delba Villalobos-Cerrud
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Lorena Fabrega
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - José Luis Sanchez Montalvo
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Connie Mendivil
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Mario R. Quijada
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Silvia Fernández-Pirla
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Academia Interamericana de Panamá, Ciudad de Panamá, Panamá
| | - Valli de La Guardia
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
| | - Digna Wong
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Mayrene Ladrón de Guevara
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
| | | | | | - Anabel García
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | | | - Claudia Rengifo-Herrera
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Maria Theresa Moreno de Saez
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Michael Politis
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
| | - Kristen Wroblewski
- Department of Public Health Sciences, The University of Chicago, Chicago, IL USA
| | - Theodore Karrison
- Department of Public Health Sciences, The University of Chicago, Chicago, IL USA
| | - Stephanie Ross
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Mimansa Dogra
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Vishan Dhamsania
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Nicholas Graves
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Marci Kirchberg
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Kopal Mathur
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Ashley Aue
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Carlos M. Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Alejandro Llanes
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - German Guzman
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Arturo Rebellon
- Sanofi Aventis de Panamá S.A., University of South Florida, Ciudad de Panamá, Panamá
| | - Kenneth Boyer
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Peter Heydemann
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - A. Gwendolyn Noble
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Charles Swisher
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Shawn Withers
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Teri Hull
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee, Knoxville, TN USA
| | - Michael Blair
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Paul Latkany
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Ernest Mui
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Alcibiades Villareal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | - Ambar Perez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
| | | | | | | | - Morgan Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Cy Chittenden
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Edward Wang
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Juliana Muñoz-Ortiz
- Grupo de Investigación en Neurociencias, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | - Guillermo Padrieu
- The University of South Florida College of Public Health, Tampa, FL USA
| | | | | | | | | | | | | | - Dan L. Nicolae
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Andrey Rzhetsky
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Nancy Roizen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Larry Sawers
- Department of Economics, American University, Washington, D.C. USA
| | - Francois Peyron
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Martine Wallon
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Emanuelle Chapey
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Pauline Levigne
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | | | | | - Jose Montoya
- Remington Specialty Laboratory, Palo Alto, CA USA
| | - Cindy Press
- Remington Specialty Laboratory, Palo Alto, CA USA
| | | | - Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | | | - Carlos Gomez
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Kelsey Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ellen Holfels
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard Penn
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - William Cohen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Samantha Zehar
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - James McAuley
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Sandrine Houze
- Laboratory of Parasitologie, Bichat-Claude Bernard Hospital, Paris, France
| | - Sylvie Abraham
- Laboratory of Parasitologie, Bichat-Claude Bernard Hospital, Paris, France
| | | | - Vera Tesic
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Kathleen Beavis
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ana Abeleda
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Mari Sautter
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | | | - Fatima Amarir
- Faculty of Sciences Ain Chock, University Hassan II, Casablanca, Morocco
| | - Kamal El Bissati
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- INH, Rabat, Morocco
| | | | - Gabrielle Britton
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Jorge Motta
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
| | - Eduardo Ortega-Barria
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
- GSK Vaccines, Panamá, Panamá
| | - Isabel Luz Romero
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panamá, Panamá
| | - Paul Meier
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Michael Grigg
- Molecular Parasitology, NIAID, NIH, Bethesda, MD USA
| | | | - Jagannatha Rao Kosagisharaf
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Xavier Sáez Llorens
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Osvaldo Reyes
- Hospital Santo Tomás, Ciudad de Panamá, Panamá
- Universidad de Panamá, Ciudad de Panamá, Panamá
- Member of the Sistema Nacional de investigadores de Panamá (SNI), Ciudad de Panamá, Panama
| | - Rima McLeod
- Toxoplasmosis Programs and Initiatives in Panamá, Ciudad de Panamá, Panamá
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Toxoplasmosis Center, The University of Chicago and Toxoplasmosis Research Institute, Chicago, IL USA
- Department of Pediatrics, Division of Infectious Diseases, The University of Chicago, Chicago, IL USA
| |
Collapse
|
7
|
Felín MS, Wang K, Moreira A, Grose A, Leahy K, Zhou Y, Clouser FA, Siddiqui M, Leong N, Goodall P, Michalowski M, Ismail M, Christmas M, Schrantz S, Caballero Z, Norero X, Estripeaut D, Ellis D, Raggi C, Castro C, Moossazadeh D, Ramirez M, Pandey A, Ashi K, Dovgin S, Dixon A, Li X, Begeman I, Heichman S, Lykins J, Villalobos-Cerrud D, Fabrega L, Montalvo JLS, Mendivil C, Quijada MR, Fernández-Pirla S, de La Guardia V, Wong D, de Guevara ML, Flores C, Borace J, García A, Caballero N, Rengifo-Herrera C, de Saez MTM, Politis M, Ross S, Dogra M, Dhamsania V, Graves N, Kirchberg M, Mathur K, Aue A, Restrepo CM, Llanes A, Guzman G, Rebellon A, Boyer K, Heydemann P, Noble AG, Swisher C, Rabiah P, Withers S, Hull T, Frim D, McLone D, Su C, Blair M, Latkany P, Mui E, Vasconcelos-Santos DV, Villareal A, Perez A, Galvis CAN, Montes MV, Perez NIC, Ramirez M, Chittenden C, Wang E, Garcia-López LL, Padrieu G, Muñoz-Ortiz J, Rivera-Valdivia N, Bohorquez-Granados MC, de-la-Torre GC, Hernandez JDV, Celis-Giraldo D, Dávila JAA, Torres E, Oquendo MM, Arteaga-Rivera JY, Nicolae DL, Rzhetsky A, Roizen N, Stillwaggon E, Sawers L, Peyron F, Wallon M, Chapey E, Levigne P, Charter C, De Frias M, Montoya J, Press C, Ramirez R, Contopoulos-Ioannidis D, Maldonado Y, Liesenfeld O, Gomez C, Wheeler K, Zehar S, McAuley J, Limonne D, Houze S, Abraham S, Piarroux R, Tesic V, Beavis K, Abeleda A, Sautter M, El Mansouri B, El Bachir A, Amarir F, El Bissati K, Holfels E, Frim D, McLone D, Penn R, Cohen W, de-la-Torre A, Britton G, Motta J, Ortega-Barria E, Romero IL, Meier P, Grigg M, Gómez-Marín J, Kosagisharaf JR, Llorens XS, Reyes O, McLeod R. Building Programs to Eradicate Toxoplasmosis Part IV: Understanding and Development of Public Health Strategies and Advances "Take a Village". CURRENT PEDIATRICS REPORTS 2022; 10:125-154. [PMID: 35991908 PMCID: PMC9379243 DOI: 10.1007/s40124-022-00268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/12/2022]
Abstract
Purpose of Review Review international efforts to build a global public health initiative focused on toxoplasmosis with spillover benefits to save lives, sight, cognition and motor function benefiting maternal and child health. Recent Findings Multiple countries' efforts to eliminate toxoplasmosis demonstrate progress and context for this review and new work. Summary Problems with potential solutions proposed include accessibility of accurate, inexpensive diagnostic testing, pre-natal screening and facilitating tools, missed and delayed neonatal diagnosis, restricted access, high costs, delays in obtaining medicines emergently, delayed insurance pre-approvals and high medicare copays taking considerable physician time and effort, harmful shortcuts being taken in methods to prepare medicines in settings where access is restricted, reluctance to perform ventriculoperitoneal shunts promptly when needed without recognition of potential benefit, access to resources for care, especially for marginalized populations, and limited use of recent advances in management of neurologic and retinal disease which can lead to good outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s40124-022-00268-x.
