1
|
Sharma S, Tiwari V. Polyvinylpyrrolidone capped silver nanoparticles enhance the autophagic clearance of Acinetobacter baumannii from human pulmonary cells. DISCOVER NANO 2024; 19:154. [PMID: 39313578 PMCID: PMC11420407 DOI: 10.1186/s11671-024-04107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Acinetobacter baumannii, an opportunistic pathogen has shown an upsurge in its multi-drug resistant isolates. OmpA of A. baumannii induces incomplete autophagy and apoptosis in host cells. Various therapeutic alternatives are under investigation against A. baumannii. Here, the major emphasis has been laid on comparing the efficacy of AgNP with different capping agents. OmpA targeted lead, Ivermectin capped AgNP (IVM-AgNP) has been compared with the antibacterial polyvinylpyrrolidone capped AgNP (PVP-AgNP) for their role in the modulations of host autophagy. Upregulation of p62 and LC3B confirmed by real-time PCR analysis indicated an increased autophagic flux upon the treatment with AgNPs. The elongation and closure of autophagic vacuoles was also supported by upregulated Atg genes (Atg4, Atg3, Atg5) in A. baumannii infected cells after treatment with AgNP. Autophagic flux increased on treatment with PVP-AgNP as suggested by the rise in mcherryLC3B fluorescence in A549 cells treated with PVP-AgNP as compared to the GFP-LC3B of IVM-AgNP. This suggests that PVP-AgNP treatment more effectively promotes the elongation and maturation stages of autophagy by increasing autophagic flux. These results indicate that capped AgNPs have the efficiency to revert the incomplete autophagy induced by A. baumannii back to normal autophagic levels.
Collapse
Affiliation(s)
- Saroj Sharma
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
2
|
Lorente-Torres B, Llano-Verdeja J, Castañera P, Ferrero HÁ, Fernández-Martínez S, Javadimarand F, Mateos LM, Letek M, Mourenza Á. Innovative Strategies in Drug Repurposing to Tackle Intracellular Bacterial Pathogens. Antibiotics (Basel) 2024; 13:834. [PMID: 39335008 PMCID: PMC11428606 DOI: 10.3390/antibiotics13090834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Intracellular bacterial pathogens pose significant public health challenges due to their ability to evade immune defenses and conventional antibiotics. Drug repurposing has recently been explored as a strategy to discover new therapeutic uses for established drugs to combat these infections. Utilizing high-throughput screening, bioinformatics, and systems biology, several existing drugs have been identified with potential efficacy against intracellular bacteria. For instance, neuroleptic agents like thioridazine and antipsychotic drugs such as chlorpromazine have shown effectiveness against Staphylococcus aureus and Listeria monocytogenes. Furthermore, anticancer drugs including tamoxifen and imatinib have been repurposed to induce autophagy and inhibit bacterial growth within host cells. Statins and anti-inflammatory drugs have also demonstrated the ability to enhance host immune responses against Mycobacterium tuberculosis. The review highlights the complex mechanisms these pathogens use to resist conventional treatments, showcases successful examples of drug repurposing, and discusses the methodologies used to identify and validate these drugs. Overall, drug repurposing offers a promising approach for developing new treatments for bacterial infections, addressing the urgent need for effective antimicrobial therapies.
Collapse
Affiliation(s)
- Blanca Lorente-Torres
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Jesús Llano-Verdeja
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Pablo Castañera
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Helena Á Ferrero
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | | | - Farzaneh Javadimarand
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Luis M Mateos
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, 24071 León, Spain
| | - Michal Letek
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
- Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, 24071 León, Spain
| | - Álvaro Mourenza
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| |
Collapse
|
3
|
Cerna-Chávez E, Rodríguez-Rodríguez JF, García-Conde KB, Ochoa-Fuentes YM. Potential of Streptomyces avermitilis: A Review on Avermectin Production and Its Biocidal Effect. Metabolites 2024; 14:374. [PMID: 39057697 PMCID: PMC11278826 DOI: 10.3390/metabo14070374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Secondary metabolites produced by the fermentation of Streptomyces avermitilis bacterium are powerful antiparasitic agents used in animal health, agriculture and human infection treatments. Avermectin is a macrocyclic lactone with four structural components (A1, A2, B1, B2), each of them containing a major and a minor subcomponent, out of which avermectin B1a is the most effective parasitic control compound. Avermectin B1a produces two homologue avermectins (B1 and B2) that have been used in agriculture as pesticides and antiparasitic agents, since 1985. It has a great affinity with the Cl-channels of the glutamate receptor, allowing the constant flow of Cl- ions into the nerve cells, causing a phenomenon of hyperpolarization causing death by flaccid paralysis. The purpose of this work was to gather information on the production of avermectins and their biocidal effects, with special emphasis on their role in the control of pests and phytopathogenic diseases. The literature showed that S. avermitilis is an important producer of macrocyclic lactones with biocidal properties. In addition, avermectin contributes to the control of ectoparasites and endoparasites in human health care, veterinary medicine and agriculture. Importantly, avermectin is a compound that is harmless to the host (no side effects), non-target organisms and the environment.
Collapse
Affiliation(s)
- Ernesto Cerna-Chávez
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - José Francisco Rodríguez-Rodríguez
- Estudiante de Postgrado en Ciencias en Parasitología Agrícola, Universidad Autónoma Agraria Antonia Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - Karen Berenice García-Conde
- Estudiante de Postgrado en Ciencias en Parasitología Agrícola, Universidad Autónoma Agraria Antonia Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| | - Yisa María Ochoa-Fuentes
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Saltillo 25315, Coahuila, Mexico;
| |
Collapse
|
4
|
Gilaverte Hentz S, Reyes Reyes FG, Kaschuk G, Bittencourt de Oliveira L, Machado Fernandes MA, Gomes Monteiro AL. Does Faeces Excreted by Moxidectin-Treated Sheep Impact Coprophagous Insects and the Activity of Soil Microbiota in Subtropical Pastures? SCIENTIFICA 2024; 2024:1960065. [PMID: 38356694 PMCID: PMC10866637 DOI: 10.1155/2024/1960065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Moxidectin (MOX) is used to control helminth parasites in ruminant livestock. It is released through feces and remains in the environment for a long period. This study aimed to evaluate the impact of faeces excreted by moxidectin-treated sheep on soil biodiversity (coprophagous insects, soil microbial biomass, and activity) to establish environment-related guidelines regarding the use of MOX in sheep livestock. The study consisted of two experiments. In the first one, faeces from MOX-treated (subcutaneous dose of 0.2 mg·kg-1 body weight) and nontreated rams were placed on an animal-free pasture field, protected or not against rain, for 88 days. Then, coprophagous insects were captured, identified, and counted, and faeces degradation was evaluated by measuring dry weight and carbon (C) and nitrogen (N) contents over time. Diptera, Hymenoptera, Isoptera, and Coleoptera were equally encountered in faeces from MOX-treated and nontreated animals. Faecal boluses of MOX-treated animals (with higher N content) not protected against rain degraded faster than faecal boluses of nontreated animals (with lower N content). In the second experiment, faeces from nontreated animals were amended with increasing amounts of MOX (75 to 3,000 ng·kg-1 faeces), mixed with soil samples from animal-free pasture (1.9 to 75 ng·kg-1 soil), and incubated in a greenhouse for 28 days. Increasing concentrations of MOX did not prevent the growth of cultivable bacteria, actinobacteria, or fungi in culture media. However, even the lower MOX concentration (1.9 ng·kg-1 soil) abruptly decreased soil microbial biomass, basal respiration, and N mineralization. Thus, the results indicate that faeces excreted from sheep treated with MOX under the experimental conditions of this study are not harmful to the coprophagous insects. However, adding MOX to faeces from drug-free sheep had a negative impact on soil microbial activity and biomass.
Collapse
Affiliation(s)
- Susana Gilaverte Hentz
- Sheep and Goat Production and Research Center, Federal University of Paraná, Rua dos Funcionários, 1540, CEP 80035-050, Curitiba, PR, Brazil
| | - Felix Guillermo Reyes Reyes
- Department of Food Science and Nutrition, State University of Campinas, Rua Monteiro Lobato, 80, CEP 13083-862, Campinas, SP, Brazil
| | - Glaciela Kaschuk
- Department of Soil and Agricultural Engineering, Federal University of Paraná, Rua dos Funcionários, 1540, CEP 80035-050, Curitiba, PR, Brazil
| | - Leandro Bittencourt de Oliveira
- Department of Crop Science and Plant Protection, Federal University of Paraná, Rua dos Funcionários, 1540, CEP 80035-050, Curitiba, PR, Brazil
| | - Maria Angela Machado Fernandes
- Sheep and Goat Production and Research Center, Federal University of Paraná, Rua dos Funcionários, 1540, CEP 80035-050, Curitiba, PR, Brazil
| | - Alda Lúcia Gomes Monteiro
- Sheep and Goat Production and Research Center, Federal University of Paraná, Rua dos Funcionários, 1540, CEP 80035-050, Curitiba, PR, Brazil
| |
Collapse
|
5
|
Chen Y, Huang X, Guo Z, Zhang J, Zhang L, Dai R. Study of Pharmacokinetics for Ivermectin B1a from Beagle Dogs. J Chromatogr Sci 2023:bmad092. [PMID: 38134186 DOI: 10.1093/chromsci/bmad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
Ivermectin has been widely used for antiparasitic drug, and has recently shown a broad-spectrum antiviral activity, including anti-Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the pharmacokinetic property of ivermectin has not been fully investigated yet. During the plasma preparation, ~32-46% of ivermectin was found in the precipitation. An Liquid Chromatograph-Mass Spectrometer (LC-MS/MS) method for ivermectin in the whole blood samples from beagle dogs was developed and validated. The specificity, accuracy, precision (intra-day and inter-day), matrix effect, recovery and stability of analyte reported here are satisfied with the criteria of Food and Drug Administration (FDA)-Bioanalysis guideline. The oral administrations pharmacokinetics of ivermectin in beagle dogs under fasting and after high-fat meal were studied, and the following parameters were obtained: fasting Cmax, 104 ± 35 μg·L-1; area under the concentration-time curve (AUC0-∞), 2,555 ± 941 h·μg·L-1; and high-fat meal Cmax, 147 ± 35 μg·L-1; AUC0-∞, 4,198 ± 1,279 h·μg·L-1. When the P-gp inhibitor curcumin was also coadministrated orally, Cmax and AUC0-∞ were found to be 177 ± 57 and 4,213 ± 948 h·μg·L-1, respectively. With the comparison to fasting treatment, coadministration of P-gp inhibitor curcumin resulted in increase of the exposure of ivermectin by 1.6-fold, while the exposure after the high-fat diet versus fasting was increased approximately in 1.4-fold, indicating that alternative absorption might play an important role for increasing the exposure of ivermectin for future clinic applications.
