1
|
Simon A, Velloso-Junior SO, Mesquita RD, Fontao APGA, Costa TEMM, Honorio TS, Guimaraes TF, Sousa EGR, Viçosa AL, Sampaio ALF, do Carmo FA, Healy AM, Cabral LM, Castro RR. Development of inhaled moxifloxacin-metformin formulation as an alternative for pulmonary tuberculosis treatment. Int J Pharm 2024; 666:124740. [PMID: 39341387 DOI: 10.1016/j.ijpharm.2024.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Resistant M. tuberculosis strains threaten pulmonary tuberculosis (P-TB) control since they limit drug options. Drug repositioning and new development strategies are urgently required to overcome resistance. Studies have already shown the beneficial role of the oral antidiabetic metformin as an anti-tuberculosis adjuvant drug. This work aimed to develop an inhalatory dry powder co-formulation of metformin and moxifloxacin to figure out a future option for P-TB treatment. Pre-formulation evaluations indicated the physicochemical compatibility of constituents, demonstrating powder crystallinity and acceptable drug content. Eight moxifloxacin-metformin dry powder formulations were produced by spray drying, and solid-state characterizations showed partial amorphization, ascribed to moxifloxacin. Four formulations containing L-leucine exhibited micromeritic and in vitro deposition profiles indicating pulmonary delivery suitability, like spherical and corrugated particle surface, geometric diameters < 5 μm, high emitted doses (>85 %), and mass median aerodynamic diameters between 1-5 μm. The use of a second spray dryer model further optimized the aerodynamic properties and yield of the best formulation, demonstrating the influence of the equipment used on the product obtained. Moreover, the final formulation showed high in vitro cell tolerability and characteristics in permeability studies indicative of good drug retention in the lungs.
Collapse
Affiliation(s)
- A Simon
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - S O Velloso-Junior
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A P G A Fontao
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T E M M Costa
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T S Honorio
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - T F Guimaraes
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - E G R Sousa
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L Viçosa
- Laboratorio de Farmacotécnica Experimental, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L F Sampaio
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - F A do Carmo
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - A M Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - L M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R R Castro
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Parida KK, Lahiri M, Ghosh M, Dalal A, Kalia NP. P-glycoprotein inhibitors as an adjunct therapy for TB. Drug Discov Today 2024; 29:104108. [PMID: 39032811 DOI: 10.1016/j.drudis.2024.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The primary challenge in TB treatment is the emergence of multidrug-resistant TB (MDR-TB). One of the major factors responsible for MDR is the upregulation of efflux pumps. Permeation-glycoprotein (P-gp), an efflux pump, hinders the bioavailability of the administered drugs inside the infected cells. Simultaneously, angiogenesis, the formation of new blood vessels, contributes to drug delivery complexities. TB infection triggers a cascade of events that upregulates the expression of angiogenic factors and P-gp. The combined action of P-gp and angiogenesis foster the emergence of MDR-TB. Understanding these mechanisms is pivotal for developing targeted interventions to overcome MDR in TB. P-gp inhibitors, such as verapamil, and anti-angiogenic drugs, including bevacizumab, have shown improvement in TB drug delivery to granuloma. In this review, we discuss the potential of P-gp inhibitors as an adjunct therapy to shorten TB treatment.
Collapse
Affiliation(s)
- Kishan Kumar Parida
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Monali Lahiri
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Mainak Ghosh
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aman Dalal
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nitin Pal Kalia
- Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India.
| |
Collapse
|
3
|
Karakitsios E, Dokoumetzidis A. Extrapolation of lung pharmacokinetics of antitubercular drugs from preclinical species to humans using PBPK modelling. J Antimicrob Chemother 2024; 79:1362-1371. [PMID: 38598449 PMCID: PMC11144487 DOI: 10.1093/jac/dkae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
OBJECTIVES To develop physiologically based pharmacokinetic (PBPK) models for widely used anti-TB drugs, namely rifampicin, pyrazinamide, isoniazid, ethambutol and moxifloxacin lung pharmacokinetics (PK)-regarding both healthy and TB-infected tissue (cellular lesion and caseum)-in preclinical species and to extrapolate to humans. METHODS Empirical models were used for the plasma PK of each species, which were connected to multicompartment permeability-limited lung models within a middle-out PBPK approach with an appropriate physiological parameterization that was scalable across species. Lung's extracellular water (EW) was assumed to be the linking component between healthy and infected tissue, while passive diffusion was assumed for the drug transferring between cellular lesion and caseum. RESULTS In rabbits, optimized unbound fractions in intracellular water of rifampicin, moxifloxacin and ethambutol were 0.015, 0.056 and 0.08, respectively, while the optimized unbound fractions in EW of pyrazinamide and isoniazid in mice were 0.25 and 0.17, respectively. In humans, all mean extrapolated daily AUC and Cmax values of various lung regions were within 2-fold of the observed ones. Unbound concentrations in the caseum were lower than unbound plasma concentrations for both rifampicin and moxifloxacin. For rifampicin, unbound concentrations in cellular rim are slightly lower, while for moxifloxacin they are significantly higher than unbound plasma concentrations. CONCLUSIONS The developed PBPK approach was able to extrapolate lung PK from preclinical species to humans and to predict unbound concentrations in the various TB-infected regions, unlike empirical lung models. We found that plasma free drug PK is not always a good surrogate for TB-infected tissue unbound PK.
Collapse
Affiliation(s)
- Evangelos Karakitsios
- Department of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
- Pharma-Informatics Unit, Athena Research Center, Artemidos 6 & Epidavrou, 15125 Marousi, Greece
- Institute for Applied Computing “Mauro Picone”, National Research Council (CNR), Via dei Taurini 19, 00185 Rome, Italy
| | - Aristides Dokoumetzidis
- Department of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15784 Athens, Greece
- Pharma-Informatics Unit, Athena Research Center, Artemidos 6 & Epidavrou, 15125 Marousi, Greece
- Institute for Applied Computing “Mauro Picone”, National Research Council (CNR), Via dei Taurini 19, 00185 Rome, Italy
| |
Collapse
|
4
|
Shin E, Zhang Y, Zhou J, Lang Y, Sayed ARM, Werkman C, Jiao Y, Kumaraswamy M, Bulman ZP, Luna BM, Bulitta JB. Improved characterization of aminoglycoside penetration into human lung epithelial lining fluid via population pharmacokinetics. Antimicrob Agents Chemother 2024; 68:e0139323. [PMID: 38169309 PMCID: PMC10848756 DOI: 10.1128/aac.01393-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Aminoglycosides are important treatment options for serious lung infections, but modeling analyses to quantify their human lung epithelial lining fluid (ELF) penetration are lacking. We estimated the extent and rate of penetration for five aminoglycosides via population pharmacokinetics from eight published studies. The area under the curve in ELF vs plasma ranged from 50% to 100% and equilibration half-lives from 0.61 to 5.80 h, indicating extensive system hysteresis. Aminoglycoside ELF peak concentrations were blunted, but overall exposures were moderately high.
Collapse
Affiliation(s)
- Eunjeong Shin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yongzhen Zhang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jieqiang Zhou
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yinzhi Lang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Alaa R. M. Sayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Carolin Werkman
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | | | - Monika Kumaraswamy
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Infectious Diseases Section, VA San Diego Healthcare System, San Diego, California, USA
| | - Zackery P. Bulman
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| | - Brian M. Luna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
5
|
Erdogan T, Oguz H, Corum O. Effect of Dexketoprofen on the Disposition Kinetics of Moxifloxacin in Plasma and Lung in Male and Female Rats. Curr Drug Metab 2024; 25:63-70. [PMID: 38258775 DOI: 10.2174/0113892002282271231219044508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND The simultaneous use of NSAIDs and antibiotics is recommended for bacterial diseases in human and veterinary medicine. Moxifloxacin (MFX) and dexketoprofen (DEX) can be used simultaneously in bacterial infections. However, there are no studies on how the simultaneous use of DEX affects the pharmacokinetics of MFX in rats. OBJECTIVES The aim of this study was to determine the effect of DEX on plasma and lung pharmacokinetics of MFX in male and female rats. METHODS A total of 132 rats were randomly divided into 2 groups: MFX (n=66, 33 males/33 females) and MFX+DEX (n=66, 33 females/33 males). MFX at a dose of 20 mg/kg and DEX at a dose of 25 mg/kg were administered intraperitoneally. Plasma and lung concentrations of MFX were determined using the highperformance liquid chromatography-UV and pharmacokinetic parameters were evaluated by noncompartmental analysis. RESULTS Simultaneous administration of DEX increased the plasma and lung area under the curve from 0 to 8 h (AUC0-8) and peak concentration (Cmax) of MFX in rats, while it significantly decreased the total body clearance (CL/F). When female and male rats were compared, significant differences were detected in AUC0-8, Cmax, CL/F and volume of distribution. The AUC0-8lung/AUC0-8plasma ratios of MFX were calculated as 1.68 and 1.65 in female rats and 5.15 and 4.90 in male rats after single and combined use, respectively. CONCLUSION MFX was highly transferred to the lung tissue and this passage was remarkably higher in male rats. However, DEX administration increased the plasma concentration of MFX in both male and female rats but did not change its passage to the lung. However, there is a need for a more detailed investigation of the difference in the pharmacokinetics of MFX in male and female rats.
