1
|
Sangsri R, Choowongkomon K, Tuntipaiboontana R, Sugaram R, Boondej P, Sudathip P, Dondorp AM, Imwong M. Limited Polymorphism in the Dihydrofolate Reductase (dhfr) and dihydropteroate synthase genes (dhps) of Plasmodium knowlesi isolate from Thailand. Acta Trop 2023; 248:107016. [PMID: 37683820 PMCID: PMC10632683 DOI: 10.1016/j.actatropica.2023.107016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND The 2022 malaria WHO reported around 4000 P. knowlesi infections in the South-East Asia region. In the same period, 72 positive cases were reported by the Department of Disease Control in Thailand, suggesting a persistent infection. Little is known about dihydrofolate reductase (pkdhfr) and dihydropteroate synthase (pkdhps), putative antimalarial resistance markers for P. knowlesi. The relevant amplification and sequencing protocol are presently unavailable. In this study, we developed a protocol for amplifying and evaluating pkdhps mutations. The haplotype pattern of pkdhfr-pkdhps in Thai isolates was analyzed, and the effects of these pkdhps mutations were predicted by using a computer program. METHODS Pkdhps were amplified and sequenced from 28 P. knowlesi samples collected in 2008 and 2020 from nine provinces across Thailand. Combining pkdhfr sequencing data from previous work with pkdhps data to analyze polymorphisms of pkdhfr and pkdhps haplotype. Protein modeling and molecular docking were constructed using two inhibitors, sulfadoxine and sulfamethoxazole, and further details were obtained through analyses of protein-ligand interactions by using the Genetic Optimisation for Ligand Docking program. A phylogenetic tree cluster analysis was reconstructed to compare the P. knowlesi Malaysia isolates. RESULTS Five nonsynonymous mutations in the pkdhps were detected outside the equivalence of the binding pocket sites to sulfadoxine and sulfamethoxazole, which are at N391S, E421G, I425R, A449S, and N517S. Based on the modeling and molecular docking analyses, the N391S and N517S mutations located close to the enzyme-binding pocket demonstrated a different docking score and protein-ligand interaction in loop 2 of the enzyme. These findings indicated that it was less likely to induce drug resistance. Of the four haplotypes of pkdhfr-pkdhps, the most common one is the R34L pkdhfr mutation and the pkdhps quadruple mutation (GRSS) at E421G, I425R, A449S, and N517S, which were observed in P. knowlesi in southern Thailand (53.57%). Based on the results of neighbor-joining analysis for pkdhfr and pkdhps, the samples isolated from eastern Thailand displayed a close relationship with Cambodia isolates, while southern Thailand isolates showed a long branch separated from the Malaysian isolates. CONCLUSIONS A new PCR protocol amplification and evaluation of dihydropteroate synthase mutations in Knowlesi (pkdhps) has been developed. The most prevalent pkdhfr-pkdhps haplotypes (53.57%) in southern Thailand are R34L pkdhfr mutation and pkdhps quadruple mutation. Further investigation requires additional phenotypic data from clinical isolates, transgenic lines expressing mutant alleles, or recombinant proteins.
Collapse
Affiliation(s)
- Raweewan Sangsri
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand
| | - Runch Tuntipaiboontana
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Rungniran Sugaram
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Patcharida Boondej
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Prayuth Sudathip
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
2
|
Tripathi H, Bhalerao P, Singh S, Arya H, Alotaibi BS, Rashid S, Hasan MR, Bhatt TK. Malaria therapeutics: are we close enough? Parasit Vectors 2023; 16:130. [PMID: 37060004 PMCID: PMC10103679 DOI: 10.1186/s13071-023-05755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Malaria is a vector-borne parasitic disease caused by the apicomplexan protozoan parasite Plasmodium. Malaria is a significant health problem and the leading cause of socioeconomic losses in developing countries. WHO approved several antimalarials in the last 2 decades, but the growing resistance against the available drugs has worsened the scenario. Drug resistance and diversity among Plasmodium strains hinder the path of eradicating malaria leading to the use of new technologies and strategies to develop effective vaccines and drugs. A timely and accurate diagnosis is crucial for any disease, including malaria. The available diagnostic methods for malaria include microscopy, RDT, PCR, and non-invasive diagnosis. Recently, there have been several developments in detecting malaria, with improvements leading to achieving an accurate, quick, cost-effective, and non-invasive diagnostic tool for malaria. Several vaccine candidates with new methods and antigens are under investigation and moving forward to be considered for clinical trials. This article concisely reviews basic malaria biology, the parasite's life cycle, approved drugs, vaccine candidates, and available diagnostic approaches. It emphasizes new avenues of therapeutics for malaria.
