1
|
Solis MN, Loaiza K, Torres-Elizalde L, Mina I, Šefcová MA, Larrea-Álvarez M. Detecting Class 1 Integrons and Their Variable Regions in Escherichia coli Whole-Genome Sequences Reported from Andean Community Countries. Antibiotics (Basel) 2024; 13:394. [PMID: 38786123 PMCID: PMC11117327 DOI: 10.3390/antibiotics13050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Various genetic elements, including integrons, are known to contribute to the development of antimicrobial resistance. Class 1 integrons have been identified in E. coli isolates and are associated with multidrug resistance in countries of the Andean Community. However, detailed information on the gene cassettes located on the variable regions of integrons is lacking. Here, we investigated the presence and diversity of class 1 integrons, using an in silico approach, in 2533 whole-genome sequences obtained from EnteroBase. IntFinder v1.0 revealed that almost one-third of isolates contained these platforms. Integron-bearing isolates were associated with environmental, food, human, and animal origins reported from all countries under scrutiny. Moreover, they were identified in clones known for their pathogenicity or multidrug resistance. Integrons carried cassettes associated with aminoglycoside (aadA), trimethoprim (dfrA), cephalosporin (blaOXA; blaDHA), and fluoroquinolone (aac(6')-Ib-cr; qnrB) resistance. These platforms showed higher diversity and larger numbers than previously reported. Moreover, integrons carrying more than three cassettes in their variable regions were determined. Monitoring the prevalence and diversity of genetic elements is necessary for recognizing emergent patterns of resistance in pathogenic bacteria, especially in countries where various factors are recognized to favor the selection of resistant microorganisms.
Collapse
Affiliation(s)
- María Nicole Solis
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Karen Loaiza
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Lilibeth Torres-Elizalde
- Graduate School Life Sciences and Health (GS LSH), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Ivan Mina
- School of Biological Science and Engineering, Yachay-Tech University, Urcuquí 100650, Ecuador
| | - Miroslava Anna Šefcová
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Marco Larrea-Álvarez
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| |
Collapse
|
2
|
Lim AL, Miller BW, Lin Z, Fisher MA, Barrows LR, Haygood MG, Schmidt EW. Resistance mechanisms for Gram-negative bacteria-specific lipopeptides, turnercyclamycins, differ from that of colistin. Microbiol Spectr 2023; 11:e0230623. [PMID: 37882570 PMCID: PMC10714751 DOI: 10.1128/spectrum.02306-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/13/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Bacterial resistance to antibiotics is a crisis. Acinetobacter baumannii is among the CDC urgent threat pathogens in part for this reason. Lipopeptides known as turnercyclamycins are produced by symbiotic bacteria that normally live in marine mollusks, where they may be involved in shaping their symbiotic niche. Turnercyclamycins killed Gram-negative pathogens including drug-resistant Acinetobacter, but how do the mechanisms of resistance compare to other lipopeptide drugs? Here, we define resistance from a truncation of MlaA, a protein involved in regulating bacterial membrane phospholipids. Intriguingly, this resistance mechanism only affected one turnercyclamycin variant, which differed only in two atoms in the lipid tail of the compounds. We could not obtain significant resistance to the second turnercyclamycin variant, which was also effective in an infection model. This study reveals an unexpected subtlety in resistance to lipopeptide antibiotics, which may be useful in the design and development of antibiotics to combat drug resistance.
Collapse
Affiliation(s)
- Albebson L. Lim
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Bailey W. Miller
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Mark A. Fisher
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
| | - Louis R. Barrows
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Margo G. Haygood
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Biswas U, Das S, Barik M, Mallick A. Situation Report on mcr-Carrying Colistin-Resistant Clones of Enterobacterales: A Global Update Through Human-Animal-Environment Interfaces. Curr Microbiol 2023; 81:12. [PMID: 37989899 DOI: 10.1007/s00284-023-03521-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023]
Abstract
In the twenty-first century, antibiotic resistance (ABR) is one of the acute medical emergencies around the globe, overwhelming human-animal-environmental interfaces. Hit-or-mis use of antibiotics exacerbates the crisis of ABR, dispersing transferable resistance traits and challenging treatment regimens based on life-saving drugs such as colistin. Colistin is the highest priority critically important antimicrobials for human medicine, but its long use as a growth promoter in animal husbandry reduces clinical efficacy. Since 2015, the emergence and spread of mobile colistin resistance (mcr)-carrying colistin-resistant clones of Enterobacterales have been markedly sustained in both humans and animals, especially in developing countries. Hospital and community transmissions of mcr clones pose a high risk for infection prevention and outbreaks at the national and international levels. Several public health and limited one health studies have highlighted the genomic insights of mcr clones, clarifying the chromosomal sequence types (STs) and plasmid incompatibility (Inc) types. But this information is segregated into humans and animals, and rarely are environmental sectors complicating the understanding of possibly intercontinental and sectoral transmission of these clones. India is the hotspot for superbugs, including mcr-carrying colistin-resistant isolates that threaten cross-border transmission. The current review provided an up-to-date worldwide scenario of mcr-carrying STs and plasmid Inc types among the Gram-negative bacilli of Enterobacterales across human-animal-environmental interfaces and correlated with the available information from India.
Collapse
Affiliation(s)
- Urmy Biswas
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Surojit Das
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| | - Mili Barik
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Abhi Mallick
- Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
| |
Collapse
|
4
|
Chen L, Jian J, Xie Z, Zhao P, Zhang M. Isolation and Characterization of Carbapenem-Resistant Escherichia coli Carrying blaNDM and mcr-1 from Recurrent Urinary Tract Infection Patient. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:6640009. [PMID: 37680456 PMCID: PMC10482531 DOI: 10.1155/2023/6640009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023]
Abstract
Objective The emergence of carbapenem-resistant E. coli (CRECO), leading to few antibacterial drugs available for CRECO infection. In this study, we report three carbapenem-resistant Escherichia coli (E. coli) isolates coproducing blaNDM and mcr-1 from patients with recurrent urinary tract infection (RUTI). Carbapenem-resistant E. coli strains, E55, E84, and E85, were isolated from the urine sample of RUTI patients. Methods Antimicrobial susceptibility testing (AST) was conducted with VITEK-2 compact system and Kirby-Bauer (K-B) disk diffusion method. The ESBL test was detected by the disk diffusion method. The EDTA-modified carbapenem inactivation method (eCIM) and modified carbapenem inactivation method (mCIM) were performed for screening the carbapenemase. Multilocus sequence typing (MLST) was performed for molecular typing of the strains. The resistance genes were detected by PCR. Results The three isolates were all susceptible to tigecycline and nitrofurantoin. The blaNDM-1, blaCMY-6, blaTEM-1 and blaCTX-M-1, mcr-1, and porin loss expression of outer membrane protein F (OmpF) were detected in E55, which was assigned to ST2. The E84 and E85 were identified as ST471 carrying blaNDM-5, blaCTX-M55, and blaTEM-1 and the quinsolone-resistant genes aac(6')-Ib-cr and mcr-1. Conclusion To our knowledge, our study is the first to report carbapenem-resistant E. coli strains carrying blaNDM and mcr-1 from urine of the recurrent urinary tract infection patients. These E. coli strains carrying blaNDM and mcr-1 should be closely monitored.
Collapse
Affiliation(s)
- Liang Chen
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Jiyong Jian
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Zeqiang Xie
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Ping Zhao
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
5
|
Seethalakshmi PS, Rajeev R, Prabhakaran A, Kiran GS, Selvin J. The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Microbiol Res 2023; 270:127316. [PMID: 36812837 DOI: 10.1016/j.micres.2023.127316] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/27/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Colistin-resistance in bacteria is a big concern for public health, since it is a last resort antibiotic to treat infectious diseases of multidrug resistant and carbapenem resistant Gram-negative pathogens in clinical settings. The emergence of colistin resistance in aquaculture and poultry settings has escalated the risks associated with colistin resistance in environment as well. The staggering number of reports pertaining to the rise of colistin resistance in bacteria from clinical and non-clinical settings is disconcerting. The co-existence of colistin resistant genes with other antibiotic resistant genes introduces new challenges in combatting antimicrobial resistance. Some countries have banned the manufacture, sale and distribution of colistin and its formulations for food producing animals. However, to tackle the issue of antimicrobial resistance, a one health approach initiative, inclusive of human, animal, and environmental health needs to be developed. Herein, we review the recent reports in colistin resistance in bacteria of clinical and non-clinical settings, deliberating on the new findings obtained regarding the development of colistin resistance. This review also discusses the initiatives implemented globally in mitigating colistin resistance, their strength and weakness.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | - Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | | | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India.
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
6
|
Serna C, Gonzalez-Zorn B. Antimicrobial resistance and One Health. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2022; 35 Suppl 3:37-40. [PMID: 36285856 PMCID: PMC9717456 DOI: 10.37201/req/s03.09.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Antimicrobial resistance is one of the major health problems we face in the 21st century. Nowadays we cannot understand global health without the interdependence between the human, animal and environmental dimensions. It is therefore logical to adopt a "One Health" approach to address this problem. In this review we show why a collaboration of all sectors and all professions is necessary in order to achieve optimal health for people, animals, plants and our environment.
Collapse
Affiliation(s)
| | - B Gonzalez-Zorn
- Bruno Gonzalez-Zorn, Departamento de Sanidad Animal, Facultad de Veterinaria y Centro de Vigilancia Sanitaria, Veterinaria VISAVET, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
7
|
Khuntayaporn P, Thirapanmethee K, Chomnawang MT. An Update of Mobile Colistin Resistance in Non-Fermentative Gram-Negative Bacilli. Front Cell Infect Microbiol 2022; 12:882236. [PMID: 35782127 PMCID: PMC9248837 DOI: 10.3389/fcimb.2022.882236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Colistin, the last resort for multidrug and extensively drug-resistant bacterial infection treatment, was reintroduced after being avoided in clinical settings from the 1970s to the 1990s because of its high toxicity. Colistin is considered a crucial treatment option for Acinetobacter baumannii and Pseudomonas aeruginosa, which are listed as critical priority pathogens for new antibiotics by the World Health Organization. The resistance mechanisms of colistin are considered to be chromosomally encoded, and no horizontal transfer has been reported. Nevertheless, in November 2015, a transmissible resistance mechanism of colistin, called mobile colistin resistance (MCR), was discovered. Up to ten families with MCR and more than 100 variants of Gram-negative bacteria have been reported worldwide. Even though few have been reported from Acinetobacter spp. and Pseudomonas spp., it is important to closely monitor the epidemiology of mcr genes in these pathogens. Therefore, this review focuses on the most recent update on colistin resistance and the epidemiology of mcr genes among non-fermentative Gram-negative bacilli, especially Acinetobacter spp. and P. aeruginosa.