Collapse
Affiliation(s)
- Teslime Erdogan
- Ministry of National Education, Directorate of Lifelong Learning, Yenimahalle, Ankara, 06560, Turkiye
| | - Halis Oguz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Konya, 42031, Turkiye
| | - Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, 31100, Turkiye
| |
Collapse
|
6
|
Chirehwa MT, Resendiz-Galvan JE, Court R, De Kock M, Wiesner L, de Vries N, Harding J, Gumbo T, Warren R, Maartens G, Denti P, McIlleron H. Optimizing Moxifloxacin Dose in MDR-TB Participants with or without Efavirenz Coadministration Using Population Pharmacokinetic Modeling. Antimicrob Agents Chemother 2023; 67:e0142622. [PMID: 36744891 PMCID: PMC10019313 DOI: 10.1128/aac.01426-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Moxifloxacin is included in some treatment regimens for drug-sensitive tuberculosis (TB) and multidrug-resistant TB (MDR-TB). Aiming to optimize dosing, we described moxifloxacin pharmacokinetic and MIC distribution in participants with MDR-TB. Participants enrolled at two TB hospitals in South Africa underwent intensive pharmacokinetic sampling approximately 1 to 6 weeks after treatment initiation. Plasma drug concentrations and clinical data were analyzed using nonlinear mixed-effects modeling with simulations to evaluate doses for different scenarios. We enrolled 131 participants (54 females), with median age of 35.7 (interquartile range, 28.5 to 43.5) years, median weight of 47 (42.0 to 54.0) kg, and median fat-free mass of 40.1 (32.3 to 44.7) kg; 79 were HIV positive, 29 of whom were on efavirenz-based antiretroviral therapy. Moxifloxacin pharmacokinetics were described with a 2-compartment model, transit absorption, and elimination via a liver compartment. We included allometry based on fat-free mass to estimate disposition parameters. We estimated an oral clearance for a typical patient to be 17.6 L/h. Participants treated with efavirenz had increased clearance, resulting in a 44% reduction in moxifloxacin exposure. Simulations predicted that, even at a median MIC of 0.25 (0.06 to 16) mg/L, the standard daily dose of 400 mg has a low probability of attaining the ratio of the area under the unbound concentration-time curve from 0 to 24 h to the MIC (fAUC0-24)/MIC target of >53, particularly in heavier participants. The high-dose WHO regimen (600 to 800 mg) yielded higher, more balanced exposures across the weight ranges, with better target attainment. When coadministered with efavirenz, moxifloxacin doses of up to 1,000 mg are needed to match these exposures. The safety of higher moxifloxacin doses in clinical settings should be confirmed.
Collapse
Affiliation(s)
- M. T. Chirehwa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - J. E. Resendiz-Galvan
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - R. Court
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - M. De Kock
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - L. Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - N. de Vries
- Brooklyn Chest Hospital, Cape Town, South Africa
| | - J. Harding
- DP Marais Hospital, Cape Town, South Africa
| | - T. Gumbo
- Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc., Dallas, Texas, USA
| | - R. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - G. Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - P. Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - H. McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Clinical relevance of rifampicin-moxifloxacin interaction in isoniazid resistant/intolerant tuberculosis patients. Antimicrob Agents Chemother 2021; 66:e0182921. [PMID: 34807758 DOI: 10.1128/aac.01829-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moxifloxacin is an attractive drug for the treatment of isoniazid-resistant rifampicin-susceptible tuberculosis (TB) or drug-susceptible TB complicated by isoniazid intolerance. However, co-administration with rifampicin decreases moxifloxacin exposure. It remains unclear whether this drug-drug interaction has clinical implications. This retrospective study in a Dutch TB centre investigated how rifampicin affected moxifloxacin exposure in patients with isoniazid-resistant or -intolerant TB. Moxifloxacin exposures were measured between 2015 and 2020 in 31 patients with isoniazid-resistant or -intolerant TB receiving rifampicin, and 20 TB patients receiving moxifloxacin without rifampicin. Moxifloxacin exposure, i.e. area under the concentration-time curve (AUC0-24h), and attainment of AUC0-24h/minimal inhibitory concentration (MIC) > 100 were investigated for 400 mg moxifloxacin and 600 mg rifampicin, and increased doses of moxifloxacin (600 mg) or rifampicin (900 mg). Moxifloxacin AUC0-24h and peak concentration with a 400 mg dose were decreased when rifampicin was co-administered compared to moxifloxacin alone (ratio of geometric means 0.61 (90% CI (0.53, 0.70) and 0.81 (90% CI (0.70, 0.94), respectively). Among patients receiving rifampicin, 65% attained an AUC0-24h/MIC > 100 for moxifloxacin compared to 78% of patients receiving moxifloxacin alone; this difference was not significant. Seven out of eight patients receiving an increased dose of 600 mg moxifloxacin reached the target AUC0-24h/MIC > 100. This study showed a clinically significant 39% decrease in moxifloxacin exposure when rifampicin was co-administered. Moxifloxacin dose adjustment may compensate for this drug-drug interaction. Further exploring the impact of higher doses of these drugs in patients with isoniazid resistance or intolerance is paramount.
Collapse
|
8
|
van der Laan LE, Garcia-Prats AJ, Schaaf HS, Winckler JL, Draper H, Norman J, Wiesner L, McIlleron H, Denti P, Hesseling AC. Pharmacokinetics and Drug-Drug Interactions of Abacavir and Lamuvudine Co-administered With Antituberculosis Drugs in HIV-Positive Children Treated for Multidrug-Resistant Tuberculosis. Front Pharmacol 2021; 12:722204. [PMID: 34690765 PMCID: PMC8531271 DOI: 10.3389/fphar.2021.722204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Given the high prevalence of multidrug-resistant (MDR)-TB in high HIV burden settings, it is important to identify potential drug-drug interactions between MDR-TB treatment and widely used nucleoside reverse transcriptase inhibitors (NRTIs) in HIV-positive children. Population pharmacokinetic models were developed for lamivudine (n = 54) and abacavir (n = 50) in 54 HIV-positive children established on NRTIs; 27 with MDR-TB (combinations of high-dose isoniazid, pyrazinamide, ethambutol, ethionamide, terizidone, fluoroquinolones, and amikacin), and 27 controls without TB. Two-compartment models with first-order elimination and transit compartment absorption described both lamivudine and abacavir pharmacokinetics, respectively. Allometric scaling with body weight adjusted for the effect of body size. Clearance was predicted to reach half its mature value ∼ 2 (lamivudine) and ∼ 3 (abacavir) months after birth, with completion of maturation for both drugs at ∼ 2 years. No significant difference was found in key pharmacokinetic parameters of lamivudine and abacavir when co-administered with routine drugs used for MDR-TB in HIV-positive children.
Collapse
Affiliation(s)
- Louvina E. van der Laan
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Anthony J. Garcia-Prats
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Pediatrics, Divisions of General Pediatrics and Adolescent Medicine and Global Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - H. Simon Schaaf
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jana L. Winckler
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Heather Draper
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jennifer Norman
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Helen McIlleron
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa
| | - Anneke C. Hesseling
- Department of Paediatrics and Child Health, Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
9
|
Litjens CHC, Verscheijden LFM, Bolwerk C, Greupink R, Koenderink JB, van den Broek PHH, van den Heuvel JJMW, Svensson EM, Boeree MJ, Magis-Escurra C, Hoefsloot W, van Crevel R, van Laarhoven A, van Ingen J, Kuipers S, Ruslami R, Burger DM, Russel FGM, Aarnoutse RE, Te Brake LHM. Prediction of Moxifloxacin Concentrations in Tuberculosis Patient Populations by Physiologically Based Pharmacokinetic Modeling. J Clin Pharmacol 2021; 62:385-396. [PMID: 34554580 PMCID: PMC9297990 DOI: 10.1002/jcph.1972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/18/2021] [Indexed: 02/03/2023]
Abstract
Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.
