1
|
Gibhard L, Njoroge M, Mulubwa M, Lawrence N, Smith D, Duffy J, Le Manach C, Brunschwig C, Taylor D, van der Westhuyzen R, Street LJ, Basarab GS, Chibale K. Dose-fractionation studies of a Plasmodium phosphatidylinositol 4-kinase inhibitor in a humanized mouse model of malaria. Antimicrob Agents Chemother 2024; 68:e0084224. [PMID: 39194209 PMCID: PMC11459969 DOI: 10.1128/aac.00842-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
UCT594 is a 2-aminopyrazine carboxylic acid Plasmodium phosphatidylinositol 4-kinase inhibitor with potent asexual blood-stage activity, the potential for interrupting transmission, as well as liver-stage activities. Herein, we investigated pharmacokinetic/pharmacodynamic (PK/PD) relationships relative to blood-stage activity toward predicting the human dose. Dose-fractionation studies were conducted in the Plasmodium falciparum NSG mouse model to determine the PK/PD indices of UCT594, using the in vivo minimum parasiticidal concentration as a threshold. UCT594 demonstrated concentration-dependent killing in the P. falciparum-infected NSG mouse model. Using this data and the preclinical pharmacokinetic data led to a low predicted human dose of <50 mg. This makes UCT594 an attractive potential antimalarial drug.
Collapse
Affiliation(s)
- Liezl Gibhard
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Mathew Njoroge
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Mwila Mulubwa
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Nina Lawrence
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | | | - James Duffy
- Medicines for Malaria Venture, ICC, Geneva, Switzerland
| | - Claire Le Manach
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Christel Brunschwig
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Renier van der Westhuyzen
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Leslie J. Street
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Gregory S. Basarab
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
2
|
Woodland JG, Horatscheck A, Soares de Melo C, Dziwornu GA, Taylor D. Another decade of antimalarial drug discovery: New targets, tools and molecules. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:161-234. [PMID: 39370241 DOI: 10.1016/bs.pmch.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Malaria remains a devastating but preventable infectious disease that disproportionately affects the African continent. Emerging resistance to current frontline therapies means that not only are new treatments urgently required, but also novel validated antimalarial targets to circumvent cross-resistance. Fortunately, tremendous efforts have been made by the global drug discovery community over the past decade. In this chapter, we will highlight some of the antimalarial drug discovery and development programmes currently underway across the globe, charting progress in the identification of new targets and the development of new classes of drugs to prosecute them. These efforts have been complemented by the development of valuable tools to accelerate target validation such as the NOD scid gamma (NSG) humanized mouse efficacy model and progress in predictive modelling and open-source software. Among the medicinal chemistry programmes that have been conducted over the past decade are those targeting Plasmodium falciparum ATPase4 (ATP4) and acetyl-CoA synthetase (AcAS) as well as proteins disrupting parasite protein translation such as the aminoacyl-tRNA synthetases (aaRSs) and eukaryotic elongation factor 2 (eEF2). The benefits and challenges of targeting Plasmodium kinases will be examined, with a focus on Plasmodium cyclic GMP-dependent protein kinase (PKG), cyclin-dependent-like protein kinase 3 (CLK3) and phosphatidylinositol 4-kinase (PI4K). The chapter concludes with a survey of incipient drug discovery centres in Africa and acknowledges the value of recent international meetings in galvanizing and uniting the antimalarial drug discovery community.
Collapse
Affiliation(s)
- John G Woodland
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa; South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - André Horatscheck
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Candice Soares de Melo
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Godwin A Dziwornu
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Dale Taylor
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa.
| |
Collapse
|
3
|
Nair AS, Woodford J, Loughland J, Andrew D, Piera K, Amante F, William T, Grigg MJ, McCarthy JS, Anstey NM, Boyle MJ, Barber BE. Osteoprotegerin (OPG) and its ligands RANKL and TRAIL in falciparum, vivax and knowlesi malaria: correlations with disease severity, and B cell production of OPG. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.22.24310838. [PMID: 39108527 PMCID: PMC11302609 DOI: 10.1101/2024.07.22.24310838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Osteoprotegerin (OPG) is a soluble decoy receptor for receptor activator of NF-ƙB ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL), and is increasingly recognised as a marker of poor prognosis in a number of diseases. Here we demonstrate that in Malaysian adults with falciparum and vivax malaria, OPG is increased, and its ligands TRAIL and RANKL decreased, in proportion to disease severity. In volunteers experimentally infected with P. falciparum and P. vivax, RANKL was suppressed, while TRAIL was unexpectedly increased, suggesting binding of OPG to RANKL prior to TRAIL. We also demonstrate that P. falciparum stimulates B cells to produce OPG in vitro, and that B cell OPG production is increased ex vivo in patients with falciparum, vivax and knowlesi malaria. Our findings provide further evidence of the importance of the OPG/RANKL/TRAIL pathway in pathogenesis of diseases involving systemic inflammation, and may have implications for adjunctive therapies. Further evaluation of the role of B cell production of OPG in host responses to malaria and other inflammatory diseases is warranted.