Collapse
Affiliation(s)
- Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- *Correspondence: Piyatip Khuntayaporn,
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock-A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11060659. [PMID: 35745513 PMCID: PMC9230117 DOI: 10.3390/pathogens11060659] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Antimicrobial resistance is a serious public-health problem throughout the world. Escherichia coli, the most common Gram-negative microorganism, has developed different resistance mechanisms, making treating infections difficult. Colistin is considered a last-resort drug in the treatment of infections caused by E. coli. Plasmid-mediated mobile-colistin-resistant (mcr) genes in E. coli, now disseminated globally, are considered a major public-health threat. Humans, chickens, and pigs are the main reservoirs for E. coli and the sources of antibiotic resistance. Hence, an up-to-date and precise estimate of the global prevalence of mcr resistance genes in these reservoirs is necessary to understand more precisely the worldwide spread and to more effectively implement control and prevention strategies. Methodology: Publications were identified in the PubMed database on the basis of the PRISMA guidelines. English full-text articles were selected from December 2014 to March 2021. Descriptive statistics and a meta-analysis were performed in Excel and R software, respectively. Colistin resistance was defined as the molecular-genetic detection of the mcr genes. The crude and estimated prevalence were calculated for each host and continent. The studies were divided into two groups; community-based when they involved isolates from healthy humans, chickens, or pigs, and clinical studies when they involved only hospital, outpatient, or laboratory isolates. Results: A total of 1278 studies were identified and 218 were included in this systematic review and meta-analysis, divided into community studies (159 studies) and clinical studies (59 studies). The general prevalence of mcr-mediated colistin-resistant E. coli (mcrMCRE) was 6.51% (n = 11,583/177,720), reported in 54 countries and on five continents; Asia with 119 studies followed by Europe with 61 studies registered the most articles. Asia reported the major diversity of mcr-variants (eight of nine, except mcr-2). Worldwide, chickens and pigs proved to be the principal reservoir of mcr with an estimated prevalence of 15.8% and 14.9%, respectively. Healthy humans and clinical isolates showed a lower prevalence with 7.4% and 4.2% respectively. Conclusions: In this systematic review and meta-analysis, the worldwide prevalence of mcr in E. coli isolated from healthy humans, chickens, and pigs was investigated. A wide prevalence and distribution of mcr genes was demonstrated on all continents in E. coli isolates from the selected reservoirs. Understanding the epidemiology and occurrence in the reservoirs of mcr in E. coli on different continents of the world facilitates tracing how mcr genes are transmitted and determining the infection risks for humans. This knowledge can be used to reduce the incidence of zoonotic transmission by implementing the appropriate control programs.
Collapse
|
9
|
Niu SH, Liu S, Deng WK, Wu RT, Cai YF, Liao XD, Xing SC. A sustainable and economic strategy to reduce risk antibiotic resistance genes during poultry manure bioconversion by black soldier fly Hermetia illucens larvae: Larval density adjustment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113294. [PMID: 35152113 DOI: 10.1016/j.ecoenv.2022.113294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Black soldier fly (Hermetia illucens) larvae (BSFL) are common insects that are known for bioconversion of organic waste into a sustainable utilization resource. However, a strategy to increase antibiotic resistance gene (ARG) elimination in sustainable and economic ways through BSFL is lacking. In the present study, different larval densities were employed to assess the mcr-1 and tetX elimination abilities, and potential mechanisms were investigated. The application and economic value of each larval density were also analyzed. The results showed that the 100 larvae cultured in 100 g of manure group had the best density because the comprehensive disadvantage evaluation ratio was the lowest (14.97%, good bioconversion manure quality, low ARG deposition risk and reasonable larvae input cost). Further investigation showed that mcr-1 could be significantly decreased by BSFL bioconversion (4.42 ×107 copies/g reduced to 4.79 ×106-2.14 ×105 copies/g)(P<0.05); however, mcr-1 was increasingly deposited in the larval gut with increasing larval density. The tetX abundance was stabilized by BSFL bioconversion, except that the abundance at the lowest larval density increased (1.22 ×1010 copies/g increase, 34-fold). Escherichia was the host of mcr-1 and tetX in all samples, especially in fresh manure; Alcaligenes was the host of tetX in bioconversion manure; and the abundance of Alcaligenes was highly correlated with the pH of bioconversion manure. The pH of bioconversion manure was extremely correlated with the density of larvae. Klebsiella and Providencia were both hosts of tetX in the BSF larval gut, and Providencia was also the host of mcr-1 in the BSF larval gut. The density of larvae influenced the bioconversion manure quality and caused the ARG host abundance to change to control the abundance of ARGs, suggesting that larval density adjustment was a useful strategy to manage the ARG risk during BSFL manure bioconversion.
Collapse
Affiliation(s)
- Shi-Hua Niu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Ting Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ying-Feng Cai
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Si-Cheng Xing
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
10
|
Ramaloko WT, Osei Sekyere J. Phylogenomics, Epigenomics, Virulome, and Mobilome of Gram-negative Bacteria Co-resistant to Carbapenems and Polymyxins: A One-Health Systematic Review and Meta-analyses. Environ Microbiol 2022; 24:1518-1542. [PMID: 35129271 DOI: 10.1111/1462-2920.15930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/30/2022] [Indexed: 11/29/2022]
Abstract
Gram-negative bacteria (GNB) continue to develop resistance against important antibiotics including last-resort ones such as carbapenems and polymyxins. An analysis of GNB with co-resistance to carbapenems and polymyxins from a One Health perspective is presented. Data of species name, country, source of isolation, resistance genes (ARGs), plasmid type, clones, and mobile genetic elements (MGEs) were deduced from 129 articles from January 2016 to March 2021. Available genomes and plasmids were obtained from PATRIC and NCBI. Resistomes and methylomes were analysed using BAcWGSTdb and REBASE whilst Kaptive was used to predict capsule typing. Plasmids and other MEGs were identified using MGE Finder and ResFinder. Phylogenetic analyses were done using RAxML and annotated with MEGA 7. A total of 877 isolates, 32 genomes and 44 plasmid sequences were analysed. Most of these isolates were reported in Asian countries and were isolated from clinical, animal, and environmental sources. Colistin resistance was mostly mediated by mgrB inactivation (37%; n = 322) and mcr-1 (36%; n = 312), while OXA-48/181 was the most reported carbapenemase. IncX and IncI were the most common plasmids hosting carbapenemases and mcr genes. The isolates were co-resistant to other antibiotics, with floR (chloramphenicol) and fosA3 (fosfomycin) being common; E. coli ST156 and K. pneumoniae ST258 strains were common globally. Virulence genes and capsular KL-types were also detected. Type I, II, III and IV restriction modification systems were detected, comprising various MTases and restriction enzymes. The escalation of highly resistant isolates drains the economy due to untreatable bacterial infections, which leads to increasing global mortality rates and healthcare costs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Winnie Thabisa Ramaloko
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, South Africa
| |
Collapse
|
11
|
Ksiezarek M, Novais Â, Peixe L. The Darkest Place Is under the Candlestick-Healthy Urogenital Tract as a Source of Worldwide Disseminated Extraintestinal Pathogenic Escherichia coli Lineages. Microorganisms 2021; 10:27. [PMID: 35056476 PMCID: PMC8778945 DOI: 10.3390/microorganisms10010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Since the discovery of the urinary microbiome, including the identification of Escherichia coli in healthy hosts, its involvement in UTI development has been a subject of high interest. We explored the population diversity and antimicrobial resistance of E. coli (n = 22) in the urogenital microbiome of ten asymptomatic women (representing 50% of the sample tested). We evaluated their genomic relationship with extraintestinal pathogenic E. coli (ExPEC) strains from healthy and diseased hosts, including the ST131 lineage. E. coli prevalence was higher in vaginal samples than in urine samples, and occasionally different lineages were observed in the same individual. Furthermore, B2 was the most frequent phylogenetic group, with the most strains classified as ExPEC. Resistance to antibiotics of therapeutic relevance (e.g., amoxicillin-clavulanate conferred by blaTEM-30) was observed in ExPEC widespread lineages sequence types (ST) 127, ST131, and ST73 and ST95 clonal complexes. Phylogenomics of ST131 and other ExPEC lineages revealed close relatedness with strains from gastrointestinal tract and diseased host. These findings demonstrate that healthy urogenital microbiome is a source of potentially pathogenic and antibiotic resistant E. coli strains, including those causing UTI, e.g., ST131. Importantly, diverse E. coli lineages can be observed per individual and urogenital sample type which is relevant for future studies screening for this uropathogen.
Collapse
Affiliation(s)
- Magdalena Ksiezarek
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.K.); (Â.N.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ângela Novais
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.K.); (Â.N.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luísa Peixe
- UCIBIO–Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.K.); (Â.N.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Dadashi M, Sameni F, Bostanshirin N, Yaslianifard S, Khosravi-Dehaghi N, Nasiri MJ, Goudarzi M, Hashemi A, Hajikhani B. Global Prevalence and Molecular Epidemiology of mcr-Mediated Colistin Resistance in Escherichia coli Clinical Isolates: A Systematic Review. J Glob Antimicrob Resist 2021; 29:444-461. [PMID: 34788692 DOI: 10.1016/j.jgar.2021.10.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND AIM The continuing rise in infections caused by multi-drug resistant (MDR) bacteria is one of the most serious public health issues in today's societies. Colistin is a last-resort antimicrobial medication used to treat infections caused by MDR gram-negative bacteria; therefore resistance to this antibiotic is extremely hazardous. The current study aimed to evaluate the global prevalence and distribution of colistin resistance genes among human clinical isolates of Escherichia coli (E. coli) as a systematic review. METHODS PubMed, Embase, and Web of Science databases were systematically searched. For further evaluation, all original English-language articles that demonstrated colistin resistance in E. coli clinical isolates published between 2000 and 2020 were examined. RESULTS Out of 4857 initial articles, after various stages of review and evaluation, 190 related articles were selected. More than 79 % of the publications selected in this research were published from 2014 to 2020. In Asia, Europe, America, Africa, and Oceania, the prevalence of mobilized colistin resistance (mcr) producing colistin-resistant E. coli was 66.72%, 25.48%, 5.19%, 2.27%, and 0.32 %, respectively. CONCLUSION The recent widespread spreading of E. coli strains harboring mcr conferring colistin resistance, especially in Asia and Europe, is concerning and needs more attention.
Collapse
Affiliation(s)
- Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Sameni
- Department of Microbiology, School of Medicine, Shahed University, Tehran, Iran
| | - Nazila Bostanshirin
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nafiseh Khosravi-Dehaghi
- Department of Pharmacognosy, School of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran; Evidence-Based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Gonzales-Escalante E, Ruggiero M, Cerdeira L, Esposito F, Fontana H, Lincopan N, Gutkind G, Di Conza J. Whole-Genome Analysis of a High-Risk Clone of Klebsiella pneumoniae ST147 Carrying Both mcr-1 and blaNDM-1 Genes in Peru. Microb Drug Resist 2021; 28:171-179. [PMID: 34698586 DOI: 10.1089/mdr.2021.0128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The increasing prevalence and dissemination of carbapenemase-producing Enterobacterales represent a serious concern for public health. We studied the genetic features of a multidrug-resistant isolate of high-risk clone ST147 Klebsiella pneumoniae coharboring mcr-1 and blaNDM-1 recovered from a human clinical urine sample in 2017 in Peru. Whole-genome sequencing and conjugation assays identified mcr-1 and blaNDM-1 genes on two different conjugative plasmids, which belong to IncI2 and IncFIB/HI1B incompatibility groups, respectively. The presence of blaCTX-M-15 (in the studied isolate, located on the chromosome) and mutations in GyrA S83I and ParC S80I were detected, as expected for ST147. In addition, other β-lactamases (blaTEM-26 and blaOXA-1) and PMQR (qnrE2 and aac(6')-Ib-cr) among several resistance determinants were identified. The coexistence not previously described of these genes in the same high-risk clone is a cause for serious concern that supports the need for implementation of genomic surveillance studies.