Collapse
Affiliation(s)
- Carlijn H C Litjens
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens F M Verscheijden
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Celine Bolwerk
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Petra H H van den Broek
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Martin J Boeree
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cecile Magis-Escurra
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia Kuipers
- Department of Medical Microbiology, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rovina Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - David M Burger
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lindsey H M Te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Thomas L, Birangal SR, Ray R, Sekhar Miraj S, Munisamy M, Varma M, S V CS, Banerjee M, Shenoy GG, Rao M. Prediction of potential drug interactions between repurposed COVID-19 and antitubercular drugs: an integrational approach of drug information software and computational techniques data. Ther Adv Drug Saf 2021; 12:20420986211041277. [PMID: 34471515 PMCID: PMC8404633 DOI: 10.1177/20420986211041277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/24/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction: Tuberculosis is a major respiratory disease globally with a higher prevalence in Asian and African countries than rest of the world. With a larger population of tuberculosis patients anticipated to be co-infected with COVID-19 infection, an ongoing pandemic, identifying, preventing and managing drug–drug interactions is inevitable for maximizing patient benefits for the current repurposed COVID-19 and antitubercular drugs. Methods: We assessed the potential drug–drug interactions between repurposed COVID-19 drugs and antitubercular drugs using the drug interaction checker of IBM Micromedex®. Extensive computational studies were performed at a molecular level to validate and understand the drug–drug interactions found from the Micromedex drug interaction checker database at a molecular level. The integrated knowledge derived from Micromedex and computational data was collated and curated for predicting potential drug–drug interactions between repurposed COVID-19 and antitubercular drugs. Results: A total of 91 potential drug–drug interactions along with their severity and level of documentation were identified from Micromedex between repurposed COVID-19 drugs and antitubercular drugs. We identified 47 pharmacodynamic, 42 pharmacokinetic and 2 unknown DDIs. The majority of our molecular modelling results were in line with drug–drug interaction data obtained from the drug information software. QT prolongation was identified as the most common type of pharmacodynamic drug–drug interaction, whereas drug–drug interactions associated with cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) inhibition and induction were identified as the frequent pharmacokinetic drug–drug interactions. The results suggest antitubercular drugs, particularly rifampin and second-line agents, warrant high alert and monitoring while prescribing with the repurposed COVID-19 drugs. Conclusion: Predicting these potential drug–drug interactions, particularly related to CYP3A4, P-gp and the human Ether-à-go-go-Related Gene proteins, could be used in clinical settings for screening and management of drug–drug interactions for delivering safer chemotherapeutic tuberculosis and COVID-19 care. The current study provides an initial propulsion for further well-designed pharmacokinetic-pharmacodynamic-based drug–drug interaction studies. Plain Language Summary
Collapse
Affiliation(s)
- Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sumit Raosaheb Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Rajdeep Ray
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Murali Munisamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | | | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Gautham G Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Mahadev Rao
- Professor and Head, Department of Pharmacy Practice, Coordinator, Centre for Translational Research, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| |
Collapse
|
11
|
Comparison between Colistin Sulfate Dry Powder and Solution for Pulmonary Delivery. Pharmaceutics 2020; 12:pharmaceutics12060557. [PMID: 32560289 PMCID: PMC7356940 DOI: 10.3390/pharmaceutics12060557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 11/16/2022] Open
Abstract
To assess the difference in the fate of the antibiotic colistin (COLI) after its pulmonary delivery as a powder or a solution, we developed a COLI powder and evaluated the COLI pharmacokinetic properties in rats after pulmonary administration of the powder or the solution. The amorphous COLI powder prepared by spray drying was characterized by a mass median aerodynamic diameter and fine particle fraction of 2.68 ± 0.07 µm and 59.5 ± 5.4%, respectively, when emitted from a Handihaler®. After intratracheal administration, the average pulmonary epithelial lining fluid (ELF): plasma area under the concentration versus time curves (AUC) ratios were 570 and 95 for the COLI solution and powder, respectively. However, the same COLI plasma concentration profiles were obtained with the two formulations. According to our pharmacokinetic model, this difference in ELF COLI concentration could be due to faster systemic absorption of COLI after the powder inhalation than for the solution. In addition, the COLI apparent permeability (Papp) across a Calu-3 epithelium model increased 10-fold when its concentration changed from 100 to 4000 mg/L. Based on this last result, we propose that the difference observed in vivo between the COLI solution and powder could be due to a high local ELF COLI concentration being obtained at the site where the dry particles impact the lung. This high local COLI concentration can lead to a local increase in COLI Papp, which is associated with a high concentration gradient and could produce a high local transfer of COLI across the epithelium and a consequent increase in the overall absorption rate of COLI.
Collapse
|
12
|
Suitability and functional characterization of two Calu-3 cell models for prediction of drug permeability across the airway epithelial barrier. Int J Pharm 2020; 585:119484. [PMID: 32485216 DOI: 10.1016/j.ijpharm.2020.119484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
The Calu-3 cell line has been largely investigated as a physiological and pharmacological model of the airway epithelial barrier. Its suitability for prediction of drug permeability across the airway epithelia, however, has not been yet evaluated by using large enough set of model drugs. We evaluated two Calu-3 cell models (air-liquid and liquid-liquid) for drug permeability prediction based on the recent regulatory guidelines on showing suitability of in vitro permeability methods for drug permeability classification. Bidirectional permeability assays using 22 model drugs and several zero permeability markers, as well as using ABC transporter substrates were conducted. Functional activity of P-gp, but not of BCRP was revealed. The potential of the Calu-3 cells to be used as a model of the nasal epithelial barrier, despite their different anatomical origin, has been demonstrated by the obtained excellent correlation with the fully differentiated 3D human nasal epithelial model (MucilAir™) for 11 model drugs, as well as by the good correlation obtained with the human nasal epithelial cell line RPMI 2650. In addition, the permeability values determined in the two Calu-3 models correlated well with the intestinal permeability model Caco-2.
Collapse
|
13
|
Altan F, Corum O, Yildiz R, Eser Faki H, Ider M, Ok M, Uney K. Intravenous pharmacokinetics of moxifloxacin following simultaneous administration with flunixin meglumine or diclofenac in sheep. J Vet Pharmacol Ther 2020; 43:108-114. [PMID: 32043623 DOI: 10.1111/jvp.12841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
In this study, the pharmacokinetics of moxifloxacin (5 mg/kg) was determined following a single intravenous administration of moxifloxacin alone and co-administration with diclofenac (2.5 mg/kg) or flunixin meglumine (2.2 mg/kg) in sheep. Six healthy Akkaraman sheep (2 ± 0.3 years and 53.5 ± 5 kg of body weight) were used. A longitudinal design with a 15-day washout period was used in three periods. In the first period, moxifloxacin was administered by an intravenous (IV) injection. In the second and third periods, moxifloxacin was co-administered with IV administration of diclofenac and flunixin meglumine, respectively. The plasma concentration of moxifloxacin was assayed by high-performance liquid chromatography. The pharmacokinetic parameters were calculated using a two-compartment open pharmacokinetic model. Following IV administration of moxifloxacin alone, the mean elimination half-life (t1/2β ), total body clearance (ClT ), volume of distribution at steady state (Vdss ) and area under the curve (AUC) of moxifloxacin were 2.27 hr, 0.56 L h-1 kg-1 , 1.66 L/kg and 8.91 hr*µg/ml, respectively. While diclofenac and flunixin meglumine significantly increased the t1/2β and AUC of moxifloxacin, they significantly reduced the ClT and Vdss . These results suggest that anti-inflammatory drugs could increase the therapeutic efficacy of moxifloxacin by altering its pharmacokinetics.
Collapse
Affiliation(s)
- Feray Altan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Dicle, Diyarbakir, Turkey
| | - Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Kastamonu, Kastamonu, Turkey
| | - Ramazan Yildiz
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Mehmet Akif Ersoy, Burdur, Turkey
| | - Hatice Eser Faki
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Merve Ider
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Mahmut Ok
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
14
|
Design, Synthesis and Biological Evaluation of New Piperazin-4-yl-(acetyl-thiazolidine-2,4-dione) Norfloxacin Analogues as Antimicrobial Agents. Molecules 2019; 24:molecules24213959. [PMID: 31683749 PMCID: PMC6864599 DOI: 10.3390/molecules24213959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/12/2023] Open
Abstract
In an effort to improve the antimicrobial activity of norfloxacin, a series of hybrid norfloxacin–thiazolidinedione molecules were synthesized and screened for their direct antimicrobial activity and their anti-biofilm properties. The new hybrids were intended to have a new binding mode to DNA gyrase, that will allow for a more potent antibacterial effect, and for activity against current quinolone-resistant bacterial strains. Moreover, the thiazolidinedione moiety aimed to include additional anti-pathogenicity by preventing biofilm formation. The resulting compounds showed promising direct activity against Gram-negative strains, and anti-biofilm activity against Gram-positive strains. Docking studies and ADMET were also used in order to explain the biological properties and revealed some potential advantages over the parent molecule norfloxacin.
Collapse
|
15
|
Kempker RR, Alghamdi WA, Al-Shaer MH, Burch G, Peloquin CA. A Pharmacology Perspective of Simultaneous Tuberculosis and Hepatitis C Treatment. Antimicrob Agents Chemother 2019; 63:AAC.01215-19. [PMID: 31591118 PMCID: PMC6879218 DOI: 10.1128/aac.01215-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) and hepatitis C virus (HCV) infection are both major public health problems. Despite high rates of co-infection there is scarce literature addressing the convergence of the two diseases. One particularly unexplored area is the potential for simultaneous treatment of TB and HCV which would allow for leveraging an extensive global TB treatment infrastructure to help scale up HCV treatment. We review the drug metabolism of anti-TB and HCV drugs and the known and potential drug-drug interactions between recommended HCV regimens and individual anti-TB drugs. Rifampin is the only anti-TB drug to have been formally studied for potential drug interactions with anti-HCV direct-acting antivirals (DAAs) and existing data precludes these combinations. However, based on known pathways of drug metabolism and enzyme effects, the combination of HCV DAA regimens with all other anti-TB drugs may be feasible. Pharmacokinetic studies are needed next to help move co treatment regimens forward for clinical use among patients coinfected with TB and HCV.
Collapse
Affiliation(s)
- Russell R Kempker
- Division of Infectious Diseases Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Wael A Alghamdi
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad H Al-Shaer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Gena Burch
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Limited Sampling Strategies Using Linear Regression and the Bayesian Approach for Therapeutic Drug Monitoring of Moxifloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2019; 63:AAC.00384-19. [PMID: 31010868 DOI: 10.1128/aac.00384-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
Therapeutic drug monitoring (TDM) of moxifloxacin is recommended to improve the response to tuberculosis treatment and reduce acquired drug resistance. Limited sampling strategies (LSSs) are able to reduce the burden of TDM by using a small number of appropriately timed samples to estimate the parameter of interest, the area under the concentration-time curve. This study aimed to develop LSSs for moxifloxacin alone (MFX) and together with rifampin (MFX+RIF) in tuberculosis (TB) patients. Population pharmacokinetic (popPK) models were developed for MFX (n = 77) and MFX+RIF (n = 24). In addition, LSSs using Bayesian approach and multiple linear regression were developed. Jackknife analysis was used for internal validation of the popPK models and multiple linear regression LSSs. Clinically feasible LSSs (one to three samples, 6-h timespan postdose, and 1-h interval) were tested. Moxifloxacin exposure was slightly underestimated in the one-compartment models of MFX (mean -5.1%, standard error [SE] 0.8%) and MFX+RIF (mean -10%, SE 2.5%). The Bayesian LSSs for MFX and MFX+RIF (both 0 and 6 h) slightly underestimated drug exposure (MFX mean -4.8%, SE 1.3%; MFX+RIF mean -5.5%, SE 3.1%). The multiple linear regression LSS for MFX (0 and 4 h) and MFX+RIF (1 and 6 h), showed mean overestimations of 0.2% (SE 1.3%) and 0.9% (SE 2.1%), respectively. LSSs were successfully developed using the Bayesian approach (MFX and MFX+RIF; 0 and 6 h) and multiple linear regression (MFX, 0 and 4 h; MFX+RIF, 1 and 6 h). These LSSs can be implemented in clinical practice to facilitate TDM of moxifloxacin in TB patients.