Collapse
Affiliation(s)
- Himani Tripathi
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Preshita Bhalerao
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Sujeet Singh
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| | - Bader Saud Alotaibi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Alquwayiyah, Shaqra University, Riyadh, 11971, Saudi Arabia.
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, NH-8, Bandarsindri, 305817, Rajasthan, India.
| |
Collapse
|
3
|
Ibrahim A, Manko E, Dombrowski JG, Campos M, Benavente ED, Nolder D, Sutherland CJ, Nosten F, Fernandez D, Vélez-Tobón G, Castaño AT, Aguiar ACC, Pereira DB, da Silva Santos S, Suarez-Mutis M, Di Santi SM, Regina de Souza Baptista A, Dantas Machado RL, Marinho CR, Clark TG, Campino S. Population-based genomic study of Plasmodium vivax malaria in seven Brazilian states and across South America. LANCET REGIONAL HEALTH. AMERICAS 2023; 18:100420. [PMID: 36844008 PMCID: PMC9950661 DOI: 10.1016/j.lana.2022.100420] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 01/03/2023]
Abstract
Background Brazil is a unique and understudied setting for malaria, with complex foci of transmission associated with human and environmental conditions. An understanding of the population genomic diversity of P. vivax parasites across Brazil can support malaria control strategies. Methods Through whole genome sequencing of P. vivax isolates across 7 Brazilian states, we use population genomic approaches to compare genetic diversity within country (n = 123), continent (6 countries, n = 315) and globally (26 countries, n = 885). Findings We confirm that South American isolates are distinct, have more ancestral populations than the other global regions, with differentiating mutations in genes under selective pressure linked to antimalarial drugs (pvmdr1, pvdhfr-ts) and mosquito vectors (pvcrmp3, pvP45/48, pvP47). We demonstrate Brazil as a distinct parasite population, with signals of selection including ABC transporter (PvABCI3) and PHIST exported proteins. Interpretation Brazil has a complex population structure, with evidence of P. simium infections and Amazonian parasites separating into multiple clusters. Overall, our work provides the first Brazil-wide analysis of P. vivax population structure and identifies important mutations, which can inform future research and control measures. Funding AI is funded by an MRC LiD PhD studentship. TGC is funded by the Medical Research Council (Grant no. MR/M01360X/1, MR/N010469/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1). SC is funded by Medical Research Council UK grants (MR/M01360X/1, MR/R025576/1, MR/R020973/1 and MR/X005895/1) and Bloomsbury SET (ref. CCF17-7779). FN is funded by The Shloklo Malaria Research Unit - part of the Mahidol Oxford Research Unit, supported by the Wellcome Trust (Grant no. 220211). ARSB is funded by São Paulo Research Foundation - FAPESP (Grant no. 2002/09546-1). RLDM is funded by Brazilian National Council for Scientific and Technological Development - CNPq (Grant no. 302353/2003-8 and 471605/2011-5); CRFM is funded by FAPESP (Grant no. 2020/06747-4) and CNPq (Grant no. 302917/2019-5 and 408636/2018-1); JGD is funded by FAPESP fellowships (2016/13465-0 and 2019/12068-5) and CNPq (Grant no. 409216/2018-6).
Collapse
Affiliation(s)
- Amy Ibrahim
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Emilia Manko
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Jamille G. Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Mónica Campos
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Ernest Diez Benavente
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| | - Debbie Nolder
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Colin J. Sutherland
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Public Health England Malaria Reference Laboratory, London School of
Hygiene & Tropical Medicine, London, UK
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research
Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak,
Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of
Clinical Medicine Research Building, University of Oxford Old Road Campus,
Oxford, UK
| | - Diana Fernandez
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | - Gabriel Vélez-Tobón
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Antioquia,
Colombia
| | | | | | | | - Simone da Silva Santos
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | - Martha Suarez-Mutis
- Laboratório de Doenças Parasitárias, Institute Oswaldo Cruz - Fiocruz-
Rio de Janeiro, Brazil
| | | | - Andrea Regina de Souza Baptista
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Ricardo Luiz Dantas Machado
- Centro de Investigação de Microrganismos – CIM, Departamento de
Microbiologia e Parasitologia, Universidade Federal Fluminense,
Brazil
| | - Claudio R.F. Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University
of São Paulo, São Paulo, Brazil
| | - Taane G. Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
- Faculty of Epidemiology & Population Health, London School of Hygiene
& Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene
& Tropical Medicine, London, UK
| |
Collapse
|
4
|
Structure- and ligand-based drug design methods for the modeling of antimalarial agents: a review of updates from 2012 onwards. J Biomol Struct Dyn 2022; 40:10481-10506. [PMID: 34129805 DOI: 10.1080/07391102.2021.1932598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malaria still persists as one of the deadliest infectious disease having a huge morbidity and mortality affecting the higher population of the world. Structure and ligand-based drug design methods like molecular docking and MD simulations, pharmacophore modeling, QSAR and virtual screening are widely used to perceive the accordant correlation between the antimalarial activity and property of the compounds to design novel dominant and discriminant molecules. These modeling methods will speed-up antimalarial drug discovery, selection of better drug candidates for synthesis and to achieve potent and safer drugs. In this work, we have extensively reviewed the literature pertaining to the use and applications of various ligand and structure-based computational methods for the design of antimalarial agents. Different classes of molecules are discussed along with their target interactions pattern, which is responsible for antimalarial activity. Communicated by Ramaswamy H. Sarma.