Collapse
Affiliation(s)
- Edgar Gonzales-Escalante
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.,Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales - CITBM, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Melina Ruggiero
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| | - Louise Cerdeira
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Fernanda Esposito
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Herrison Fontana
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo, Brazil
| | - Gabriel Gutkind
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| | - Jose Di Conza
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| |
Collapse
|
14
|
Na LV, JIA X, YU W. Study on molecular mechanism of carbapenem- and colistin-resistance in Escherichia coli. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.82321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- LV Na
- Yantai Yuhuangding Hospital, China
| | | | | |
Collapse
|
15
|
Binsker U, Käsbohrer A, Hammerl JA. Global colistin use: A review of the emergence of resistant Enterobacterales and the impact on their genetic basis. FEMS Microbiol Rev 2021; 46:6382128. [PMID: 34612488 PMCID: PMC8829026 DOI: 10.1093/femsre/fuab049] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
The dramatic global rise of MDR and XDR Enterobacterales in human medicine forced clinicians to the reintroduction of colistin as last-resort drug. Meanwhile, colistin is used in the veterinary medicine since its discovery, leading to a steadily increasing prevalence of resistant isolates in the livestock and meat-based food sector. Consequently, transmission of resistant isolates from animals to humans, acquisition via food and exposure to colistin in the clinic are reasons for the increased prevalence of colistin-resistant Enterobacterales in humans in the last decades. Initially, resistance mechanisms were caused by mutations in chromosomal genes. However, since the discovery in 2015, the focus has shifted exclusively to mobile colistin resistances (mcr). This review will advance the understanding of chromosomal-mediated resistance mechanisms in Enterobacterales. We provide an overview about genes involved in colistin resistance and the current global situation of colistin-resistant Enterobacterales. A comparison of the global colistin use in veterinary and human medicine highlights the effort to reduce colistin sales in veterinary medicine under the One Health approach. In contrast, it uncovers the alarming rise in colistin consumption in human medicine due to the emergence of MDR Enterobacterales, which might be an important driver for the increasing emergence of chromosome-mediated colistin resistance.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.,Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
16
|
Huang S, Wang S, Li Y, Fang M, Kou Z, Chen B, Xu L, Bi Z, Xu H, Chi X, Bi Z. Prevalence and transmission of mobilized colistin resistance (mcr-1) gene positive Escherichia coli in healthy rural residents in Shandong province, China. Microbiol Res 2021; 253:126881. [PMID: 34592562 DOI: 10.1016/j.micres.2021.126881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022]
Abstract
This study was conducted to explore the prevalence and transmission of mcr-1 Escherichia coli among healthy rural residents in Shandong, China, and to provide theoretical basis for the prevention and control of spread and treatment of multi-drug resistant Escherichia coli. A total of 218 healthy residents from 3 villages in Guan County, Shandong Province, China were included in this study, and their fecal samples were collected. Colistin-resistant Escherichia coli were selected, and their drug sensitivity and plasmids' transferability were measured. After analysis, some conclusions can be drawn. The colistin-resistant Escherichia coli, most strains of which are MDROs, is common and highly transmissible in healthy residents in rural areas in China. Interventions should be implemented to prevent the spread of colistin-resistant Escherichia coli through health education and tighter regulation of antibiotics.
Collapse
Affiliation(s)
- Shumei Huang
- School of Public Health, Shandong University, Jinan, 250012, China
| | - Shuang Wang
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Yan Li
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Ming Fang
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Zengqiang Kou
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Baoli Chen
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Liuchen Xu
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Zhenwang Bi
- The Affiliated Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Medical School of Zhejiang University, Hang Zhou, 310003, China
| | - Xiaohui Chi
- Department of Public Health of Zhejiang University, Hang Zhou, 310058, China
| | - Zhenqiang Bi
- Bacterial Infection Disease Control of Institute, Shandong Center for Disease Control and Prevention, Jinan, 250014, China.
| |
Collapse
|
17
|
Rodríguez-Santiago J, Cornejo-Juárez P, Silva-Sánchez J, Garza-Ramos U. Polymyxin resistance in Enterobacterales: overview and epidemiology in the Americas. Int J Antimicrob Agents 2021; 58:106426. [PMID: 34419579 DOI: 10.1016/j.ijantimicag.2021.106426] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 12/30/2022]
Abstract
The worldwide spread of carbapenem- and polymyxin-resistant Enterobacterales represents an urgent public-health threat. However, for most countries in the Americas, the available data are limited, although Latin America has been suggested as a silent spreading reservoir for isolates carrying plasmid-mediated polymyxin resistance mechanisms. This work provides an overall update on polymyxin and polymyxin resistance and focuses on uses, availability and susceptibility testing. Moreover, a comprehensive review of the current polymyxin resistance epidemiology in the Americas is provided. We found that reports in the English and Spanish literature show widespread carbapenemase-producing and colistin-resistant Klebsiella pneumoniae in the Americas determined by the clonal expansion of the pandemic clone ST258 and mgrB-mediated colistin resistance. In addition, widespread IncI2 and IncX4 plasmids carrying mcr-1 in Escherichia coli come mainly from human sources; however, plasmid-mediated colistin resistance in the Americas is underreported in the veterinary sector. These findings demonstrate the urgent need for the implementation of polymyxin resistance surveillance in Enterobacterales as well as appropriate regulatory measures for antimicrobial use in veterinary medicine.
Collapse
Affiliation(s)
- J Rodríguez-Santiago
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - P Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología (INCan), Ciudad de México, México
| | - J Silva-Sánchez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México
| | - U Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México.
| |
Collapse
|
18
|
Zheng Z, Lei Y, Wang Y, Lin C, Lin J. Occurrence of mcr Positive Strains and Molecular Characteristics of Two mcr-1 Positive Salmonella typhimurium and Escherichia coli from a Chinese Women's and Children's Hospital. Infect Drug Resist 2021; 14:2925-2932. [PMID: 34349527 PMCID: PMC8327187 DOI: 10.2147/idr.s322686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Background The purpose of this study was to evaluate the prevalence of mobile colistin resistance genes (mcr) in Gram-negative bacteria and to analyze the molecular characteristics of mcr-1 positive Salmonella typhimurium strain 75 and Escherichia coli strain 107 from the Quanzhou Women’s and Children’s Hospital in China. Methods The genes mcr-1 through mcr-9 were screened via multiplex PCR. Antibiotic susceptibility was detected using a GN11 card with the VITEK-2 compact automated system. Whole genomes were sequenced using PacBio’s single molecule real-time (SMRT) technology. Results In this study, mcr-1 was detected in only four strains, with a positivity rate of 0.65% (4/616). All the four strains were resistant to more than three different kinds of antibiotics. The mcr-1 positive S. typhimurium strain 75 harbored IncHI2 plasmid, which carried mcr-1 gene, while the mcr-1 positive E. coli strain 107 contained four plasmids including one mcr-1 harboring IncHI2 plasmid, one IncFII plasmid and two IncI1-I (Alpha) plasmids. Mobile elements carrying mcr-1 in the 75_plasmid and 107_plasmid-1 were located in the IS1086(ISApl1)-IS30A(ISApl1)-mcr-1-hp and IS1086(ISApl1)-mcr-1-hp regions, respectively. Tn6010 carrying drug efflux pump genes was found in 75_plasmid, while cn_31611_IS26 carrying multi-drug resistance (MDR) genes were found in 107_plasmid-1. Conclusion This study found that mcr-1 was prevalent at a low frequency in the Quanzhou Women’s and Children’s Hospital. A similar genetic pattern of mcr-1 transmission was found in both E. coli and S. typhimurium.
Collapse
Affiliation(s)
- Zhenzhu Zheng
- Department of Laboratory Medicine, Quanzhou Women's and Children's Hospital, Quanzhou, People's Republic of China
| | - Ying Lei
- Department of Laboratory Medicine, Quanzhou Women's and Children's Hospital, Quanzhou, People's Republic of China
| | - Yinna Wang
- Department of Laboratory Medicine, Quanzhou Women's and Children's Hospital, Quanzhou, People's Republic of China
| | - Chunli Lin
- Department of Laboratory Medicine, Quanzhou Women's and Children's Hospital, Quanzhou, People's Republic of China
| | - Jiansheng Lin
- Department of Laboratory Medicine, Quanzhou Women's and Children's Hospital, Quanzhou, People's Republic of China
| |
Collapse
|
19
|
Xing SC, Wu RT, Chen YX, Cheng ZW, Liu S, Yang YW, Liao XD. Elimination and analysis of mcr-1 and bla NDM-1 in different composting pile layers under semipermeable membrane composting with copper-contaminated poultry manure. BIORESOURCE TECHNOLOGY 2021; 332:125076. [PMID: 33819854 DOI: 10.1016/j.biortech.2021.125076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The mcr-1 and blaNDM-1 elimination in copper contamination poultry manure was evaluated by semi-permeable membrane composting. The results showed the mcr-1 in control and high copper groups could not be removed, but mcr-1 decreased superlatively 80.1% in low copper treatment group. BlaNDM-1 was increased after composting, especially the copper addition groups, the results indicated that the relative abundance of mcr-1 and blaNDM-1 was obviously different in the different pile layers of copper treatment groups. Three mobile gene elements (MEGs) correlated both mcr-1 and blaNDM-1,copB correlated mcr-1, czcA and copA correlated both mcr-1 and blaNDM-1. The major phyla were Firmicutes, Bacteroidota, Actinobacteriota and Proteobacteria in all layers. The correlation analysis showed that the antibiotic resistance genes (ARGs) potential hosts could be influenced by copper form and physicochemical parameters. Semi-permeable membrane composting could decrease the abundance of major potential pathogens. Furthermore, the composting pile was not homogeneous by semi-permeable membrane composting.