Collapse
Affiliation(s)
- Yuyang Chen
- School of Pharmacy, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong 511436, China
| | - Xiaofang Huang
- Guangdong Ruigu Biotech Corporation, 18 Chuangxing Road, High-tech Zone, Qingyuan, Guangdong 511517, China
| | - Zizheng Guo
- Guangdong Ruigu Biotech Corporation, 18 Chuangxing Road, High-tech Zone, Qingyuan, Guangdong 511517, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai 200237, China
| | - Renke Dai
- School of Pharmacy, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, Guangdong 511436, China
- Guangdong Ruigu Biotech Corporation, 18 Chuangxing Road, High-tech Zone, Qingyuan, Guangdong 511517, China
| |
Collapse
|
6
|
Sulik M, Antoszczak M, Huczyński A, Steverding D. Antiparasitic activity of ivermectin: Four decades of research into a "wonder drug". Eur J Med Chem 2023; 261:115838. [PMID: 37793327 DOI: 10.1016/j.ejmech.2023.115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Parasitic diseases still pose a serious threat to human and animal health, particularly for millions of people and their livelihoods in low-income countries. Therefore, research into the development of effective antiparasitic drugs remains a priority. Ivermectin, a sixteen-membered macrocyclic lactone, exhibits a broad spectrum of antiparasitic activities, which, combined with its low toxicity, has allowed the drug to be widely used in the treatment of parasitic diseases affecting humans and animals. In addition to its licensed use against river blindness and strongyloidiasis in humans, and against roundworm and arthropod infestations in animals, ivermectin is also used "off-label" to treat many other worm-related parasitic diseases, particularly in domestic animals. In addition, several experimental studies indicate that ivermectin displays also potent activity against viruses, bacteria, protozoans, trematodes, and insects. This review article summarizes the last 40 years of research on the antiparasitic effects of ivermectin, and the use of the drug in the treatment of parasitic diseases in humans and animals.
Collapse
Affiliation(s)
- Michał Sulik
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61‒614, Poznań, Poland.
| | - Dietmar Steverding
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
7
|
Medha, Joshi H, Sharma S, Sharma M. Elucidating the function of hypothetical PE_PGRS45 protein of Mycobacterium tuberculosis as an oxido-reductase: a potential target for drug repurposing for the treatment of tuberculosis. J Biomol Struct Dyn 2023; 41:10009-10025. [PMID: 36448553 DOI: 10.1080/07391102.2022.2151514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Mycobacterium tuberculosis (Mtb) encodes a total of 67 PE_PGRS proteins and definite functions of many of them are still unknown. This study reports PE_PGRS45 (Rv2615c) protein from Mtb as NADPH dependent oxido-reductase having substrate specificity for fatty acyl Coenzyme A. Computational studies predicted PE_PGRS45 to be an integral membrane protein of Mtb. Expression of PE_PGRS45 in non-pathogenic Mycobacterium smegmatis, which does not possess PE_PGRS genes, confirmed its membrane localization. This protein was observed to have NADPH binding motif. Experimental validation confirmed its NADPH dependent oxido-reductase activity (Km value = 34.85 ± 9.478 μM, Vmax = 96.77 ± 7.184 nmol/min/mg of protein). Therefore, its potential to be targeted by first line anti-tubercular drug Isoniazid (INH) was investigated. INH was predicted to bind within the active site of PE_PGRS45 protein and experiments validated its inhibitory effect on the oxido-reductase activity of PE_PGRS45 with IC50/Ki values of 5.66 μM. Mtb is resistant to first line drugs including INH. Therefore, to address the problem of drug resistant TB, docking and Molecular Dynamics (MD) simulation studies between PE_PGRS45 and three drugs (Entacapone, Tolcapone and Verapamil) which are being used in Parkinson's and hypertension treatment were performed. PE_PGRS45 bound the three drugs with similar or better affinity in comparison to INH. Additionally, INH and these drugs bound within the same active site of PE_PGRS45. This study discovered Mtb's PE_PGRS45 protein to have an oxido-reductase activity and could be targeted by drugs that can be repurposed for TB treatment. Furthermore, in-vitro and in-vivo validation will aid in drug-resistant TB treatment. HIGHLIGHTSIn-silico and in-vitro studies of hypothetical protein PE_PGRS45 (Rv2615c) of Mycobacterium tuberculosis (Mtb) reveals it to be an integral membrane proteinPE_PGRS45 protein has substrate specificity for fatty acyl Coenzyme A (fatty acyl CoA) and possess NADPH dependent oxido-reductase activityDocking and simulation studies revealed that first line anti-tubercular drug Isoniazid (INH) and other drugs with anti-TB property have strong affinity for PE_PGRS45 proteinOxido-reductase activity of PE_PGRS45 protein is inhibited by INHPE_PGRS45 protein could be targeted by drugs that can be repurposed for TB treatmentCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Medha
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sadhna Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| | - Monika Sharma
- DSKC Bio Discovery Lab and Department of Zoology, Miranda House, University of Delhi, New Delhi, India
| |
Collapse
|
8
|
Folliero V, Dell’Annunziata F, Santella B, Roscetto E, Zannella C, Capuano N, Perrella A, De Filippis A, Boccia G, Catania MR, Galdiero M, Franci G. Repurposing Selamectin as an Antimicrobial Drug against Hospital-Acquired Staphylococcus aureus Infections. Microorganisms 2023; 11:2242. [PMID: 37764086 PMCID: PMC10535345 DOI: 10.3390/microorganisms11092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The emergence of multidrug-resistant strains requires the urgent discovery of new antibacterial drugs. In this context, an antibacterial screening of a subset of anthelmintic avermectins against gram-positive and gram-negative strains was performed. Selamectin completely inhibited bacterial growth at 6.3 μg/mL concentrations against reference gram-positive strains, while no antibacterial activity was found against gram-negative strains up to the highest concentration tested of 50 μg/mL. Given its relevance as a community and hospital pathogen, further studies have been performed on selamectin activity against Staphylococcus aureus (S. aureus), using clinical isolates with different antibiotic resistance profiles and a reference biofilm-producing strain. Antibacterial studies have been extensive on clinical S. aureus isolates with different antibiotic resistance profiles. Mean MIC90 values of 6.2 μg/mL were reported for all tested S. aureus strains, except for the macrolide-resistant isolate with constitutive macrolide-lincosamide-streptogramin B resistance phenotype (MIC90 9.9 μg/mL). Scanning Electron Microscopy (SEM) showed that selamectin exposure caused relevant cell surface alterations. A synergistic effect was observed between ampicillin and selamectin, dictated by an FIC value of 0.5 against methicillin-resistant strain. Drug administration at MIC concentration reduced the intracellular bacterial load by 81.3%. The effect on preformed biofilm was investigated via crystal violet and confocal laser scanning microscopy. Selamectin reduced the biofilm biomass in a dose-dependent manner with minimal biofilm eradication concentrations inducing a 50% eradication (MBEC50) at 5.89 μg/mL. The cytotoxic tests indicated that selamectin exhibited no relevant hemolytic and cytotoxic activity at active concentrations. These data suggest that selamectin may represent a timely and promising macrocyclic lactone for the treatment of S. aureus infections.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
| | - Federica Dell’Annunziata
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
| | - Biagio Santella
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (E.R.); (M.R.C.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
| | - Nicoletta Capuano
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
| | - Alessandro Perrella
- Division Emerging Infectious Disease and High Contagiousness, Hospital D Cotugno, 80131 Naples, Italy;
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
| | - Giovanni Boccia
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84126 Salerno, Italy
- Hospital Hygiene and Epidemiology Complex Operating Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84126 Salerno, Italy
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80138 Naples, Italy; (E.R.); (M.R.C.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.Z.); (A.D.F.); (M.G.)
- Section of Microbiology and Virology, University Hospital “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (B.S.); (N.C.); (G.B.)
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio e Ruggi D’Aragona University Hospital, 84126 Salerno, Italy
| |
Collapse
|
9
|
Mandalaywala R, Rana A, Ramos AL, Sampson P, Ashkenas J. Physical and pharmacokinetic characterization of Soluvec™, a novel, solvent-free aqueous ivermectin formulation. Ther Deliv 2023; 14:391-399. [PMID: 37535333 DOI: 10.4155/tde-2023-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Purpose: To describe application of the Quicksol™ solvent-free approach to solubilize ivermectin (IVM). Methods: Lyophilized IVM complexed with hydroxypropyl-β-cyclodextrin (HP-β-CD) was resolubilized in aqueous polysorbate-80, generating Soluvec™. Lyophilizate was examined by Fourier-transform infrared spectroscopy and differential scanning calorimetry; Soluvec, by dynamic light scattering. Pharmacokinetics was evaluated in dogs allocated to subcutaneous (SC) or intramuscular (IM) Soluvec or oral IVM. Results: IVM in Soluvec was tightly bound by HPβCD, forming nearly monodisperse 28 nm particles with solubility ∼2500-times that of free IVM. SC and IM Soluvec increased IVM exposure, peak IVM and extended duration of IVM exposure, versus oral dosing. Conclusion: The Quicksol method generated Soluvec, a concentrated aqueous parenteral IVM formulation with pharmacokinetic properties suitable for veterinary or human use.
Collapse
Affiliation(s)
- Richa Mandalaywala
- Mountain Valley MD, 260 Edgeley Blvd - Unit 4, Concord, Ontario, L4K 3Y4, Canada
| | - Azhar Rana
- Mountain Valley MD, 260 Edgeley Blvd - Unit 4, Concord, Ontario, L4K 3Y4, Canada
| | - Aubrey L Ramos
- Mountain Valley MD, 260 Edgeley Blvd - Unit 4, Concord, Ontario, L4K 3Y4, Canada
| | - Peter Sampson
- IntrinsiChem Consulting Inc., Oakville, Ontario, L6M 4A2, Canada
| | - John Ashkenas
- EquiPoise Communication, 491 Brunswick Ave, Toronto, Ontario, M5R 2Z6, Canada
| |
Collapse
|
10
|
Sharma K, Ahmed F, Sharma T, Grover A, Agarwal M, Grover S. Potential Repurposed Drug Candidates for Tuberculosis Treatment: Progress and Update of Drugs Identified in Over a Decade. ACS OMEGA 2023; 8:17362-17380. [PMID: 37251185 PMCID: PMC10210030 DOI: 10.1021/acsomega.2c05511] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/23/2022] [Indexed: 05/31/2023]
Abstract
The devastating impact of Tuberculosis (TB) has been a menace to mankind for decades. The World Health Organization (WHO) End TB Strategy aims to reduce TB mortality up to 95% and 90% of overall TB cases worldwide, by 2035. This incessant urge will be achieved with a breakthrough in either a new TB vaccine or novel drugs with higher efficacy. However, the development of novel drugs is a laborious process involving a timeline of almost 20-30 years with huge expenditure; on the other hand, repurposing previously approved drugs is a viable technique for overcoming current bottlenecks in the identification of new anti-TB agents. The present comprehensive review discusses the progress of almost all the repurposed drugs that have been identified to the present day (∼100) and are in the development or clinical testing phase against TB. We have also emphasized the efficacy of repurposed drugs in combination with already available frontline anti-TB medications along with the scope of future investigations. This study would provide the researchers a detailed overview of nearly all identified anti-TB repurposed drugs and may assist them in selecting the lead compounds for further in vivo/clinical research.