Collapse
|
17
|
Pulmonary Pharmacokinetics of Oseltamivir Carboxylate in Rats after Nebulization or Intravenous Administration of Its Prodrug, Oseltamivir Phosphate. Antimicrob Agents Chemother 2019; 63:AAC.00074-19. [DOI: 10.1128/aac.00074-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/03/2019] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the pharmacokinetics of oseltamivir phosphate, a prodrug, and its active moiety in plasma and lung after its nebulization and intravenous administration in rats. Only 2% of prodrug was converted into active moiety presystematically, attesting to a low advantage of oseltamivir phosphate nebulization, suggesting that oseltamivir phosphate nebulization is not a good option to obtain a high exposure of the active moiety at the infection site within lung.
Collapse
|
18
|
In Vitro Mechanistic Study of the Distribution of Lascufloxacin into Epithelial Lining Fluid. Antimicrob Agents Chemother 2019; 63:AAC.02208-18. [PMID: 30718243 DOI: 10.1128/aac.02208-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/25/2019] [Indexed: 11/20/2022] Open
Abstract
The present study aimed to clarify the mechanism underlying the high distribution of lascufloxacin in epithelial lining fluid (ELF). Involvement of transporters was examined by transcellular transport across Calu-3 and transporter-overexpressing cells; the binding of lascufloxacin to ELF components was examined by an organic solvent-water partitioning system that employed pulmonary surfactant and phospholipids. Transcellular transport across the transporter-overexpressing cells indicated lascufloxacin to be a substrate of both P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP); therefore, its transport across Calu-3 cells was inhibited by P-gp and BCRP inhibitors. However, permeability and efflux ratios of lascufloxacin were similar to those of the other quinolones with relatively low ELF distribution, indicating the existence of another mechanism for lascufloxacin distribution in ELF. Amongst pulmonary surfactants, which are a primary component of ELF, lascufloxacin preferentially bound to phosphatidylserine (PhS) from several phospholipids, and the binding was significantly greater than that for other quinolones. This binding was saturable with two apparent classes of binding sites and inhibited by some weakly basic drugs, indicating the presence of an ionic bond. In conclusion, the results of this study suggest that the binding of lascufloxacin to PhS in the pulmonary surfactant is the major mechanism of the high distribution of lascufloxacin in the ELF.
Collapse
|
19
|
Tomas A, Stilinović N, Sabo A, Tomić Z. Use of microdialysis for the assessment of fluoroquinolone pharmacokinetics in the clinical practice. Eur J Pharm Sci 2019; 131:230-242. [PMID: 30811969 DOI: 10.1016/j.ejps.2019.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Antibacterial drugs, including fluoroquinolones, can exert their therapeutic action only with adequate penetration at the infection site. Multiple factors, such as rate of protein binding, drug liposolubility and organ blood-flow all influence ability of antibiotics to penetrate target tissues. Microdialysis is an in vivo sampling technique that has been successfully applied to measure the distribution of fluoroquinolones in the interstitial fluid of different tissues both in animal studies and clinical setting. Tissue concentrations need to be interpreted within the context of the pathogenesis and causative agents implicated in infections. Integration of microdialysis -derived tissue pharmacokinetics with pharmacodynamic data offers crucial information for correlating exposure with antibacterial effect. This review explores these concepts and provides an overview of tissue concentrations of fluoroquinolones derived from microdialysis studies and explores the therapeutic implications of fluoroquinolone distribution at various target tissues.
Collapse
Affiliation(s)
- Ana Tomas
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia.
| | - Nebojša Stilinović
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia
| | - Ana Sabo
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia
| | - Zdenko Tomić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia
| |
Collapse
|
20
|
Abstract
This column is the third in a series exploring drug-drug interactions (DDIs) with a special emphasis on psychiatric medications. The first column in this series discussed why patients being treated with psychiatric medications are at increased risk for taking multiple medications and thus experiencing DDIs and how to recognize such DDIs, and strategies for avoiding them. The second column in the series further discussed strategies for avoiding and/or minimizing adverse outcomes from DDIs. This third column deals with pharmacokinetic considerations concerning DDIs in psychiatric practice. Specifically, this column discusses the 2 major types of pharmacokinetically mediated DDIs: those mediated by cytochrome P450 (CYP) enzymes and those mediated by transport proteins. The role of each of these regulatory proteins in the pharmacokinetics of drugs is reviewed as well as how genetically determined variation in the functional activity of these regulatory proteins can alter the accumulation of a drug in the body (ie, via CYP enzymes) and in specific compartments of the body (ie, via transport proteins), either increasing or decreasing their accumulation leading to either reduced efficacy or increased toxicity. This column further explains how coprescribed drugs can also affect the functional integrity of these regulatory proteins and lead to differences from usual in the accumulation of drugs dependent on the activity of these CYP enzymes and drug transporters. This phenomenon is known as phenoconversion in which a patient can functionally change from his or her genetic status, for example, having extensive or normal metabolism, to having poor or slow metabolism and hence greater accumulation than would be expected based on the patient's genotype.
Collapse
|
21
|
Assessment of the Additional Value of Verapamil to a Moxifloxacin and Linezolid Combination Regimen in a Murine Tuberculosis Model. Antimicrob Agents Chemother 2018; 62:AAC.01354-18. [PMID: 29987154 DOI: 10.1128/aac.01354-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/24/2023] Open
Abstract
The favorable treatment outcome rate for multidrug-resistant tuberculosis (MDR-TB) is only 54%, and therefore new drug regimens are urgently needed. In this study, we evaluated the activity of the combination of moxifloxacin and linezolid as a possible new MDR-TB regimen in a murine TB model and the value of the addition of the efflux pump inhibitor verapamil to this backbone. BALB/c mice were infected with drug-sensitive Mycobacterium tuberculosis and were treated with human-equivalent doses of moxifloxacin (200 mg/kg of body weight) and linezolid (100 mg/kg) with or without verapamil (12.5 mg/kg) for 12 weeks. Pharmacokinetic parameters were collected during treatment at the steady state. After 12 weeks of treatment, a statistically significant decline in mycobacterial load in the lungs was observed with the moxifloxacin-linezolid regimen with and without verapamil (5.9 and 5.0 log CFU, respectively), but sterilization was not achieved yet. The spleens of all mice were culture negative after 12 weeks of treatment with both treatment modalities, and the addition of verapamil caused a significant reduction in relapse (14/14 positive spleens without versus 9/15 with verapamil, P = 0.017). In conclusion, treatment with a combination regimen of moxifloxacin and linezolid showed a strong decline in mycobacterial load in the mice. The addition of verapamil to this backbone had a modest additional effect in terms of reducing mycobacterial load in the lung as well as reducing the spleen relapse rate. These results warrant further studies on the role of efflux pump inhibition in improving the efficacy of MDR-TB backbone regimens.
Collapse
|
22
|
Efficacy of Meglumine Antimoniate in a Low Polymerization State Orally Administered in a Murine Model of Visceral Leishmaniasis. Antimicrob Agents Chemother 2018; 62:AAC.00539-18. [PMID: 29866873 DOI: 10.1128/aac.00539-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
Progress toward the improvement of meglumine antimoniate (MA), commercially known as Glucantime, a highly effective but also toxic antileishmanial drug, has been hindered by the lack of knowledge and control of its chemical composition. Here, MA was manipulated chemically with the aim of achieving an orally effective drug. MA compounds were synthesized from either antimony pentachloride (MA-SbCl5) or potassium hexahydroxyantimonate [MA-KSb(OH)6] and prepared under a low polymerization state. These compounds were compared to Glucantime regarding chemical composition, permeation properties across a cellulose membrane and Caco-2 cell monolayer, and uptake by peritoneal macrophages. MA-SbCl5 and MA-KSb(OH)6 were characterized as less polymerized and more permeative 2:2 Sb-meglumine complexes than Glucantime, which consisted of a mixture of 2:3 and 3:3 Sb-meglumine complexes. The antileishmanial activities and hepatic uptake of all compounds were evaluated after oral administration in BALB/c mice infected with Leishmania infantum chagasi, as a model of visceral leishmaniasis (VL). The synthetic MA compounds given at 300 mg Sb/kg of body weight/12 h for 30 days significantly reduced spleen and liver parasite burdens, in contrast to those for Glucantime at the same dose. The greater activity of synthetic compounds could be attributed to their higher intestinal absorption and accumulation efficiency in the liver. MA-SbCl5 given orally was as efficacious as Glucantime by the parenteral route (80 mg Sb/kg/24 h intraperitoneally). These data taken together suggest that treatment with a less-polymerized form of MA by the oral route may be effective for the treatment of VL.