Collapse
Affiliation(s)
- Si-Cheng Xing
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China
| | - Rui-Ting Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ying-Xi Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zeng-Wen Cheng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Shuo Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yi-Wen Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
20
|
Singh S, Pathak A, Rahman M, Singh A, Nag S, Sahu C, Prasad KN. Genetic Characterisation of Colistin Resistant Klebsiella pneumoniae Clinical Isolates From North India. Front Cell Infect Microbiol 2021; 11:666030. [PMID: 34235092 PMCID: PMC8256276 DOI: 10.3389/fcimb.2021.666030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/13/2021] [Indexed: 01/28/2023] Open
Abstract
Background Increasing use of colistin has led to the world-wide emergence of mobile colistin resistant gene (mcr). The present study aimed to identify and characterise mcr and other drug-resistant genes in colistin resistant Klebsiella pneumoniae clinical isolates. Methods Twenty-two colistin resistant K. pneumoniae were analysed for mcr and other drug-resistant genes, efflux pumps, and virulence genes, and for their biofilm forming ability. Pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) were performed for all mcr-1 positive isolates. S1-PFGE and Southern hybridisation were performed for localisation of mcr-1 and blaNDM. Results Nineteen colistin resistant K. pneumoniae harboured mcr-1 and 3 had mgrB disruption. All isolates harboured blaOXA-48-type and ESBL genes; eight strains (five with mcr-1 and three with mgrB disruption) co-harboured blaNDM. Efflux pumps genes AcrAB and mdtK were detected in all 22 and tol-C in 21 isolates. Virulence-related genes entB and irp-1 were detected in all 22, mrkD in 20, and fimH-1 in 18 isolates; 11 isolates were strong biofilm producers. PFGE clustered mcr-1 positive isolates into eight groups based on ≥90% similarity; MLST revealed diverse sequence types, predominant being ST-15 (n = 4) and ST-16 (n = 4). Both mcr-1 and blaNDM were localised on plasmid and chromosome; mcr-1 was present on IncFII type and blaNDM on IncFIB and IncA/C type plasmids. Conclusions Colistin resistance in K. pneumoniae was predominantly mediated by mcr-1. Co-existence of colistin, carbapenem, and other drug-resistant genes along with efflux pumps indicates towards enormous genomic plasticity in K. pneumoniae with ability to emerge as super-spreader of drug-resistance.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Ashutosh Pathak
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Mohibur Rahman
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Avinash Singh
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Soumyabrata Nag
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Kashi Nath Prasad
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.,Department of Microbiology, Apollomedics Super Speciality Hospital, Lucknow, India
| |
Collapse
|
21
|
Lentz SAM, Dalmolin TV, Barth AL, Martins AF. mcr-1 Gene in Latin America: How Is It Disseminated Among Humans, Animals, and the Environment? Front Public Health 2021; 9:648940. [PMID: 34026712 PMCID: PMC8139396 DOI: 10.3389/fpubh.2021.648940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Silvia Adriana Mayer Lentz
- Programa de Ps Graduao em Microbiologia Agrcola e Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Laboratrio de Microbiologia Aplicada, Instituto de Cincias Bsicas da Sade, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | | | - Afonso Lus Barth
- Laboratrio de Pesquisa em Resistncia Bacteriana (LABRESIS), Hospital de Clnicas de Porto Alegre, Porto Alegre, Brazil
| | - Andreza Francisco Martins
- Programa de Ps Graduao em Microbiologia Agrcola e Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Laboratrio de Microbiologia Aplicada, Instituto de Cincias Bsicas da Sade, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Laboratrio de Pesquisa em Resistncia Bacteriana (LABRESIS), Hospital de Clnicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
22
|
Gong L, Tang F, Liu E, Liu X, Xu H, Wang Y, Song Y, Liang J. Development of a loop-mediated isothermal amplification assay combined with a nanoparticle-based lateral flow biosensor for rapid detection of plasmid-mediated colistin resistance gene mcr-1. PLoS One 2021; 16:e0249582. [PMID: 33857193 PMCID: PMC8049234 DOI: 10.1371/journal.pone.0249582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/19/2021] [Indexed: 11/18/2022] Open
Abstract
A loop-mediated isothermal amplification assay combined with a nanoparticle-based lateral flow biosensor (LAMP-LFB) was established for the rapid and accurate detection of the mobilized colistin resistance gene (mcr-1), which causes the loss of colistin antibacterial efficacy in clinical treatments. The amplification stage of the assay was completed in 60 min at 63°C, and the reaction products could be visually detected by employing the LFB, which provided a fast (within 2 min) and objective method to evaluate the amplification results. The LAMP assay amplified the target sequences of mcr-1 with high specificity. In pure strains, the detection limit of the LAMP-LFB assay was 360 fg plasmid DNA/reaction, and in spiked feces samples the value was approximately 6.3×103 CFU/mL (~6.3 CFU/reaction), which was tenfold more sensitive than the PCR assay. The results show that the developed LAMP-LFB assay will be a worthy tool for the simple, rapid, specific, and sensitive detection of mcr-1 gene in clinical settings and resource-limited areas.
Collapse
Affiliation(s)
- Lin Gong
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Fei Tang
- MOE Key Laboratory of Environment and Health, Institute of Environmental Medicine, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ernan Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Xiaoli Liu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Huiqiong Xu
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Yimei Wang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Yadong Song
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
| | - Jiansheng Liang
- Department of Disinfection and Pest Control, Wuhan Center for Disease Control and Prevention, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
23
|
Blake KS, Choi J, Dantas G. Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria. Cell Mol Life Sci 2021; 78:2585-2606. [PMID: 33582841 PMCID: PMC8005480 DOI: 10.1007/s00018-020-03717-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
Hospital-associated infections are a major concern for global public health. Infections with antibiotic-resistant pathogens can cause empiric treatment failure, and for infections with multidrug-resistant bacteria which can overcome antibiotics of "last resort" there exists no alternative treatments. Despite extensive sanitization protocols, the hospital environment is a potent reservoir and vector of antibiotic-resistant organisms. Pathogens can persist on hospital surfaces and plumbing for months to years, acquire new antibiotic resistance genes by horizontal gene transfer, and initiate outbreaks of hospital-associated infections by spreading to patients via healthcare workers and visitors. Advancements in next-generation sequencing of bacterial genomes and metagenomes have expanded our ability to (1) identify species and track distinct strains, (2) comprehensively profile antibiotic resistance genes, and (3) resolve the mobile elements that facilitate intra- and intercellular gene transfer. This information can, in turn, be used to characterize the population dynamics of hospital-associated microbiota, track outbreaks to their environmental reservoirs, and inform future interventions. This review provides a detailed overview of the approaches and bioinformatic tools available to study isolates and metagenomes of hospital-associated bacteria, and their multi-layered networks of transmission.
Collapse
Affiliation(s)
- Kevin S Blake
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - JooHee Choi
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
24
|
Lv D, Duan R, Fan R, Mu H, Liang J, Xiao M, He Z, Qin S, Yang J, Jing H, Wang Z, Wang X. blaNDM and mcr-1 to mcr-5 Gene Distribution Characteristics in Gut Specimens from Different Regions of China. Antibiotics (Basel) 2021; 10:antibiotics10030233. [PMID: 33669137 PMCID: PMC7996585 DOI: 10.3390/antibiotics10030233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance has become a global public health concern. To determine the distribution characteristics of mcr and blaNDM in China, gene screening was conducted directly from gut specimens sourced from livestock and poultry, poultry environments, human diarrhea patients, and wild animals from 10 regions, between 2010–2020. The positive rate was 5.09% (356/6991) for mcr and 0.41% (29/6991) for blaNDM, as detected in gut specimens from seven regions, throughout 2010 to 2019, but not detected in 2020. The detection rate of mcr showed significant differences among various sources: livestock and poultry (14.81%) > diarrhea patients (1.43%) > wild animals (0.36%). The detection rate of blaNDM was also higher in livestock and poultry (0.88%) than in diarrhea patients (0.17%), and this was undetected in wildlife. This is consistent with the relatively high detection rate of multiple mcr genotypes in livestock and poultry. All instances of coexistence of the mcr-1 and blaNDM genes, as well as coexistence of mcr genotypes within single specimens, and most new mcr subtypes came from livestock, and poultry environments. Our study indicates that the emergence of mcr and blaNDM genes in China is closely related to the selective pressure of carbapenem and polymyxin. The gene-based strategy is proposed to identify more resistance genes of concern, possibly providing guidance for the prevention and control of antimicrobial resistance dissemination.
Collapse
Affiliation(s)
- Dongyue Lv
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao 266021, China;
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Ran Duan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Rong Fan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Hui Mu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Junrong Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Meng Xiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Zhaokai He
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Shuai Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Jinchuan Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Huaiqi Jing
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
| | - Zhaoguo Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao 266021, China;
- Correspondence: (Z.W.); (X.W.)
| | - Xin Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (R.D.); (R.F.); (H.M.); (J.L.); (M.X.); (Z.H.); (S.Q.); (J.Y.); (H.J.)
- Correspondence: (Z.W.); (X.W.)
| |
Collapse
|
25
|
Khan H, Liu M, Kayani MUR, Ahmad S, Liang J, Bai X. DNA phosphorothioate modification facilitates the dissemination of mcr-1 and bla NDM-1 in drinking water supply systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115799. [PMID: 33162214 DOI: 10.1016/j.envpol.2020.115799] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The mechanism driving the dissemination of antibiotic resistance genes (ARGs) in drinking water supply systems (DWSSs) with multiple barriers remains poorly understood despite several recent efforts. Phosphorothioate (PT) modifications, governed by dndABCDE genes, occur naturally in various bacteria and involve the incorporation of sulfur into the DNA backbone. PT is regarded as a mild antioxidant in vivo and is known to provide protection against bacterial genomes. We combined quantitative polymerase chain reaction, metagenomic, and network analyses for the water treatment process and laboratory-scale experiments for chlorine treatment using model strains to determine if DNA PT modification occurred in DWSS and facilitated the dissemination of mobilized colistin resistance-1 (mcr-1) and New Delhi metallo-β-lactamase-1 (blaNDM-1) in DWSS. Our results indicated that the relative abundance of dndB increased in the effluent, compared with the influent, in the water treatment plants. Presence of dndB copies had a positive correlation with the concentration of chloramine disinfectant. Network analysis revealed Bdellovibrio as a potential host for MCR genes, NDM genes, and dndB in the DWSS. E. coli DH10B (Wild-type with the dndABCDE gene cluster and ΔdndB) model strains were used to investigate resistance to chlorine treatment at the concentration range of 0.5-3 mg/L. The resistance of the wild-type strain increased with increasing concentration of chlorine. DNA PT modification protected MCR- and NDM-carrying bacteria from chloramine disinfection during the water treatment process. The higher relative abundance of ARGs in the effluent of the water treatment plants may be due to the resistance of DNA PT modification to chloramine disinfection, thereby causing the enrichment of genera carrying MCR, NDM, and dndB. This study provides a new understanding on the mechanism of ARG dissemination in DWSS, which will help to improve the performance of drinking water treatment to control the risk associated with antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Hira Khan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Mingkun Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Masood Ur Rehman Kayani
- Center for Microbiota and Immunological Diseases, Shanghai General Hospital, Shanghai Institute of Immunology, Shanghai Jiao Tong University, School of Medicine, Shanghai, 2000025, PR China
| | - Shakeel Ahmad
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
26
|
Resensitizing carbapenem- and colistin-resistant bacteria to antibiotics using auranofin. Nat Commun 2020; 11:5263. [PMID: 33067430 PMCID: PMC7568570 DOI: 10.1038/s41467-020-18939-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Global emergence of Gram-negative bacteria carrying the plasmid-borne resistance genes, blaMBL and mcr, raises a significant challenge to the treatment of life-threatening infections by the antibiotics, carbapenem and colistin (COL). Here, we identify an antirheumatic drug, auranofin (AUR) as a dual inhibitor of metallo-β-lactamases (MBLs) and mobilized colistin resistance (MCRs), two resistance enzymes that have distinct structures and substrates. We demonstrate that AUR irreversibly abrogates both enzyme activity via the displacement of Zn(II) cofactors from their active sites. We further show that AUR synergizes with antibiotics on killing a broad spectrum of carbapenem and/or COL resistant bacterial strains, and slows down the development of β-lactam and COL resistance. Combination of AUR and COL rescues all mice infected by Escherichia coli co-expressing MCR-1 and New Delhi metallo-β-lactamase 5 (NDM-5). Our findings provide potential therapeutic strategy to combine AUR with antibiotics for combating superbugs co-producing MBLs and MCRs. Multi-drug resistant pathogens remain a serious public health threat. Here, Sun and colleagues identify a role for auranofin, which is normally used as a drug for rheumatoid arthritis, for reversing antibiotic resistance to carbapenem and colistin.