Collapse
Affiliation(s)
- Khushbu Sharma
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Faraz Ahmed
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Tarina Sharma
- New
Jersey Medical School, Rutgers, The State
University of New Jersey, Newark, New Jersey 07103, United States
| | - Abhinav Grover
- School
of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Meetu Agarwal
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| | - Sonam Grover
- Department
of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
11
|
Ceballos L, Alvarez L, Lifschitz A, Lanusse C. Ivermectin systemic availability in adult volunteers treated with different oral pharmaceutical formulations. Biomed Pharmacother 2023; 160:114391. [PMID: 36804122 DOI: 10.1016/j.biopha.2023.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Ivermectin (IVM) is currently approved as an antiparasitic agent for human use in the treatment of onchocerciasis, lymphatic filariasis, strongyloidiasis, scabies, and pediculosis. Recent findings indicate that IVM may reach other pharmacological targets, which accounts for its proven anti-inflammatory/immunomodulatory, cytostatic, and antiviral effects. However, little is known about the assessment of alternative drug formulations for human use. OBJECTIVE To compare the systemic availability and disposition kinetics of IVM orally administered as different pharmaceutical formulations (tablet, solution, or capsule) to healthy adults. EXPERIMENTAL DESIGN/MAIN FINDINGS Volunteers were randomly assigned to 1 of 3 experimental groups and orally treated with IVM as either, a tablet, solution, or capsules at 0.4 mg/kg in a three-phase crossover design. Blood samples were taken as dried blood spots (DBS) between 2 and 48 h post-treatment and IVM was analyzed by HPLC with fluorescence detection. IVM Cmax value was higher (P < 0.05) after the administration of the oral solution compared to treatments with both solid preparations. The oral solution resulted in a significantly higher IVM systemic exposure (AUC: 1653 ng h/mL) compared to the tablet (1056 ng h/mL) and capsule (996 ng h/mL) formulations. The simulation of a 5-day repeated administration for each formulation did not show a significant systemic accumulation. CONCLUSION Beneficial effects against systemically located parasitic infections as well as in any other potential therapeutic field of IVM application would be expected from its use in the form of oral solution. This pharmacokinetic-based therapeutic advantage without the risk of excessive accumulation needs to be corroborated in clinical trials specifically designed for each purpose.
Collapse
Affiliation(s)
- L Ceballos
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina.
| | - L Alvarez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina
| | - A Lifschitz
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina
| | - C Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil, Buenos Aires, Argentina; Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de Ciencias Veterinarias, Tandil, Buenos Aires, Argentina
| |
Collapse
|
12
|
Jiménez-Gaona Y, Vivanco-Galván O, Morales-Larreategui G, Cabrera-Bejarano A, Lakshminarayanan V. Outcome of Ivermectin in Cancer Treatment: An Experience in Loja-Ecuador. NURSING REPORTS 2023; 13:315-326. [PMID: 36976682 PMCID: PMC10054244 DOI: 10.3390/nursrep13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/14/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Cancer is one of the leading causes of death worldwide, and trends in cancer incidence and mortality are increasing over last years in Loja-Ecuador. Cancer treatment is expensive because of social and economic issues which force the patients to look for other alternatives. One such alternative treatment is ivermectin-based antiparasitic, which is commonly used in treating cattle. This paper analyzed ivermectin use as cancer treatment in the rural area of the Loja province and the medical opinion regarding the use of ivermectin in humans. (2) Methods: The study used a mixed methodology using different sampling techniques such as observation, surveys, and interviews. (3) Results: The main findings show that 19% of the participants diagnosed with cancer take medicines based on ivermectin as alternative therapy to the cancer control and treatment without leaving treatment such as chemotherapy, radiotherapy, or immunotherapy, while 81% use it to treat other diseases. (4) Conclusions: Finally, we identify that the interviewed not only use IVM as anticancer treatment, but it is also used as a treatment against other diseases. Although the participants’ opinions indicate that they feel improvements in their health after the third dose, the specialist considers that there is no authorization to prescribe these alternative treatments. In addition, they confirmed that currently, there is no scientific knowledge about the application of these treatments in humans and they do not recommend their application. Thus, the anticancer mechanism of ivermectin remains to be further investigated; therefore, we consider that it is important to continue with this research by proposing a new stage to evaluate and determine the pharmacological action of this type of drug through an in vitro study in different cultures of cancer cells.
Collapse
Affiliation(s)
- Yuliana Jiménez-Gaona
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
- Instituto de Instrumentación Para la Imagen Molecular I3M, Universitat Politécnica de Valencia, E-46022 Valencia, Spain
- Correspondence:
| | - Oscar Vivanco-Galván
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Gonzalo Morales-Larreategui
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Andrea Cabrera-Bejarano
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto S/N, Loja PC1101608, Ecuador
| | - Vasudevan Lakshminarayanan
- Theoretical and Experimental Epistemology Lab, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L3G1, Canada
- Department of Systems Design Engineering, Physics, and Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
13
|
Alwali AY, Parkinson EI. Small molecule inducers of actinobacteria natural product biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad019. [PMID: 37587009 PMCID: PMC10549211 DOI: 10.1093/jimb/kuad019] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Actinobacteria are a large and diverse group of bacteria that are known to produce a wide range of secondary metabolites, many of which have important biological activities, including antibiotics, anti-cancer agents, and immunosuppressants. The biosynthesis of these compounds is often highly regulated with many natural products (NPs) being produced at very low levels in laboratory settings. Environmental factors, such as small molecule elicitors, can induce the production of secondary metabolites. Specifically, they can increase titers of known NPs as well as enabling discovery of novel NPs typically produced at undetectable levels. These elicitors can be NPs, including antibiotics or hormones, or synthetic compounds. In recent years, there has been a growing interest in the use of small molecule elicitors to induce the production of secondary metabolites from actinobacteria, especially for the discovery of NPs from "silent" biosynthetic gene clusters. This review aims to highlight classes of molecules that induce secondary metabolite production in actinobacteria and to describe the potential mechanisms of induction. ONE-SENTENCE SUMMARY This review describes chemical elicitors of actinobacteria natural products described to date and the proposed mechanisms of induction.
Collapse
Affiliation(s)
- Amir Y Alwali
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Elizabeth I Parkinson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Castillejos-López M, Torres-Espíndola LM, Huerta-Cruz JC, Flores-Soto E, Romero-Martinez BS, Velázquez-Cruz R, Higuera-Iglesias A, Camarena Á, Torres-Soria AK, Salinas-Lara C, Fernández-Plata R, Alvarado-Vásquez N, Solís-Chagoyán H, Ruiz V, Aquino-Gálvez A. Ivermectin: A Controversial Focal Point during the COVID-19 Pandemic. Life (Basel) 2022; 12:1384. [PMID: 36143420 PMCID: PMC9502658 DOI: 10.3390/life12091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 pandemic has confirmed the apocalyptic predictions that virologists have been making for several decades. The challenge the world is facing is that of trying to find a possible treatment, and a viable and expedient option for addressing this challenge is the repurposing of drugs. However, in some cases, although these drugs are approved for use in humans, the mechanisms of action involved are unknown. In this sense, to justify its therapeutic application to a new disease, it is ideal, but not necessary, to know the basic mechanisms of action involved in a drug's biological effects. This review compiled the available information regarding the various effects attributed to Ivermectin. The controversy over its use for the treatment of COVID-19 is demonstrated by this report that considers the proposal unfeasible because the therapeutic doses proposed to achieve this effect cannot be achieved. However, due to the urgent need to find a treatment, an exhaustive and impartial review is necessary in order to integrate the knowledge that exists, to date, of the possible mechanisms through which the treatment may be helpful in defining safe doses and schedules of Ivermectin.
Collapse
Affiliation(s)
- Manuel Castillejos-López
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | | | - Juan Carlos Huerta-Cruz
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Bianca S. Romero-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico
| | - Anjarath Higuera-Iglesias
- Departamento de Investigación en Epidemiología Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ángel Camarena
- Laboratorio de HLA, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Ana Karen Torres-Soria
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala UNAM, Mexico City 54090, Mexico
| | - Citlaltepetl Salinas-Lara
- Red MEDICI, Carrera de Médico Cirujano, Facultad de Estudios Superiores de Iztacala UNAM, Mexico City 54090, Mexico
| | - Rosario Fernández-Plata
- Departamento de Epidemiología y Estadística, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Noé Alvarado-Vásquez
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico
| | - Héctor Solís-Chagoyán
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Víctor Ruiz
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
15
|
Integrated analysis reveals FOXA1 and Ku70/Ku80 as targets of ivermectin in prostate cancer. Cell Death Dis 2022; 13:754. [PMID: 36050295 PMCID: PMC9436997 DOI: 10.1038/s41419-022-05182-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
Ivermectin is a widely used antiparasitic drug and shows promising anticancer activity in various cancer types. Although multiple signaling pathways modulated by ivermectin have been identified in tumor cells, few studies have focused on the exact target of ivermectin. Herein, we report the pharmacological effects and targets of ivermectin in prostate cancer. Ivermectin caused G0/G1 cell cycle arrest, induced cell apoptosis and DNA damage, and decreased androgen receptor (AR) signaling in prostate cancer cells. Further in vivo analysis showed ivermectin could suppress 22RV1 xenograft progression. Using integrated omics profiling, including RNA-seq and thermal proteome profiling, the forkhead box protein A1 (FOXA1) and non-homologous end joining (NHEJ) repair executer Ku70/Ku80 were strongly suggested as direct targets of ivermectin in prostate cancer. The interaction of ivermectin and FOXA1 reduced the chromatin accessibility of AR signaling and the G0/G1 cell cycle regulator E2F1, leading to cell proliferation inhibition. The interaction of ivermectin and Ku70/Ku80 impaired the NHEJ repair ability. Cooperating with the downregulation of homologous recombination repair ability after AR signaling inhibition, ivermectin increased intracellular DNA double-strand breaks and finally triggered cell death. Our findings demonstrate the anticancer effect of ivermectin in prostate cancer, indicating that its use may be a new therapeutic approach for prostate cancer.