Collapse
Affiliation(s)
| | - Kanix Wang
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Aliya Moreira
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Andrew Grose
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Karen Leahy
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ying Zhou
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Fatima Alibana Clouser
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Maryam Siddiqui
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Nicole Leong
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Perpetua Goodall
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Mahmoud Ismail
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Monica Christmas
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Stephen Schrantz
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Zuleima Caballero
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Ximena Norero
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Dora Estripeaut
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - David Ellis
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Catalina Raggi
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Catherine Castro
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Davina Moossazadeh
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Margarita Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Abhinav Pandey
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Kevin Ashi
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Samantha Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Ashtyn Dixon
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Xuan Li
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Ian Begeman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Sharon Heichman
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Joseph Lykins
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Delba Villalobos-Cerrud
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Lorena Fabrega
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - José Luis Sanchez Montalvo
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Connie Mendivil
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Mario R. Quijada
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Silvia Fernández-Pirla
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Academia Interamericana de Panama, Ciudad de Panama, Panama
| | - Valli de La Guardia
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Hospital Santo Tomás, Ciudad de Panama, Panama
- Hospital San Miguel Arcángel, Ciudad de Panama, Panama
| | - Digna Wong
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Mayrene Ladrón de Guevara
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Hospital Santo Tomás, Ciudad de Panama, Panama
| | | | | | - Anabel García
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | | | - Claudia Rengifo-Herrera
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Universidad de Panama, Ciudad de Panama, Panama
| | - Maria Theresa Moreno de Saez
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
| | - Michael Politis
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
| | - Stephanie Ross
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Mimansa Dogra
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
| | - Vishan Dhamsania
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
| | - Nicholas Graves
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
| | - Marci Kirchberg
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Kopal Mathur
- Global Health Center Capstone Program, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Ashley Aue
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Harris School of Public Policy, The University of Chicago, Chicago, IL USA
| | - Carlos M. Restrepo
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Alejandro Llanes
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - German Guzman
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Arturo Rebellon
- Sanofi Aventis de Panama S.A., University of South Florida, Ciudad de Panama, Panama
| | - Kenneth Boyer
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - Peter Heydemann
- Rush University Medical School/Rush University Medical Center, Chicago, IL USA
| | - A. Gwendolyn Noble
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Charles Swisher
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Shawn Withers
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Teri Hull
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Chunlei Su
- Department of Microbiology, The University of Tennessee, Knoxville, TN USA
| | - Michael Blair
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Paul Latkany
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - Ernest Mui
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Alcibiades Villareal
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | - Ambar Perez
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
| | | | | | | | - Morgan Ramirez
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Cy Chittenden
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Edward Wang
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Guillermo Padrieu
- The University of South Florida College of Public Health, Tampa, FL USA
| | - Juliana Muñoz-Ortiz
- Grupo de Investigación en Neurociencias, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | | - Dan L Nicolae
- Department of Statistics, The University of Chicago, Chicago, IL USA
| | - Andrey Rzhetsky
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
| | - Nancy Roizen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | - Larry Sawers
- Department of Economics, American University, Washington, DC USA
| | - Francois Peyron
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Martine Wallon
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Emanuelle Chapey
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | - Pauline Levigne
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- Institut des agents infectieux, Hôpital de la Croix-Rousse, Lyon, France
| | | | | | - Jose Montoya
- Remington Specialty Laboratory, Palo Alto, CA USA
| | - Cindy Press
- Remington Specialty Laboratory, Palo Alto, CA USA
| | | | - Despina Contopoulos-Ioannidis
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Yvonne Maldonado
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | | | - Carlos Gomez
- Department of Pediatrics, Division of Infectious Diseases, Stanford University College of Medicine, Stanford, CA USA
| | - Kelsey Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | - Samantha Zehar
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - James McAuley
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | | | - Sandrine Houze
- Laboratory of Parasitologie, Bichat-Claude Bernard Hopital, Paris, France
| | - Sylvie Abraham
- Laboratory of Parasitologie, Bichat-Claude Bernard Hopital, Paris, France
| | | | - Vera Tesic
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Kathleen Beavis
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Ana Abeleda
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - Mari Sautter
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | | | - Fatima Amarir
- Faculty of Sciences Ain Chock, University Hassan II, Casablanca, Morocco
| | - Kamal El Bissati
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- INH, Rabat, Morocco
| | - Ellen Holfels
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
| | - David Frim
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - David McLone
- Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard Penn
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | - William Cohen
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
| | | | - Gabrielle Britton
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Jorge Motta
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
| | - Eduardo Ortega-Barria
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
- GSK Vaccines, Panama, Panama
| | - Isabel Luz Romero
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Ciudad de Panama, Panama
| | - Paul Meier
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
| | | | | | - Jagannatha Rao Kosagisharaf
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología AIP (INDICASAT-AIP), Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Xavier Sáez Llorens
- Department of Pediatrics Infectious Diseases/Department of Neonatology, Hospital del Niño doctor José Renán Esquivel, Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Osvaldo Reyes
- Hospital Santo Tomás, Ciudad de Panama, Panama
- Universidad de Panama, Ciudad de Panama, Panama
- Sistema Nacional de investigadores de Panama (SNI), Panama, Panama
| | - Rima McLeod
- Toxoplasmosis Programs and Initiatives in Panama, Ciudad de Panama, Panama
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL USA
- Pritzker School of Medicine, The University of Chicago, Chicago, IL USA
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL USA
- The College, The University of Chicago, Chicago, IL USA
- The Global Health Center, The University of Chicago, Chicago, IL USA
- Toxoplasmosis Center, The University of Chicago and Toxoplasmosis Research Institute, Chicago, IL USA
- Department of Pediatrics (Infectious Diseases), The University of Chicago, Chicago, IL USA
| |
Collapse
|
8
|
Lu Z, Wang B, Qiu Z, Zhang R, Zheng J, Jia Z. YdfD, a Lysis Protein of the Qin Prophage, Is a Specific Inhibitor of the IspG-Catalyzed Step in the MEP Pathway of Escherichia coli. Int J Mol Sci 2022; 23:ijms23031560. [PMID: 35163484 PMCID: PMC8835842 DOI: 10.3390/ijms23031560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
Bacterial cryptic prophage (defective prophage) genes are known to drastically influence host physiology, such as causing cell growth arrest or lysis, upon expression. Many phages encode lytic proteins to destroy the cell envelope. As natural antibiotics, only a few lysis target proteins were identified. ydfD is a lytic gene from the Qin cryptic prophage that encodes a 63-amino-acid protein, the ectopic expression of which in Escherichia coli can cause nearly complete cell lysis rapidly. The bacterial 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is responsible for synthesizing the isoprenoids uniquely required for sustaining bacterial growth. In this study, we provide evidence that YdfD can interact with IspG, a key enzyme involved in the MEP pathway, both in vivo and in vitro. We show that intact YdfD is required for the interaction with IspG to perform its lysis function and that the mRNA levels of ydfD increase significantly under certain stress conditions. Crucially, the cell lysis induced by YdfD can be abolished by the overexpression of ispG or the complementation of the IspG enzyme catalysis product methylerythritol 2,4-cyclodiphosphate. We propose that YdfD from the Qin cryptic prophage inhibits IspG to block the MEP pathway, leading to a compromised cell membrane and cell wall biosynthesis and eventual cell lysis.
Collapse
Affiliation(s)
- Zhifang Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Biying Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Zhiyu Qiu
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Ruiling Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China; (Z.L.); (B.W.); (Z.Q.); (R.Z.)
- Correspondence: (J.Z.); (Z.J.)
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada
- Correspondence: (J.Z.); (Z.J.)
| |
Collapse
|
9
|
Koehne E, Adegnika AA, Held J, Kreidenweiss A. Pharmacotherapy for artemisinin-resistant malaria. Expert Opin Pharmacother 2021; 22:2483-2493. [PMID: 34311639 DOI: 10.1080/14656566.2021.1959913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Malaria, the most devastating parasitic disease, is currently treated with artemisinin-based combination therapies (ACTs). Unfortunately, some ACTs are unable to rapidly clear Plasmodium falciparum parasites from the blood stream and are failing to cure malaria patients; a problem, so far, largely confined to Southeast Asia. There is a fear of resistant Plasmodium falciparum emerging in other parts of the world including Sub-Saharan Africa. Strategies for alternative treatments, ideally non-artemisinin based, are needed. AREAS COVERED This narrative review gives an overview of approved antimalarials and of some compounds in advanced drug development that could be used when an ACT is failing. The selection was based on a literature search in PubMed and WHO notes for malaria treatment. EXPERT OPINION The ACT drug class can still cure malaria in malaria endemic regions. However, the appropriate ACT drug should be chosen considering the background resistance of the partner drug of the local parasite population. Artesunate-pyronaridine, the 'newest' recommended ACT, and atovaquone-proguanil are, so far, effective, and safe treatments for uncomplicated falciparum malaria. Therefore, all available ACTs should be safeguarded from parasite resistance and the development of new antimalarial drug classes needs to be accelerated.
Collapse
Affiliation(s)
- Erik Koehne
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
10
|
Memvanga PB, Nkanga CI. Liposomes for malaria management: the evolution from 1980 to 2020. Malar J 2021; 20:327. [PMID: 34315484 PMCID: PMC8313885 DOI: 10.1186/s12936-021-03858-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Malaria is one of the most prevalent parasitic diseases and the foremost cause of morbidity in the tropical regions of the world. Strategies for the efficient management of this parasitic infection include adequate treatment with anti-malarial therapeutics and vaccination. However, the emergence and spread of resistant strains of malaria parasites to the majority of presently used anti-malarial medications, on the other hand, complicates malaria treatment. Other shortcomings of anti-malarial drugs include poor aqueous solubility, low permeability, poor bioavailability, and non-specific targeting of intracellular parasites, resulting in high dose requirements and toxic side effects. To address these limitations, liposome-based nanotechnology has been extensively explored as a new solution in malaria management. Liposome technology improves anti-malarial drug encapsulation, bioavailability, target delivery, and controlled release, resulting in increased effectiveness, reduced resistance progression, and fewer adverse effects. Furthermore, liposomes are exploited as immunological adjuvants and antigen carriers to boost the preventive effectiveness of malaria vaccine candidates. The present review discusses the findings from studies conducted over the last 40 years (1980-2020) using in vitro and in vivo settings to assess the prophylactic and curative anti-malarial potential of liposomes containing anti-malarial agents or antigens. This paper and the discussion herein provide a useful resource for further complementary investigations and may pave the way for the research and development of several available and affordable anti-malarial-based liposomes and liposomal malaria vaccines by allowing a thorough evaluation of liposomes developed to date for the management of malaria.
Collapse
Affiliation(s)
- Patrick B Memvanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo.
| | - Christian I Nkanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| |
Collapse
|
11
|
Pessanha de Carvalho L, Kreidenweiss A, Held J. Drug Repurposing: A Review of Old and New Antibiotics for the Treatment of Malaria: Identifying Antibiotics with a Fast Onset of Antiplasmodial Action. Molecules 2021; 26:2304. [PMID: 33921170 PMCID: PMC8071546 DOI: 10.3390/molecules26082304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria is one of the most life-threatening infectious diseases and constitutes a major health problem, especially in Africa. Although artemisinin combination therapies remain efficacious to treat malaria, the emergence of resistant parasites emphasizes the urgent need of new alternative chemotherapies. One strategy is the repurposing of existing drugs. Herein, we reviewed the antimalarial effects of marketed antibiotics, and described in detail the fast-acting antibiotics that showed activity in nanomolar concentrations. Antibiotics have been used for prophylaxis and treatment of malaria for many years and are of particular interest because they might exert a different mode of action than current antimalarials, and can be used simultaneously to treat concomitant bacterial infections.