Collapse
|
27
|
Association between the use of colistin for short-term treatment of Gram-negative bacterial infections and the emergence of colistin-resistant Enterobacteriaceae in swine from selected swine farms in Thailand. PLoS One 2020; 15:e0238939. [PMID: 33017441 PMCID: PMC7535051 DOI: 10.1371/journal.pone.0238939] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
Long-term use of colistin for preventing Gram-negative bacterial infections in food animals was prohibited in Thailand in 2017, but it is permitted for short-term treatment. This study aimed to investigate association between the use of colistin for short-term treatment of infection and the emergence of colistin-resistant Enterobacteriaceae in swine. The current study was conducted at 2 selected swine farms in Thailand. Neither farm has used colistin to prevent infection for longer than 1 year. Rectal swabs were collected from the same 66 pigs at birth, and on days 7, 14, 21, 28, and 60. Colistin was used to treat sick pigs for up to 3 days. Additional rectal swabs were collected during colistin treatment. Rectal swabs were analyzed for colistin-resistant Enterobacteriaceae and the mcr-1 gene. Results revealed that colistin-resistant Enterobacteriaceae were absent at birth. Some pigs at both farms had diarrhea and received colistin treatment during days 2-27. Colistin-resistant Enterobacteriaceae were detected in 13.3-50.0% of sick and healthy pigs. No sick pigs were observed during days 28-60, and colistin was not used during that period. Colistin-resistant Enterobacteriaceae were detected in 2.8-10.0% of healthy pigs on day 28, and in 0-3.4% of healthy pigs on day 60. The mcr-1 gene was detected in 57.6% of colistin-resistant Enterobacteriaceae isolates. Short-term treatment with colistin was found to be associated with the emergence of colistin-resistant Enterobacteriaceae in swine. Colistin-resistant Enterobacteriaceae rapidly emerged after colistin use, and rapidly decreased or disappeared after its discontinuation.
Collapse
|
28
|
Martínez D, Caña L, Rodulfo H, García J, González D, Rodríguez L, Donato MD. Characteristics of dual carbapenemase-producing Klebsiella pneumoniae strains from an outbreak in Venezuela: a retrospective study. Rev Panam Salud Publica 2020; 44:e50. [PMID: 32973902 PMCID: PMC7498284 DOI: 10.26633/rpsp.2020.50] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Objective. To characterize carbapenemase-producing Klebsiella pneumoniae isolated from patients treated at a hospital in Cumaná, Sucre, Venezuela. Methods. This was a retrospective study conducted at the general hospital in Cumaná where 58 K. pneumoniae strains were analyzed for resistance to antimicrobials, specifically carbapenems, in January – June 2015. Production of metallo-β-lactamases and serine carbapenemases was determined by the double-disc synergy test, using EDTA-sodium mercaptoacetic acid and 3-aminophenyl boronic acid discs, respectively. Multiplex-PCR was used to detect genes coding for carbapenemases. Molecular typing using ERIC-PCR determined the presence of clones. Results. Four strains of K. pneumoniae resistant to carbapenems were identified. Phenotypic methods for detection of metallo-β-lactamases and serine carbapenemases were positive, and PCR demonstrated the co-presence of blaNDM and blaKPC genes in all four strains. ERIC-PCR identified two clones circulating in the hospital. Conclusions. Infection control strategies are needed at the central hospital in Cumaná and its surrounding areas to prevent the spread of these pathogens, especially given the high levels of migration from Venezuela to other countries in South America.
Collapse
Affiliation(s)
- Dianny Martínez
- Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital Cumaná Venezuela Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital, Cumaná, Venezuela
| | - Luisa Caña
- Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital Cumaná Venezuela Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital, Cumaná, Venezuela
| | - Hectorina Rodulfo
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias Querétaro Mexico Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Querétaro, Mexico
| | - José García
- Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital Cumaná Venezuela Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital, Cumaná, Venezuela
| | - Diorelis González
- Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital Cumaná Venezuela Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital, Cumaná, Venezuela
| | - Lucy Rodríguez
- Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital Cumaná Venezuela Clinical Bacteriology Laboratory, Antonio Patricio de Alcalá University Hospital, Cumaná, Venezuela
| | - Marcos De Donato
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias Querétaro Mexico Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Querétaro, Mexico
| |
Collapse
|
29
|
Faccone D, Rapoport M, Albornoz E, Celaya F, De Mendieta J, De Belder D, Lucero C, Gomez S, Danze D, Pasteran F, Corso A. Plasmidic resistance to colistin mediated by mcr-1 gene in Escherichia coli clinical isolates in Argentina: A retrospective study, 2012-2018. Rev Panam Salud Publica 2020; 44:e55. [PMID: 32973904 PMCID: PMC7498280 DOI: 10.26633/rpsp.2020.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Objective. To describe the resistance profile and the genetic characteristics of Escherichia coli isolates that harbor the mobilizable colistin resistance gene mcr-1 in Argentina. Methods. This was a retrospective study of 192 E. coli isolates positive for mcr-1 obtained from 69 hospitals of Buenos Aires City and 14 Argentinean provinces in 2012 – 2018. The antimicrobial susceptibility was performed by agar diffusion, broth macrodilution, and/or agar dilution. Standard polymerase chain reaction (PCR) was performed to detect resistance genes and incompatibility groups; specific PCR was applied to discriminate between blaCTX-M allelic groups and mcr-1.5 variant. The genetic relatedness among isolates was evaluated by XbaI-pulsed field gel electrophoresis and multilocus sequence typing in a subset of isolates. Results. All E. coli isolates showed minimal inhibitory concentrations to colistin ≥ 4μg/mL; nearly 50% were resistant to third-generation cephalosporins, with CTX-M-2 being the main extended-spectrum β-lactamase detected. Five E. coli were carbapenemase-producers (3 NDM, 2 KPC). The mcr-1.5 variant was detected in 13.5% of the isolates. No genetic relationship was observed among the mcr-1-positive E. coli clinical isolates, but a high proportion (164/192; 85.4%) of IncI2 plasmids was detected. Conclusions. The presence of IncI2 plasmids among highly diverse E. coli clones suggests that the mcr-1 gene’s wide distribution in Argentina may be driven by the horizontal transmission of IncI2 plasmids.
Collapse
Affiliation(s)
- Diego Faccone
- Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán" Buenos Aires Argentina Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Melina Rapoport
- Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán" Buenos Aires Argentina Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Ezequiel Albornoz
- Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán" Buenos Aires Argentina Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Federico Celaya
- Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán" Buenos Aires Argentina Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Juan De Mendieta
- Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán" Buenos Aires Argentina Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Denise De Belder
- National Council on Scientific and Technical Research (CONICET) Buenos Aires Argentina National Council on Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Celeste Lucero
- Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán" Buenos Aires Argentina Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Sonia Gomez
- National Council on Scientific and Technical Research (CONICET) Buenos Aires Argentina National Council on Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Diego Danze
- Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán" Buenos Aires Argentina Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Fernando Pasteran
- Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán" Buenos Aires Argentina Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | - Alejandra Corso
- Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán" Buenos Aires Argentina Antimicrobial Agents Division, National and Regional Reference Laboratory for Antimicrobial Resistance, National Institute on Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán," Buenos Aires, Argentina
| | | |
Collapse
|
30
|
Liang Z, Pang J, Hu X, Nie T, Lu X, Li X, Wang X, Li C, Yang X, You X. Low Prevalence of mcr-1 Among Clinical Enterobacteriaceae Isolates and Co-transfer of mcr-1 and blaNDM-1 from Separate Donors. Microb Drug Resist 2020; 27:476-484. [PMID: 32931380 DOI: 10.1089/mdr.2020.0212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aims: mcr-1 and blaNDM-1 co-harboring isolates have been reported, usually reside on different plasmids, suggesting co-transfer possibility of the two genes from separate donors to the same recipient strain. This study aims at screening and characterization of mcr-1 carrying Enterobacteriaceae in Northern China, and studying the transfer ability of mcr-1 alone and in company with blaNDM-1 from a second donor. Results: Three Escherichia coli strains and one Klebsiella pneumoniae strain carrying mcr-1 gene were screened out from 1992 isolates in our study. Co-existence of multiple resistance genes was found in the mcr-1-carrying strains, but none of them carried blaNDM-1. One E. coli demonstrated an single nucleotide polymorphism (SNP) (A-G) at -10 region of mcr-1, and one E. coli showed 2 SNPs (G-T and G-A) in the Shine-Dalgarno sequence-like region of mcr-1. The mcr-1 gene was located on plasmids of about 33-276 kb, and capable of transferring alone in three out of four mcr-1-positive isolates by conjugation. Co-transfer ability analysis demonstrated that mcr-1 from E. coli 13-68, which could not be transferred alone to E. coli C600, was successfully transferred in company with blaNDM-1 from K. pneumoniae ATCC BAA-2146. Conclusions: mcr-1 showed low incidence in our Enterobacteriaceae isolates. Co-transfer ability of mcr-1 and blaNDM-1 from separate donors provides direct evidence for the emergence of the mcr-1 and blaNDM-1 co-harboring isolates.
Collapse
Affiliation(s)
- Zhenwei Liang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Co-harboring of mcr-1 and β-lactamase genes in Pseudomonas aeruginosa by high-resolution melting curve analysis (HRMA): Molecular typing of superbug strains in bloodstream infections (BSI). INFECTION GENETICS AND EVOLUTION 2020; 85:104518. [PMID: 32891877 DOI: 10.1016/j.meegid.2020.104518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/05/2020] [Accepted: 08/25/2020] [Indexed: 11/21/2022]
Abstract
Background Colistin resistance in P. aeruginosa (CRPA) is due to the appearance of superbug strains. As this pathogen gains more transferrable resistance mechanisms and continues to adapt to acquire additional resistance mechanisms during antimicrobial therapy rapidly, we face the growing threat of CRPA in bloodstream infections (BSI). This study designed to evaluate the frequency of CRPA strains producing different β-lactamases by the High-Resolution Melting Curve Analysis (HRMA) method in BSI and to characterize the different types by multilocus sequence typing (MLST). MATERIAL AND METHODS Sixty-nine (69) P. aeruginosa isolates were collected from blood culture. MIC E-test methods examined the antimicrobial susceptibilities of the bacterial isolates. Detection of resistant strains performed by using HRMA assay. RESULTS The strains resistant to amikacin (n = 11; 15.94%) and colistin (n = 10; 14.49%) were the least abundant and the gentamicin (n = 56; 82.6%) and ciprofloxacin (n = 67; 97.10%) resistant strains were the most frequent. Also, 39 isolates (56.52%) considered as multidrug-resistant (MDR), 20 isolates (28.98%) as extensively drug resistant (XDR), and 11 isolates (15.94%) as Pandrug Resistance (PDR). Further, 32 isolates (46.37%) considered as AmpC producer, and 28 isolates (40.57%) were considered an MBL producer. According to HRMA results, the blaSPM gene was detected in 19 isolates (27.53%), blaNDM gene in 11 isolates (15.94%), blaFOX gene in 31 isolates (44.92%), mcr-1 gene in 10 isolates (14.49%), blaACC and blaVIM genes in 27 isolates (39.13%), and blaTEM gene was reported in 20 isolates (28.98%). Furthermore, P. aeruginosa PASGNDM699, ST3340, and ST235 identified in 1.44%, 11.59% and 17.39% isolates, respectively. CONCLUSION CRPA strains play an essential role in the spread of antibiotic resistance in BSI. Likewise, the HRMA method was sensitive and specific for the detection of superbugs. Moreover, MLST analysis of a diverse collection of P. aeruginosa from blood culture suggests that particular strains or clonal complexes are associated with antibiotic resistance profile.