Collapse
|
16
|
Proteomic Comparison of Ivermectin Sensitive and Resistant Staphylococcus aureus Clinical Isolates Reveals Key Efflux Pumps as Possible Resistance Determinants. Antibiotics (Basel) 2022; 11:antibiotics11060759. [PMID: 35740165 PMCID: PMC9219645 DOI: 10.3390/antibiotics11060759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/06/2023] Open
Abstract
Ivermectin (IVM) is a versatile drug used against many microorganisms. Staphylococcus aureus is one of the most devastating microorganisms. IVM sensitive and resistant S. aureus strains were recently reported. However, the underlying molecular mechanisms of resistance are unknown. Clinical isolates of S. aureus were used for determination of the sensitivities against IVM by growth curve analysis and time-kill kinetics. Then, proteomic, and biochemical approaches were applied to investigate the possible mechanisms of resistance. Proteomic results showed a total of 1849 proteins in the dataset for both strains, 425 unique proteins in strain O9 (IVM sensitive), and 354 unique proteins in strain O20 (IVM resistant). Eight proteins with transport functions were differentially expressed in the IVM resistant strain. Among them, three efflux pumps (mepA, emrB, and swrC) were confirmed by qPCR. The IVM resistant S. aureus may overexpress these proteins as a key resistance determinant. Further experiments are required to confirm the exact mechanistic relationship. Nevertheless, the possibility of blocking these transporters to reverse or delay the onset of resistance and reduce selection pressure is potentially appealing.
Collapse
|
17
|
Volkova YA, Rassokhina IV, Kondrakhin EA, Rossokhin AV, Kolbaev SN, Tihonova TB, Kh. Dzhafarov M, Schetinina MA, Chernoburova EI, Vasileva EV, Dmitrenok AS, Kovalev GI, Sharonova IN, Zavarzin IV. Synthesis and Evaluation of Avermectin–Imidazo[1,2-a]pyridine Hybrids as Potent GABAA Receptor Modulators. Bioorg Chem 2022; 127:105904. [DOI: 10.1016/j.bioorg.2022.105904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 01/08/2023]
|
18
|
Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S, Demain AL. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol 2022; 106:1855-1878. [PMID: 35188588 PMCID: PMC8860141 DOI: 10.1007/s00253-022-11821-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/18/2022]
Abstract
Microorganisms are remarkable producers of a wide diversity of natural products that significantly improve human health and well-being. Currently, these natural products comprise half of all the pharmaceuticals on the market. After the discovery of penicillin by Alexander Fleming 85 years ago, the search for and study of antibiotics began to gain relevance as drugs. Since then, antibiotics have played a valuable role in treating infectious diseases and have saved many human lives. New molecules with anticancer, hypocholesterolemic, and immunosuppressive activity have now been introduced to treat other relevant diseases. Smaller biotechnology companies and academic laboratories generate novel antibiotics and other secondary metabolites that big pharmaceutical companies no longer develop. The purpose of this review is to illustrate some of the recent developments and to show the potential that some modern technologies like metagenomics and genome mining offer for the discovery and development of new molecules, with different functions like therapeutic alternatives needed to overcome current severe problems, such as the SARS-CoV-2 pandemic, antibiotic resistance, and other emerging diseases. KEY POINTS: • Novel alternatives for the treatment of infections caused by bacteria, fungi, and viruses. • Second wave of efforts of microbial origin against SARS-CoV-2 and related variants. • Microbial drugs used in clinical practice as hypocholesterolemic agents, immunosuppressants, and anticancer therapy.
Collapse
Affiliation(s)
- Dulce Ramírez-Rendon
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Ajit Kumar Passari
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico.
| | - Arnold L Demain
- Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ, 07940, USA
| |
Collapse
|
19
|
Dicks LMT, Deane SM, Grobbelaar MJ. Could the COVID-19-Driven Increased Use of Ivermectin Lead to Incidents of Imbalanced Gut Microbiota and Dysbiosis? Probiotics Antimicrob Proteins 2022; 14:217-223. [PMID: 35218001 PMCID: PMC8881049 DOI: 10.1007/s12602-022-09925-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
The microfilaricidal anthelmintic drug ivermectin (IVM) has been used since 1988 for treatment of parasitic infections in animals and humans. The discovery of IVM’s ability to inactivate the eukaryotic importin α/β1 heterodimer (IMPα/β1), used by some viruses to enter the nucleus of susceptible hosts, led to the suggestion of using the drug to combat SARS-CoV-2 infection. Since IVM has antibacterial properties, prolonged use may affect commensal gut microbiota. In this review, we investigate the antimicrobial properties of IVM, possible mode of activity, and the concern that treatment of individuals diagnosed with COVID-19 may lead to dysbiosis.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Shelly M Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Matthew J Grobbelaar
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
20
|
The Veterinary Anti-Parasitic Selamectin Is a Novel Inhibitor of the Mycobacterium tuberculosis DprE1 Enzyme. Int J Mol Sci 2022; 23:ijms23020771. [PMID: 35054958 PMCID: PMC8776228 DOI: 10.3390/ijms23020771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 01/08/2022] [Indexed: 02/04/2023] Open
Abstract
Avermectins are macrocyclic lactones with anthelmintic activity. Recently, they were found to be effective against Mycobacterium tuberculosis, which accounts for one third of the worldwide deaths from antimicrobial resistance. However, their anti-mycobacterial mode of action remains to be elucidated. The activity of selamectin was determined against a panel of M. tuberculosis mutants. Two strains carrying mutations in DprE1, the decaprenylphosphoryl-β-D-ribose oxidase involved in the synthesis of mycobacterial arabinogalactan, were more susceptible to selamectin. Biochemical assays against the Mycobacterium smegmatis DprE1 protein confirmed this finding, and docking studies predicted a binding site in a loop that included Leu275. Sequence alignment revealed variants in this position among mycobacterial species, with the size and hydrophobicity of the residue correlating with their MIC values; M. smegmatis DprE1 variants carrying these point mutations validated the docking predictions. However, the correlation was not confirmed when M. smegmatis mutant strains were constructed and MIC phenotypic assays performed. Likewise, metabolic labeling of selamectin-treated M. smegmatis and M. tuberculosis cells with 14C-labeled acetate did not reveal the expected lipid profile associated with DprE1 inhibition. Together, our results confirm the in vitro interactions of selamectin and DprE1 but suggest that selamectin could be a multi-target anti-mycobacterial compound.
Collapse
|
21
|
Ivermectin (IVM) Possible Side Activities and Implications in Antimicrobial Resistance and Animal Welfare: The Authors' Perspective. Vet Sci 2022; 9:vetsci9010024. [PMID: 35051108 PMCID: PMC8777850 DOI: 10.3390/vetsci9010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Ivermectin has a wide number of many diverse functions. Certainly, it is irreplaceable for the treatment of parasitic pathologies in both human and veterinary medicine, and the latter represents the major field of its application. It has been called the "drug for the world's poor" because of its role as a saviour for those living on the margins of society, in underdeveloped areas afflicted by devastating and debilitating diseases, such as Onchocerciasis and Lymphatic filariasis. It showed huge, unexpected potential as an antibacterial (Chlamydia trachomatis and mycobacteria), and it has antiviral and anti-inflammatory properties. The research line described here is placed right in the middle of the investigation on the impact of this drug as an antimicrobial and an immunomodulator. Being a drug widely employed for mass administration, it is mandatory to broaden the knowledge of its possible interaction with bacterial growth and its generation of antimicrobial resistance. Equally, it is important to understand the impact of these drugs on the immune systems of animal species, e.g., horses and dogs, in which this drug is often used. More importantly, could immunomodulation and antibacterial activity promote both bacterial growth and the occurrence of resistance mechanisms?
Collapse
|
22
|
Tatu AL, Nadasdy T. Comment on 'Don't Judge a Book by its Cover. "Steroid Acne": an Unrecognized Role of Malassezia and Demodex?' by Melin et al. J Eur Acad Dermatol Venereol 2021; 36:e232-e233. [PMID: 34843135 DOI: 10.1111/jdv.17843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022]
Affiliation(s)
- A L Tatu
- Dermatology Department, 'Sf. Cuvioasa Parascheva' Clinical Hospital of Infectious Diseases, Galati, Romania.,Clinical Department, Faculty of Medicine and Pharmacy, 'Dunarea de Jos' University, Galati, Romania.,Research Center in the Field of Medical and Pharmaceutical Sciences, ReFORM-UDJ, Galati, Romania.,Multidisciplinary Integrative Center for Dermatologic Interface Research MIC-DIR, Galati, Romania
| | - T Nadasdy
- Dermatology Department, 'Sf. Cuvioasa Parascheva' Clinical Hospital of Infectious Diseases, Galati, Romania.,Multidisciplinary Integrative Center for Dermatologic Interface Research MIC-DIR, Galati, Romania
| |
Collapse
|
23
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
24
|
Chevrette MG, Handelsman J. Needles in haystacks: reevaluating old paradigms for the discovery of bacterial secondary metabolites. Nat Prod Rep 2021; 38:2083-2099. [PMID: 34693961 DOI: 10.1039/d1np00044f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Natural products research is in the midst of a renaissance ushered in by a modern understanding of microbiology and the technological explosions of genomics and metabolomics. As the exploration of uncharted chemical space expands into high-throughput discovery campaigns, it has become increasingly clear how design elements influence success: (bio)geography, habitat, community dynamics, culturing/induction methods, screening methods, dereplication, and more. We explore critical considerations and assumptions in natural products discovery. We revisit previous estimates of chemical rediscovery and discuss their relatedness to study design and producer taxonomy. Through frequency analyses of biosynthetic gene clusters in publicly available genomic data, we highlight phylogenetic biases that influence rediscovery rates. Through selected examples of how study design at each level determines discovery outcomes, we discuss the challenges and opportunities for the future of high-throughput natural product discovery.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jo Handelsman
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
25
|
Overcoming the Prokaryote/Eukaryote Barrier in Tuberculosis Treatment: A Prospect for the Repurposing and Use of Antiparasitic Drugs. Microorganisms 2021; 9:microorganisms9112335. [PMID: 34835459 PMCID: PMC8622410 DOI: 10.3390/microorganisms9112335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance, the so-called silent pandemic, is pushing industry and academia to find novel antimicrobial agents with new mechanisms of action in order to be active against susceptible and drug-resistant microorganisms. In the case of tuberculosis, the need of novel anti-tuberculosis drugs is specially challenging because of the intricate biology of its causative agent, Mycobacterium tuberculosis. The repurposing of medicines has arisen in recent years as a fast, low-cost, and efficient strategy to identify novel biomedical applications for already approved drugs. This review is focused on anti-parasitic drugs that have additionally demonstrated certain levels of anti-tuberculosis activity; along with this, natural products with a dual activity against parasites and against M. tuberculosis are discussed. A few clinical trials have tested antiparasitic drugs in tuberculosis patients, and have revealed effective dose and toxicity issues, which is consistent with the natural differences between tuberculosis and parasitic infections. However, through medicinal chemistry approaches, derivatives of drugs with anti-parasitic activity have become successful drugs for use in tuberculosis therapy. In summary, even when the repurposing of anti-parasitic drugs for tuberculosis treatment does not seem to be an easy job, it deserves attention as a potential contributor to fuel the anti-tuberculosis drug pipeline.