Collapse
|
5
|
Vadlamani G, Sukhoverkov KV, Haywood J, Breese KJ, Fisher MF, Stubbs KA, Bond CS, Mylne JS. Crystal structure of Arabidopsis thaliana HPPK/DHPS, a bifunctional enzyme and target of the herbicide asulam. PLANT COMMUNICATIONS 2022; 3:100322. [PMID: 35605193 PMCID: PMC9284294 DOI: 10.1016/j.xplc.2022.100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Herbicides are vital for modern agriculture, but their utility is threatened by genetic or metabolic resistance in weeds, as well as regulatory barriers. Of the known herbicide modes of action, 7,8-dihydropterin synthase (DHPS), which is involved in folate biosynthesis, is targeted by just one commercial herbicide, asulam. A mimic of the substrate para-aminobenzoic acid, asulam is chemically similar to sulfonamide antibiotics, and although it is still in widespread use, asulam has faced regulatory scrutiny. With an entire mode of action represented by just one commercial agrochemical, we sought to improve the understanding of its plant target. Here we solve a 2.3 Å resolution crystal structure for Arabidopsis thaliana DHPS that is conjoined to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), and we reveal a strong structural conservation with bacterial counterparts at the sulfonamide-binding pocket of DHPS. We demonstrate that asulam and the antibiotic sulfamethoxazole have herbicidal as well as antibacterial activity, and we explore the structural basis of their potency by modeling these compounds in mitochondrial HPPK/DHPS. Our findings suggest limited opportunity for the rational design of plant selectivity from asulam and indicate that pharmacokinetic or delivery differences between plants and microbes might be the best ways to safeguard this mode of action.
Collapse
Affiliation(s)
- Grishma Vadlamani
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kirill V Sukhoverkov
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Joel Haywood
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Karen J Breese
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark F Fisher
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
6
|
Polymorphisms of potential drug resistant molecular markers in Plasmodium vivax from China–Myanmar border during 2008‒2017. Infect Dis Poverty 2022; 11:43. [PMID: 35462549 PMCID: PMC9036727 DOI: 10.1186/s40249-022-00964-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Plasmodium vivax remains the predominant species at the China–Myanmar border, imposing a major challenge to the recent gains in regional malaria elimination. To closely supervise the emerging of drug resistance in this area, we surveyed the variations in genes potentially correlated with drug resistance in P. vivax parasite and the possible drug selection with time.
Methods
A total of 235 P. vivax samples were collected from patients suffering uncomplicated malaria at Yingjiang, Tengchong, and Longling counties, and Nabang port in China, Yunnan province, and Laiza sub-township in Myanmar, from 2008 to 2017. Five potential drug resistance genes were amplified utilizing nested-PCR and analyzed, including pvdhfr, pvdhps, pvmdr1, pvcrt-o, and pvk12. The Pearson’s Chi-squared test or Fisher’s exact test were applied to determine the statistical frequency differences of mutations between categorical data.
Results
The pvdhfr F57I/L, S58R, T61M and S117T/N presented in 40.6%, 56.7%, 40.1%, and 56.0% of the sequenced P. vivax isolates, and these mutations significantly decreased with years. The haplotype formed by these quadruple mutations predominated in Yingjiang, Tengchong, Longling and Nabang. While a mutation H99S/R (56.6%) dominated in Laiza and increased with time. In pvdhps, the A383G prevailed in 69.2% of the samples, which remained the most prevalent haplotype. However, a significant decrease of its occurrence was also noticed over the time. The S382A/C and A553G existed in 8.4% and 30.8% of the isolates, respectively. In pvmdr1, the mutation Y976F occurred at a low frequency in 5/232 (2.2%), while T958M was fixed and F1076L was approaching fixed (72.4%). The K10 insertion was detected at an occurrence of 33.2% in pvcrt-o, whereas there was no significant difference among the sites or over the time. No mutation was identified in pvk12.