Collapse
|
32
|
de Carvalho MPN, Fernandes MR, Sellera FP, Lopes R, Monte DF, Hippólito AG, Milanelo L, Raso TF, Lincopan N. International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. Transbound Emerg Dis 2020; 67:1804-1815. [PMID: 32239649 PMCID: PMC7540485 DOI: 10.1111/tbed.13558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/29/2020] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli clones have been increasingly reported worldwide. In this regard, although discussions of transmission routes of these bacteria are in evidence, molecular data are lacking to elucidate the epidemiological impacts of ESBL producers in wild animals. In this study, we have screened 90 wild animals living in a surrounding area of São Paulo, the largest metropolitan city in South America, to monitor the presence of multidrug-resistant (MDR) Gram-negative bacteria. Using a genomic approach, we have analysed eight ceftriaxone-resistant E. coli. Resistome analyses revealed that all E. coli strains carried blaCTX-M -type genes, prevalent in human infections, besides other clinically relevant resistance genes to aminoglycosides, β-lactams, phenicols, tetracyclines, sulphonamides, trimethoprim, fosfomycin and quinolones. Additionally, E. coli strains belonged to international sequence types (STs) ST38, ST58, ST212, ST744, ST1158 and ST1251, and carried several virulence-associated genes. Our findings suggest spread and adaptation of international clones of CTX-M-producing E. coli beyond urban settings, including wildlife from shared environments.
Collapse
Affiliation(s)
| | - Miriam R. Fernandes
- Department of Clinical and Toxicological AnalysisSchool of Pharmaceutical SciencesUniversity of Sao PauloSao PauloBrazil
| | - Fábio P. Sellera
- Department of Internal MedicineSchool of Veterinary Medicine and Animal ScienceUniversity of São PauloSão PauloBrazil
| | - Ralf Lopes
- Department of MicrobiologyInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Daniel F. Monte
- Department of Food and Experimental NutritionFaculty of Pharmaceutical SciencesFood Research CenterUniversity of São PauloSão PauloBrazil
| | - Alícia G. Hippólito
- Department of Veterinary Surgery and AnesthesiologySchool of Veterinary Medicine and Animal ScienceUniversidade Estadual Paulista (UNESP)BotucatuBrazil
| | - Liliane Milanelo
- Reception Center for WildlifeEcological Park TietêSão PauloBrazil
| | - Tânia F. Raso
- Department of PathologySchool of Veterinary Medicine and Animal ScienceUniversity of São PauloSão PauloBrazil
| | - Nilton Lincopan
- Department of Clinical and Toxicological AnalysisSchool of Pharmaceutical SciencesUniversity of Sao PauloSao PauloBrazil
- Department of MicrobiologyInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
33
|
Identification of an extensively drug-resistant Escherichia coli clinical strain harboring mcr-1 and bla NDM-1 in Korea. J Antibiot (Tokyo) 2020; 73:852-858. [PMID: 32665613 DOI: 10.1038/s41429-020-0350-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
The development of colistin resistance in carbapenem-resistant strains poses a serious public health problem. In this study, we collected 249 carbapenem-resistant Escherichia coli isolates from patients in Seoul in 2018, and screened all isolates for colistin resistance and for the presence of mobile colistin resistance (mcr) genes. Colistin-resistant strains were further analyzed using multilocus sequence typing, antimicrobial susceptibility testing, detection of antibiotic resistance determinants, plasmid transconjugation, and whole-genome sequencing. Three of the 249 carbapenem-resistant isolates were resistant to colistin, and mcr-1 was detected in one isolate (SECR18-0888), which belonged to sequence type 156 and was resistant to all antibiotics tested except tigecycline. The mcr-1.1 gene was located on an ~62 kb self-transferable IncI2 plasmid along with the blaCTX-M-55 gene, and the blaNDM-1, blaTEM, qepA1, and rmtB genes were additionally detected in SECR18-0888. As an extensively drug-resistant E. coli strain producing MCR-1 and NDM-1 was identified in Korea for the first time, continued monitoring of colistin resistance in carbapenem-resistant Enterobacteriaceae should be reinforced.
Collapse
|
34
|
Emergence of mcr-9.1 in Extended-Spectrum-β-Lactamase-Producing Clinical Enterobacteriaceae in Pretoria, South Africa: Global Evolutionary Phylogenomics, Resistome, and Mobilome. mSystems 2020; 5:5/3/e00148-20. [PMID: 32430406 PMCID: PMC7253365 DOI: 10.1128/msystems.00148-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae are critical-priority pathogens that cause substantial fatalities. With the emergence of mobile mcr genes mediating resistance to colistin in Enterobacteriaceae, clinicians are now left with few therapeutic options. Eleven clinical Enterobacteriaceae strains with resistance to cephems and/or colistin were genomically analyzed to determine their resistomes, mobilomes, and evolutionary relationships to global strains. The global phylogenomics of mcr genes and mcr-9.1-bearing genomes were further analyzed. Ten isolates were ESBL positive. The isolates were multidrug resistant and phylogenetically related to global clones but distant from local strains. Multiple resistance genes, including bla CTX-M-15 bla TEM-1, and mcr-9.1, were found in single isolates; ISEc9, IS19, and Tn3 transposons bracketed bla CTX-M-15 and bla TEM-1 Common plasmid types included IncF, IncH, and ColRNAI. mcr-9 was of close sequence identity to mcr-3, mcr-5, mcr-7, mcr-8, and mcr-10. Genomes bearing mcr-9.1 clustered into six main phyletic groups (A to F), with those of this study belonging to clade B. Enterobacter species and Salmonella species are the main hosts of mcr-9.1 globally, although diverse promiscuous plasmids disseminate mcr-9.1 across different bacterial species. Emergence of mcr-9.1 in ESBL-producing Enterobacteriaceae in South Africa is worrying, due to the restricted therapeutic options. Intensive One Health molecular surveillance might discover other mcr alleles and inform infection management and antibiotic choices.IMPORTANCE Colistin is currently the last-resort antibiotic for difficult-to-treat bacterial infections. However, colistin resistance genes that can move from bacteria to bacteria have emerged, threatening the safe treatment of many bacterial infections. One of these genes, mcr-9.1, has emerged in South Africa in bacteria that are multidrug resistant, further limiting treatment options for clinicians. In this work, we show that this new gene is disseminating worldwide through Enterobacter and Salmonella species through multiple plasmids. This worrying observation requires urgent action to prevent further escalation of this gene in South Africa and Africa.
Collapse
|
35
|
Schages L, Wichern F, Kalscheuer R, Bockmühl D. Winter is coming - Impact of temperature on the variation of beta-lactamase and mcr genes in a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136499. [PMID: 31945531 DOI: 10.1016/j.scitotenv.2020.136499] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/18/2019] [Accepted: 01/01/2020] [Indexed: 05/29/2023]
Abstract
Wastewater treatment plants (WWTP) play a key role in the dissemination of antibiotic resistance and analyzing the abundance of antibiotic resistance genes (ARGs) and resistant bacteria is necessary to evaluate the risk of proliferation caused by WWTPs. Since few studies investigated the seasonal variation of antibiotic resistance, this study aimed to determine the abundance of beta-lactamase and mcr genes and to characterize phenotypic resistant strains in a WWTP in Germany over the seasons. Wastewater, sewage sludge and effluent samples were collected over a one year period and analyzed using quantitative real-time PCR. Resistant strains were isolated, followed by identification and antibiotic susceptibility testing using VITEK 2. The results show a significantly higher occurrence of nearly all investigated ARGs in the wastewater compared to sewage sludge and effluent. ARG abundance and temperature showed a negative correlation in wastewater and significant differences between ARG abundance during warmer and colder seasons were determined, indicating a seasonal effect. Co-occurrence of mcr-1 and carbapenemase genes in a multi-drug resistant Enterobacter cloacae and Escherichia coli producing extended-spectrum beta-lactamase (ESBL) was determined. To the best of our knowledge, this is the first detection of mcr-1, blaVIM and blaOXA-48 in an ESBL-producing E. coli. Although wastewater treatment reduced the abundance of ARGs and resistant strains, a dissemination into the river might be possible because carbapenemase-, CTX-M- and mcr-1-gene harboring strains were still present in the effluent.
Collapse
Affiliation(s)
- Laura Schages
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany; Heinrich-Heine University Düsseldorf, Institute of Pharmaceutical Biology and Biotechnology, Germany
| | - Florian Wichern
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany
| | - Rainer Kalscheuer
- Heinrich-Heine University Düsseldorf, Institute of Pharmaceutical Biology and Biotechnology, Germany
| | - Dirk Bockmühl
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany.
| |
Collapse
|
36
|
Specific NDM-1 Inhibitor of Isoliquiritin Enhances the Activity of Meropenem against NDM-1-positive Enterobacteriaceae in vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062162. [PMID: 32213926 PMCID: PMC7143545 DOI: 10.3390/ijerph17062162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
NDM-1-positive Enterobacteriaceae have caused serious clinical infections, with high mortality rates. Carbapenem was the ultimate expectation for the treatment of such infections in clinical practice. However, since the discovery of plasmid-mediated New Delhi metallo-β-lactamase-1 (NDM-1), the efficient therapeutic effects of carbapenems have been increasingly restricted. Here, we identified isoliquiritin, a novel specific inhibitor of the NDM-1 enzyme that restored the activity of carbapenem against NDM-1-producing E. coli isolates and K. pneumoniae isolates without affecting the growth of bacteria. A checkerboard test, growth curve assays and time-kill assays confirmed the significant synergistic effect of isoliquiritin combined with meropenem in vitro. It is worth noting that isoliquiritin only inhibited the activity of NDM-1 and had no obvious inhibitory effect on other class B metallo-β-lactamases (VIM-1) or NDM-1 mutants (NDM-5). The FIC indices of meropenem with isoliquiritin on NDM-1-positive E. coli and K. pneumoniae were all less than 0.5. Isoliquiritin had no influences on the expression of NDM-1-positive strains at concentrations below 64 µg/mL. Collectively, our results show that isoliquiritin is a potential adjuvant therapy drug that could enhance the antibacterial effect of carbapenems, such as meropenem, on NDM-1-positive Enterobacteria and lay the foundation for subsequent clinical trials.
Collapse
|
37
|
Occurrence and Characteristics of Mobile Colistin Resistance ( mcr) Gene-Containing Isolates from the Environment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031028. [PMID: 32041167 PMCID: PMC7036836 DOI: 10.3390/ijerph17031028] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/09/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
Abstract
The emergence and spread of mobile colistin (COL) resistance (mcr) genes jeopardize the efficacy of COL, a last resort antibiotic for treating deadly infections. COL has been used in livestock for decades globally. Bacteria have mobilized mcr genes (mcr-1 to mcr-9). Mcr-gene-containing bacteria (MGCB) have disseminated by horizontal/lateral transfer into diverse ecosystems, including aquatic, soil, botanical, wildlife, animal environment, and public places. The mcr-1, mcr-2, mcr-3, mcr-5, mcr-7, and mcr-8 have been detected in isolates from and/or directly in environmental samples. These genes are harboured by Escherichia coli, Enterobacter, Klebsiella, Proteus, Salmonella, Citrobacter, Pseudomonas, Acinetobacter, Kluyvera, Aeromonas, Providencia, and Raulotella isolates. Different conjugative and non-conjugative plasmids form the backbones for mcr in these isolates, but mcr have also been integrated into the chromosome of some strains. Insertion sequences (IS) (especially ISApl1) located upstream or downstream of mcr, class 1–3 integrons, and transposons are other drivers of mcr in the environment. Genes encoding multi-/extensive-drug resistance and virulence are often co-located with mcr on plasmids in environmental isolates. Transmission of mcr to/among environmental strains is clonally unrestricted. Contact with the mcr-containing reservoirs, consumption of contaminated animal-/plant-based foods or water, international animal-/plant-based food trades and travel, are routes for transmission of MGCB.