Collapse
|
26
|
Cobos-Campos R, Apiñaniz A, Parraza N, Cordero J, García S, Orruño E. Potential use of ivermectin for the treatment and prophylaxis of SARS-CoV-2 infection. Curr Res Transl Med 2021; 69:103309. [PMID: 34418758 PMCID: PMC8354804 DOI: 10.1016/j.retram.2021.103309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF THE STUDY Currently no treatment has been proven to be efficacious for patients with early symptoms of COVID-19. Although most patients present mild or moderate symptoms, up to 5-10% may have a poor disease progression, so there is an urgent need for effective drugs, which can be administered even before the onset of severe symptoms, i.e. when the course of the disease is modifiable. Recently, promising results of several studies on oral ivermectin have been published, which has prompted us to conduct the present review of the scientific literature. METHODS A narrative review has been carried out, focusing on the following four main topics: a) short-term efficacy in the treatment of the disease, b) long-term efficacy in the treatment of patients with post-acute symptoms of COVID-19, c) efficacy in the prophylaxis of the disease, and c) safety of ivermectin. RESULTS The reviewed literature suggests that there seems to be sufficient evidence about the safety of oral ivermectin, as well as the efficacy of the drug in the early-treatment and the prophylaxis of COVID-19. CONCLUSIONS In the view of the available evidence, the Frontline COVID-19 Critical Care Alliance (FLCCC) recommends the use of oral ivermectin for both prophylaxis and early-treatment of COVID-19. Further well-designed studies should be conducted in order to explore the efficacy and safety of invermectin at low and high doses, following different dosing schedules, in both, the short and long-term treatment.
Collapse
Affiliation(s)
- R Cobos-Campos
- Bioaraba Health Research Institute, Epidemiology and Public Health Research Group, Vitoria-Gasteiz, Spain.
| | - A Apiñaniz
- Bioaraba Health Research Institute, Epidemiology and Public Health Research Group, Vitoria-Gasteiz, Spain; Osakidetza Basque Health Service, Aranbizkarra I Health Centre, Vitoria-Gasteiz, Spain; Department of Preventive Medicine and Public Health, EHU/UPV, Vitoria-Gasteiz, Spain.
| | - N Parraza
- Bioaraba Health Research Institute, Epidemiology and Public Health Research Group, Vitoria-Gasteiz, Spain.
| | - J Cordero
- Bioaraba Health Research Institute, Epidemiology and Public Health Research Group, Vitoria-Gasteiz, Spain.
| | - S García
- Bioaraba Health Research Institute, Epidemiology and Public Health Research Group, Vitoria-Gasteiz, Spain.
| | - E Orruño
- Bioaraba Health Research Institute, Epidemiology and Public Health Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
27
|
Mathachan SR, Sardana K, Khurana A. Current Use of Ivermectin in Dermatology, Tropical Medicine, and COVID-19: An Update on Pharmacology, Uses, Proven and Varied Proposed Mechanistic Action. Indian Dermatol Online J 2021; 12:500-514. [PMID: 34430453 PMCID: PMC8354388 DOI: 10.4103/idoj.idoj_298_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Ivermectin is a broad-spectrum antiparasitic drug with anti-inflammatory, anti-viral, anti-bacterial, and anti-tumor effects. In this review, we discuss the history, pharmacology, multimodal actions, indications in dermatology and tropical medicine, therapeutic and prophylactic use of ivermectin in COVID-19, safety, adverse effects, special considerations, and drug interactions of ivermectin.
Collapse
Affiliation(s)
- Sinu Rose Mathachan
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Kabir Sardana
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Ananta Khurana
- Departments of Dermatology, Venereology and Leprosy, ABVIMS and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
28
|
Zein AFMZ, Sulistiyana CS, Raffaelo WM, Pranata R. Ivermectin and mortality in patients with COVID-19: A systematic review, meta-analysis, and meta-regression of randomized controlled trials. Diabetes Metab Syndr 2021; 15:102186. [PMID: 34237554 PMCID: PMC8236126 DOI: 10.1016/j.dsx.2021.102186] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023]
Abstract
AIMS This systematic review and meta-analysis aims to investigate the effect of ivermectin on mortality in patients with COVID-19. METHODS A comprehensive systematic literature search was performed using PubMed, Scopus, Embase, and Clinicaltrials.gov from the inception of databases up until April 9, 2021. The intervention group was ivermectin and the control group was standard of care or placebo. The primary outcome was mortality reported as risk ratio (RR). RESULTS There were 9 RCTs comprising of 1788 patients included in this meta-analysis. Ivermectin was associated with decreased mortality (RR 0.39 [95% 0.20-0.74], p = 0.004; I2: 58.2%, p = 0.051). Subgroup analysis in patients with severe COVID-19 showed borderline statistical significance towards mortality reduction (RR 0.42 [95% 0.18-1.00], p = 0.052; I2: 68.3, p = 0.013). The benefit of ivermectin and mortality was reduced by hypertension (RR 1.08 [95% CI 1.03-1.13], p = 0.001); but was not influenced by age (p = 0.657), sex (p = 0.466), diabetes (p = 0.429). Sensitivity analysis using fixed-effect model showed that ivermectin decreased mortality in general (RR 0.43 [95% CI 0.29-0.62], p < 0.001) and severe COVID-19 subgroup (RR 0.48 [95% CI 0.32-0.72], p < 0.001). CONCLUSIONS Ivermectin was associated with decreased mortality in COVID-19 with a low certainty of evidence. Further adequately powered double-blinded placebo-controlled RCTs are required for definite conclusion.
Collapse
Affiliation(s)
- Ahmad Fariz Malvi Zamzam Zein
- Department of Internal Medicine, Faculty of Medicine, Universitas Swadaya Gunung Jati, Department of Internal Medicine, Waled General Hospital, Cirebon, Indonesia.
| | - Catur Setiya Sulistiyana
- Department of Medical Education, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon, Indonesia.
| | | | - Raymond Pranata
- Faculty of Medicine, Universitas Pelita Harapan, Tangerang, Indonesia.
| |
Collapse
|
29
|
Pessanha de Carvalho L, Kreidenweiss A, Held J. Drug Repurposing: A Review of Old and New Antibiotics for the Treatment of Malaria: Identifying Antibiotics with a Fast Onset of Antiplasmodial Action. Molecules 2021; 26:2304. [PMID: 33921170 PMCID: PMC8071546 DOI: 10.3390/molecules26082304] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria is one of the most life-threatening infectious diseases and constitutes a major health problem, especially in Africa. Although artemisinin combination therapies remain efficacious to treat malaria, the emergence of resistant parasites emphasizes the urgent need of new alternative chemotherapies. One strategy is the repurposing of existing drugs. Herein, we reviewed the antimalarial effects of marketed antibiotics, and described in detail the fast-acting antibiotics that showed activity in nanomolar concentrations. Antibiotics have been used for prophylaxis and treatment of malaria for many years and are of particular interest because they might exert a different mode of action than current antimalarials, and can be used simultaneously to treat concomitant bacterial infections.
Collapse
Affiliation(s)
- Lais Pessanha de Carvalho
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
- Centre de Recherches Medicales de Lambaréné (CERMEL), Lambaréné BP 242, Gabon
| | - Jana Held
- Institute of Tropical Medicine, University of Tuebingen, 72074 Tuebingen, Germany; (L.P.d.C.); (A.K.)
- Centre de Recherches Medicales de Lambaréné (CERMEL), Lambaréné BP 242, Gabon
| |
Collapse
|
30
|
Repurposing Avermectins and Milbemycins against Mycobacteroides abscessus and Other Nontuberculous Mycobacteria. Antibiotics (Basel) 2021; 10:antibiotics10040381. [PMID: 33916775 PMCID: PMC8066277 DOI: 10.3390/antibiotics10040381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, resulting in a new global health concern. NTM treatment is complex and requires combinations of several drugs for lengthy periods. In spite of this, NTM disease is often associated with poor treatment outcomes. The anti-parasitic family of macrocyclic lactones (ML) (divided in two subfamilies: avermectins and milbemycins) was previously described as having activity against mycobacteria, including Mycobacterium tuberculosis, Mycobacterium ulcerans, and Mycobacterium marinum, among others. Here, we aimed to characterize the in vitro anti-mycobacterial activity of ML against a wide range of NTM species, including Mycobacteroides abscessus. For this, Minimum Inhibitory Concentration (MIC) values of eight ML were determined against 80 strains belonging to nine different NTM species. Macrocyclic lactones showed variable ranges of anti-mycobacterial activity that were compound and species-dependent. Milbemycin oxime was the most active compound, displaying broad-spectrum activity with MIC lower than 8 mg/L. Time kill assays confirmed MIC data and showed bactericidal and sterilizing activity of some compounds. Macrocyclic lactones are available in many formulations and have been extensively used in veterinary and human medicine with suitable pharmacokinetics and safety properties. This information could be exploited to explore repurposing of anti-helminthics for NTM therapy.