Collapse
Affiliation(s)
- Lais Pessanha de Carvalho
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
- Centre de Recherches Medicales de Lambaréné (CERMEL), Lambaréné BP 242, Gabon
| | - Jana Held
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
- Centre de Recherches Medicales de Lambaréné (CERMEL), Lambaréné BP 242, Gabon
| |
Collapse
|
12
|
Development of sustainable research excellence with a global perspective on infectious diseases: Centre de Recherches Médicales de Lambaréné (CERMEL), Gabon. Wien Klin Wochenschr 2021; 133:500-508. [PMID: 33398458 PMCID: PMC7781170 DOI: 10.1007/s00508-020-01794-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Medical research in sub-Saharan Africa is of high priority for societies to respond adequately to local health needs. Often enough it remains a challenge to build up capacity in infrastructure and human resources to highest international standards and to sustain this over mid-term to long-term periods due to difficulties in obtaining long-term institutional core funding, attracting highly qualified scientists for medical research and coping with ever changing structural and political environments. The Centre de Recherches Médicales de Lambaréné (CERMEL) serves as model for how to overcome such challenges and to continuously increase its impact on medical care in Central Africa and beyond. Starting off as a research annex to the Albert Schweitzer Hospital in Lambaréné, Gabon, it has since then expanded its activities to academic and regulatory clinical trials for drugs, vaccines and diagnostics in the field of malaria, tuberculosis, and a wide range of poverty related and neglected tropical infectious diseases. Advancing bioethics in medical research in Africa and steadily improving its global networks and infrastructures, CERMEL serves as a reference centre for several international consortia. In close collaboration with national authorities, CERMEL has become one of the main training hubs for medical research in Central Africa. It is hoped that CERMEL and its leitmotiv “to improve medical care for local populations” will serve as an inspiration to other institutions in sub-Saharan Africa to further increase African capacity to advance medicine.
Collapse
|
13
|
Edwards RL, Heueck I, Lee SG, Shah IT, Miller JJ, Jezewski AJ, Mikati MO, Wang X, Brothers RC, Heidel KM, Osbourn DM, Burnham CAD, Alvarez S, Fritz SA, Dowd CS, Jez JM, Odom John AR. Potent, specific MEPicides for treatment of zoonotic staphylococci. PLoS Pathog 2020; 16:e1007806. [PMID: 32497104 PMCID: PMC7297381 DOI: 10.1371/journal.ppat.1007806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/16/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022] Open
Abstract
Coagulase-positive staphylococci, which frequently colonize the mucosal surfaces of animals, also cause a spectrum of opportunistic infections including skin and soft tissue infections, urinary tract infections, pneumonia, and bacteremia. However, recent advances in bacterial identification have revealed that these common veterinary pathogens are in fact zoonoses that cause serious infections in human patients. The global spread of multidrug-resistant zoonotic staphylococci, in particular the emergence of methicillin-resistant organisms, is now a serious threat to both animal and human welfare. Accordingly, new therapeutic targets that can be exploited to combat staphylococcal infections are urgently needed. Enzymes of the methylerythritol phosphate pathway (MEP) of isoprenoid biosynthesis represent potential targets for treating zoonotic staphylococci. Here we demonstrate that fosmidomycin (FSM) inhibits the first step of the isoprenoid biosynthetic pathway catalyzed by deoxyxylulose phosphate reductoisomerase (DXR) in staphylococci. In addition, we have both enzymatically and structurally determined the mechanism by which FSM elicits its effect. Using a forward genetic screen, the glycerol-3-phosphate transporter GlpT that facilitates FSM uptake was identified in two zoonotic staphylococci, Staphylococcus schleiferi and Staphylococcus pseudintermedius. A series of lipophilic ester prodrugs (termed MEPicides) structurally related to FSM were synthesized, and data indicate that the presence of the prodrug moiety not only substantially increased potency of the inhibitors against staphylococci but also bypassed the need for GlpT-mediated cellular transport. Collectively, our data indicate that the prodrug MEPicides selectively and robustly inhibit DXR in zoonotic staphylococci, and further, that DXR represents a promising, druggable target for future development.
Collapse
Affiliation(s)
- Rachel L. Edwards
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Isabel Heueck
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Soon Goo Lee
- University of North Carolina-Wilmington, Wilmington, North Carolina, United States of America
| | - Ishaan T. Shah
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Justin J. Miller
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew J. Jezewski
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Marwa O. Mikati
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xu Wang
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Robert C. Brothers
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Kenneth M. Heidel
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Damon M. Osbourn
- Department of Chemistry, Saint Louis University, St. Louis, Missouri, United States of America
| | - Carey-Ann D. Burnham
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sophie Alvarez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Stephanie A. Fritz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States of America
| | - Joseph M. Jez
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Audrey R. Odom John
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
14
|
Wang S, Li M, Luo X, Yu L, Nie Z, Liu Q, An X, Ao Y, Liu Q, Chen J, Tian Y, Zhao J, He L. Inhibitory Effects of Fosmidomycin Against Babesia microti in vitro. Front Cell Dev Biol 2020; 8:247. [PMID: 32411701 PMCID: PMC7198706 DOI: 10.3389/fcell.2020.00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/24/2020] [Indexed: 01/30/2023] Open
Abstract
Babesia microti, the main pathogen causing human babesiosis, has been reported to exhibit resistance to the traditional treatment of azithromycin + atovaquone and clindamycin + quinine, suggesting the necessity of developing new drugs. The methylerythritol 4-phosphate (MEP) pathway, a unique pathway in apicomplexan parasites, was shown to play a crucial function in the growth of Plasmodium falciparum. In the MEP pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) is a rate-limiting enzyme and fosmidomycin (FSM) is a reported inhibitor for this enzyme. DXR has been shown as an antimalarial drug target, but no report is available on B. microti DXR (BmDXR). Here BmDXR was cloned, sequenced, analyzed by bioinformatics, and evaluated as a potential drug target for inhibiting the growth of B. micorti in vitro. Drug assay was performed by adding different concentrations of FSM in B. microti in vitro culture. Rescue experiment was done by supplementing 200 μM isopentenyl pyrophosphate (IPP) or 5 μM geranylgeraniol (GG-ol) in the culture medium together with 5 μM FSM or 10 μM diminazene aceturate. The results indicated that FSM can inhibit the growth of B. microti in in vitro culture with an IC50 of 4.63 ± 0.12 μM, and growth can be restored by both IPP and GG-ol. Additionally, FSM is shown to inhibit the growth of parasites by suppressing the DXR activity, which agreed with the reported results of other apicomplexan parasites. Our results suggest the potential of DXR as a drug target for controlling B. microti and that FSM can inhibit the growth of B. microti in vitro.
Collapse
Affiliation(s)
- Sen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| | - Muxiao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| | - Xiaoying Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| | - Long Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| | - Zheng Nie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| | - Qin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| | - Xiaomeng An
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| | - Yangsiqi Ao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China
| | - Qin Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Jiaxu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Yu Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lan He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Abstract
The scientific community worldwide has realized that malaria elimination will not be possible without development of safe and effective transmission-blocking interventions. Primaquine, the only WHO recommended transmission-blocking drug, is not extensively utilized because of the toxicity issues in G6PD deficient individuals. Therefore, there is an urgent need to develop novel therapeutic interventions that can target malaria parasites and effectively block transmission. But at first, it is imperative to unravel the existing portfolio of transmission-blocking drugs. This review highlights transmission-blocking potential of current antimalarial drugs and drugs that are in various stages of clinical development. The collective analysis of the relationships between the structure and the activity of transmission-blocking drugs is expected to help in the design of new transmission-blocking antimalarials.
Collapse
|
16
|
Histone deacetylase inhibitors with high in vitro activities against Plasmodium falciparum isolates collected from Gabonese children and adults. Sci Rep 2019; 9:17336. [PMID: 31758015 PMCID: PMC6874535 DOI: 10.1038/s41598-019-53912-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023] Open
Abstract
Histone deacetylase (HDAC) enzymes are targets for the development of antimalarial drugs with a different mode of action to established antimalarials. Broad-spectrum HDAC-inhibitors show high potency against Plasmodium falciparum, but displayed some toxicity towards human cells. Inhibitors of human HDAC6 are new drug candidates with supposed reduced toxicity to human cells and favorable activities against laboratory P. falciparum strains. We investigated the potency of 12 peptoid-based HDAC-inhibitors against asexual stages of P. falciparum clinical isolates. Parasites representing different genetic backgrounds were isolated from adults and children with uncomplicated malaria in Gabon. Clinical studies on (non-HDAC-inhibitors) antimalarials, moreover, found lower drug efficacy in children, mainly attributed to acquired immunity with age in endemic areas. Therefore, we compared the in vitro sensitivity profiles of adult- and child-derived isolates to antimalarials (HDAC and standard drugs). All HDAC-inhibitors showed 50% inhibitory concentrations at nanomolar ranges with higher activities than the FDA approved reference HDAC-inhibitor SAHA. We propose peptoid-based HDAC6-inhibitors to be lead structures for further development as antimalarial chemotherapeutics. Our results further suggest no differences in activity of the tested antimalarials between P. falciparum parasites isolated from children and adults.
Collapse
|
17
|
Targeting the apicoplast in malaria. Biochem Soc Trans 2019; 47:973-983. [PMID: 31383817 DOI: 10.1042/bst20170563] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022]
Abstract
Malaria continues to be one of the leading causes of human mortality in the world, and the therapies available are insufficient for eradication. Severe malaria is caused by the apicomplexan parasite Plasmodium falciparum Apicomplexan parasites, including the Plasmodium spp., are descendants of photosynthetic algae, and therefore they possess an essential plastid organelle, named the apicoplast. Since humans and animals have no plastids, the apicoplast is an attractive target for drug development. Indeed, after its discovery, the apicoplast was found to host the target pathways of some known antimalarial drugs, which motivated efforts for further research into its biological functions and biogenesis. Initially, many apicoplast inhibitions were found to result in 'delayed death', whereby parasite killing is seen only at the end of one invasion-egress cycle. This slow action is not in line with the current standard for antimalarials, which seeded scepticism about the potential of compounds targeting apicoplast functions as good candidates for drug development. Intriguingly, recent evidence of apicoplast inhibitors causing rapid killing could put this organelle back in the spotlight. We provide an overview of drugs known to inhibit apicoplast pathways, alongside recent findings in apicoplast biology that may provide new avenues for drug development.