Collapse
|
38
|
Huang H, Dong N, Shu L, Lu J, Sun Q, Chan EWC, Chen S, Zhang R. Colistin-resistance gene mcr in clinical carbapenem-resistant Enterobacteriaceae strains in China, 2014-2019. Emerg Microbes Infect 2020; 9:237-245. [PMID: 31996107 PMCID: PMC7034111 DOI: 10.1080/22221751.2020.1717380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate whether introduction of colistin into the clinical settings selected colistin-resistant CRE, we performed molecular epidemiological study of 1868 CRE strains collected from different geographical locales in China during the period 2014–2019. 1755 (96.18%) isolates carried the carbapenemase genes blaKPC and blaNDM; 14 Escherichia coli isolates (0.75%) carrying mcr-1 and blaNDM (MCR-CREC) were also identified. Importantly, the number and relative prevalence of MCR-CREC isolates increased from 5 (0.41%) to 9 (1.38%) after introduction of polymyxin into clinical practice. Consistently, results of genetic analysis indicated that MCR-CREC strains collected before December 2017 were genetically diverse, yet those collected after that date exhibited more closely related genetic profiles, indicating that specific MCR-CREC strains were rapidly selected as a result of increased usage of colistin in clinical settings. The resistance level of MCR-CREC isolates to colistin increased after the introduction of polymyxin into clinical use with the MIC to colistin from <2 mg/L in 80% strains to 2 mg/L in 100% strains. Further dissemination of MCR-CREC strains, which exhibit resistance to the last-line drugs of carbapenems and colistin, is expected to pose a severe threat to human health.
Collapse
Affiliation(s)
- Hong Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lingbin Shu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Jiayue Lu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| | - Edward Wai-Chi Chan
- Department of Applied Biology and Chemical Technology, State Key Lab of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
39
|
Yu Y, Walsh TR, Yang RS, Zheng M, Wei MC, Tyrrell JM, Wang Y, Liao XP, Sun J, Liu YH. Novel partners with colistin to increase its in vivo therapeutic effectiveness and prevent the occurrence of colistin resistance in NDM- and MCR-co-producing Escherichia coli in a murine infection model. J Antimicrob Chemother 2020; 74:87-95. [PMID: 30346547 DOI: 10.1093/jac/dky413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022] Open
Abstract
Objectives The emergence of NDM- and MCR-1-co-producing Escherichia coli has compromised the use of carbapenems and colistin, which are critically important in clinical therapy, and represents a severe threat to public health worldwide. Here, we demonstrate synergism of colistin combined with existing antibiotics as a potential strategy to overcome XDR E. coli co-harbouring NDM and MCR-1 genes. Methods To comprehensively evaluate their combined activity, antibiotic combinations were tested against 34 different E. coli strains carrying both NDM and MCR-1 genes. Antibiotic resistance profiles and molecular characteristics were investigated by susceptibility testing, PCR, MLST, S1-PFGE and WGS. Antibiotic synergistic efficacy was evaluated through in vitro chequerboard experiments and dose-response assays. A mouse model was used to confirm active combination therapies. Additionally, combinations were tested for their ability to prevent high-level colistin-resistant mutants (HLCRMs). Results Combinations of colistin with rifampicin, rifabutin and minocycline showed synergistic activity against 34 XDR NDM- and MCR-1-co-producing E. coli strains, restoring, in part, susceptibility to both colistin and the partnering antibiotics. The therapeutic effectiveness of colistin combined with rifampicin or minocycline was demonstrated in a mouse model. Furthermore, colistin plus rifampicin showed significant activity in preventing the occurrence of HLCRMs. Conclusions The synergism of colistin in combinations with rifampicin, rifabutin or minocycline offers viable therapeutic alternatives against XDR NDM- and MCR-positive E. coli.
Collapse
Affiliation(s)
- Yang Yu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.,Department of Medical Microbiology and Infectious Disease, Institute of Infection & Immunity, Heath Park Hospital, Cardiff, UK
| | - Timothy R Walsh
- Department of Medical Microbiology and Infectious Disease, Institute of Infection & Immunity, Heath Park Hospital, Cardiff, UK
| | - Run-Shi Yang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
| | - Mei Zheng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| | - Meng-Chao Wei
- College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
| | - Jonathan M Tyrrell
- Department of Medical Microbiology and Infectious Disease, Institute of Infection & Immunity, Heath Park Hospital, Cardiff, UK
| | - Yang Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.,College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
| |
Collapse
|
40
|
Le-Vo HN, Tran PTB, Le L, Matsumoto Y, Motooka D, Nakamura S, Jones JW, Iida T, Cao V. Complex Class 1 Integron in a Clinical Escherichia coli Strain From Vietnam Carrying Both mcr-1 and bla NDM-1. Front Microbiol 2019; 10:2472. [PMID: 31736911 PMCID: PMC6834847 DOI: 10.3389/fmicb.2019.02472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
The co-production of MCR and carbapenemase in Enterobacteriaceae has been previously reported. Here, we describe a clinical strain of Escherichia coli from Vietnam carrying both mcr-1 and bla NDM-1. Whole-genome sequencing showed that the genome of this strain consists of a 4,975,832-bp chromosome and four plasmids. The mcr-1 and bla NDM-1 genes are located on IncI2 and IncA/C2-type plasmids, respectively. Genetic analysis revealed the presence of a multidrug-resistant region with the structure of a novel complex class 1 integron including a class 1 integron region bearing two 5' conserved segments and one 3' conserved segment and two complete structures of ISCR1. The complex integron contains aminoglycoside resistance genes aadA2, aadB, strA, strB, and aphA6, quinolone resistance gene qnrA1, extended-spectrum β-lactamase gene bla OXA- 4, and a Tn125-like transposon bearing bla NDM-1. In addition, the dfrA12-gcuF-aadA2-cmlA1-aadA1-qacH gene cassette array belonging to the sul3-type integron was also identified, but the region found downstream of the gene cassette array is the IS440-tet(M)-IS26 element instead of the sul3 gene. The results further support that Enterobacteriaceae isolates co-harboring mcr and bla NDM are widely being distributed. The structural characteristics of the complex integron reveal that ISCR1 elements play an important role in the mobilization of bla NDM-1 and the development of multidrug-resistant regions.
Collapse
Affiliation(s)
- Hong-Ngoc Le-Vo
- Department of Immunology and Microbiology, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phuong Thi-Bich Tran
- Department of Immunology and Microbiology, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lien Le
- Department of Immunology and Microbiology, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Yuki Matsumoto
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - James W Jones
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Tetsuya Iida
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Van Cao
- Department of Immunology and Microbiology, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
41
|
Characteristics of Carbapenem-Resistant and Colistin-Resistant Escherichia coli Co-Producing NDM-1 and MCR-1 from Pig Farms in China. Microorganisms 2019; 7:microorganisms7110482. [PMID: 31652858 PMCID: PMC6920953 DOI: 10.3390/microorganisms7110482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022] Open
Abstract
The emergence of carbapenem-resistant and colistin-resistant Enterobacteriaceae represents a great risk for public health. In this study, the phenotypical and genetic characteristics of eight carbapenem-resistant and colistin-resistant isolates from pig farms in China were determined by the broth microdilution method and whole genome sequencing. Antimicrobial susceptibility testing showed that the eight carbapenem-resistant and colistin-resistant strains were resistant to three aminoglycosides, twelve β-lactams, one of the phenicols, one of the tetracyclines, and one of the fluoroquinolones tested, simultaneously. The prediction of acquired resistant genes using the whole genome sequences revealed the co-existence of blaNDM-1 and mcr-1 as well as the other genes that were responsible for the multidrug-resistant phenotypes. Bioinformatics analysis also showed that the carbapenem-resistant gene blaNDM-1 was located on a putative IncFII-type plasmid, which also carried the other acquired resistant genes identified, including fosA3, blaTEM-1B and rmtB, while the colistin-resistant gene mcr-1 was carried by a putative IncX4-type plasmid. Finally, we found that these resistant genes/plasmids were conjugative, and they could be co-conjugated, conferring resistance to multiple types of antibiotics, including the carbapenems and colistin, to the recipient Escherichia coli strains.
Collapse
|
42
|
Yuan Y, Li Y, Wang G, Li C, Xiang L, She J, Yang Y, Zhong F, Zhang L. Coproduction Of MCR-9 And NDM-1 By Colistin-Resistant Enterobacter hormaechei Isolated From Bloodstream Infection. Infect Drug Resist 2019; 12:2979-2985. [PMID: 31571950 PMCID: PMC6756836 DOI: 10.2147/idr.s217168] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/22/2019] [Indexed: 01/15/2023] Open
Abstract
Background Colistin acts as the last line of defense against severe infections caused by carbapenem-resistant Enterobacteriaceae. Infections caused by extensively drug-resistant isolates coproducing MCR and carbapenemases have posed a serious public health concern. Purpose In this study, we reported the first clinical colistin and carbapenem-resistant Enterobacter hormaechei isolate SCNJ07 coharboring bla NDM-1 and mcr-9 from a patient with bloodstream infection in China. Methods Bacterial antimicrobial susceptibility testing was performed using the broth microdilution method. Conjugation assay was carried out to investigate the transferability of mcr-9 and bla NDM-1. Whole-genome sequencing of strain SCNJ07 was performed using an Illumina HiSeq system and the genetic characteristics of the mcr-9- and bla NDM-1-harboring plasmids were analyzed. Results Conjugation assays revealed that both bla NDM-1 and mcr-9 genes could successfully transfer their resistance phenotype to Escherichia coli strain J53. Whole genome sequencing showed that SCNJ07 possessed an FIB36:FIIY4 type self-transmissible plasmid bearing bla NDM-1, which possessed high similarity to previously reported pRJF866 in China. mcr-9 was located on a ~28-kb self-transmissible plasmid pMCR-SCNJ07 with both IncHI2 and IncR replicons. Two copies of intact IS903 that bracketed a ~8-kb region containing the mcr-9 gene were identified in pMCR-SCNJ07. BLASTn analysis revealed that a number of mcr-9-positive plasmids have been around for a while among Enterobacteriaceae worldwide. Conclusion This study reveals the likelihood of a wide dissemination of this newly identified colistin resistance gene mcr-9 among Enterobacteriaceae. Further surveillance is urgently needed to understand the prevalence and dissemination of mcr-9, thereby facilitating establishment of measures to control its spread.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Clinical Laboratory, The First People's Hospital of Neijiang, Sichuan, People's Republic of China
| | - Ying Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Guangxi Wang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Chengwen Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Li Xiang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Junping She
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yan Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Fangcai Zhong
- Department of Clinical Laboratory, The First People's Hospital of Neijiang, Sichuan, People's Republic of China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
43
|
Mendes Oliveira VR, Paiva MC, Lima WG. Plasmid-mediated colistin resistance in Latin America and Caribbean: A systematic review. Travel Med Infect Dis 2019; 31:101459. [DOI: 10.1016/j.tmaid.2019.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 11/29/2022]
|
44
|
Liu BT, Song FJ. Emergence of two Escherichia coli strains co-harboring mcr-1 and bla NDM in fresh vegetables from China. Infect Drug Resist 2019; 12:2627-2635. [PMID: 31692544 PMCID: PMC6711560 DOI: 10.2147/idr.s211746] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/30/2019] [Indexed: 01/01/2023] Open
Abstract
Background The concurrence of mcr and carbapenemase genes among Enterobacteriaceae has been a great clinical concern. In our study, we aimed to investigate the prevalence of mcr-positive carbapenem-resistant Enterobacteriaceae (CRE) in fresh vegetables and shed light on the possibility of transmission of mcr-positive CRE via fresh vegetables. Methods In this study, 712 fresh vegetable samples from 10 provinces in China were collected between May 2017 and Dec 2018 and were screened for mcr and carbapenemase genes. Antibiotic susceptibilities for isolates co-harboring carbapenemase genes and mcr were determined by an agar dilution or a broth microdilution method. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analysis were also performed. Transferability of the carbapenemase/mcr-bearing plasmids was determined by conjugation, replicon typing and S1-PFGE-Southern blotting. The sequences of these plasmids were analyzed by using whole-genome sequencing with Illumina Hiseq platform. Results Two E. coli isolates concomitantly carrying mcr-1 and blaNDM-5/9 from leaf rape and spinach, respectively, were found and both isolates showed multidrug resistance. Notably, mcr-1-positive 690 harboring blaNDM-5 and 701 carrying blaNDM-9 belonged to ST156 and ST2847, respectively, similar to the prevalent MLST types of E. coli co-carrying mcr-1 and blaNDM from avian in our previous study. mcr-1 was on ~33-kb IncX4 plasmid or ~60-kb IncI2 plasmid, while blaNDM-5/9 was on ~46-kb IncX3 plasmid or ~120-kb untypable plasmid. The plasmids were highly similar to those from animals and clinical patients reported in various countries. Conclusion:E. coli isolates concomitantly carrying mcr-1 and blaNDM-5/9 in fresh vegetables may serve as a direct source of pathogens in humans, and such discovery in fresh vegetables emphasizes the importance of prompt surveillance and intervention in limiting the spread of E. coli co-carrying blaNDM and mcr-1. To our knowledge, this is the first report of Enterobacteriaceae co-carrying blaNDM and mcr-1 in fresh vegetables.