Collapse
|
31
|
Moon CD, Carvalho L, Kirk MR, McCulloch AF, Kittelmann S, Young W, Janssen PH, Leathwick DM. Effects of long-acting, broad spectra anthelmintic treatments on the rumen microbial community compositions of grazing sheep. Sci Rep 2021; 11:3836. [PMID: 33589656 PMCID: PMC7884727 DOI: 10.1038/s41598-021-82815-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Anthelmintic treatment of adult ewes is widely practiced to remove parasite burdens in the expectation of increased ruminant productivity. However, the broad activity spectra of many anthelmintic compounds raises the possibility of impacts on the rumen microbiota. To investigate this, 300 grazing ewes were allocated to treatment groups that included a 100-day controlled release capsule (CRC) containing albendazole and abamectin, a long-acting moxidectin injection (LAI), and a non-treated control group (CON). Rumen bacterial, archaeal and protozoal communities at day 0 were analysed to identify 36 sheep per treatment with similar starting compositions. Microbiota profiles, including those for the rumen fungi, were then generated for the selected sheep at days 0, 35 and 77. The CRC treatment significantly impacted the archaeal community, and was associated with increased relative abundances of Methanobrevibacter ruminantium, Methanosphaera sp. ISO3-F5, and Methanomassiliicoccaceae Group 12 sp. ISO4-H5 compared to the control group. In contrast, the LAI treatment increased the relative abundances of members of the Veillonellaceae and resulted in minor changes to the bacterial and fungal communities by day 77. Overall, the anthelmintic treatments resulted in few, but highly significant, changes to the rumen microbiota composition.
Collapse
Affiliation(s)
- Christina D Moon
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand.
| | - Luis Carvalho
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Michelle R Kirk
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Alan F McCulloch
- Invermay Research Centre, AgResearch Limited, Mosgiel, New Zealand
| | - Sandra Kittelmann
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Wayne Young
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Peter H Janssen
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Dave M Leathwick
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| |
Collapse
|
32
|
Safety and Pharmacokinetic Assessments of a Novel Ivermectin Nasal Spray Formulation in a Pig Model. J Pharm Sci 2021; 110:2501-2507. [PMID: 33493479 PMCID: PMC8058614 DOI: 10.1016/j.xphs.2021.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
Recently published data indicates that high ivermectin (IVM) concentrations suppress in vitro SARS-CoV-2 replication. Nasal IVM spray administration may contribute to attaining high drug concentrations in nasopharyngeal tissue, a primary site of virus entrance/replication. The safety and pharmacokinetic performances of a novel IVM spray formulation were assessed in a pig model. Piglets received IVM either orally (0.2 mg/kg) or by one or two nasal spray doses. The overall safety, and histopathology of the IVM-spray application site tissues, were assessed. The IVM concentration profiles measured in plasma and respiratory tract tissues after the nasal spray were compared with those achieved after the oral administration. Animals tolerated well the nasal spray formulation. No local/systemic adverse events were observed. After nasal administration, the highest IVM concentrations were measured in nasopharyngeal and lung tissues. The nasal/oral IVM concentration ratios in nasopharyngeal and lung tissues markedly increased by repeating (12 h apart) the spray application. The fast attainment of high and persistent IVM concentrations in nasopharyngeal tissue is the main advantage of the nasal over the oral route. These original results support the undertaking of future clinical trials to evaluate the safety/efficacy of the nasal IVM spray application in the prevention and/or treatment of COVID-19.
Collapse
|
33
|
Metagenomic Analysis Reveals the Mechanism for the Observed Increase in Antibacterial Activity of Penicillin against Uncultured Bacteria Candidatus Liberibacter asiaticus Relative to Oxytetracycline in Planta. Antibiotics (Basel) 2020; 9:antibiotics9120874. [PMID: 33291469 PMCID: PMC7768456 DOI: 10.3390/antibiotics9120874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
Citrus huanglongbing (HLB) is a devastating disease for the citrus industry. The previous studies demonstrated that oxytetracycline and penicillin are effective antibiotics against Candidatus Liberibacter asiaticus (CLas). However, since CLas is uncultured, the mechanisms of action of antibiotics against CLas are still unclear. It was recently reported that the endophytic microbial communities are associated with the progression of citrus HLB after oxytetracycline and penicillin treatment. Therefore, we hypothesize that penicillin has greater antibacterial activity against CLas than oxytetracycline, which may be associated with the alteration of the structure and function of endophytic microbial communities in HLB-affected citrus in response to these antibiotics. To test this hypothesis, the microbiome of HLB-affected citrus leaves treated with these two antibiotics was analyzed using a metagenomic method. Our results indicate that the microbial structure and function in HLB-affected citrus were altered by these two antibiotics. The relative abundance of beneficial bacterial species, including Streptomyces avermitilis and Bradyrhizobium, was higher in penicillin-treated plants compared to those treated with oxytetracycline, and the relative abundance of the bacterial species (such as Propionibacterium acnes and Synechocystis sp PCC 6803) associated with CLas survival was lower for penicillin-treated plants compared to oxytetracycline-treated plants. These results indicate that penicillin has greater antibacterial activity against CLas. Based on the metagenomic analysis, this study elucidated the mechanism for the observed increase in antibacterial activity of penicillin against CLas. The data presented here are not only invaluable for developing eco-friendly and effective biocontrol strategies to combat citrus HLB, but also provide a method for revealing mechanism of antimicrobial against uncultured bacteria in host.
Collapse
|
34
|
Tree-Based QSAR Model for Drug Repurposing in the Discovery of New Antibacterial Compounds Against Escherichia coli. Pharmaceuticals (Basel) 2020; 13:ph13120431. [PMID: 33260726 PMCID: PMC7760995 DOI: 10.3390/ph13120431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 01/31/2023] Open
Abstract
Drug repurposing appears as an increasing popular tool in the search of new treatment options against bacteria. In this paper, a tree-based classification method using Linear Discriminant Analysis (LDA) and discrete indexes was used to create a QSAR (Quantitative Structure-Activity Relationship) model to predict antibacterial activity against Escherichia coli. The model consists on a hierarchical decision tree in which a discrete index is used to divide compounds into groups according to their values for said index in order to construct probability spaces. The second step consists in the calculation of a discriminant function which determines the prediction of the model. The model was used to screen the DrugBank database, identifying 134 drugs as possible antibacterial candidates. Out of these 134 drugs, 8 were antibacterial drugs, 67 were drugs approved for different pathologies and 55 were drugs in experimental stages. This methodology has proven to be a viable alternative to the traditional methods used to obtain prediction models based on LDA and its application provides interesting new drug candidates to be studied as repurposed antibacterial treatments. Furthermore, the topological indexes Nclass and Numhba have proven to have the ability to group active compounds effectively, which suggests a close relationship between them and the antibacterial activity of compounds against E. coli.
Collapse
|
35
|
Dalberto PF, de Souza EV, Abbadi BL, Neves CE, Rambo RS, Ramos AS, Macchi FS, Machado P, Bizarro CV, Basso LA. Handling the Hurdles on the Way to Anti-tuberculosis Drug Development. Front Chem 2020; 8:586294. [PMID: 33330374 PMCID: PMC7710551 DOI: 10.3389/fchem.2020.586294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The global epidemic of tuberculosis (TB) imposes a sustained epidemiologic vigilance and investments in research by governments. Mycobacterium tuberculosis, the main causative agent of TB in human beings, is a very successful pathogen, being the main cause of death in the population among infectious agents. In 2018, ~10 million individuals were contaminated with this bacillus and became ill with TB, and about 1.2 million succumbed to the disease. Most of the success of the M. tuberculosis to linger in the population comes from its ability to persist in an asymptomatic latent state into the host and, in fact, the majority of the individuals are unaware of being contaminated. Even though TB is a treatable disease and is curable in most cases, the treatment is lengthy and laborious. In addition, the rise of resistance to first-line anti-TB drugs elicits a response from TB research groups to discover new chemical entities, preferably with novel mechanisms of action. The pathway to find a new TB drug, however, is arduous and has many barriers that are difficult to overcome. Fortunately, several approaches are available today to be pursued by scientists interested in anti-TB drug development, which goes from massively testing chemical compounds against mycobacteria, to discovering new molecular targets by genetic manipulation. This review presents some difficulties found along the TB drug development process and illustrates different approaches that might be used to try to identify new molecules or targets that are able to impair M. tuberculosis survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Luiz A. Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
36
|
Ivermectin: An Anthelmintic, an Insecticide, and Much More. Trends Parasitol 2020; 37:48-64. [PMID: 33189582 DOI: 10.1016/j.pt.2020.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
Here we tell the story of ivermectin, describing its anthelmintic and insecticidal actions and recent studies that have sought to reposition ivermectin for the treatment of other diseases that are not caused by helminth and insect parasites. The standard theory of its anthelmintic and insecticidal mode of action is that it is a selective positive allosteric modulator of glutamate-gated chloride channels found in nematodes and insects. At higher concentrations, ivermectin also acts as an allosteric modulator of ion channels found in host central nervous systems. In addition, in tissue culture, at concentrations higher than anthelmintic concentrations, ivermectin shows antiviral, antimalarial, antimetabolic, and anticancer effects. Caution is required before extrapolating from these preliminary repositioning experiments to clinical use, particularly for Covid-19 treatment, because of the high concentrations of ivermectin used in tissue-culture experiments.
Collapse
|
37
|
Chauffour A, Robert J, Veziris N, Aubry A, Pethe K, Jarlier V. Telacebec (Q203)-containing intermittent oral regimens sterilized mice infected with Mycobacterium ulcerans after only 16 doses. PLoS Negl Trop Dis 2020; 14:e0007857. [PMID: 32866170 PMCID: PMC7494103 DOI: 10.1371/journal.pntd.0007857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 09/16/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022] Open
Abstract
Buruli ulcer (BU), caused by Mycobacterium ulcerans, is currently treated with a daily combination of rifampin and either injectable streptomycin or oral clarithromycin. An intermittent oral regimen would facilitate treatment supervision. We first evaluated the bactericidal activity of newer antimicrobials against M. ulcerans using a BU animal model. The imidazopyridine amine telacebec (Q203) exhibited high bactericidal activity whereas tedizolid (an oxazolidinone closely related to linezolid), selamectin and ivermectin (two avermectine compounds) and the benzothiazinone PBTZ169 were not active. Consequently, telacebec was evaluated for its bactericidal and sterilizing activities in combined intermittent regimens. Telacebec given twice a week in combination with a long-half-life compound, either rifapentine or bedaquiline, sterilized mouse footpads in 8 weeks, i.e. after a total of only 16 doses, and prevented relapse during a period of 20 weeks after the end of treatment. These results are very promising for future intermittent oral regimens which would greatly simplify BU treatment in the field. The current treatment for Buruli ulcer (BU), an infection caused by Mycobacterium ulcerans, is based on a daily antibiotic combination of rifampin associated with streptomycin or clarithromycin. A shorter or intermittent treatment without an injectable drug would clearly simplify the management in the field. We evaluated the bactericidal activity of several new antimicrobial drugs in a mouse model of BU and found that telacebec (Q203) exhibited the greatest bactericidal effect. We subsequently identified new antibiotic combinations containing telacebec with high sterilizing activity when administered twice a week for 8 weeks, i.e. at a total of only 16 doses.