Collapse
|
18
|
Biosca A, Dirscherl L, Moles E, Imperial S, Fernàndez-Busquets X. An ImmunoPEGliposome for Targeted Antimalarial Combination Therapy at the Nanoscale. Pharmaceutics 2019; 11:pharmaceutics11070341. [PMID: 31315185 PMCID: PMC6680488 DOI: 10.3390/pharmaceutics11070341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
Combination therapies, where two drugs acting through different mechanisms are administered simultaneously, are one of the most efficient approaches currently used to treat malaria infections. However, the different pharmacokinetic profiles often exhibited by the combined drugs tend to decrease treatment efficacy as the compounds are usually eliminated from the circulation at different rates. To circumvent this obstacle, we have engineered an immunoliposomal nanovector encapsulating hydrophilic and lipophilic compounds in its lumen and lipid bilayer, respectively. The antimalarial domiphen bromide has been encapsulated in the liposome membrane with good efficiency, although its high IC50 of ca. 1 µM for living parasites complicates its use as immunoliposomal therapy due to erythrocyte agglutination. The conjugation of antibodies against glycophorin A targeted the nanocarriers to Plasmodium-infected red blood cells and to gametocytes, the sole malaria parasite stage responsible for the transmission from the human to the mosquito vector. The antimalarials pyronaridine and atovaquone, which block the development of gametocytes, have been co-encapsulated in glycophorin A-targeted immunoliposomes. The co-immunoliposomized drugs have activities significantly higher than their free forms when tested in in vitro Plasmodium falciparum cultures: Pyronaridine and atovaquone concentrations that, when encapsulated in immunoliposomes, resulted in a 50% inhibition of parasite growth had no effect on the viability of the pathogen when used as free drugs.
Collapse
Affiliation(s)
- Arnau Biosca
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
| | - Lorin Dirscherl
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
| | - Ernest Moles
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, PO Box 81, Randwick, NSW 2031, Australia
- School of Women's and Children's Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Santiago Imperial
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Avda. Diagonal 643, ES-08028 Barcelona, Spain
| | - Xavier Fernàndez-Busquets
- Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain.
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain.
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| |
Collapse
|
19
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
20
|
Ussin NK, Bagnell AM, Offermann LR, Abdulsalam R, Perdue ML, Magee P, Chruszcz M. Structural characterization of 1-deoxy-D-xylulose 5-phosphate Reductoisomerase from Vibrio vulnificus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1209-1215. [PMID: 30278288 DOI: 10.1016/j.bbapap.2018.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Vibrio vulnificus, a gram-negative bacterium, is the leading cause of seafood-borne illnesses and mortality in the United States. Previous studies have identified metabolites 2-C-methylerythritol 4-phosphate (MEP) as being essential for V. vulnificus growth and function. It was shown that 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr) is a critical enzyme in the viability of V. vulnificus, and many other bacteria, as it catalyzes the rearrangement of 1-deoxy-D-xylulose-5-phosphate (Dxp) to 2-C-methylerythritol 4-phosphate (MEP) within the MEP pathway, found in plants and bacteria. The MEP pathway produces the isoprenoids, isopentenyl diphosphate and dimethylallyl pyrophosphate. In this study, we produced and structurally characterized V. vulnificus Dxr. The enzyme forms a dimeric assembly and contains a metal ion in the active site. Protein produced in Escherichia coli co-purifies with Mg2+ ions, however the Mg2+ cations may be substituted with Mn2+, as both of these metals may be utilized by Dxrs. These findings will provide a basis for the design of Dxr inhibitors that may find application as antimicrobial compounds.
Collapse
Affiliation(s)
- Nikita K Ussin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Anna M Bagnell
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Lesa R Offermann
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States; Department of Chemistry, Davidson College, Davidson, NC 28035, United States
| | - Rawan Abdulsalam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Makenzie L Perdue
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Patrick Magee
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
21
|
Wang X, Edwards RL, Ball H, Johnson C, Haymond A, Girma M, Manikkam M, Brothers RC, McKay KT, Arnett SD, Osbourn DM, Alvarez S, Boshoff HI, Meyers MJ, Couch RD, Odom John AR, Dowd CS. MEPicides: α,β-Unsaturated Fosmidomycin Analogues as DXR Inhibitors against Malaria. J Med Chem 2018; 61:8847-8858. [PMID: 30192536 DOI: 10.1021/acs.jmedchem.8b01026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Severe malaria due to Plasmodium falciparum remains a significant global health threat. DXR, the second enzyme in the MEP pathway, plays an important role to synthesize building blocks for isoprenoids. This enzyme is a promising drug target for malaria due to its essentiality as well as its absence in humans. In this study, we designed and synthesized a series of α,β-unsaturated analogues of fosmidomycin, a natural product that inhibits DXR in P. falciparum. All compounds were evaluated as inhibitors of P. falciparum. The most promising compound, 18a, displays on-target, potent inhibition against the growth of P. falciparum (IC50 = 13 nM) without significant inhibition of HepG2 cells (IC50 > 50 μM). 18a was also tested in a luciferase-based Plasmodium berghei mouse model of malaria and showed exceptional in vivo efficacy. Together, the data support MEPicide 18a as a novel, potent, and promising drug candidate for the treatment of malaria.
Collapse
Affiliation(s)
- Xu Wang
- Department of Chemistry , George Washington University , Washington D.C. 20052 , United States
| | - Rachel L Edwards
- Department of Pediatrics , Washington University School of Medicine, Washington University , St. Louis , Missouri 63110 , United States
| | - Haley Ball
- Department of Chemistry and Biochemistry , George Mason University , Manassas , Virginia 20110 , United States
| | - Claire Johnson
- Department of Chemistry and Biochemistry , George Mason University , Manassas , Virginia 20110 , United States
| | - Amanda Haymond
- Department of Chemistry and Biochemistry , George Mason University , Manassas , Virginia 20110 , United States
| | - Misgina Girma
- Department of Chemistry and Biochemistry , George Mason University , Manassas , Virginia 20110 , United States
| | - Michelle Manikkam
- Tuberculosis Research Section, LCIM , NIAID/NIH , Bethesda , Maryland 20892 , United States
| | - Robert C Brothers
- Department of Chemistry , George Washington University , Washington D.C. 20052 , United States
| | - Kyle T McKay
- Department of Chemistry , George Washington University , Washington D.C. 20052 , United States
| | - Stacy D Arnett
- Department of Pharmacology and Physiology , Saint Louis University , St. Louis , Missouri 63104 , United States
| | - Damon M Osbourn
- Department of Molecular Microbiology and Immunology , Saint Louis University , St. Louis , Missouri 63104 , United States
| | - Sophie Alvarez
- Proteomics & Metabolomics Facility, Center for Biotechnology, Department of Agronomy and Horticulture , University of Nebraska-Lincoln , Lincoln , Nebraska 68588 , United States
| | - Helena I Boshoff
- Tuberculosis Research Section, LCIM , NIAID/NIH , Bethesda , Maryland 20892 , United States
| | - Marvin J Meyers
- Department of Pharmacology and Physiology , Saint Louis University , St. Louis , Missouri 63104 , United States.,Department of Chemistry , Saint Louis University , St. Louis , Missouri 63103 , United States
| | - Robin D Couch
- Department of Chemistry and Biochemistry , George Mason University , Manassas , Virginia 20110 , United States
| | - Audrey R Odom John
- Department of Pediatrics , Washington University School of Medicine, Washington University , St. Louis , Missouri 63110 , United States
| | - Cynthia S Dowd
- Department of Chemistry , George Washington University , Washington D.C. 20052 , United States
| |
Collapse
|
22
|
Abstract
The last two decades have seen a surge in antimalarial drug development with product development partnerships taking a leading role. Resistance of Plasmodium falciparum to the artemisinin derivatives, piperaquine and mefloquine in Southeast Asia means new antimalarials are needed with some urgency. There are at least 13 agents in clinical development. Most of these are blood schizonticides for the treatment of uncomplicated falciparum malaria, under evaluation either singly or as part of two-drug combinations. Leading candidates progressing through the pipeline are artefenomel-ferroquine and lumefantrine-KAF156, both in Phase 2b. Treatment of severe malaria continues to rely on two parenteral drugs with ancient forebears: artesunate and quinine, with sevuparin being evaluated as an adjuvant therapy. Tafenoquine is under review by stringent regulatory authorities for approval as a single-dose treatment for Plasmodium vivax relapse prevention. This represents an advance over standard 14-day primaquine regimens; however, the risk of acute haemolytic anaemia in patients with glucose-6-phosphate dehydrogenase deficiency remains. For disease prevention, several of the newer agents show potential but are unlikely to be recommended for use in the main target groups of pregnant women and young children for some years. Latest predictions are that the malaria burden will continue to be high in the coming decades. This fact, coupled with the repeated loss of antimalarials to resistance, indicates that new antimalarials will be needed for years to come. Failure of the artemisinin-based combinations in Southeast Asia has stimulated a reappraisal of current approaches to combination therapy for malaria with incorporation of three or more drugs in a single treatment under consideration.
Collapse
Affiliation(s)
- Elizabeth A Ashley
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar.