Collapse
|
23
|
Tatke A, Janga KY, Avula B, Wang X, Jablonski MM, Khan IA, Majumdar S. P-glycoprotein Restricts Ocular Penetration of Loperamide across the Blood-Ocular Barriers: a Comparative Study in Mdr1a Knock-out and Wild Type Sprague Dawley Rats. AAPS PharmSciTech 2018. [PMID: 29520587 DOI: 10.1208/s12249-018-0979-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The current research was undertaken to determine the existence and magnitude of P-glycoprotein (P-gp) expression on the blood-ocular barriers by studying the ocular penetration of loperamide, a specific P-gp substrate, in P-gp (Mdr1a) knock-out (KO) and wild type (WT) Sprague Dawley rats. A clear, stable, sterile solution of loperamide (1 mg/mL), for intravenous administration, was formulated and evaluated. Ocular distribution was studied in P-gp KO and WT rats following intravenous administration of loperamide (at two doses). The drug levels in plasma, aqueous humor (AH), and vitreous humor (VH) samples were determined with the aid of UHPLC-Q-TOF-MS/MS, and the AH/plasma (D AH ) and VH/plasma (D VH ) distribution ratios were estimated. Electroretinography (ERG), ultrastructural analyses, and histology studies were carried out, in both KO and WT rats, to detect any drug-induced functional and/or structural alterations in the retina. Dose-related loperamide levels were observed in the plasma of both WT and KO rats. The loperamide concentrations in the AH and VH of KO rats were significantly higher compared to that observed in the WT rats, at the lower dose. However, a marked increase in the D AH and D VH was noted in the KO rats. ERG, ultrastructure, and histology studies did not indicate any drug-induced toxic effects in the retina under the test conditions. The results from these studies demonstrate that P-gp blocks the penetration of loperamide into the ocular tissues from the systemic circulation and that the effect is more pronounced at lower plasma loperamide concentrations.
Collapse
|
24
|
Active Mediated Transport of Chloramphenicol and Thiamphenicol in a Calu-3 Lung Epithelial Cell Model. J Pharm Sci 2018; 107:1178-1184. [DOI: 10.1016/j.xphs.2017.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022]
|
25
|
Intrapulmonary Pharmacokinetics of Lascufloxacin in Healthy Adult Volunteers. Antimicrob Agents Chemother 2018; 62:AAC.02169-17. [PMID: 29339391 DOI: 10.1128/aac.02169-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/09/2018] [Indexed: 11/20/2022] Open
Abstract
This study was performed to investigate the intrapulmonary penetration of lascufloxacin in humans. Thirty healthy adult male Japanese subjects, allocated into five groups, received lascufloxacin in a single oral dose of 75 mg. Bronchoalveolar lavage and blood sampling were performed simultaneously in each subject at 1, 2, 4, 6, or 24 h after administration, and lascufloxacin concentrations in plasma, epithelial lining fluid, and alveolar macrophages were determined. Lascufloxacin was rapidly distributed to the epithelial lining fluid with a time to maximum drug concentration (Tmax) of 1 h, which was identical to that in plasma. The maximum concentration of drug (Cmax) values in plasma, epithelial lining fluid, and alveolar macrophages were 0.576, 12.3, and 21.8 μg/ml, respectively. The corresponding area under the concentration-time curve from 0 to 24 h (AUC0-24) values were 7.67, 123, and 325 μg · h/ml. The mean drug concentrations in the epithelial lining fluid and alveolar macrophages were much higher than those in plasma at all time points examined, and the average site-to-free plasma concentration ratios fell within the ranges of 57.5 to 86.4 and 71.0 to 217, respectively. Drug levels in epithelial lining fluid and alveolar macrophages exceeded the MIC90 values for common respiratory pathogens. (This study was registered at JAPIC under registration number JapicCTI-142547.).
Collapse
|
26
|
Pharmacokinetics and Drug-Drug Interactions of Lopinavir-Ritonavir Administered with First- and Second-Line Antituberculosis Drugs in HIV-Infected Children Treated for Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.00420-17. [PMID: 29133558 DOI: 10.1128/aac.00420-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/13/2017] [Indexed: 11/20/2022] Open
Abstract
Lopinavir-ritonavir forms the backbone of current first-line antiretroviral regimens in young HIV-infected children. As multidrug-resistant (MDR) tuberculosis (TB) frequently occurs in young children in high-burden TB settings, it is important to identify potential interactions between MDR-TB treatment and lopinavir-ritonavir. We describe the pharmacokinetics of and potential drug-drug interactions between lopinavir-ritonavir and drugs routinely used for MDR-TB treatment in HIV-infected children. A combined population pharmacokinetic model was developed to jointly describe the pharmacokinetics of lopinavir and ritonavir in 32 HIV-infected children (16 with MDR-TB receiving treatment with combinations of high-dose isoniazid, pyrazinamide, ethambutol, ethionamide, terizidone, a fluoroquinolone, and amikacin and 16 without TB) who were established on a lopinavir-ritonavir-containing antiretroviral regimen. One-compartment models with first-order absorption and elimination for both lopinavir and ritonavir were combined into an integrated model. The dynamic inhibitory effect of the ritonavir concentration on lopinavir clearance was described using a maximum inhibition model. Even after adjustment for the effect of body weight with allometric scaling, a large variability in lopinavir and ritonavir exposure, together with strong correlations between the pharmacokinetic parameters of lopinavir and ritonavir, was detected. MDR-TB treatment did not have a significant effect on the bioavailability, clearance, or absorption rate constants of lopinavir or ritonavir. Most children (81% of children with MDR-TB, 88% of controls) achieved therapeutic lopinavir trough concentrations (>1 mg/liter). The coadministration of lopinavir-ritonavir with drugs routinely used for the treatment of MDR-TB was found to have no significant effect on the key pharmacokinetic parameters of lopinavir or ritonavir. These findings should be considered in the context of the large interpatient variability found in the present study and the study's modest sample size.
Collapse
|
27
|
Ubiquitous Nature of Fluoroquinolones: The Oscillation between Antibacterial and Anticancer Activities. Antibiotics (Basel) 2017; 6:antibiotics6040026. [PMID: 29112154 PMCID: PMC5745469 DOI: 10.3390/antibiotics6040026] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/26/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022] Open
Abstract
Fluoroquinolones are synthetic antibacterial agents that stabilize the ternary complex of prokaryotic topoisomerase II enzymes (gyrase and Topo IV), leading to extensive DNA fragmentation and bacteria death. Despite the similar structural folds within the critical regions of prokaryotic and eukaryotic topoisomerases, clinically relevant fluoroquinolones display a remarkable selectivity for prokaryotic topoisomerase II, with excellent safety records in humans. Typical agents that target human topoisomerases (such as etoposide, doxorubicin and mitoxantrone) are associated with significant toxicities and secondary malignancies, whereas clinically relevant fluoroquinolones are not known to exhibit such propensities. Although many fluoroquinolones have been shown to display topoisomerase-independent antiproliferative effects against various human cancer cells, those that are significantly active against eukaryotic topoisomerase show the same DNA damaging properties as other topoisomerase poisons. Empirical models also show that fluoroquinolones mediate some unique immunomodulatory activities of suppressing pro-inflammatory cytokines and super-inducing interleukin-2. This article reviews the extended roles of fluoroquinolones and their prospects as lead for the unmet needs of "small and safe" multimodal-targeting drug scaffolds.
Collapse
|
28
|
Ehrhardt C, Bäckman P, Couet W, Edwards C, Forbes B, Fridén M, Gumbleton M, Hosoya KI, Kato Y, Nakanishi T, Takano M, Terasaki T, Yumoto R. Current Progress Toward a Better Understanding of Drug Disposition Within the Lungs: Summary Proceedings of the First Workshop on Drug Transporters in the Lungs. J Pharm Sci 2017; 106:2234-2244. [DOI: 10.1016/j.xphs.2017.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
29
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
30
|
Te Brake LHM, de Knegt GJ, de Steenwinkel JE, van Dam TJP, Burger DM, Russel FGM, van Crevel R, Koenderink JB, Aarnoutse RE. The Role of Efflux Pumps in Tuberculosis Treatment and Their Promise as a Target in Drug Development: Unraveling the Black Box. Annu Rev Pharmacol Toxicol 2017; 58:271-291. [PMID: 28715978 DOI: 10.1146/annurev-pharmtox-010617-052438] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insight into drug transport mechanisms is highly relevant to the efficacious treatment of tuberculosis (TB). Major problems in TB treatment are related to the transport of antituberculosis (anti-TB) drugs across human and mycobacterial membranes, affecting the concentrations of these drugs systemically and locally. Firstly, transporters located in the intestines, liver, and kidneys all determine the pharmacokinetics and pharmacodynamics of anti-TB drugs, with a high risk of drug-drug interactions in the setting of concurrent use of antimycobacterial, antiretroviral, and antidiabetic agents. Secondly, human efflux transporters limit the penetration of anti-TB drugs into the brain and cerebrospinal fluid, which is especially important in the treatment of TB meningitis. Finally, efflux transporters located in the macrophage and Mycobacterium tuberculosis cell membranes play a pivotal role in the emergence of phenotypic tolerance and drug resistance, respectively. We review the role of efflux transporters in TB drug disposition and evaluate the promise of efflux pump inhibition from a novel holistic perspective.
Collapse
Affiliation(s)
- Lindsey H M Te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; .,Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Gerjo J de Knegt
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Jurriaan E de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Teunis J P van Dam
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - David M Burger
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| |
Collapse
|
31
|
Biopharmaceutical Characterization of Nebulized Antimicrobial Agents in Rats: 5. Oseltamivir Carboxylate. Antimicrob Agents Chemother 2016; 60:5085-7. [PMID: 27297482 DOI: 10.1128/aac.00909-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to determine the biopharmaceutical characteristics of oseltamivir carboxylate (OC) after pulmonary delivery. After OC bolus and intratracheal nebulization (NEB) in rats, blood was collected and bronchoalveolar lavages (BALs) were performed. Epithelial lining fluid (ELF) concentrations were estimated from BAL fluid. The area under the curve (AUC) ratio for ELF to plasma was 842 times higher after NEB than after intravenous (i.v.) administration, indicating that OC nebulization offers a biopharmaceutical advantage over i.v. administration.