Collapse
Affiliation(s)
- Aurélie Chauffour
- Sorbonne Université, INSERM, U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- * E-mail:
| | - Jérôme Robert
- Sorbonne Université, INSERM, U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Laboratoire de Bactériologie-Hygiène, Groupe hospitalier APHP, Sorbonne Université, Site Pitié-Salpêtrière, Paris, France
| | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Laboratoire de Bactériologie-Hygiène, Groupe hospitalier APHP, Sorbonne Université, Site Pitié-Salpêtrière, Paris, France
- Département de Bactériologie, Groupe hospitalier APHP, Sorbonne Université, Site Saint-Antoine, Paris, France
| | - Alexandra Aubry
- Sorbonne Université, INSERM, U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Laboratoire de Bactériologie-Hygiène, Groupe hospitalier APHP, Sorbonne Université, Site Pitié-Salpêtrière, Paris, France
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Vincent Jarlier
- Sorbonne Université, INSERM, U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Laboratoire de Bactériologie-Hygiène, Groupe hospitalier APHP, Sorbonne Université, Site Pitié-Salpêtrière, Paris, France
| |
Collapse
|
38
|
El-Saber Batiha G, Alqahtani A, Ilesanmi OB, Saati AA, El-Mleeh A, Hetta HF, Magdy Beshbishy A. Avermectin Derivatives, Pharmacokinetics, Therapeutic and Toxic Dosages, Mechanism of Action, and Their Biological Effects. Pharmaceuticals (Basel) 2020; 13:E196. [PMID: 32824399 PMCID: PMC7464486 DOI: 10.3390/ph13080196] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Avermectins are a group of drugs that occurs naturally as a product of fermenting Streptomyces avermitilis, an actinomycetes, isolated from the soil. Eight different structures, including ivermectin, abamectin, doramectin, eprinomectin, moxidectin, and selamectin, were isolated and divided into four major components (A1a, A2a, B1a and B2a) and four minor components (A1b, A2b, B1b, and B2b). Avermectins are generally used as a pesticide for the treatment of pests and parasitic worms as a result of their anthelmintic and insecticidal properties. Additionally, they possess anticancer, anti-diabetic, antiviral, antifungal, and are used for treatment of several metabolic disorders. Avermectin generally works by preventing the transmission of electrical impulse in the muscle and nerves of invertebrates, by amplifying the glutamate effects on the invertebrates-specific gated chloride channel. Avermectin has unwanted effects or reactions, especially when administered indiscriminately, which include respiratory failure, hypotension, and coma. The current review examines the mechanism of actions, biosynthesis, safety, pharmacokinetics, biological toxicity and activities of avermectins.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Omotayo B. Ilesanmi
- Department of Biochemistry, Faculty of Science, Federal University Otuoke, Otuoke 561, Nigeria;
| | - Abdullah A. Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University Makkah, Mecca 24382, Saudi Arabia;
| | - Amany El-Mleeh
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shibin Al Kawm 32511, Egypt;
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| |
Collapse
|
39
|
Rizzo E. Ivermectin, antiviral properties and COVID-19: a possible new mechanism of action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1153-1156. [PMID: 32462282 PMCID: PMC7251046 DOI: 10.1007/s00210-020-01902-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 12/31/2022]
Abstract
Ivermectin is an antiparasitic drug that has shown also an effective pharmacological activity towards various infective agents, including viruses. This paper proposes an alternative mechanism of action for this drug that makes it capable of having an antiviral action, also against the novel coronavirus, in addition to the processes already reported in literature.
Collapse
Affiliation(s)
- Emanuele Rizzo
- Department of Prevention, Local Health Authority of Lecce (ASL Lecce), Lecce, Italy.
- Italian Society of Environmental Medicine (SIMA), Milan, Italy.
| |
Collapse
|
40
|
Osman YA, Aldesuquy HS, Younis SA, Hussein S. Characterization and optimization of abamectin-a powerful antiparasitic from a local Streptomyces avermitilis isolate. Folia Microbiol (Praha) 2020:10.1007/s12223-020-00779-4. [PMID: 32323213 DOI: 10.1007/s12223-020-00779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Abamectin (ABA) constitutes a big commodity for pharmaceutical companies because it generates about one billion dollar annual sale. Avermectins (AVMs) and their naturally occurring analogues, milbemycins (MILs), meilingmycins (MEIs), ivermectin (IVE), abamectin (ABA), and nemadectin (NEM), represent one of the most developed antiparasitic agents. Abamectin is a mixture of avermectin B1a and avermectin B1b. The production of abamectin by Streptomyces avermitilis is a complicated process and separation of two fractions is quite difficult; commercial product contains more than 80% of Bla and less than 20% of B1b components. The main goal of the study was the identification and optimization of fermentation conditions to raise the production of abamectin from Egyptian S. avermitilis. The qualitative and quantitative analysis of avermectins was carried out by thin layer chromatography (TLC) and 6538 Q-TOF with Agilent 1290 UHPLC. The process of identification was carried out by using production medium containing 30 g/L corn starch, and 0.725 g/L CaCO3, pH 7, 8% inoculum size and incubated at 32.5 °C. The enhancement of the production of abamectin is a big challenge with commercial and industrial importance, as its output is insufficient for human consumption.
Collapse
Affiliation(s)
- Yehia A Osman
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Heshmat S Aldesuquy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Sadia A Younis
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Suzan Hussein
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
41
|
Santos NCDS, Scodro RBDL, Sampiron EG, Ieque AL, Carvalho HCD, Santos TDS, Ghiraldi Lopes LD, Campanerut-Sá PAZ, Siqueira VLD, Caleffi-Ferracioli KR, Teixeira JJV, Cardoso RF. Minimum Bactericidal Concentration Techniques in Mycobacterium tuberculosis: A Systematic Review. Microb Drug Resist 2020; 26:752-765. [PMID: 31977277 DOI: 10.1089/mdr.2019.0191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Minimum bactericidal concentration (MBC) assay is an accepted parameter for evaluating new antimicrobial agents, and it is frequently used as a research tool to provide a prediction of bacterial eradication. To the best of our knowledge, there is no standardization among researchers regarding the technique used to detect a drug's MBC in Mycobacterium tuberculosis. Thus, the aim of this systematic review is to discuss the available literature in determining a drug's MBC in M. tuberculosis, to find the most commonly used technique and standardize the process. A broad and rigorous literature search of three electronic databases (PubMed, Web of Knowledge, and LILACS) was performed according to the PRISMA statement. We considered studies that were published from January 1, 1990 to February 19, 2019. Google Scholar was also searched to increase the number of publications. We searched for articles using the MeSH terms "microbiological techniques," "Mycobacterium," "antibacterial agents." In addition, free terms were used in the search. The search yielded 6,674 publications. After filter application, 5,348 publications remained. Of these, we evaluated the full text of 187 publications. By applying the inclusion criteria, 69 studies were included in the present systematic review. In the literature analyzed, a great variety in the techniques used to determine a drug's MBC in M. tuberculosis was observed. The most common variability is related to the culture media used, culture incubation time, and the percentage of bacterial death for the drug to be considered as bactericidal. The most commonly used technique for drug's MBC determination was carried out using the drug's minimum inhibitory concentration (MIC) assay. Aliquots from prior MIC values were subcultured in Middlebrook agar and incubated for 4 weeks at 35°C for determining the colony forming unit (CFU) with relevance to detect 99.9% bacilli killed or reduction in 3 log10 viable bacilli.
Collapse
Affiliation(s)
| | - Regiane Bertin de Lima Scodro
- Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | | | | | | | - Thais da Silva Santos
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil
| | - Luciana Dias Ghiraldi Lopes
- Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Paula Aline Zanetti Campanerut-Sá
- Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Vera Lucia Dias Siqueira
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| | - Jorge Juarez Vieira Teixeira
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduation in Bioscience and Physiopathology, State University of Maringa, Parana, Brazil.,Postgraduation in Health Sciences, State University of Maringa, Parana, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Parana, Brazil
| |
Collapse
|
42
|
Mohan P, Sinha S, Uppal R. Role of ivermectin in COVID-19: Wishful thinking or scientific optimism. JOURNAL OF MARINE MEDICAL SOCIETY 2020. [DOI: 10.4103/jmms.jmms_146_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
|
44
|
Ivermectin Impairs the Development of Sexual and Asexual Stages of Plasmodium falciparum In Vitro. Antimicrob Agents Chemother 2019; 63:AAC.00085-19. [PMID: 31109978 DOI: 10.1128/aac.00085-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
Ivermectin is the drug of choice for many parasitic infections, with more than one billion doses being distributed in onchocerciasis programs. The drug has been put into focus recently by the malaria community because of its potential to kill blood-sucking mosquitoes, thereby reducing malaria transmission. However, the activity of ivermectin against the malaria parasite itself has been only partly investigated. This study aimed to investigate the in vitro activity of ivermectin against asexual and sexual stages of Plasmodium falciparum Both asexual and late-stage gametocytes were incubated with ivermectin and control drugs in vitro The growth-inhibiting effects were assessed for asexual stages of different Plasmodium falciparum laboratory strains and culture-adapted clinical isolates using the histidine-rich protein 2 enzyme-linked immunosorbent assay technique. The effect against stage IV/V gametocytes was evaluated based on ATP quantification. Ivermectin showed activities at nanomolar concentrations against asexual stages (50% inhibitory concentration of ∼100 nM) and stage IV/V gametocytes (500 nM) of P. falciparum Stage-specific assays suggested that ivermectin arrests the parasite cycle at the trophozoite stage. Ivermectin might add a feature to its "wonder drug" properties with activity against asexual stages of the malaria parasite Plasmodium falciparum The observed activities might be difficult to reach with current regimens but will be more relevant with future high-dose regimens under investigation. Further studies should be performed to confirm these results in vitro and in vivo.
Collapse
|
45
|
Al-Ghafli H, Al-Hajoj S. Clinical Management of Drug-resistant Mycobacterium tuberculosis Strains: Pathogen-targeted Versus Host-directed Treatment Approaches. Curr Pharm Biotechnol 2019; 20:272-284. [DOI: 10.2174/1389201019666180731120544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/19/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
Background:
Despite exerted efforts to control and treat Mycobacterium tuberculosis (MTB)
strains, Tuberculosis (TB) remains a public health menace. The emergence of complex drug-resistant profiles,
such as multi-drug resistant and extensively drug-resistant MTB strains, emphasizes the need for
early diagnosis of resistant cases, shorter treatment options, and effective medical interventions.