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| | | |
Collapse
|
23
|
McFadden GI, Yeh E. The apicoplast: now you see it, now you don't. Int J Parasitol 2016; 47:137-144. [PMID: 27773518 DOI: 10.1016/j.ijpara.2016.08.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Parasites such as Plasmodium and Toxoplasma possess a vestigial plastid homologous to the chloroplasts of algae and plants. The plastid (known as the apicoplast; for apicomplexan plastid) is non-photosynthetic and very much reduced, but has clear endosymbiotic ancestry including a circular genome that encodes RNAs and proteins and a suite of bacterial biosynthetic pathways. Here we review the initial discovery of the apicoplast, and recount the major new insights into apicoplast origin, biogenesis and function. We conclude by examining how the apicoplast can be removed from malaria parasites in vitro, ultimately completing its reduction by chemical supplementation.
Collapse
Affiliation(s)
| | - Ellen Yeh
- Department of Biochemistry, Stanford Medical School, Stanford, CA, USA; Department of Pathology, Stanford Medical School, Stanford, CA, USA
| |
Collapse
|
24
|
Sooriyaarachchi S, Chofor R, Risseeuw MDP, Bergfors T, Pouyez J, Dowd CS, Maes L, Wouters J, Jones TA, Van Calenbergh S, Mowbray SL. Targeting an Aromatic Hotspot in Plasmodium falciparum
1-Deoxy-d
-xylulose-5-phosphate Reductoisomerase with β-Arylpropyl Analogues of Fosmidomycin. ChemMedChem 2016; 11:2024-36. [DOI: 10.1002/cmdc.201600249] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/09/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Sanjeewani Sooriyaarachchi
- Science for Life Laboratory; Department of Cell and Molecular Biology; Uppsala University; Biomedical Center; Box 596 751 24 Uppsala Sweden
| | - René Chofor
- Laboratory for Medicinal Chemistry (FFW); Gent University; Ottergemsesteenweg 460 9000 Gent Belgium
| | - Martijn D. P. Risseeuw
- Laboratory for Medicinal Chemistry (FFW); Gent University; Ottergemsesteenweg 460 9000 Gent Belgium
| | - Terese Bergfors
- Science for Life Laboratory; Department of Cell and Molecular Biology; Uppsala University; Biomedical Center; Box 596 751 24 Uppsala Sweden
| | - Jenny Pouyez
- Department of Chemistry; University of Namur; Rue de Bruxelles 61 5000 Namur Belgium
| | - Cynthia S. Dowd
- Department of Chemistry; George Washington University; Washington DC 20052 USA
| | - Louis Maes
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH); University of Antwerp; Universiteitsplein 1 2610 Antwerp Belgium
| | - Johan Wouters
- Department of Chemistry; University of Namur; Rue de Bruxelles 61 5000 Namur Belgium
| | - T. Alwyn Jones
- Science for Life Laboratory; Department of Cell and Molecular Biology; Uppsala University; Biomedical Center; Box 596 751 24 Uppsala Sweden
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW); Gent University; Ottergemsesteenweg 460 9000 Gent Belgium
| | - Sherry L. Mowbray
- Science for Life Laboratory; Department of Cell and Molecular Biology; Uppsala University; Biomedical Center; Box 596 751 24 Uppsala Sweden
| |
Collapse
|
25
|
Wiesner J, Ziemann C, Hintz M, Reichenberg A, Ortmann R, Schlitzer M, Fuhst R, Timmesfeld N, Vilcinskas A, Jomaa H. FR-900098, an antimalarial development candidate that inhibits the non-mevalonate isoprenoid biosynthesis pathway, shows no evidence of acute toxicity and genotoxicity. Virulence 2016; 7:718-28. [PMID: 27260413 PMCID: PMC4991342 DOI: 10.1080/21505594.2016.1195537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
FR-900098 is an inhibitor of 1-deoxy-d-xylulose-5-phosphate (DXP) reductoisomerase, the second enzyme in the non-mevalonate isoprenoid biosynthesis pathway. In previous studies, FR-900098 was shown to possess potent antimalarial activity in vitro and in a murine malaria model. In order to provide a basis for further preclinical and clinical development, we studied the acute toxicity and genotoxicity of FR-900098. We observed no acute toxicity in rats, i.e. there were no clinical signs of toxicity and no substance-related deaths after the administration of a single dose of 3000 mg/kg body weight orally or 400 mg/kg body weight intravenously. No mutagenic potential was detected in the Salmonella typhimurium reverse mutation assay (Ames test) or an in vitro mammalian cell gene mutation test using mouse lymphoma L5178Y/TK(+/-) cells (clone 3.7.2C), both with and without metabolic activation. In addition, FR-900098 demonstrated no clastogenic or aneugenic capability or significant adverse effects on blood formation in an in vivo micronucleus test with bone marrow erythrocytes from NMRI mice. We conclude that FR-900098 lacks acute toxicity and genotoxicity, supporting its further development as an antimalarial drug.
Collapse
Affiliation(s)
- Jochen Wiesner
- a Department of Bioresources , Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Gießen , Germany
| | - Christina Ziemann
- b Fraunhofer Institute for Toxicology and Experimental Medicine ITEM , Hannover , Germany
| | - Martin Hintz
- c Institut für Laboratoriumsmedizin und Pathobiochemie, Molekulare Diagnostik am Standort Gießen, Universitätsklinikum Gießen und Marburg GmbH , Gießen , Germany
| | - Armin Reichenberg
- d Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marburg , Germany
| | - Regina Ortmann
- d Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marburg , Germany
| | - Martin Schlitzer
- d Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marburg , Germany
| | - Rainer Fuhst
- b Fraunhofer Institute for Toxicology and Experimental Medicine ITEM , Hannover , Germany
| | - Nina Timmesfeld
- e Institut für Medizinische Biometrie und Epidemiologie, Philipps-Universität Marburg , Marburg , Germany
| | - Andreas Vilcinskas
- a Department of Bioresources , Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Gießen , Germany.,f Institute for Insect Biotechnology, Justus-Liebig-University of Gießen , Gießen , Germany
| | - Hassan Jomaa
- g Institut für Laboratoriumsmedizin und Pathobiochemie, Molekulare Diagnostik am Standort Marburg, Universitätsklinikum Gießen und Marburg GmbH , Marburg , Germany
| |
Collapse
|
26
|
Armstrong CM, Meyers DJ, Imlay LS, Freel Meyers C, Odom AR. Resistance to the antimicrobial agent fosmidomycin and an FR900098 prodrug through mutations in the deoxyxylulose phosphate reductoisomerase gene (dxr). Antimicrob Agents Chemother 2015; 59:5511-9. [PMID: 26124156 PMCID: PMC4538460 DOI: 10.1128/aac.00602-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/20/2015] [Indexed: 11/20/2022] Open
Abstract
There is a pressing need for new antimicrobial therapies to combat globally important drug-resistant human pathogens, including Plasmodium falciparum malarial parasites, Mycobacterium tuberculosis, and Gram-negative bacteria, including Escherichia coli. These organisms all possess the essential methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis, which is not found in humans. The first dedicated enzyme of the MEP pathway, 1-deoxy-d-xylulose 5-phosphate reductoisomerase (Dxr), is inhibited by the phosphonic acid antibiotic fosmidomycin and its analogs, including the N-acetyl analog FR900098 and the phosphoryl analog fosfoxacin. In order to identify mutations in dxr that confer resistance to these drugs, a library of E. coli dxr mutants was screened at lethal fosmidomycin doses. The most resistant allele (with the S222T mutation) alters the fosmidomycin-binding site of Dxr. The expression of this resistant allele increases bacterial resistance to fosmidomycin and other fosmidomycin analogs by 10-fold. These observations confirm that the primary cellular target of fosmidomycin is Dxr. Furthermore, cell lines expressing Dxr-S222T will be a powerful tool to confirm the mechanisms of action of future fosmidomycin analogs.
Collapse
Affiliation(s)
- Christopher M Armstrong
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David J Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Leah S Imlay
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Caren Freel Meyers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Audrey R Odom
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Fernandes JF, Lell B, Agnandji ST, Obiang RM, Bassat Q, Kremsner PG, Mordmüller B, Grobusch MP. Fosmidomycin as an antimalarial drug: a meta-analysis of clinical trials. Future Microbiol 2015; 10:1375-90. [PMID: 26228767 DOI: 10.2217/fmb.15.60] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
With first indications of resistance against artemisinin compounds, the development of novel alternative antimalarials remains an urgent need. One candidate is fosmidomycin (Fos), a phosphonic acid derivative. This PRISMA guideline-adhering and PROSPERO-registered systematic review and meta-analysis provides an overview of the state-of-the-art of the clinical development of Fos as an antimalarial. Pooling six clinical trials of Fos against uncomplicated malaria in African children yielded an overall day 28 cure rate of 85% (95% CI: 71-98%); a parasite clearance time of 39 h; and a fever clearance time of 30 h. In four adult cohorts, the corresponding values were 70% (95% CI: 40-100%), 49 and 42 h, respectively. Data suggest that besides the partner drug, formulation determines efficacy. We advocate further clinical development of Fos-combinations. PROSPERO registration number: CRD42014013688.