Collapse
Affiliation(s)
| | - John Woodford
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, United States
| | - Jessica Loughland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Burnet Institute, Melbourne, Australia
| | - Dean Andrew
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kim Piera
- Menzies School of Health Research, Darwin, Australia
| | - Fiona Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | - Michelle J Boyle
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Burnet Institute, Melbourne, Australia
| | - Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Menzies School of Health Research, Darwin, Australia
| |
Collapse
|
4
|
Nandal R, Kumar D, Aggarwal N, Kumar V, Narasimhan B, Marwaha RK, Sharma PC, Kumar S, Bansal N, Chopra H, Deep A. Recent advances, challenges and updates on the development of therapeutics for malaria. EXCLI JOURNAL 2024; 23:672-713. [PMID: 38887396 PMCID: PMC11180964 DOI: 10.17179/excli2023-6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/03/2024] [Indexed: 06/20/2024]
Abstract
Malaria has developed as a serious worldwide health issue as a result of the introduction of resistant Plasmodium species strains. Because of the common chemo resistance to most of the existing drugs on the market, it poses a severe health problem and significant obstacles in drug research. Malaria treatment has evolved during the last two decades in response to Plasmodium falciparum drug sensitivity and a return of the disease in tropical areas. Plasmodium falciparum is now highly resistant to the majority of antimalarial drugs. The parasite resistance drew focus to developing novel antimalarials to combat parasite resistance. The requirement for many novel antimalarial drugs in the future year necessitates adopting various drug development methodologies. Different innovative strategies for discovering antimalarial drugs are now being examined here. This review is primarily concerned with the description of newly synthesized antimalarial compounds, i.e. Tafenoquine, Cipargamin, Ferroquine, Artefenomel, DSM265, MMV390048 designed to improve the activity of pure antimalarial enantiomers. In this review, we selected the representative malarial drugs in clinical trials, classified them with detailed targets according to their action, discussed the relationship within the human trials, and generated a summative discussion with prospective expectations.
Collapse
Affiliation(s)
- Rimmy Nandal
- Shri Baba MastNath Institute of Pharmaceutical Sciences and Research, Baba Mast Nath University, Asthal Bohar, Rohtak-124001, Haryana, India
| | - Davinder Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Virender Kumar
- College of Pharmacy, PGIMS University of Health Sciences, Rohtak-124001, Haryana, India
| | | | - Rakesh Kumar Marwaha
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak 124001 Haryana, India
| | - Prabodh Chander Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Surender Kumar
- Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani-127021, India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai - 602105, Tamil Nadu, India
| | - Aakash Deep
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani-127021, Haryana, India
| |
Collapse
|
5
|
Tomaz KCP, Tavella TA, Borba JVB, Salazar-Alvarez LC, Levandoski JE, Mottin M, Sousa BKP, Moreira-Filho JT, Almeida VM, Clementino LC, Bourgard C, Massirer KB, Couñago RM, Andrade CH, Sunnerhagen P, Bilsland E, Cassiano GC, Costa FTM. Identification of potential inhibitors of casein kinase 2 alpha of Plasmodium falciparum with potent in vitro activity. Antimicrob Agents Chemother 2023; 67:e0058923. [PMID: 37819090 PMCID: PMC10649021 DOI: 10.1128/aac.00589-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/11/2023] [Indexed: 10/13/2023] Open
Abstract
Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm. In Plasmodium, it is suggested that these protein kinases are essential for both asexual and sexual blood-stage parasites, reinforcing their potential as targets for multi-stage antimalarials. To identify new putative PfCK2α inhibitors, we utilized an in silico chemogenomic strategy involving virtual screening with docking simulations and quantitative structure-activity relationship predictions. Our investigation resulted in the discovery of a new quinazoline molecule (542), which exhibited potent activity against asexual blood stages and a high selectivity index (>100). Subsequently, we conducted chemical-genetic interaction analysis on yeasts with mutations in casein kinases. Our chemical-genetic interaction results are consistent with the hypothesis that 542 inhibits yeast Cka1, which has a hinge region with high similarity to PfCK2α. This finding is in agreement with our in silico results suggesting that 542 inhibits PfCK2α via hinge region interaction.