Collapse
|
32
|
Abstract. Drug Metab Rev 2016. [DOI: 10.1080/03602532.2016.1191843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Huang L, Liu J, Yu X, Shi L, Liu J, Xiao H, Huang Y. Drug-drug interactions between moxifloxacin and rifampicin based on pharmacokinetics in vivo in rats. Biomed Chromatogr 2016; 30:1591-8. [PMID: 27028459 DOI: 10.1002/bmc.3726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 01/18/2023]
Abstract
Moxifloxacin and rifampicin are all the first-line options for the treatment of active tuberculosis, which are often combined for the treatment of multidrug resistance pulmonary tuberculosis in clinic. However, the potential drug-drug interactions between moxifloxacin and rifampicin were unknown. The aim of this study was to investigate the drug-drug interactions between moxifloxacin and rifampicin based on their pharmacokinetics in vivo after oral administration of the single drug and both drugs, and reveal their mutual effects on their pharmacokinetics. Eighteen male Sprague-Dawley rats were randomly assigned to three groups: moxifloxacin group, rifampicin group and moxifloxacin + rifampicin group. Plasma concentrations of moxifloxacin and rifampicin were determined using LC-MS at the designated time points after drug administration, and the main pharmacokinetic parameters were calculated. In addition, effects of moxifloxacin and rifampicin on their metabolic rate and absorption were investigated using rat liver microsome incubation systems and Caco-2 cell transwell model. The main pharmacokinetic parameters of moxifloxacin including Tmax , Cmax , t1/2 and AUC(0-t) increased more in the moxifloxacin + rifampicin group than in the moxifloxacin group, but the difference was not significant (p > 0.05). However, the pharmacokinetic parameters of rifampicin, including peak concentration, area under the concentration-time curve, half-life and the area under the first moment plasma concentration-time curve, increased significantly (p < 0.05) compared with the rifampicin group, and the time to peak concentration decreased significantly (p < 0.05). The mean residence time of rifampicin also increased in moxifloxacin + rifampicin group compared with the rifampicin group, but the difference was not significant (p > 0.05). The rat liver microsome incubation experiment indicated that moxifloxacin could increase the metabolic rate of rifampicin from 23.7 to 38.7 min. However, the Caco-2 cell transwell experiment showed that moxifloxacin could not affect the absorption rate of rifampicin. These changes could enhance the drug efficacy, but they could also cause drug accumulation, which might induce adverse effect, so it was suggested that the drug dosage should be adjusted and the drug concentration in plasma should be monitored if moxifloxacin and rifampicin are co-administered. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lifei Huang
- Department of Respiratory and Critical Care, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiajun Liu
- Shanghai Jiao Tong University School of Medicine (2011 eight-year program), Shanghai, People's Republic of China
| | - Xin Yu
- Department of Respiratory and Critical Care, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Lei Shi
- Department of Respiratory and Critical Care, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jian Liu
- Department of Respiratory and Critical Care, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Heping Xiao
- Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yi Huang
- Department of Respiratory and Critical Care, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
34
|
Biopharmaceutical Characterization of Nebulized Antimicrobial Agents in Rats. 4. Aztreonam. Antimicrob Agents Chemother 2016; 60:3196-8. [PMID: 26926626 DOI: 10.1128/aac.00165-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/24/2016] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to determine aztreonam (ATM) membrane permeability using Calu-3 cells and its plasma and pulmonary epithelial lining fluid (ELF) pharmacokinetics in rats after intratracheal nebulization and intravenous administration (15 mg · kg(-1)). ATM exhibits low Calu-3 permeability (0.07 ± 0.02 × 10(-6) cm · s(-1)), and a high area under the ELF/unbound plasma concentration time curve between 0 and infinity (AUCELF/AUCu,plasma) ratio of 1,069 was observed after nebulization in rats. These results confirm that ATM is a low-permeability molecule and a good candidate for nebulization.
Collapse
|
35
|
Berlin S, Spieckermann L, Oswald S, Keiser M, Lumpe S, Ullrich A, Grube M, Hasan M, Venner M, Siegmund W. Pharmacokinetics and Pulmonary Distribution of Clarithromycin and Rifampicin after Concomitant and Consecutive Administration in Foals. Mol Pharm 2016; 13:1089-99. [DOI: 10.1021/acs.molpharmaceut.5b00907] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sarah Berlin
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | | | - Stefan Oswald
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - Markus Keiser
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | | | - Anett Ullrich
- PRIMACYT Cell Culture Technology GmbH, Schwerin, Germany
| | - Markus Grube
- Department
of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - Mahmoud Hasan
- Department
of Clinical Pharmacology, Center of Drug Absorption and Transport
(C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
36
|
Stigliani M, Haghi M, Russo P, Young PM, Traini D. Antibiotic transport across bronchial epithelial cells: Effects of molecular weight, LogP and apparent permeability. Eur J Pharm Sci 2016; 83:45-51. [DOI: 10.1016/j.ejps.2015.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/24/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
37
|
Tewes F, Brillault J, Lamy B, O'Connell P, Olivier JC, Couet W, Healy AM. Ciprofloxacin-Loaded Inorganic-Organic Composite Microparticles To Treat Bacterial Lung Infection. Mol Pharm 2015; 13:100-12. [PMID: 26641021 DOI: 10.1021/acs.molpharmaceut.5b00543] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ciprofloxacin (CIP) is an antibiotic that has been clinically trialed for the treatment of lung infections by aerosolization. However, CIP is rapidly systemically absorbed after lung administration, increasing the risk for subtherapeutic pulmonary concentrations and resistant bacteria selection. In the presence of calcium, CIP forms complexes that reduce its oral absorption. Such complexation may slow down CIP absorption from the lung thereby maintaining high concentration in this tissue. Thus, we developed inhalable calcium-based inorganic-organic composite microparticles to sustain CIP within the lung. The aerodynamics and micromeritic properties of the microparticles were characterized. FTIR and XRD analysis suggest that the inorganic component of the particles comprised amorphous calcium carbonate and amorphous calcium formate, and that CIP and calcium interact in a 1:1 stoichiometry in the particles. CIP was completely released from the microparticles within 7 h, with profiles showing a slight dependence on pH (5 and 7.4) compared to the dissolution of pure CIP. Transport studies of CIP across Calu-3 cell monolayers, in the presence of various calcium concentrations, showed a decrease of up to 84% in CIP apparent permeability. The apparent minimum inhibitory concentration of CIP against Pseudomonas aeruginosa and Staphylococcus aureus was not changed in the presence of the same calcium concentration. These results indicate that the designed particles should provide sustained levels of CIP with therapeutic effect in the lung. With these microparticles, it should be possible to control CIP pharmacokinetics within the lung, based on controlled CIP release from the particles and reduced apparent permeability across the epithelial barrier due to the cation-CIP interaction.
Collapse
Affiliation(s)
- Frederic Tewes
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France.,School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin , Dublin 2, Ireland
| | - Julien Brillault
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - Barbara Lamy
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - Peter O'Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin , Dublin 2, Ireland
| | - Jean-Christophe Olivier
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - William Couet
- INSERM U 1070, Pôle Biologie-Santé, Faculté de Médecine & Pharmacie, Université de Poitiers , CHU de Poitiers, 86022 Poitiers Cedex, France
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin , Dublin 2, Ireland
| |
Collapse
|
38
|
Simultaneous Semimechanistic Population Analyses of Levofloxacin in Plasma, Lung, and Prostate To Describe the Influence of Efflux Transporters on Drug Distribution following Intravenous and Intratracheal Administration. Antimicrob Agents Chemother 2015; 60:946-54. [PMID: 26621623 DOI: 10.1128/aac.02317-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022] Open
Abstract
Levofloxacin (LEV) is a broad-spectrum fluoroquinolone used to treat pneumonia, urinary tract infections, chronic bacterial bronchitis, and prostatitis. Efflux transporters, primarily P-glycoprotein (P-gp), are involved in LEV's tissue penetration. In the present work, LEV free lung and prostate interstitial space fluid (ISF) concentrations were evaluated by microdialysis in Wistar rats after intravenous (i.v.) and intratracheal (i.t.) administration (7 mg/kg of body weight) with and without coadministration of the P-gp inhibitor tariquidar (TAR; 15 mg/kg administered i.v.). Plasma and tissue concentration/time profiles were evaluated by noncompartmental analysis (NCA) and population pharmacokinetics (popPK) analysis. The NCA showed significant differences in bioavailability (F) for the control group (0.4) and the TAR group (0.86) after i.t. administration. A four-compartment model simultaneously characterized total plasma and free lung (compartment 2) and prostate (compartment 3) ISF concentrations. Statistically significant differences in lung and prostate average ISF concentrations and levels of kidney active secretion in the TAR group from those measured for the control group (LEV alone) were observed. The estimated population means were as follows: volume of the central compartment (V1), 0.321 liters; total plasma clearance (CL), 0.220 liters/h; TAR plasma clearance (CLTAR), 0.180 liters/h. The intercompartmental distribution rate constants (K values) were as follows: K12, 8.826 h(-1); K21, 7.271 h(-1); K13, 0.047 h(-1); K31, 7.738 h(-1); K14, 0.908 h(-1); K41, 0.409 h(-1); K21 lung TAR (K21LTAR), 8.883 h(-1); K31 prostate TAR (K31PTAR), 4.377 h(-1). The presence of P-gp considerably impacted the active renal secretion of LEV but had only a minor impact on the efflux from the lung following intratracheal dosing. Our results strongly support the idea of a role of efflux transporters other than P-gp contributing to LEV's tissue penetration into the prostrate.