Collapse
Affiliation(s)
- Jose Francisco Fernandes
- Institut für Tropenmedizin, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, BP 118 Lambaréné, Gabon.,Center of Tropical Medicine & Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Bertrand Lell
- Institut für Tropenmedizin, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, BP 118 Lambaréné, Gabon
| | - Selidji Todagbe Agnandji
- Institut für Tropenmedizin, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, BP 118 Lambaréné, Gabon
| | - Regis Maurin Obiang
- Centre de Recherches Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, BP 118 Lambaréné, Gabon
| | - Quique Bassat
- Barcelona Center for International Health Research (CRESIB, Hospital Clíníc-Universitat de Barcelona), Barcelona, Spain.,Centro de investigação em saúde de Manhiça (CISM), Maputo, Mozambique
| | - Peter Gottfried Kremsner
- Institut für Tropenmedizin, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, BP 118 Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, BP 118 Lambaréné, Gabon
| | - Martin Peter Grobusch
- Institut für Tropenmedizin, University of Tübingen, Wilhelmstraße 27, D-72074 Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné (CERMEL), Albert Schweitzer Hospital, BP 118 Lambaréné, Gabon.,Center of Tropical Medicine & Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
28
|
Imlay LS, Armstrong CM, Masters MC, Li T, Price KE, Edwards RL, Mann KM, Li LX, Stallings CL, Berry NG, O’Neill PM, Odom AR. Plasmodium IspD (2-C-Methyl-D-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target. ACS Infect Dis 2015; 1:157-167. [PMID: 26783558 DOI: 10.1021/id500047s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
As resistance to current therapies spreads, novel antimalarials are urgently needed. In this work, we examine the potential for therapeutic intervention via the targeting of Plasmodium IspD (2-C-methyl-D-erythritol 4-phosphate cytidyltransferase), the second dedicated enzyme of the essential methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis. Enzymes of this pathway represent promising therapeutic targets because the pathway is not present in humans. The Malaria Box compound, MMV008138, inhibits Plasmodium falciparum growth, and PfIspD has been proposed as a candidate intracellular target. We find that PfIspD is the sole intracellular target of MMV008138 and characterize the mode of inhibition and target-based resistance, providing chemical validation of this target. Additionally, we find that the Pf ISPD genetic locus is refractory to disruption in malaria parasites, providing independent genetic validation for efforts targeting this enzyme. This work provides compelling support for IspD as a druggable target for the development of additional, much-needed antimalarial agents.
Collapse
Affiliation(s)
| | | | | | - Ting Li
- College of Medicine, University of Toledo, Toledo, Ohio 43614, United States
| | - Kathryn E. Price
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | | | | | | | | | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K
| | | |
Collapse
|
29
|
Chofor R, Sooriyaarachchi S, Risseeuw MDP, Bergfors T, Pouyez J, Johny C, Haymond A, Everaert A, Dowd CS, Maes L, Coenye T, Alex A, Couch RD, Jones TA, Wouters J, Mowbray SL, Van Calenbergh S. Synthesis and Bioactivity of β-Substituted Fosmidomycin Analogues Targeting 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase. J Med Chem 2015; 58:2988-3001. [DOI: 10.1021/jm5014264] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- René Chofor
- Laboratory
for Medicinal Chemistry (FFW), Universiteit Gent, Ottergemsesteenweg
460, B-9000 Gent, Belgium
| | - Sanjeewani Sooriyaarachchi
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Martijn D. P. Risseeuw
- Laboratory
for Medicinal Chemistry (FFW), Universiteit Gent, Ottergemsesteenweg
460, B-9000 Gent, Belgium
| | - Terese Bergfors
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Jenny Pouyez
- Department
of Chemistry, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Chinchu Johny
- Department
of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Amanda Haymond
- Department
of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Annelien Everaert
- Laboratory
of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Cynthia S. Dowd
- Department
of Chemistry, George Washington University, Washington, D.C. 20052, United States
| | - Louis Maes
- Laboratory
for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical,
Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein
1, B-2610 Antwerp, Belgium
| | - Tom Coenye
- Laboratory
of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Alexander Alex
- Evenor Consulting Ltd., The
New Barn, Mill Lane, Eastry, Kent CT13 0JW, United Kingdom
| | - Robin D. Couch
- Department
of Chemistry and Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - T. Alwyn Jones
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Johan Wouters
- Department
of Chemistry, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Sherry L. Mowbray
- Department
of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Biomedical
Center, Box 596, SE-751 24 Uppsala, Sweden
| | - Serge Van Calenbergh
- Laboratory
for Medicinal Chemistry (FFW), Universiteit Gent, Ottergemsesteenweg
460, B-9000 Gent, Belgium
| |
Collapse
|
30
|
Held J, Jeyaraj S, Kreidenweiss A. Antimalarial compounds in Phase II clinical development. Expert Opin Investig Drugs 2015; 24:363-82. [PMID: 25563531 DOI: 10.1517/13543784.2015.1000483] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Malaria is a major health problem in endemic countries and chemotherapy remains the most important tool in combating it. Treatment options are limited and essentially rely on a single drug class - the artemisinins. Efforts are ongoing to restrict the evolving threat of artemisinin resistance but declining sensitivity has been reported. Fueled by the ambitious aim of malaria eradication, novel antimalarial compounds, with improved properties, are now in the progressive phase of drug development. AREAS COVERED Herein, the authors describe antimalarial compounds currently in Phase II clinical development and present the results of these investigations. EXPERT OPINION Thanks to recent efforts, a number of promising antimalarial compounds are now in the pipeline. First safety data have been generated for all of these candidates, although their efficacy as antimalarials is still unclear for most of them. Of particular note are KAE609, KAF156 and DSM265, which are of chemical scaffolds new to malaria chemotherapy and would truly diversify antimalarial options. Apart from SAR97276, which also has a novel chemical scaffold that has had its development stopped, all other compounds in the pipeline belong to already known substance classes, which have been chemically modified. At this moment in time, there is not one standout compound that will revolutionize malaria treatment but several compounds that will add to its control in the future.
Collapse
Affiliation(s)
- Jana Held
- Institut für Tropenmedizin, Eberhard Karls Universität , Wilhelmstraße 27, D-72074 Tübingen , Germany +49 7071 29 85569 ; +49 7071 295189 ;
| | | | | |
Collapse
|
31
|
Inhibition of the Non-Mevalonate Isoprenoid Pathway by Reverse Hydroxamate Analogues of Fosmidomycin. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proche.2015.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Mechanism and inhibition of 1-deoxy-d-xylulose-5-phosphate reductoisomerase. Bioorg Chem 2014; 57:171-185. [DOI: 10.1016/j.bioorg.2014.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 12/23/2022]
|
33
|
Konzuch S, Umeda T, Held J, Hähn S, Brücher K, Lienau C, Behrendt CT, Gräwert T, Bacher A, Illarionov B, Fischer M, Mordmüller B, Tanaka N, Kurz T. Binding modes of reverse fosmidomycin analogs toward the antimalarial target IspC. J Med Chem 2014; 57:8827-38. [PMID: 25254502 DOI: 10.1021/jm500850y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1-Deoxy-d-xylulose 5-phosphate reductoisomerase of Plasmodium falciparum (PfIspC, PfDxr), believed to be the rate-limiting enzyme of the nonmevalonate pathway of isoprenoid biosynthesis (MEP pathway), is a clinically validated antimalarial target. The enzyme is efficiently inhibited by the natural product fosmidomycin. To gain new insights into the structure activity relationships of reverse fosmidomycin analogs, several reverse analogs of fosmidomycin were synthesized and biologically evaluated. The 4-methoxyphenyl substituted derivative 2c showed potent inhibition of PfIspC as well as of P. falciparum growth and was more than one order of magnitude more active than fosmidomycin. The binding modes of three new derivatives in complex with PfIspC, reduced nicotinamide adenine dinucleotide phosphate, and Mg(2+) were determined by X-ray structure analysis. Notably, PfIspC selectively binds the S-enantiomers of the study compounds.
Collapse
Affiliation(s)
- Sarah Konzuch
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität , Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bhuyan R, Nandy SK, Seal A. Anin silicostructural insights intoPlasmodiumLytB protein and its inhibition. J Biomol Struct Dyn 2014; 33:1198-210. [DOI: 10.1080/07391102.2014.938248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Kholodar SA, Tombline G, Liu J, Tan Z, Allen CL, Gulick AM, Murkin AS. Alteration of the flexible loop in 1-deoxy-D-xylulose-5-phosphate reductoisomerase boosts enthalpy-driven inhibition by fosmidomycin. Biochemistry 2014; 53:3423-31. [PMID: 24825256 PMCID: PMC4045324 DOI: 10.1021/bi5004074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR),
which catalyzes the first committed step in the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis
used by Mycobacterium tuberculosis and other infectious
microorganisms, is absent in humans and therefore an attractive drug
target. Fosmidomycin is a nanomolar inhibitor of DXR, but despite
great efforts, few analogues with comparable potency have been developed.
DXR contains a strictly conserved residue, Trp203, within a flexible
loop that closes over and interacts with the bound inhibitor. We report
that while mutation to Ala or Gly abolishes activity, mutation to
Phe and Tyr only modestly impacts kcat and Km. Moreover, pre-steady-state kinetics
and primary deuterium kinetic isotope effects indicate that while
turnover is largely limited by product release for the wild-type enzyme,
chemistry is significantly more rate-limiting for W203F and W203Y.
Surprisingly, these mutants are more sensitive to inhibition by fosmidomycin,
resulting in Km/Ki ratios up to 19-fold higher than that of wild-type DXR. In
agreement, isothermal titration calorimetry revealed that fosmidomycin
binds up to 11-fold more tightly to these mutants. Most strikingly,
mutation strongly tips the entropy–enthalpy balance of total
binding energy from 50% to 75% and 91% enthalpy in W203F and W203Y,
respectively. X-ray crystal structures suggest that these enthalpy
differences may be linked to differences in hydrogen bond interactions
involving a water network connecting fosmidomycin’s phosphonate
group to the protein. These results confirm the importance of the
flexible loop, in particular Trp203, in ligand binding and suggest
that improved inhibitor affinity may be obtained against the wild-type
protein by introducing interactions with this loop and/or the surrounding
structured water network.