Conclusions
Mutations related with resistance to antifolate drugs are prevalent in this area, while their frequencies decrease significantly with time, suggestive of increased susceptibility of P. vivax parasite to antifolate drugs. Resistance to chloroquine (CQ) is possibly emerging. However, since the molecular mechanisms underneath CQ resistance is yet to be better understood, close supervision of clinical drug efficiency and continuous function investigation is urgently needed to alarm drug resistance.
Graphical abstract
Collapse
|
7
|
Aronimo BS, Okoro UC, Ali R, Ibeji CU, Ezugwu JA, Ugwu DI. Synthesis, molecular docking and antimalarial activity of phenylalanine-glycine dipeptide bearing sulphonamide moiety. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Minassian AM, Themistocleous Y, Silk SE, Barrett JR, Kemp A, Quinkert D, Nielsen CM, Edwards NJ, Rawlinson TA, Ramos Lopez F, Roobsoong W, Ellis KJ, Cho JS, Aunin E, Otto TD, Reid AJ, Bach FA, Labbé GM, Poulton ID, Marini A, Zaric M, Mulatier M, Lopez Ramon R, Baker M, Mitton CH, Sousa JC, Rachaphaew N, Kumpitak C, Maneechai N, Suansomjit C, Piteekan T, Hou MM, Khozoee B, McHugh K, Roberts DJ, Lawrie AM, Blagborough AM, Nugent FL, Taylor IJ, Johnson KJ, Spence PJ, Sattabongkot J, Biswas S, Rayner JC, Draper SJ. Controlled human malaria infection with a clone of Plasmodium vivax with high quality genome assembly. JCI Insight 2021; 6:152465. [PMID: 34609964 PMCID: PMC8675201 DOI: 10.1172/jci.insight.152465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Controlled human malaria infection (CHMI) provides a highly informative means to investigate host-pathogen interactions and enable in vivo proof-of-concept efficacy testing of new drugs and vaccines. However, unlike Plasmodium falciparum, well-characterized P. vivax parasites that are safe and suitable for use in modern CHMI models are limited. Here, two healthy malaria-naïve UK adults with universal donor blood group were safely infected with a clone of P. vivax from Thailand by mosquito-bite CHMI. Parasitemia developed in both volunteers and, prior to treatment, each volunteer donated blood to produce a cryopreserved stabilate of infected red blood cells. Following stringent safety screening, the parasite stabilate from one of these donors ("PvW1") was thawed and used to inoculate six healthy malaria-naïve UK adults by blood-stage CHMI, at three different dilutions. Parasitemia developed in all volunteers, who were then successfully drug treated. PvW1 parasite DNA was isolated and sequenced to produce a high quality genome assembly by using a hybrid assembly method. We analysed leading vaccine candidate antigens and multigene families, including the Vivax interspersed repeat (VIR) genes of which we identified 1145 in the PvW1 genome. Our genomic analysis will guide future assessment of candidate vaccines and drugs, as well as experimental medicine studies.
Collapse
Affiliation(s)
| | | | - Sarah E Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jordan R Barrett
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alison Kemp
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Doris Quinkert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Nick J Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | - Jee-Sun Cho
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Eerik Aunin
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Thomas D Otto
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Adam J Reid
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Florian A Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Ian D Poulton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Arianna Marini
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Marija Zaric
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Margaux Mulatier
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Celia H Mitton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jason C Sousa
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Maryland, United States of America
| | | | | | | | | | - Tianrat Piteekan
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Mimi M Hou
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Baktash Khozoee
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kirsty McHugh
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David J Roberts
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, United Kingdom
| | - Alison M Lawrie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Fay L Nugent
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona J Taylor
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Philip J Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Ugwuja DI, Okoro U, Soman S, Ibezim A, Ugwu D, Soni R, Obi B, Ezugwu J, Ekoh O. New glycine derived peptides bearing benzenesulphonamide as an antiplasmodial agent. NEW J CHEM 2021. [DOI: 10.1039/d0nj04387g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the tropics, malaria is among the most serious infectious diseases in developing countries. The discovery of the artemesinin antimalarial drug not too long ago was a major breakthrough in the effort to combat the malaria disease.