Collapse
Affiliation(s)
- Kaira C. P. Tomaz
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
| | - Tatyana A. Tavella
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
| | - Joyce V. B. Borba
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Luis C. Salazar-Alvarez
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
| | - João E. Levandoski
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil
| | - Melina Mottin
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Bruna K. P. Sousa
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - José T. Moreira-Filho
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás (UFG), Goiânia, Brazil
| | - Vitor M. Almeida
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética(CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Leandro C. Clementino
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
| | - Catarina Bourgard
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Katlin B. Massirer
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética(CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Rafael M. Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética(CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carolina H. Andrade
- Laboratory of Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás (UFG), Goiânia, Brazil
- Center for Research and Advancement of Fragments and Molecular Targets (CRAFT), University of São Paulo, São Paulo, Brazil
- Center for Excellence in Artificial Intelligence (CEIA), Institute of Informatics, Universidade Federal de Goiás, Goiânia, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Elizabeth Bilsland
- Department of Structural and Functional Biology, Synthetic Biology Laboratory, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gustavo C. Cassiano
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fabio T. M. Costa
- Laboratory of Tropical Diseases (LDT), Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
6
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
7
|
Ling DB, Nguyen W, Looker O, Razook Z, McCann K, Barry AE, Scheurer C, Wittlin S, Famodimu MT, Delves MJ, Bullen HE, Crabb BS, Sleebs BE, Gilson PR. A Pyridyl-Furan Series Developed from the Open Global Health Library Block Red Blood Cell Invasion and Protein Trafficking in Plasmodium falciparum through Potential Inhibition of the Parasite's PI4KIIIB Enzyme. ACS Infect Dis 2023; 9:1695-1710. [PMID: 37639221 PMCID: PMC10496428 DOI: 10.1021/acsinfecdis.3c00138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Indexed: 08/29/2023]
Abstract
With the resistance increasing to current antimalarial medicines, there is an urgent need to discover new drug targets and to develop new medicines against these targets. We therefore screened the Open Global Health Library of Merck KGaA, Darmstadt, Germany, of 250 compounds against the asexual blood stage of the deadliest malarial parasite Plasmodium falciparum, from which eight inhibitors with low micromolar potency were found. Due to its combined potencies against parasite growth and inhibition of red blood cell invasion, the pyridyl-furan compound OGHL250 was prioritized for further optimization. The potency of the series lead compound (WEHI-518) was improved 250-fold to low nanomolar levels against parasite blood-stage growth. Parasites selected for resistance to a related compound, MMV396797, were also resistant to WEHI-518 as well as KDU731, an inhibitor of the phosphatidylinositol kinase PfPI4KIIIB, suggesting that this kinase is the target of the pyridyl-furan series. Inhibition of PfPI4KIIIB blocks multiple stages of the parasite's life cycle and other potent inhibitors are currently under preclinical development. MMV396797-resistant parasites possess an E1316D mutation in PfPKI4IIIB that clusters with known resistance mutations of other inhibitors of the kinase. Building upon earlier studies that showed that PfPI4KIIIB inhibitors block the development of the invasive merozoite parasite stage, we show that members of the pyridyl-furan series also block invasion and/or the conversion of merozoites into ring-stage intracellular parasites through inhibition of protein secretion and export into red blood cells.
Collapse
Affiliation(s)
- Dawson B. Ling
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| | - William Nguyen
- The Walter and Eliza Hall Institute of
Medical Research, Melbourne, Victoria3052,
Australia
- Department of Medical Biology, The
University of Melbourne, Parkville, Victoria3010,
Australia
| | - Oliver Looker
- Burnet Institute,
Melbourne, Victoria3004, Australia
| | - Zahra Razook
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Kirsty McCann
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Alyssa E. Barry
- Burnet Institute,
Melbourne, Victoria3004, Australia
- School of Medicine and Institute for Mental and
Physical Health and Clinical Translation, Deakin University,
Waurn Ponds, Victoria3216, Australia
| | - Christian Scheurer
- Swiss Tropical and Public Health
Institute, Allschwil, 4123Switzerland
- University of Basel, Basel,
4001Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health
Institute, Allschwil, 4123Switzerland
- University of Basel, Basel,
4001Switzerland
| | - Mufuliat Toyin Famodimu
- Department of Infection Biology, Faculty of Infectious
Diseases, London School of Hygiene and Tropical Medicine, Kepel
Street, London, WC1E 7HT, U.K.
| | - Michael J Delves
- Department of Infection Biology, Faculty of Infectious
Diseases, London School of Hygiene and Tropical Medicine, Kepel
Street, London, WC1E 7HT, U.K.