Collapse
Affiliation(s)
- Bao-Tao Liu
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Feng-Jing Song
- Institute of Plant Protection, Qingdao Academy of Agricultural Sciences, Qingdao, People's Republic of China
| |
Collapse
|
45
|
Ma B, Fang C, Lu L, Wang M, Xue X, Zhou Y, Li M, Hu Y, Luo X, Hou Z. The antimicrobial peptide thanatin disrupts the bacterial outer membrane and inactivates the NDM-1 metallo-β-lactamase. Nat Commun 2019; 10:3517. [PMID: 31388008 PMCID: PMC6684654 DOI: 10.1038/s41467-019-11503-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) is the most prevalent type of metallo-β-lactamase and hydrolyzes almost all clinically used β-lactam antibiotics. Here we show that the antimicrobial peptide thanatin disrupts the outer membrane of NDM-1-producing bacteria by competitively displacing divalent cations on the outer membrane and inducing the release of lipopolysaccharides. In addition, thanatin inhibits the enzymatic activity of NDM-1 by displacing zinc ions from the active site, and reverses carbapenem resistance in NDM-1-producing bacteria in vitro and in vivo. Thus, thanatin’s dual mechanism of action may be useful for combating infections caused by NDM-1-producing pathogens. The NDM-1 metallo-β-lactamase confers resistance to β-lactam antibiotics. Here, the authors show that the antimicrobial peptide thanatin is active against NDM-1-producing bacteria through a dual mechanism of action consisting of disruption of outer membrane integrity and inhibition of the NDM-1 enzymatic activity.
Collapse
Affiliation(s)
- Bo Ma
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Fang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Linshan Lu
- Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Mingzhi Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoyan Xue
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Zhou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yue Hu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoxing Luo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zheng Hou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
46
|
Zhang R, Hu YY, Zhou HW, Wang SL, Shu LB, Chen GX. Emergence of mcr-1 and the tet(A) variant in a Klebsiella pneumoniae isolate from the faeces of a healthy person. J Med Microbiol 2019; 68:1267-1268. [PMID: 31329094 DOI: 10.1099/jmm.0.000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Rong Zhang
- Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Yan-Yan Hu
- Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Hong-Wei Zhou
- Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Shao-Lin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Ling-Bin Shu
- Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Gong-Xiang Chen
- Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
47
|
Association of Carbapenem and Colistin Resistance in Pathogenic Gram Negative Bacteria. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
48
|
Boolchandani M, D'Souza AW, Dantas G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 2019; 20:356-370. [PMID: 30886350 PMCID: PMC6525649 DOI: 10.1038/s41576-019-0108-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance extracts high morbidity, mortality and economic costs yearly by rendering bacteria immune to antibiotics. Identifying and understanding antimicrobial resistance are imperative for clinical practice to treat resistant infections and for public health efforts to limit the spread of resistance. Technologies such as next-generation sequencing are expanding our abilities to detect and study antimicrobial resistance. This Review provides a detailed overview of antimicrobial resistance identification and characterization methods, from traditional antimicrobial susceptibility testing to recent deep-learning methods. We focus on sequencing-based resistance discovery and discuss tools and databases used in antimicrobial resistance studies.
Collapse
Affiliation(s)
- Manish Boolchandani
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Alaric W D'Souza
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
49
|
Gomez-Gamboa L, Barrios-Camacho H, Duran-Bedolla J, Sánchez-Perez A, Reyna-Flores F, Perozo-Mena A, Zabala I, Rodriguez-Medina N, Martínez-Barnetche J, Téllez-Sosa J, Valdovinos-Torres H, Garza-Ramos U. Molecular and genetic characterization of carbapenemase-producing bacteria in Venezuela. J Chemother 2019; 31:349-353. [PMID: 31046636 DOI: 10.1080/1120009x.2019.1607452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Carbapenem-resistant Gram-negative bacteria isolated in Venezuela have been poorly characterized. The present study characterized a total of 34 isolates obtained from 27 patients; five of these patients were multi-infected. The bacterial species identified were Klebsiella pneumoniae (17), Pseudomonas aeruginosa (9), and Acinetobacter baumannii (8). From these isolates, 85% were identified as carbapenemase-producing bacteria, and the identified carbapenemase genes were blaKPC-2 (10/29 [34.4%]), blaVIM-type (7/29 [24.1%]), blaOXA-23 (7/29 [24.1%]), blaNDM-1 (8/29 [27.5%]), and the coexistence of blaOXA-23/blaNDM-1 (2/29 [6.8%]). Patient 1 was multi-infected by K. pneumoniae ST11 and ST2413 isolates harbouring the blaNDM-1 and blaKPC-2 genes, respectively. The other patients were multi-infected by two or three different bacterial species such as ESBL-producing K. pneumoniae isolates, P. aeruginosa harbouring the blaVIM-type gene, K. pneumoniae ST147 harbouring the blaKPC-2 gene and by A. baumannii harbouring the blaOXA-23 gene. The blaNDM-1 gene in A. baumannii is flanked by an uncommon genetic structure, whereas blaNDM-1 gene in K. pneumoniae revealed a common structure described in different plasmids from Enterobacteriaceae isolates. This study provides new information about the epidemiology of carbapenemase-producing bacteria in clinical setting in Venezuela.
Collapse
Affiliation(s)
- Liliana Gomez-Gamboa
- Department of Tropical and Infectious Diseases School of Medicine, University of Zulia , Maracaibo , Venezuela
| | - Humberto Barrios-Camacho
- Instituto Nacional de Salud Pública (INSP), CISEI Laboratorio de Resistencia Bacteriana , Cuernavaca , Morelos , Mexico
| | - Josefina Duran-Bedolla
- Instituto Nacional de Salud Pública (INSP), CISEI Laboratorio de Resistencia Bacteriana , Cuernavaca , Morelos , Mexico
| | - Alejandro Sánchez-Perez
- Instituto Nacional de Salud Pública (INSP), CISEI Laboratorio de Resistencia Bacteriana , Cuernavaca , Morelos , Mexico
| | - Fernando Reyna-Flores
- Instituto Nacional de Salud Pública (INSP), CISEI Laboratorio de Resistencia Bacteriana , Cuernavaca , Morelos , Mexico
| | - Armindo Perozo-Mena
- Laboratory of Bacteriology Department of Microbiology Faculty of Medicine. University of Zulia, Maracaibo , Venezuela
| | - Irene Zabala
- Genetics and Molecular Biology Laboratory Faculty of Science, University of Zulia , Maracaibo , Venezuela
| | - Nadia Rodriguez-Medina
- Instituto Nacional de Salud Pública (INSP), CISEI Laboratorio de Resistencia Bacteriana , Cuernavaca , Morelos , Mexico
| | - Jesús Martínez-Barnetche
- Instituto Nacional de Salud Pública (INSP), CISEI, Departamento de Inmunología , Cuernavaca , Morelos , Mexico
| | - Juan Téllez-Sosa
- Instituto Nacional de Salud Pública (INSP), CISEI, Departamento de Inmunología , Cuernavaca , Morelos , Mexico
| | - Humberto Valdovinos-Torres
- Instituto Nacional de Salud Pública (INSP), CISEI, Departamento de Inmunología , Cuernavaca , Morelos , Mexico
| | - Ulises Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), CISEI Laboratorio de Resistencia Bacteriana , Cuernavaca , Morelos , Mexico
| |
Collapse
|
50
|
Merida-Vieyra J, De Colsa-Ranero A, Arzate-Barbosa P, Arias-de la Garza E, Méndez-Tenorio A, Murcia-Garzón J, Aquino-Andrade A. First clinical isolate of Escherichia coli harboring mcr-1 gene in Mexico. PLoS One 2019; 14:e0214648. [PMID: 30947268 PMCID: PMC6448934 DOI: 10.1371/journal.pone.0214648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/17/2019] [Indexed: 11/19/2022] Open
Abstract
Our aim in this report was to describe the characteristics of the first clinical isolate of Escherichia coli (EC-PAG-733) harboring the mcr-1 gene found in Mexico. This isolate was obtained from a fecal sample from a young child with an oncological condition. We obtained the whole-genome sequence using next-generation sequencing and analyzed the sequence by bioinformatics tools. EC-PAG-733 was resistant to third- and fourth-generation cephalosporins and was susceptible to all carbapenems and amikacin; it was also resistant to ciprofloxacin, levofloxacin, gentamicin and colistin at a minimum inhibitory concentration (MIC) of 4 μg/mL. This isolate was classified as O11:H25-ST457. EC-PAG-733 harbored an ESBL type CTX-M-55 as well as several virulence factors that have been associated with Enteroaggregative Escherichia coli (EAEC). The mcr-1 gene was located within an IncI2 plasmid. The results of this whole genome shotgun project were deposited in DDBJ/ENA/GenBank under the accession number QKXE00000000.
Collapse
Affiliation(s)
- Jocelin Merida-Vieyra
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatria (National Institute of Pediatrics INP), Mexico City, Mexico
| | - Agustín De Colsa-Ranero
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatria (National Institute of Pediatrics INP), Mexico City, Mexico.,Pediatric Infectious Diseases Department, INP, Mexico City, Mexico
| | | | | | - Alfonso Méndez-Tenorio
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional (National School of Biological Sciences, National Polytechnic Institute), Mexico City, Mexico
| | - Jazmin Murcia-Garzón
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional (National School of Biological Sciences, National Polytechnic Institute), Mexico City, Mexico
| | - Alejandra Aquino-Andrade
- Molecular Microbiology Laboratory, Instituto Nacional de Pediatria (National Institute of Pediatrics INP), Mexico City, Mexico
| |
Collapse
|