Collapse
Affiliation(s)
| | - Uchechukwu Okoro
- Department of Pure and Industrial Chemistry, University of Nigeria
- Nsukka
- Nigeria
| | - Shubhanji Soman
- Department of Chemistry, The Maharaja Sayajirao University of Baroda
- Vadodara
- India
| | - Akachukwu Ibezim
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria
- Nsukka
- Nigeria
| | - David Ugwu
- Department of Pure and Industrial Chemistry, University of Nigeria
- Nsukka
- Nigeria
| | - Rina Soni
- Department of Chemistry, The Maharaja Sayajirao University of Baroda
- Vadodara
- India
| | - Bonaventure Obi
- Department of Pharmacology and Toxicology, University of Nigeria
- Nsukka
- Nigeria
| | - James Ezugwu
- Department of Pure and Industrial Chemistry, University of Nigeria
- Nsukka
- Nigeria
| | | |
Collapse
|
10
|
Zhao Y, Wang L, Soe MT, Aung PL, Wei H, Liu Z, Ma T, Huang Y, Menezes LJ, Wang Q, Kyaw MP, Nyunt MH, Cui L, Cao Y. Molecular surveillance for drug resistance markers in Plasmodium vivax isolates from symptomatic and asymptomatic infections at the China-Myanmar border. Malar J 2020; 19:281. [PMID: 32758218 PMCID: PMC7409419 DOI: 10.1186/s12936-020-03354-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the Greater Mekong sub-region, Plasmodium vivax has become the predominant species and imposes a major challenge for regional malaria elimination. This study aimed to investigate the variations in genes potentially related to drug resistance in P. vivax populations from the China-Myanmar border area. In addition, this study also wanted to determine whether divergence existed between parasite populations associated with asymptomatic and acute infections. METHODS A total of 66 P. vivax isolates were obtained from patients with acute malaria who attended clinics at the Laiza area, Kachin State, Myanmar in 2015. In addition, 102 P. vivax isolates associated with asymptomatic infections were identified by screening of volunteers without signs or symptoms from surrounding villages. Slide-positive samples were verified with nested PCR detecting the 18S rRNA gene. Multiclonal infections were further excluded by genotyping at msp-3α and msp-3β genes. Parasite DNA from 60 symptomatic cases and 81 asymptomatic infections was used to amplify and sequence genes potentially associated with drug resistance, including pvmdr1, pvcrt-o, pvdhfr, pvdhps, and pvk12. RESULTS The pvmdr1 Y976F and F1076L mutations were present in 3/113 (2.7%) and 97/113 (85.5%) P. vivax isolates, respectively. The K10 insertion in pvcrt-o gene was found in 28.2% of the parasites. Four mutations in the two antifolate resistance genes reached relatively high levels of prevalence: pvdhfr S58R (53.4%), S117N/T (50.8%), pvdhps A383G (75.0%), and A553G (36.3%). Haplotypes with wild-type pvmdr1 (976Y/997K/1076F) and quadruple mutations in pvdhfr (13I/57L/58R/61M/99H/117T/173I) were significantly more prevalent in symptomatic than asymptomatic infections, whereas the pvmdr1 mutant haplotype 976Y/997K/1076L was significantly more prevalent in asymptomatic than symptomatic infections. In addition, quadruple mutations at codons 57, 58, 61 and 117 of pvdhfr and double mutations at codons 383 and 553 of pvdhps were found both in asymptomatic and symptomatic infections with similar frequencies. No mutations were found in the pvk12 gene. CONCLUSIONS Mutations in pvdhfr and pvdhps were prevalent in both symptomatic and asymptomatic P. vivax infections, suggestive of resistance to antifolate drugs. Asymptomatic carriers may act as a silent reservoir sustaining drug-resistant parasite transmission necessitating a rational strategy for malaria elimination in this region.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | | | - Haichao Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Ziling Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Tongyu Ma
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yuanyuan Huang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Lynette J Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | | | | | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
11
|
Dorababu A. Pharmacology Profile of Recently Developed Multi‐Functional Azoles; SAR‐Based Predictive Structural Modification. ChemistrySelect 2020. [DOI: 10.1002/slct.202000294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Atukuri Dorababu
- Department of Studies in ChemistrySRMPP Govt. First Grade College Huvinahadagali 583219, Karnataka India
| |
Collapse
|
12
|
Chitnumsub P, Jaruwat A, Talawanich Y, Noytanom K, Liwnaree B, Poen S, Yuthavong Y. The structure of Plasmodium falciparum hydroxymethyldihydropterin pyrophosphokinase-dihydropteroate synthase reveals the basis of sulfa resistance. FEBS J 2020; 287:3273-3297. [PMID: 31883412 DOI: 10.1111/febs.15196] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/27/2019] [Indexed: 11/28/2022]
Abstract
The clinical efficacy of sulfa drugs as antimalarials has declined owing to the evolution of resistance in Plasmodium falciparum (Pf) malaria parasites. In order to understand the basis of this resistance and to design more effective antimalarials, we have solved 13 structures of the bifunctional enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK)-dihydropteroate synthase (DHPS) from wild-type (WT) P. falciparum and sulfa-resistant mutants, both as apoenzyme and as complexes with pteroate (PTA) and sulfa derivatives. The structures of these complexes show that PTA, which effectively inhibits both the WT and mutants, stays in active sites without steric constraint. In contrast, parts of the sulfa compounds situated outside of the substrate envelope are in the vicinity of the resistance mutations. Steric conflict between compound and mutant residue along with increased flexibility of loop D2 in the mutants can account for the reduced compound binding affinity to the mutants. Kinetic data show that the mutants have enhanced enzyme activity compared with the WT. These PfDHPS structural insights are critical for the design of novel, substrate envelope-compliant DHPS inhibitors that are less vulnerable to resistance mutations. DATABASES: The data reported in this paper have been deposited in the Protein Data Bank, www.wwpdb.org. PDB ID codes: 6JWQ for apoWT; 6JWR, 6JWS, and 6JWT for PTA complexes of WT, A437G (3D7), and V1/S; 6JWU, 6JWV, and 6JWW for STZ-DHP complexes of WT, 3D7, and V1/S; 6JWX, 6JWY, and 6JWZ for SDX-DHP complexes of WT, 3D7, and W2; 6KCK, 6KCL, and 6KCM for Pterin/pHBA complexes of WT, TN1, and W2.