Objective:
Solutions for better clinical management of drug-resistant cases are either pathogencentered
(novel chemotherapy agents) or host-directed approaches (modulating host immune response
to prevent MTB invasion and pathogenesis).
Results:
Despite the overall potentiality of several chemotherapy agents, it is feared that their effectiveness
could be challenged by sequential pathogen adaptation tactics. On the contrary, host-directed
therapy options might offer a long-term conceivable solution.
Conclusion:
This review discusses the main suggestions proposed so far to resolve the clinical challenges
associated with drug resistance, in the context of TB. These suggestions include novel drug delivery approaches
that could optimize treatment outcome and increase patients’ compliance to the treatment.
Collapse
Affiliation(s)
- Hawra Al-Ghafli
- Department of Infections and Immunity, King Faisal Specialist Hospital and Research Center, P.O. Box. 3354 Riyadh 11211 MBC:03, Riyadh, Saudi Arabia
| | - Sahal Al-Hajoj
- Department of Infections and Immunity, King Faisal Specialist Hospital and Research Center, P.O. Box. 3354 Riyadh 11211 MBC:03, Riyadh, Saudi Arabia
| |
Collapse
|
46
|
Getachew B, Reyes RE, Davies DL, Tizabi Y. Moxidectin Effects on Gut Microbiota of Wistar-Kyoto Rats: Relevance to Depressive-Like Behavior. CLINICAL PHARMACOLOGY AND TRANSLATIONAL MEDICINE 2019; 3:134-142. [PMID: 31321385 PMCID: PMC6639013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND/AIMS The prevalent comorbidity between neuropsychiatric and gastrointestinal (GI) disorders is believed to be significantly influenced by gut microbiota (GM). GM may also play a substantial role in comorbidity between substance abuse (e.g. Alcohol Use Disorder, AUD) and depression. The anti-parasitic drug Moxidectin (MOX) has been reported to reduce alcohol intake in male and female mice. This effect is purported to be centrally mediated with a significant contribution linked to purinergic, P2X4 purinergic receptors. However, MOX's effects on GM in animal models of depression is not known. METHODS Adult male Wistar Kyoto (WKY) rats (5/group) were injected intraperitoneally (i.p.) once daily for 7 days with MOX (2.5mg/kg), or saline as control group. On day 8, approximately 20 h after the last MOX injection, animals were sacrificed, intestinal stools were collected and stored at -80°C DNA was extracted from the samples for 16S rRNA gene-based GM analysis using 16S Metagenomics application. RESULTS At taxa and species level, MOX affected a number of bacteria including a 30-fold increase in Bifidobacterium cholerium, a bacterium with a strong ability to degrade carbohydrates that resist digestion in the small intestine. There was a minimum of 2-fold increase in: five probiotic species of Lactobacillus, butyrate-forming Rosburia Facies and Butyrivibro proteovlasticus. In contrast, MOX depleted 11 species, including 2 species of Ruminoccus, which are positively associated with severity of irritable bowel syndrome, and 4 species of Provettela, which are closely associated with depressive-like behavior. CONCLUSION Thus, MOX enhanced probiotic species, and suppressed the opportunistic pathogens. Since overall effect of MOX appears to be promoting GM associated with mood enhancement (e.g. Bifidobacterium and Lactobacillus) and suppressing GM associated with inflammation (e.g. Ruminoccus), potential antidepressant and anti-inflammatory effects of MOX in suitable animal models should be investigated.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Rachel E. Reyes
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
47
|
Walshe N, Duggan V, Cabrera-Rubio R, Crispie F, Cotter P, Feehan O, Mulcahy G. Removal of adult cyathostomins alters faecal microbiota and promotes an inflammatory phenotype in horses. Int J Parasitol 2019; 49:489-500. [PMID: 30986403 DOI: 10.1016/j.ijpara.2019.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/13/2019] [Accepted: 02/24/2019] [Indexed: 12/19/2022]
Abstract
The interactions between parasitic helminths and gut microbiota are considered to be an important, although as yet incompletely understood, factor in the regulation of immunity, inflammation and a range of diseases. Infection with intestinal helminths is ubiquitous in grazing horses, with cyathostomins (about 50 species of which are recorded) predominating. Consequences of infection include both chronic effects, and an acute inflammatory syndrome, acute larval cyathostominosis, which sometimes follows removal of adult helminths by administration of anthelmintic drugs. The presence of cyathostomins as a resident helminth population of the equine gut (the "helminthome") provides an opportunity to investigate the effect helminth infection, and its perturbation, has on both the immune system and bacterial microbiome of the gut, as well as to determine the specific mechanisms of pathophysiology involved in equine acute larval cyathostominosis. We studied changes in the faecal microbiota of two groups of horses following treatment with anthelmintics (fenbendazole or moxidectin). We found decreases in both alpha diversity and beta diversity of the faecal microbiota at Day 7 post-treatment, which were reversed by Day 14. These changes were accompanied by increases in inflammatory biomarkers. The general pattern of faecal microbiota detected was similar to that seen in the relatively few equine gut microbiome studies reported to date. We conclude that interplay between resident cyathostomin populations and the bacterial microbiota of the equine large intestine is important in maintaining homeostasis and that disturbance of this ecology can lead to gut dysbiosis and play a role in the aetiology of inflammatory conditions in the horse, including acute larval cyathostominosis.
Collapse
Affiliation(s)
- Nicola Walshe
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Vivienne Duggan
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Paul Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, APC Microbiome, Ireland
| | - Orna Feehan
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, Veterinary Sciences Centre, University College Dublin, Ireland.
| |
Collapse
|
48
|
Gómara M, Ramón-García S. The FICI paradigm: Correcting flaws in antimicrobial in vitro synergy screens at their inception. Biochem Pharmacol 2019; 163:299-307. [PMID: 30836058 DOI: 10.1016/j.bcp.2019.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Antibiotics have become the corner stone of modern medicine. However, our society is currently facing one of the greatest challenges of its time: the emergence of antimicrobial resistance. It is estimated that if no new therapies are implemented by 2050, 10 million people will die worldwide every year as a result of infections caused by bacteria resistant to current antibiotics; new antimicrobials are thus urgently needed. However, drug development is a tedious and very costly endeavor of hundreds of millions that can take up to 15-20 years from the bench discovery to the bedside. Under this scenario, drug repurposing, which consists in identifying new uses for old, clinically approved drugs, has gathered momentum within the pharmaceutical industry. Because most of these drugs have safety and toxicity information packages available, clinical evaluation could be done in a much shorter period than standard timelines. Synergistic combinations of these clinically approved drugs could also be a promising approach to identify novel antimicrobial therapies that might provide rational choices of available drugs to shorten treatment, increase efficacy, reduce toxicity, prevent resistance and treat infections caused by drug-resistant strains. However, although simple in its conception, translating results from in vitro synergy screens into in vivo efficacy or the clinical practice has proven to be a paramount challenge. In this Commentary, we will discuss common flaws at the inception of synergy research programs, with a special focus on the use of the Fractional Inhibitory Concentration Index (FICI), and evaluate potential interventions that can be made at different developmental pre-clinical stages in order to improve the odds of translation from in vitro studies.
Collapse
Affiliation(s)
- Marta Gómara
- Mycobacterial Genetics Group, Department of Microbiology, Preventive Medicine and Public Health. Faculty of Medicine, University of Zaragoza, Spain
| | - Santiago Ramón-García
- Mycobacterial Genetics Group, Department of Microbiology, Preventive Medicine and Public Health. Faculty of Medicine, University of Zaragoza, Spain; Research & Development Agency of Aragon (ARAID) Foundation, Spain; CIBER Respiratory Diseases, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
49
|
Miró-Canturri A, Ayerbe-Algaba R, Smani Y. Drug Repurposing for the Treatment of Bacterial and Fungal Infections. Front Microbiol 2019; 10:41. [PMID: 30745898 PMCID: PMC6360151 DOI: 10.3389/fmicb.2019.00041] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/11/2019] [Indexed: 12/26/2022] Open
Abstract
Multidrug-resistant (MDR) pathogens pose a well-recognized global health threat that demands effective solutions; the situation is deemed a global priority by the World Health Organization and the European Centre for Disease Prevention and Control. Therefore, the development of new antimicrobial therapeutic strategies requires immediate attention to avoid the ten million deaths predicted to occur by 2050 as a result of MDR bacteria. The repurposing of drugs as therapeutic alternatives for infections has recently gained renewed interest. As drugs approved by the United States Food and Drug Administration, information about their pharmacological characteristics in preclinical and clinical trials is available. Therefore, the time and economic costs required to evaluate these drugs for other therapeutic applications, such as the treatment of bacterial and fungal infections, are mitigated. The goal of this review is to provide an overview of the scientific evidence on potential non-antimicrobial drugs targeting bacteria and fungi. In particular, we aim to: (i) list the approved drugs identified in drug screens as potential alternative treatments for infections caused by MDR pathogens; (ii) review their mechanisms of action against bacteria and fungi; and (iii) summarize the outcome of preclinical and clinical trials investigating approved drugs that target these pathogens.
Collapse
Affiliation(s)
- Andrea Miró-Canturri
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Rafael Ayerbe-Algaba
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Younes Smani
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| |
Collapse
|
50
|
Deng Q, Xiao L, Liu Y, Zhang L, Deng Z, Zhao C. Streptomyces avermitilis industrial strain as cell factory for Ivermectin B1a production. Synth Syst Biotechnol 2018; 4:34-39. [PMID: 30623120 PMCID: PMC6314238 DOI: 10.1016/j.synbio.2018.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 11/25/2022] Open
Abstract
Ivermectin, a kind of valuable derivatives of Avermectin, is distinct from Avermectin due to the saturated bond at C22-C23 position. Combinatorial biosynthesis of Ivermectins based on Avermectins biosynthetic gene cluster (ave) has been achieved recently, while the establishment of an Ivermectin homogeneous component producing strain is challenging because of the limited compatibility between the native and heterologous polyketide synthase (PKS) domains. In this study, the PKS module 2 Dehydratase (DH)-Enoylreductase (ER)-Ketoreductase (KR) domain set of Meilingmycin, which is another naturally occurring homologue of Avermectin, was employed to substitute the DH-KR domains of Avermectins PKS module 2 to generate an Ivermectin biosynthetic gene cluster (ive). Ivermectins B1a and A1a were heterologously biosynthesized in a classic actinomyces host Streptomyces lividans. The Avermectin B1a high-producing strain S. avermitilis 3-115 was genetically engineered to give an artificial host cell and Ivermectin B1a single component was effectively produced with a production of 1.25 ± 0.14 g/L.
Collapse
Affiliation(s)
- Qian Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Liqiongzi Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changming Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|