Collapse
|
39
|
Biopharmaceutical Characterization of Nebulized Antimicrobial Agents in Rats: 3. Tobramycin. Antimicrob Agents Chemother 2015; 59:6646-7. [PMID: 26239992 DOI: 10.1128/aac.01647-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/27/2015] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to determine the biopharmaceutical characteristics of tobramycin (TOB) after nebulization in rats. TOB was administered by intravenous (i.v.) bolus or intratracheal nebulization (3 mg · kg(-1)), and concentrations were determined in plasma and epithelial lining fluid (ELF) by liquid chromatography-tandem mass spectrometry. The ratio of the TOB concentration in ELF to the plasma area under the curve (AUC) was more than 200 times as high after NEB as after i.v. bolus administration, indicating that TOB nebulization offers a biopharmaceutical advantage over i.v. administration.
Collapse
|
40
|
The efflux pump inhibitor timcodar improves the potency of antimycobacterial agents. Antimicrob Agents Chemother 2014; 59:1534-41. [PMID: 25534740 DOI: 10.1128/aac.04271-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies indicated that inhibition of efflux pumps augments tuberculosis therapy. In this study, we used timcodar (formerly VX-853) to determine if this efflux pump inhibitor could increase the potency of antituberculosis (anti-TB) drugs against Mycobacterium tuberculosis in in vitro and in vivo combination studies. When used alone, timcodar weakly inhibited M. tuberculosis growth in broth culture (MIC, 19 μg/ml); however, it demonstrated synergism in drug combination studies with rifampin, bedaquiline, and clofazimine but not with other anti-TB agents. When M. tuberculosis was cultured in host macrophage cells, timcodar had about a 10-fold increase (50% inhibitory concentration, 1.9 μg/ml) in the growth inhibition of M. tuberculosis and demonstrated synergy with rifampin, moxifloxacin, and bedaquiline. In a mouse model of tuberculosis lung infection, timcodar potentiated the efficacies of rifampin and isoniazid, conferring 1.0 and 0.4 log10 reductions in bacterial burden in lung, respectively, compared to the efficacy of each drug alone. Furthermore, timcodar reduced the likelihood of a relapse infection when evaluated in a mouse model of long-term, chronic infection with treatment with a combination of rifampin, isoniazid, and timcodar. Although timcodar had no effect on the pharmacokinetics of rifampin in plasma and lung, it did increase the plasma exposure of bedaquiline. These data suggest that the antimycobacterial drug-potentiating activity of timcodar is complex and drug dependent and involves both bacterial and host-targeted mechanisms. Further study of the improvement of the potency of antimycobacterial drugs and drug candidates when used in combination with timcodar is warranted.
Collapse
|
41
|
Haghi M, Ong HX, Traini D, Young P. Across the pulmonary epithelial barrier: Integration of physicochemical properties and human cell models to study pulmonary drug formulations. Pharmacol Ther 2014; 144:235-52. [DOI: 10.1016/j.pharmthera.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/30/2014] [Indexed: 11/16/2022]
|
42
|
K Hurtado F, Laureano JV, de A Lock G, Derendorf H, Dalla Costa T. Enhanced penetration of moxifloxacin into rat prostate tissue evidenced by microdialysis. Int J Antimicrob Agents 2014; 44:327-33. [PMID: 25218157 DOI: 10.1016/j.ijantimicag.2014.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/03/2014] [Accepted: 06/15/2014] [Indexed: 11/18/2022]
Abstract
Moxifloxacin is reported to have increased distribution into the prostate compared with older fluoroquinolones such as norfloxacin and ciprofloxacin, being able to reach tissue-to-plasma concentration ratios greater than unity. However, most of these studies use tissue homogenates derived from biopsy samples, which can lead to overestimation of free concentrations as fluoroquinolones tend to accumulate in the intracellular space. The aim of this study was to investigate moxifloxacin pharmacokinetics in rat prostate interstitial fluid by microdialysis. Tissue pharmacokinetics was assessed by implanting a small microdialysis catheter in the prostate gland. Blood samples were simultaneously collected for assessing plasma pharmacokinetics. Analysis of plasma (N=154) and microdialysis (N=344) concentrations after a single intravenous dose of 6 or 12mg/kg moxifloxacin was conducted in the non-linear mixed-effect modelling software NONMEM v.6 as well by a non-compartmental approach. Moxifloxacin showed a significant tissue distribution in the prostate (AUCprostate,ISF/fu·AUCplasma=1.24±0.37), 59% higher than the value obtained for levofloxacin in a previous study. A three-compartment model with non-linear kinetics could adequately describe moxifloxacin pharmacokinetics in terms of curve fitting and precision in parameter estimation. The developed pharmacokinetic model indicates that passive diffusion and active transport are the mechanisms involved in moxifloxacin distribution to the prostate. These findings suggest that moxifloxacin could be a better alternative to levofloxacin for the treatment of chronic bacterial prostatitis owing to its enhanced tissue penetration and higher AUCtissue/MIC ratios, even though it is not yet approved by the US FDA for this indication.
Collapse
Affiliation(s)
- Felipe K Hurtado
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - João Victor Laureano
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Graziela de A Lock
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1600 SW Archer Road, P.O. Box 100494, Gainesville, FL 32610, USA
| | - Teresa Dalla Costa
- Pharmaceutical Sciences Graduate Program, College of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
43
|
Hosey CM, Broccatelli F, Benet LZ. Predicting when biliary excretion of parent drug is a major route of elimination in humans. AAPS JOURNAL 2014; 16:1085-96. [PMID: 25004821 DOI: 10.1208/s12248-014-9636-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/27/2014] [Indexed: 01/29/2023]
Abstract
Biliary excretion is an important route of elimination for many drugs, yet measuring the extent of biliary elimination is difficult, invasive, and variable. Biliary elimination has been quantified for few drugs with a limited number of subjects, who are often diseased patients. An accurate prediction of which drugs or new molecular entities are significantly eliminated in the bile may predict potential drug-drug interactions, pharmacokinetics, and toxicities. The Biopharmaceutics Drug Disposition Classification System (BDDCS) characterizes significant routes of drug elimination, identifies potential transporter effects, and is useful in understanding drug-drug interactions. Class 1 and 2 drugs are primarily eliminated in humans via metabolism and will not exhibit significant biliary excretion of parent compound. In contrast, class 3 and 4 drugs are primarily excreted unchanged in the urine or bile. Here, we characterize the significant elimination route of 105 orally administered class 3 and 4 drugs. We introduce and validate a novel model, predicting significant biliary elimination using a simple classification scheme. The model is accurate for 83% of 30 drugs collected after model development. The model corroborates the observation that biliarily eliminated drugs have high molecular weights, while demonstrating the necessity of considering route of administration and extent of metabolism when predicting biliary excretion. Interestingly, a predictor of potential metabolism significantly improves predictions of major elimination routes of poorly metabolized drugs. This model successfully predicts the major elimination route for poorly permeable/poorly metabolized drugs and may be applied prior to human dosing.
Collapse
Affiliation(s)
- Chelsea M Hosey
- Department of Bioengineering and Therapeutic Sciences, University of California, 533 Parnassus Ave., Room U-68, San Francisco, California, 94143-0912, USA
| | | | | |
Collapse
|
44
|
Biopharmaceutical characterization of nebulized antimicrobial agents in rats: 1. Ciprofloxacin, moxifloxacin, and grepafloxacin. Antimicrob Agents Chemother 2014; 58:3942-9. [PMID: 24798283 DOI: 10.1128/aac.02818-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the biopharmaceutical characteristics of three fluoroquinolones (FQs), ciprofloxacin (CIP), moxifloxacin (MXF), and grepafloxacin (GRX), after delivery via a nebulized aerosol to rats. Bronchoalveolar lavages (BAL) were conducted 0.5, 2, 4, and 6 h after FQ intravenous administration and nebulized aerosol delivery to estimate epithelial lining fluid (ELF) drug concentrations. Plasma drug concentrations were also measured, and profiles of drug concentrations versus time after intravenous administration and nebulized aerosol delivery were virtually superimposable, attesting for rapid and complete systemic absorption of FQs. ELF drug concentrations were systematically higher than corresponding plasma drug concentrations, whatever the route of administration, and average ELF-to-unbound plasma drug concentration ratios post-distribution equilibrium did not change significantly between the ways of administration and were equal: 4.0 ± 5.3 for CIP, 12.6 ± 7.3 for MXF, and 19.1 ± 10.5 for GRX (means ± standard deviations). The impact of macrophage lysis on estimated ELF drug concentrations was significant for GRX but reduced for MXF and CIP; therefore, simultaneous pharmacokinetic modeling of plasma and ELF drug concentrations was only performed for the latter two drugs. The model was characterized by a fixed volume of ELF (VELF), passive diffusion clearance (QELF), and active efflux clearance (CLout) between plasma and ELF, indicating active efflux transport systems. In conclusion, this study demonstrates that ELF drug concentrations of these three FQs are several times higher than plasma drug concentrations, probably due to the presence of efflux transporters at the pulmonary barrier level, but no biopharmaceutical advantage of FQ nebulization was observed compared with intravenous administration.