Collapse
Affiliation(s)
- Penchit Chitnumsub
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Aritsara Jaruwat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yuwadee Talawanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Krittikar Noytanom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Benjamas Liwnaree
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Sinothai Poen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Yongyuth Yuthavong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
13
|
Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314-328. [PMID: 31119263 PMCID: PMC6859814 DOI: 10.1093/bfgp/elz008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance is primarily due to the high numbers of parasites in the infected person's bloodstream during the asexual blood stage of infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds, antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial resistance informs strategies to design the next generation of antimalarial therapies.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| |
Collapse
|
14
|
Verzier LH, Coyle R, Singh S, Sanderson T, Rayner JC. Plasmodium knowlesi as a model system for characterising Plasmodium vivax drug resistance candidate genes. PLoS Negl Trop Dis 2019; 13:e0007470. [PMID: 31158222 PMCID: PMC6564043 DOI: 10.1371/journal.pntd.0007470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 06/13/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022] Open
Abstract
Plasmodium vivax causes the majority of malaria outside Africa, but is poorly understood at a cellular level partly due to technical difficulties in maintaining it in in vitro culture conditions. In the past decades, drug resistant P. vivax parasites have emerged, mainly in Southeast Asia, but while some molecular markers of resistance have been identified, none have so far been confirmed experimentally, which limits interpretation of the markers, and hence our ability to monitor and control the spread of resistance. Some of these potential markers have been identified through P. vivax genome-wide population genetic analyses, which highlighted genes under recent evolutionary selection in Southeast Asia, where chloroquine resistance is most prevalent. These genes could be involved in drug resistance, but no experimental proof currently exists to support this hypothesis. In this study, we used Plasmodium knowlesi, the most closely related species to P. vivax that can be cultured in human erythrocytes, as a model system to express P. vivax genes and test for their role in drug resistance. We adopted a strategy of episomal expression, and were able to express fourteen P. vivax genes, including two allelic variants of several hypothetical resistance genes. Their expression level and localisation were assessed, confirming cellular locations conjectured from orthologous species, and suggesting locations for several previously unlocalised proteins, including an apical location for PVX_101445. These findings establish P. knowlesi as a suitable model for P. vivax protein expression. We performed chloroquine and mefloquine drug assays, finding no significant differences in drug sensitivity: these results could be due to technical issues, or could indicate that these genes are not actually involved in drug resistance, despite being under positive selection pressure in Southeast Asia. These data confirm that in vitro P. knowlesi is a useful tool for studying P. vivax biology. Its close evolutionary relationship to P. vivax, high transfection efficiency, and the availability of markers for colocalisation, all make it a powerful model system. Our study is the first of its kind using P. knowlesi to study unknown P. vivax proteins and investigate drug resistance mechanisms.