Collapse
Affiliation(s)
- Svetlana A Kholodar
- Department of Chemistry, University at Buffalo , Buffalo, New York 14260-3000, United States
| | | | | | | | | | | | | |
Collapse
|
36
|
Sub-inhibitory fosmidomycin exposures elicits oxidative stress in Salmonella enterica serovar Typhimurium LT2. PLoS One 2014; 9:e95271. [PMID: 24751777 PMCID: PMC3994034 DOI: 10.1371/journal.pone.0095271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 03/26/2014] [Indexed: 01/16/2023] Open
Abstract
Fosmidomycin is a time-dependent nanomolar inhibitor of methylerythritol phosphate (MEP) synthase, which is the enzyme that catalyzes the first committed step in the MEP pathway to isoprenoids. Importantly, fosmidomycin is one of only a few MEP pathway-specific inhibitors that exhibits antimicrobial activity. Most inhibitors identified to date only exhibit activity against isolated pathway enzymes. The MEP pathway is the sole route to isoprenoids in many bacteria, yet has no human homologs. The development of inhibitors of this pathway holds promise as novel antimicrobial agents. Similarly, analyses of the bacterial response toward MEP pathway inhibitors provides valuable information toward the understanding of how emergent resistance may ultimately develop to this class of antibiotics. We have examined the transcriptional response of Salmonella enterica serovar typhimurium LT2 to sub-inhibitory concentrations of fosmidomycin via cDNA microarray and RT-PCR. Within the regulated genes identified by microarray were a number of genes encoding enzymes associated with the mediation of reactive oxygen species (ROS). Regulation of a panel of genes implicated in the response of cells to oxidative stress (including genes for catalases, superoxide dismutases, and alkylhydrogen peroxide reductases) was investigated and mild upregulation in some members was observed as a function of fosmidomycin exposure over time. The extent of regulation of these genes was similar to that observed for comparable exposures to kanamycin, but differed significantly from tetracycline. Furthermore, S. typhimurium exposed to sub-inhibitory concentrations of fosmidomycin displayed an increased sensitivity to exogenous H2O2 relative to either untreated controls or kanamycin-treated cells. Our results suggest that endogenous oxidative stress is one consequence of exposures to fosmidomycin, likely through the temporal depletion of intracellular isoprenoids themselves, rather than other mechanisms that have been proposed to facilitate ROS accumulation in bacteria (e.g. cell death processes or the ability of the antibiotic to redox cycle).
Collapse
|
37
|
Masini T, Kroezen BS, Hirsch AK. Druggability of the enzymes of the non-mevalonate-pathway. Drug Discov Today 2013; 18:1256-62. [DOI: 10.1016/j.drudis.2013.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/27/2013] [Accepted: 07/04/2013] [Indexed: 12/13/2022]
|
38
|
Gupta A, Mir SS, Saqib U, Biswas S, Vaishya S, Srivastava K, Siddiqi MI, Habib S. The effect of fusidic acid on Plasmodium falciparum elongation factor G (EF-G). Mol Biochem Parasitol 2013; 192:39-48. [PMID: 24211494 DOI: 10.1016/j.molbiopara.2013.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/30/2022]
Abstract
Inhibition of growth of the malaria parasite Plasmodium falciparum by known translation-inhibitory antibiotics has generated interest in understanding their action on the translation apparatus of the two genome containing organelles of the malaria parasite: the mitochondrion and the relic plastid (apicoplast). We report GTPase activity of recombinant EF-G proteins that are targeted to the organelles and further use these to test the effect of the EF-G inhibitor fusidic acid (FA) on the factor-ribosome interface. Our results monitoring locking of EF-G·GDP onto surrogate Escherichia coli ribosomes as well as multi-turnover GTP hydrolysis by the factor indicate that FA has a greater effect on apicoplast EF-G compared to the mitochondrial counterpart. Deletion of a three amino acid (GVG) sequence in the switch I loop that is conserved in proteins of the mitochondrial EF-G1 family and the Plasmodium mitochondrial factor, but is absent in apicoplast EF-G, demonstrated that this motif contributes to differential inhibition of the two EF-Gs by FA. Additionally, the drug thiostrepton, that is known to target the apicoplast and proteasome, enhanced retention of only mitochondrial EF-G on ribosomes providing support for the reported effect of the drug on parasite mitochondrial translation.
Collapse
Affiliation(s)
- Ankit Gupta
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Snober S Mir
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Uzma Saqib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Subir Biswas
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Suniti Vaishya
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kumkum Srivastava
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Habib
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
39
|
Improved efficacy of fosmidomycin against Plasmodium and Mycobacterium species by combination with the cell-penetrating peptide octaarginine. Antimicrob Agents Chemother 2013; 57:4689-98. [PMID: 23856773 DOI: 10.1128/aac.00427-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellular drug delivery can improve efficacy and render intracellular pathogens susceptible to compounds that cannot permeate cells. The transport of physiologically active compounds across membranes into target cells can be facilitated by cell-penetrating peptides (CPPs), such as oligoarginines. Here, we investigated whether intracellular delivery of the drug fosmidomycin can be improved by combination with the CPP octaarginine. Fosmidomycin is an antibiotic that inhibits the second reaction in the nonmevalonate pathway of isoprenoid biosynthesis, an essential pathway for many obligate intracellular pathogens, including mycobacteria and apicomplexan parasites. We observed a strict correlation between octaarginine host cell permeability and its ability to improve the efficacy of fosmidomycin. Plasmodium berghei liver-stage parasites were only partially susceptible to an octaarginine-fosmidomycin complex. Similarly, Toxoplasma gondii was only susceptible during the brief extracellular stages. In marked contrast, a salt complex of octaarginine and fosmidomycin greatly enhanced efficacy against blood-stage Plasmodium falciparum. This complex and a covalently linked conjugate of octaarginine and fosmidomycin also reverted resistance of Mycobacteria to fosmidomycin. These findings provide chemical genetic evidence for vital roles of the nonmevalonate pathway of isoprenoid biosynthesis in a number of medically relevant pathogens. Our results warrant further investigation of octaarginine as a delivery vehicle and alternative fosmidomycin formulations for malaria and tuberculosis drug development.
Collapse
|
40
|
Haussig JM, Matuschewski K, Kooij TWA. Experimental Genetics of Plasmodium berghei NFU in the Apicoplast Iron-Sulfur Cluster Biogenesis Pathway. PLoS One 2013; 8:e67269. [PMID: 23805304 PMCID: PMC3689711 DOI: 10.1371/journal.pone.0067269] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 05/16/2013] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic pathogens of the phylum Apicomplexa contain a non-photosynthetic plastid, termed apicoplast. Within this organelle distinct iron-sulfur [Fe-S] cluster proteins are likely central to biosynthesis pathways, including generation of isoprenoids and lipoic acid. Here, we targeted a nuclear-encoded component of the apicoplast [Fe-S] cluster biosynthesis pathway by experimental genetics in the murine malaria parasite Plasmodium berghei. We show that ablation of the gene encoding a nitrogen fixation factor U (NifU)-like domain containing protein (NFUapi) resulted in parasites that were able to complete the entire life cycle indicating redundant or non-essential functions. nfu– parasites displayed reduced merosome formation in vitro, suggesting that apicoplast NFUapi plays an auxiliary role in establishing a blood stage infection. NFUapi fused to a combined fluorescent protein-epitope tag delineates the Plasmodium apicoplast and was tested to revisit inhibition of liver stage development by azithromycin and fosmidomycin. We show that the branched apicoplast signal is entirely abolished by azithromycin treatment, while fosmidomycin had no effect on apicoplast morphology. In conclusion, our experimental genetics analysis supports specialized and/or redundant role(s) for NFUapi in the [Fe-S] cluster biosynthesis pathway in the apicoplast of a malarial parasite.
Collapse
Affiliation(s)
- Joana M. Haussig
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Taco W. A. Kooij
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
41
|
Evans BS, Zhao C, Gao J, Evans CM, Ju KS, Doroghazi JR, van der Donk WA, Kelleher NL, Metcalf WW. Discovery of the antibiotic phosacetamycin via a new mass spectrometry-based method for phosphonic acid detection. ACS Chem Biol 2013; 8:908-13. [PMID: 23474169 DOI: 10.1021/cb400102t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Naturally occurring phosphonates such as phosphinothricin (Glufosinate, a commercially used herbicide) and fosfomycin (Monurol, a clinically used antibiotic) have proved to be potent and useful biocides. Yet this class of natural products is still an under explored family of secondary metabolites. Discovery of the biosynthetic pathways responsible for the production of these compounds has been simplified by using gene based screening approaches, but detection and identification of the natural products the genes produce have been hampered by a lack of high-throughput methods for screening potential producers under various culture conditions. Here, we present an efficient mass-spectrometric method for the selective detection of natural products containing phosphonate and phosphinate functional groups. We have used this method to identify a new phosphonate metabolite, phosacetamycin, whose structure, biological activity, and biosynthetic gene cluster are reported.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Neil L. Kelleher
- Northwestern University, Evanston, Illinois 60208, United States
| | | |
Collapse
|
42
|
Janthawornpong K, Krasutsky S, Chaignon P, Rohmer M, Poulter CD, Seemann M. Inhibition of IspH, a [4Fe-4S]2+ enzyme involved in the biosynthesis of isoprenoids via the methylerythritol phosphate pathway. J Am Chem Soc 2013; 135:1816-22. [PMID: 23316732 DOI: 10.1021/ja309557s] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The MEP pathway, which is absent in animals but present in most pathogenic bacteria, in the parasite responsible for malaria and in plant plastids, is a target for the development of antimicrobial drugs. IspH, an oxygen-sensitive [4Fe-4S] enzyme, catalyzes the last step of this pathway and converts (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A crucial step in the mechanism of this enzyme is the binding of the C4 hydroxyl of HMBPP to the unique fourth iron site in the [4Fe-4S](2+) moiety. Here, we report the synthesis and the kinetic investigations of two new extremely potent inhibitors of E. coli IspH where the OH group of HMBPP is replaced by an amino and a thiol group. (E)-4-Mercapto-3-methylbut-2-en-1-yl diphosphate is a reversible tight-binding inhibitor of IspH with K(i) = 20 ± 2 nM. A detailed kinetic analysis revealed that (E)-4-amino-3-methylbut-2-en-1-yl diphosphate is a reversible slow-binding inhibitor of IspH with K(i) = 54 ± 19 nM. The slow binding behavior of this inhibitor is best described by a one-step mechanism with the slow step consisting of the formation of the enzyme-inhibitor (EI) complex.