Collapse
|
45
|
Biopharmaceutical characterization of nebulized antimicrobial agents in rats: 2. Colistin. Antimicrob Agents Chemother 2014; 58:3950-6. [PMID: 24798284 DOI: 10.1128/aac.02819-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to investigate the pharmacokinetic properties of colistin following intrapulmonary administration of colistin sulfate in rats. Colistin was infused or delivered in nebulized form at a dose of 0.35 mg/kg of body weight in rats, and plasma drug concentrations were measured for 4 h after administration. Bronchoalveolar lavages (BAL) were also conducted at 0.5, 2, and 4 h after intravenous (i.v.) administration and administration via nebulized drug to estimate epithelial lining fluid (ELF) drug concentrations. Unbound colistin plasma concentrations at distribution equilibrium (2 h postdosing) were almost identical after i.v. infusion and nebulized drug inhalation. ELF drug concentrations were undetectable in BAL samples after i.v. administration, but they were about 1,800 times higher than unbound plasma drug levels at 2 h and 4 h after administration of the nebulized drug. Simultaneous pharmacokinetic modeling of plasma and ELF drug concentrations was performed with a model characterized by a fixed physiological volume of ELF (VELF), a passive diffusion clearance (QELF) between plasma and ELF, and a nonlinear influx transfer from ELF to the central compartment, which was assessed by reducing the nebulized dose of colistin by 10-fold (0.035 mg kg(-1)). The km was estimated to be 133 μg ml(-1), and the Vmax, in-to-Km ratio was equal to 2.5 × 10(-3) liter h(-1) kg(-1), which was 37 times higher than the QELF (6.7 × 10(-5) liter h(-1) kg(-1)). This study showed that with the higher ELF drug concentrations after administration via nebulized aerosol than after intravenous administration, for antibiotics with low permeability such as colistin, nebulization offers a real potential over intravenous administration for the treatment of pulmonary infections.
Collapse
|
46
|
Sobolewska B, Hofmann J, Spitzer MS, Bartz-Schmidt KU, Szurman P, Yoeruek E. Antiproliferative and cytotoxic properties of moxifloxacin on rat retinal ganglion cells. Curr Eye Res 2014; 38:662-9. [PMID: 23654355 DOI: 10.3109/02713683.2012.746991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED Abstract Purpose: To evaluate the antiproliferative and cytotoxic properties of moxifloxacin on cultured rat retinal ganglion cells (RGC5). MATERIALS AND METHODS Rat retinal ganglion cells were exposed to various concentration of moxifloxacin (5-1500 μg/mL). For antiproliferative properties, the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) test was performed. Cellular cytotoxicity was assessed by using the Live/Dead viability/cytotoxicity assay and analyzed by fluorescence microscopy after 24 and 72 h of incubation, respectively. RESULTS Neither cytotoxic nor antiproliferative effect of moxifloxacin was observed below 50 μg/mL on RGC5 cells after 24 and 72 h of incubation. At higher concentrations of moxifloxacin (150 μg/mL, 500 μg/mL, and 1500 μg/mL (p < 0.001)) the number of viable cells and the proliferation rate of RGC5 were significantly reduced. CONCLUSIONS These results suggest a dose-dependent cytotoxic and antiproliferative effect of moxifloxacin on RGC5. Therefore, intracameral application of moxifloxacin should be used cautiously in patients with increased risk of retinal ganglion cells damage, particularly in glaucoma patients.
Collapse
Affiliation(s)
- Bianka Sobolewska
- University Eye Hospital, Centre for Ophthalmology, Eberhard-Karls University, Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Zvada SP, Denti P, Sirgel FA, Chigutsa E, Hatherill M, Charalambous S, Mungofa S, Wiesner L, Simonsson USH, Jindani A, Harrison T, McIlleron HM. Moxifloxacin population pharmacokinetics and model-based comparison of efficacy between moxifloxacin and ofloxacin in African patients. Antimicrob Agents Chemother 2013; 58:503-10. [PMID: 24189253 PMCID: PMC3910772 DOI: 10.1128/aac.01478-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/28/2013] [Indexed: 11/20/2022] Open
Abstract
Pharmacokinetic exposure and the MIC of fluoroquinolones are important determinants of their efficacy against Mycobacterium tuberculosis. Population modeling was used to describe the steady-state plasma pharmacokinetics of moxifloxacin in 241 tuberculosis (TB) patients in southern Africa. Monte Carlo simulations were applied to obtain the area under the unbound concentration-time curve from 0 to 24 h (fAUC0-24) after daily doses of 400 mg or 800 mg moxifloxacin and 800 mg ofloxacin. The MIC distributions of ofloxacin and moxifloxacin were determined for 197 drug-resistant clinical isolates of Mycobacterium tuberculosis. For a specific MIC, the probability of target attainment (PTA) was determined for target fAUC0-24/MIC ratios of ≥53 and ≥100. The PTAs were combined with the MIC distributions to calculate the cumulative fraction of response (CFR) for multidrug-resistant (MDR) Mycobacterium tuberculosis strains. Even with the less stringent target ratio of ≥53, moxifloxacin at 400 mg and ofloxacin at 800 mg achieved CFRs of only 84% and 58% for multidrug-resistant isolates with resistance to an injectable drug, while the 800-mg moxifloxacin dose achieved a CFR of 98%. Using a target ratio of ≥100 for multidrug-resistant strains (without resistance to injectable agents or fluoroquinolones), the CFR was 88% for moxifloxacin and only 43% for ofloxacin, and the higher dose of 800 mg moxifloxacin was needed to achieve a CFR target of >90%. Our results indicate that moxifloxacin is more efficacious than ofloxacin in the treatment of MDR-TB. Further studies should determine the optimal pharmacodynamic target for moxifloxacin in a multidrug regimen and clarify safety issues when it is administered at higher doses.
Collapse
Affiliation(s)
- Simbarashe P. Zvada
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Frederick A. Sirgel
- DST/NRF Centre of Excellence for Biomedical TB Research/MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Health Science, Stellenbosch University, Stellenbosch, South Africa
| | - Emmanuel Chigutsa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative (SATVI) and School of Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Stanley Mungofa
- Harare City Health Department, Ministry of Health, Harare, Zimbabwe
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Amina Jindani
- Infection and Immunity Research Centre, St. George's, University of London, London, United Kingdom
| | - Thomas Harrison
- Infection and Immunity Research Centre, St. George's, University of London, London, United Kingdom
| | - Helen M. McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
48
|
Ong HX, Traini D, Young PM. Pharmaceutical applications of the Calu-3 lung epithelia cell line. Expert Opin Drug Deliv 2013; 10:1287-302. [PMID: 23730924 DOI: 10.1517/17425247.2013.805743] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The Calu-3 lung cell line has been shown to be a promising in vitro model of airway epithelia due to its similarity to in vivo physiology. Hence, over the past decade, it has found increasing applications in the pharmaceutical industry. AREAS COVERED This review focuses on the pharmaceutical applications of the Calu-3 cell line in areas such as mechanisms of drug transport, studying aerosol deposition, controlled release studies and identification of possible drug-drug interactions. The main findings of various studies, as well as the predictive potential of this model, are presented and discussed in this review. EXPERT OPINION There is still a lack of mechanistic knowledge regarding transport of inhaled therapeutics across the lungs. Cell culture models such as Calu-3 provide a simple and reproducible system to study the underlying mechanisms by which inhaled therapeutics interact with the lungs. However, more complex systems that integrate particle deposition onto different cell culture systems may be useful in addressing some fundamental questions to generate a better understanding of determinants that influences pulmonary drug dissolution, absorption, metabolism and efficacy. Ultimately the use of the Calu-3 cell line provides a basic research tool that enables the development of safer and more effective inhaled therapeutics.
Collapse
Affiliation(s)
- Hui Xin Ong
- Woolcock Institute of Medical Research, Respiratory Technology, Glebe, NSW, Australia
| | | | | |
Collapse
|
49
|
Ciprofloxacin is actively transported across bronchial lung epithelial cells using a Calu-3 air interface cell model. Antimicrob Agents Chemother 2013; 57:2535-40. [PMID: 23507281 DOI: 10.1128/aac.00306-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ciprofloxacin is a well-established broad-spectrum fluoroquinolone antibiotic that penetrates well into the lung tissues; still, the mechanisms of its transepithelial transport are unknown. The contributions of specific transporters, including multidrug efflux transporters, organic cation transporters, and organic anion-transporting polypeptide transporters, to the uptake of ciprofloxacin were investigated in vitro using an air interface bronchial epithelial model. Our results demonstrate that ciprofloxacin is subject to predominantly active influx and a slight efflux component.
Collapse
|
50
|
Hutter V, Hilgendorf C, Cooper A, Zann V, Pritchard DI, Bosquillon C. Evaluation of layers of the rat airway epithelial cell line RL-65 for permeability screening of inhaled drug candidates. Eur J Pharm Sci 2012; 47:481-9. [PMID: 22820031 DOI: 10.1016/j.ejps.2012.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/06/2012] [Accepted: 07/08/2012] [Indexed: 01/07/2023]
Abstract
A rat respiratory epithelial cell culture system for in vitro prediction of drug pulmonary absorption is currently lacking. Such a model may however enhance the understanding of interspecies differences in inhaled drug pharmacokinetics by filling the gap between human in vitro and rat in/ex vivo drug permeability screens. The rat airway epithelial cell line RL-65 was cultured on Transwell inserts for up to 21 days at an air-liquid (AL) interface and cell layers were evaluated for their suitability as a drug permeability measurement tool. These layers were found to be morphologically representative of the bronchial/bronchiolar epithelium when cultured for 8 days in a defined serum-free medium. In addition, RL-65 layers developed epithelial barrier properties with a transepithelial electrical resistance (TEER) >300 Ω cm(2) and apparent (14)C-mannitol permeability (P(app)) values between 0.5-3.0 × 10(-6)cm/s; i.e., in the same range as established in vitro human bronchial epithelial absorption models. Expression of P-glycoprotein was confirmed by gene analysis and immunohistochemistry. Nevertheless, no vectorial transport of the established substrates (3)H-digoxin and Rhodamine123 was observed across the layers. Although preliminary, this study shows RL-65 cell layers have the potential to become a useful in vitro screening tool in the pre-clinical development of inhaled drug candidates.
Collapse
Affiliation(s)
- V Hutter
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, UK
| | | | | | | | | | | |
Collapse
|