Collapse
Affiliation(s)
- Lisa H. Verzier
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Rachael Coyle
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Shivani Singh
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Theo Sanderson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Julian C. Rayner
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| |
Collapse
|
15
|
Yogavel M, Nettleship JE, Sharma A, Harlos K, Jamwal A, Chaturvedi R, Sharma M, Jain V, Chhibber-Goel J, Sharma A. Structure of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase-dihydropteroate synthase from Plasmodium vivax sheds light on drug resistance. J Biol Chem 2018; 293:14962-14972. [PMID: 30104413 DOI: 10.1074/jbc.ra118.004558] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/08/2018] [Indexed: 11/06/2022] Open
Abstract
The genomes of the malaria-causing Plasmodium parasites encode a protein fused of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) domains that catalyze sequential reactions in the folate biosynthetic pathway. Whereas higher organisms derive folate from their diet and lack the enzymes for its synthesis, most eubacteria and a number of lower eukaryotes including malaria parasites synthesize tetrahydrofolate via DHPS. Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) HPPK-DHPSs are currently targets of drugs like sulfadoxine (SDX). The SDX effectiveness as an antimalarial drug is increasingly diminished by the rise and spread of drug-resistant mutations. Here, we present the crystal structure of PvHPPK-DHPS in complex with four substrates/analogs, revealing the bifunctional PvHPPK-DHPS architecture in an unprecedented state of enzymatic activation. SDX's effect on HPPK-DHPS is due to 4-amino benzoic acid (pABA) mimicry, and the PvHPPK-DHPS structure sheds light on the SDX-binding cavity, as well as on mutations that effect SDX potency. We mapped five dominant drug resistance mutations in PvHPPK-DHPS: S382A, A383G, K512E/D, A553G, and V585A, most of which occur individually or in clusters proximal to the pABA-binding site. We found that these resistance mutations subtly alter the intricate enzyme/pABA/SDX interactions such that DHPS affinity for pABA is diminished only moderately, but its affinity for SDX is changed substantially. In conclusion, the PvHPPK-DHPS structure rationalizes and unravels the structural bases for SDX resistance mutations and highlights architectural features in HPPK-DHPSs from malaria parasites that can form the basis for developing next-generation anti-folate agents to combat malaria parasites.
Collapse
Affiliation(s)
- Manickam Yogavel
- From the Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India,
| | - Joanne E Nettleship
- the Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom, and.,the Oxford Protein Production Facility, United Kingdom Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford OX11 0FA, United Kingdom
| | - Akansha Sharma
- From the Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Karl Harlos
- the Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom, and
| | - Abhishek Jamwal
- From the Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Rini Chaturvedi
- From the Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Manmohan Sharma
- From the Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Vitul Jain
- the Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom, and
| | - Jyoti Chhibber-Goel
- From the Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Amit Sharma
- From the Molecular Medicine-Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
16
|
Griffith EC, Wallace MJ, Wu Y, Kumar G, Gajewski S, Jackson P, Phelps GA, Zheng Z, Rock CO, Lee RE, White SW. The Structural and Functional Basis for Recurring Sulfa Drug Resistance Mutations in Staphylococcus aureus Dihydropteroate Synthase. Front Microbiol 2018; 9:1369. [PMID: 30065703 PMCID: PMC6057106 DOI: 10.3389/fmicb.2018.01369] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Staphylococcal species are a leading cause of bacterial drug-resistant infections and associated mortality. One strategy to combat bacterial drug resistance is to revisit compromised targets, and to circumvent resistance mechanisms using structure-assisted drug discovery. The folate pathway is an ideal candidate for this approach. Antifolates target an essential metabolic pathway, and the necessary detailed structural information is now available for most enzymes in this pathway. Dihydropteroate synthase (DHPS) is the target of the sulfonamide class of drugs, and its well characterized mechanism facilitates detailed analyses of how drug resistance has evolved. Here, we surveyed clinical genetic sequencing data in S. aureus to distinguish natural amino acid variations in DHPS from those that are associated with sulfonamide resistance. Five mutations were identified, F17L, S18L, T51M, E208K, and KE257_dup. Their contribution to resistance and their cost to the catalytic properties of DHPS were evaluated using a combination of biochemical, biophysical and microbiological susceptibility studies. These studies show that F17L, S18L, and T51M directly lead to sulfonamide resistance while unexpectedly increasing susceptibility to trimethoprim, which targets the downstream enzyme dihydrofolate reductase. The secondary mutations E208K and KE257_dup restore trimethoprim susceptibility closer to wild-type levels while further increasing sulfonamide resistance. Structural studies reveal that these mutations appear to selectively disfavor the binding of the sulfonamides by sterically blocking an outer ring moiety that is not present in the substrate. This emphasizes that new inhibitors must be designed that strictly stay within the substrate volume in the context of the transition state.