Collapse
Affiliation(s)
- Karnjapan Janthawornpong
- Université de Strasbourg, CNRS UMR 7177, Institut Le Bel, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
43
|
Dechy-Cabaret O, Benoit-Vical F. Effects of Antimalarial Molecules on the Gametocyte Stage of Plasmodium falciparum: The Debate. J Med Chem 2012; 55:10328-44. [DOI: 10.1021/jm3005898] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Odile Dechy-Cabaret
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP
44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
| | - Françoise Benoit-Vical
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 Route de Narbonne, BP
44099, F-31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 4, France
- Service de Parasitologie-Mycologie
and Faculté de Médecine de Rangueil, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| |
Collapse
|
44
|
Abstract
Malaria chemotherapy is under constant threat from the emergence and spread of multidrug resistance of Plasmodium falciparum. Resistance has been observed to almost all currently used antimalarials. Some drugs are also limited by toxicity. A fundamental component of the strategy for malaria chemotherapy is based on prompt, effective and safe antimalarial drugs. To counter the threat of resistance of P. falciparum to existing monotherapeutic regimens, current malaria treatment is based principally on the artemisinin group of compounds, either as monotherapy or artemisinin-based combination therapies for treatment of both uncomplicated and severe falciparum malaria. Key advantages of artemisinins over the conventional antimalarials include their rapid and potent action, with good tolerability profiles. Their action also covers transmissible gametocytes, resulting in decreased disease transmission. Up to now there has been no prominent report of drug resistance to this group of compounds. Treatment of malaria in pregnant women requires special attention in light of limited treatment options caused by potential teratogenicity coupled with a paucity of safety data for the mother and fetus. Treatment of other malaria species is less problematic and chloroquine is still the drug of choice, although resistance of P. vivax to chloroquine has been reported. Multiple approaches to the identification of new antimalarial targets and promising antimalarial drugs are being pursued in order to cope with drug resistance.
Collapse
Affiliation(s)
- Kesara Na-Bangchang
- Faculty of Allied Health Sciences, Thammasat University (Rangsit Campus), Paholyothin Road, Klong Luang District, Pathumtanee 12121, Thailand.
| |
Collapse
|
45
|
|
46
|
Brücher K, Illarionov B, Held J, Tschan S, Kunfermann A, Pein MK, Bacher A, Gräwert T, Maes L, Mordmüller B, Fischer M, Kurz T. α-Substituted β-oxa isosteres of fosmidomycin: synthesis and biological evaluation. J Med Chem 2012; 55:6566-75. [PMID: 22731758 DOI: 10.1021/jm300652f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Specific inhibition of enzymes of the non-mevalonate pathway is a promising strategy for the development of novel antiplasmodial drugs. α-Aryl-substituted β-oxa isosteres of fosmidomycin with a reverse orientation of the hydroxamic acid group were synthesized and evaluated for their inhibitory activity against recombinant 1-deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) of Plasmodium falciparum and for their in vitro antiplasmodial activity against chloroquine-sensitive and resistant strains of P. falciparum . The most active derivative inhibits IspC protein of P. falciparum (PfIspC) with an IC(50) value of 12 nM and shows potent in vitro antiplasmodial activity. In addition, lipophilic ester prodrugs demonstrated improved P. falciparum growth inhibition in vitro.
Collapse
Affiliation(s)
- Karin Brücher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich Heine Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cai G, Deng L, Fryszczyn BG, Brown NG, Liu Z, Jiang H, Palzkill T, Song Y. Thermodynamic Investigation of Inhibitor Binding to 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase. ACS Med Chem Lett 2012; 3:496-500. [PMID: 23050057 PMCID: PMC3462030 DOI: 10.1021/ml300071w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/07/2012] [Indexed: 11/29/2022] Open
Abstract
Isothermal titration calorimetry (ITC) was used to investigate the binding of six inhibitors to 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), a target for developing novel anti-infectives. The binding of hydroxamate inhibitors to E. coli DXR is Mg(2+)-dependent, highly endothermic (ΔH: 22.7-24.3 kJ/mol) and entropy-driven, while that of non-hydroxamate compounds is metal ion independent and exothermic (ΔH: -19.4- -13.8 kJ/mol), showing hydration/dehydration of the enzyme metal ion binding pocket account for the drastic ΔH change. However, for DXRs from Plasmodium falciparum and Mycobacterium tuberculosis, the binding of all inhibitors is exothermic (ΔH: -24.9 - -9.2 kJ/mol), suggesting the metal ion binding sites of these two enzymes are considerably less hydrated. The dissociation constants measured by ITC are well correlated with those obtained by enzyme inhibition assays (R(2) = 0.75). Given the rapid rise of antibiotic resistance, this work is of interest since it provides novel structural implications for rational development of potent DXR inhibitors.
Collapse
Affiliation(s)
- Guobin Cai
- Department
of Pharmacology and Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor
Plaza, Houston, Texas 77030, United States
| | - Lisheng Deng
- Department
of Pharmacology and Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor
Plaza, Houston, Texas 77030, United States
| | - Bartlomiej G. Fryszczyn
- Department
of Pharmacology and Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor
Plaza, Houston, Texas 77030, United States
| | - Nicholas G. Brown
- Department
of Pharmacology and Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor
Plaza, Houston, Texas 77030, United States
| | - Zhen Liu
- Department
of Pharmacology and Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor
Plaza, Houston, Texas 77030, United States
| | - Hong Jiang
- Department
of Pharmacology and Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor
Plaza, Houston, Texas 77030, United States
| | - Timothy Palzkill
- Department
of Pharmacology and Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor
Plaza, Houston, Texas 77030, United States
| | - Yongcheng Song
- Department
of Pharmacology and Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor
Plaza, Houston, Texas 77030, United States
| |
Collapse
|
48
|
Schütz AP, Osawa S, Mathis J, Hirsch AKH, Bernet B, Illarionov B, Fischer M, Bacher A, Diederich F. Exploring the Ribose Sub-Pocket of the Substrate-Binding Site in Escherichia coli IspE: Structure-Based Design, Synthesis, and Biological Evaluation of Cytosines and Cytosine Analogues. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Inadequate efficacy of a new formulation of fosmidomycin-clindamycin combination in Mozambican children less than three years old with uncomplicated Plasmodium falciparum malaria. Antimicrob Agents Chemother 2012; 56:2923-8. [PMID: 22430959 DOI: 10.1128/aac.00018-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The combination of fosmidomycin and clindamycin (F/C) is effective in adults and older children for the treatment of malaria and could be an important alternative to existing artemisinin-based combinations (ACTs) if proven to work in younger children. We conducted an open-label clinical trial to assess the efficacy, safety, and tolerability of F/C for the treatment of uncomplicated P. falciparum malaria in Mozambican children <3 years of age. Aqueous solutions of the drugs were given for 3 days, and the children were followed up for 28 days. The primary outcome was the PCR-corrected adequate clinical and parasitological response at day 28. Secondary outcomes included day 7 and 28 uncorrected cure rates and fever (FCT) and parasite (PCT) clearance times. Fifty-two children were recruited, but only 37 patients were evaluable for the primary outcome. Day 7 cure rates were high (94.6%; 35/37), but the day 28 PCR-corrected cure rate was 45.9% (17/37). The FCT was short (median, 12 h), but the PCT was longer (median, 72 h) than in previous studies. Tolerability was good, and most common adverse events were related to the recurrence of malaria. The poor efficacy observed for the F/C combination may be a consequence of the new formulations used, differential bioavailability in younger children, naturally occurring variations in parasite sensitivity to the drugs, or an insufficient enhancement of their effects by naturally acquired immunity in young children. Additional studies should be conducted to respond to the many uncertainties arising from this trial, which should not discourage further evaluation of this promising combination.
Collapse
|
50
|
Jordão FM, Kimura EA, Katzin AM. Isoprenoid biosynthesis in the erythrocytic stages of Plasmodium falciparum. Mem Inst Oswaldo Cruz 2012; 106 Suppl 1:134-41. [PMID: 21881768 DOI: 10.1590/s0074-02762011000900018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/15/2011] [Indexed: 12/19/2022] Open
Abstract
The development of new drugs is one strategy for malaria control. Biochemical pathways localised in the apicoplast of the parasite, such as the synthesis of isoprenic precursors, are excellent targets because they are different or absent in the human host. Isoprenoids are a large and highly diverse group of natural products with many functions and their synthesis is essential for the parasite's survival. During the last few years, the genes, enzymes, intermediates and mechanisms of this biosynthetic route have been elucidated. In this review, we comment on some aspects of the methylerythritol phosphate pathway and discuss the presence of diverse isoprenic products such as dolichol, ubiquinone, carotenoids, menaquinone and isoprenylated proteins, which are biosynthesised during the intraerythrocytic stages of Plasmodium falciparum.
Collapse
Affiliation(s)
- Fabiana Morandi Jordão
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|