Collapse
Affiliation(s)
- Elizabeth C. Griffith
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Miranda J. Wallace
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yinan Wu
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Gyanendra Kumar
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stefan Gajewski
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Pamela Jackson
- Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Gregory A. Phelps
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, United States
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Zhong Zheng
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Charles O. Rock
- Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen W. White
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
17
|
Tantiamornkul K, Pumpaibool T, Piriyapongsa J, Culleton R, Lek-Uthai U. The prevalence of molecular markers of drug resistance in Plasmodium vivax from the border regions of Thailand in 2008 and 2014. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:229-237. [PMID: 29677637 PMCID: PMC6039358 DOI: 10.1016/j.ijpddr.2018.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/08/2023]
Abstract
The prevalence of Plasmodium vivax is increasing in the border regions of Thailand; one potential problem confounding the control of malaria in these regions is the emergence and spread of drug resistance. The aim of this study was to determine the genetic diversity in genes potentially linked to drug resistance in P. vivax parasites isolated from four different border regions of Thailand; Thai-Myanmar (Tak, Mae Hong Son and Prachuap Khiri Khan Provinces), and Thai-Cambodian borders (Chanthaburi Province). Isolates were collected from 345 P. vivax patients in 2008 and 2014, and parasite DNA extracted and subjected to nucleotide sequencing at five putative drug-resistance loci (Pvdhfr, Pvdhps, Pvmdr1, Pvcrt-o and Pvk12). The prevalence of mutations in Pvdhfr, Pvdhps and Pvmdr1 were markedly different between the Thai-Myanmar and Thai-Cambodian border areas and also varied between sampling times. All isolates carried the Pvdhfr (58R and 117N/T) mutation, however, whereas the quadruple mutant allele (I57R58M61T117) was the most prevalent (69.6%) in the Thai-Myanmar border region, the double mutant allele (F57R58T61N117) was at fixation on the Thai-Cambodian border (100%). The most prevalent genotypes of Pvdhps and Pvmdr1 were the double mutant (S382G383K512G553) (65.1%) and single mutant (M958Y976F1076) (46.5%) alleles, respectively on the Thai-Myanmar border while the single Pvdhps mutant (S382G383K512A553) (52.7%) and the triple Pvmdr1 mutant (M958F976L1076) (81%) alleles were dominant on the Thai-Cambodian border. No mutations were observed in the Pvcrt-o gene in either region. Novel mutations in the Pvk12 gene, the P. vivax orthologue of PfK13, linked to artemisinin resistance in Plasmodium falciparum, were observed with three nonsynonymous and three synonymous mutations in six isolates (3.3%).
Collapse
Affiliation(s)
- Kritpaphat Tantiamornkul
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Rajvithi Rd, Rajthewee District, Bangkok 10400, Thailand; Faculty of Graduate Studies, Mahidol University, Phuttamonthon 4 Rd, Nakorn Pathom 73170, Thailand
| | - Tepanata Pumpaibool
- College of Public Health Science, Chulalongkorn University, Phyathai Rd, Bangkok 10330, Thailand
| | - Jittima Piriyapongsa
- Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki 8528523, Japan.
| | - Usa Lek-Uthai
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Rajvithi Rd, Rajthewee District, Bangkok 10400, Thailand.
| |
Collapse
|
18
|
Cubides JR, Camargo-Ayala PA, Niño CH, Garzón-Ospina D, Ortega-Ortegón A, Ospina-Cantillo E, Orduz-Durán MF, Patarroyo ME, Patarroyo MA. Simultaneous detection of Plasmodium vivax dhfr, dhps, mdr1 and crt-o resistance-associated mutations in the Colombian Amazonian region. Malar J 2018; 17:130. [PMID: 29580244 PMCID: PMC5870912 DOI: 10.1186/s12936-018-2286-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/21/2018] [Indexed: 12/29/2022] Open
Abstract
Background Malaria continues being a public health problem worldwide. Plasmodium vivax is the species causing the largest number of cases of malaria in Asia and South America. Due to the lack of a completely effective anti-malarial vaccine, controlling this disease has been based on transmission vector management, rapid diagnosis and suitable treatment. However, parasite resistance to anti-malarial drugs has become a major yet-to-be-overcome challenge. This study was thus aimed at determining pvmdr1, pvdhfr, pvdhps and pvcrt-o gene mutations and haplotypes from field samples obtained from an endemic area in the Colombian Amazonian region. Methods Fifty samples of parasite DNA infected by a single P. vivax strain from symptomatic patients from the Amazonas department in Colombia were analysed by PCR and the pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes were sequenced. Diversity estimators were calculated from the sequences and the haplotypes circulating in the Colombian Amazonian region were obtained. Conclusion pvdhfr, pvdhps, pvmdr1 and pvcrt-o genes in the Colombian Amazonian region are characterized by low genetic diversity. Some resistance-associated mutations were found circulating in this population. New variants are also being reported. A selective sweep signal was located in pvdhfr and pvmdr1 genes, suggesting that these mutations (or some of them) could be providing an adaptive advantage.
Collapse
Affiliation(s)
- Juan Ricardo Cubides
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Paola Andrea Camargo-Ayala
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Carlos Hernando Niño
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Diego Garzón-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia
| | - Anggie Ortega-Ortegón
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Estefany Ospina-Cantillo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - María Fernanda Orduz-Durán
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia.,School of Medicine, Universidad Nacional de Colombia, Avenida Carrera 30 # 45, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia.
| |
Collapse
|