| | - Hayley E. Bullen
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| | - Brendan S. Crabb
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
- Department of Immunology and Pathology,
Monash University, Melbourne, Victoria3800,
Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of
Medical Research, Melbourne, Victoria3052,
Australia
- Department of Medical Biology, The
University of Melbourne, Parkville, Victoria3010,
Australia
| | - Paul R. Gilson
- Burnet Institute,
Melbourne, Victoria3004, Australia
- Department of Microbiology and Immunology,
University of Melbourne, Melbourne, Victoria3010,
Australia
| |
Collapse
|
8
|
Mogwera KSP, Chibale K, Arendse LB. Developing kinase inhibitors for malaria: an opportunity or liability? Trends Parasitol 2023; 39:720-731. [PMID: 37385921 DOI: 10.1016/j.pt.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023]
Abstract
Highly druggable and essential to almost all aspects of cellular life, the protein and phosphoinositide kinase gene families offer a wealth of potential targets for pharmacological modulation for both noncommunicable and infectious diseases. Despite the success of kinase inhibitors in oncology and other disease indications, targeting kinases comes with significant challenges. Key hurdles for kinase drug discovery include selectivity and acquired resistance. The phosphatidylinositol 4-kinase beta inhibitor MMV390048 showed good efficacy in Phase 2a clinical trials, demonstrating the potential of kinase inhibitors for malaria treatment. Here we argue that the potential benefits of Plasmodium kinase inhibitors outweigh the risks, and we highlight the opportunity for designed polypharmacology to reduce the risk of resistance.
Collapse
Affiliation(s)
- Koketso S P Mogwera
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Lauren B Arendse
- Drug Discovery and Development Centre (H3D), South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa.
| |
Collapse
|
9
|
Umumararungu T, Nkuranga JB, Habarurema G, Nyandwi JB, Mukazayire MJ, Mukiza J, Muganga R, Hahirwa I, Mpenda M, Katembezi AN, Olawode EO, Kayitare E, Kayumba PC. Recent developments in antimalarial drug discovery. Bioorg Med Chem 2023; 88-89:117339. [PMID: 37236020 DOI: 10.1016/j.bmc.2023.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Although malaria remains a big burden to many countries that it threatens their socio-economic stability, particularly in the countries where malaria is endemic, there have been great efforts to eradicate this disease with both successes and failures. For example, there has been a great improvement in malaria prevention and treatment methods with a net reduction in infection and mortality rates. However, the disease remains a global threat in terms of the number of people affected because it is one of the infectious diseases that has the highest prevalence rate, especially in Africa where the deadly Plasmodium falciparum is still widely spread. Methods to fight malaria are being diversified, including the use of mosquito nets, the target candidate profiles (TCPs) and target product profiles (TPPs) of medicine for malarial venture (MMV) strategy, the search for newer and potent drugs that could reverse chloroquine resistance, and the use of adjuvants such as rosiglitazone and sevuparin. Although these adjuvants have no antiplasmodial activity, they can help to alleviate the effects which result from plasmodium invasion such as cytoadherence. The list of new antimalarial drugs under development is long, including the out of ordinary new drugs MMV048, CDRI-97/78 and INE963 from South Africa, India and Novartis, respectively.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Jean Baptiste Nyandwi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Raymond Muganga
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Innocent Hahirwa
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Alain Nyirimigabo Katembezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Egide Kayitare
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Pierre Claver Kayumba
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
10
|
Ong HW, Adderley J, Tobin AB, Drewry DH, Doerig C. Parasite and host kinases as targets for antimalarials. Expert Opin Ther Targets 2023; 27:151-169. [PMID: 36942408 DOI: 10.1080/14728222.2023.2185511] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION The deployment of Artemisinin-based combination therapies and transmission control measures led to a decrease in the global malaria burden over the recent decades. Unfortunately, this trend is now reversing, in part due to resistance against available treatments, calling for the development of new drugs against untapped targets to prevent cross-resistance. AREAS COVERED In view of their demonstrated druggability in noninfectious diseases, protein kinases represent attractive targets. Kinase-focussed antimalarial drug discovery is facilitated by the availability of kinase-targeting scaffolds and large libraries of inhibitors, as well as high-throughput phenotypic and biochemical assays. We present an overview of validated Plasmodium kinase targets and their inhibitors, and briefly discuss the potential of host cell kinases as targets for host-directed therapy. EXPERT OPINION We propose priority research areas, including (i) diversification of Plasmodium kinase targets (at present most efforts focus on a very small number of targets); (ii) polypharmacology as an avenue to limit resistance (kinase inhibitors are highly suitable in this respect); and (iii) preemptive limitation of resistance through host-directed therapy (targeting host cell kinases that are required for parasite survival) and transmission-blocking through targeting sexual stage-specific kinases as a strategy to protect curative drugs from the spread of resistance.
Collapse
Affiliation(s)
- Han Wee Ong
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Jack Adderley
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| | - Andrew B Tobin
- Advanced Research Centre, University of Glasgow, Glasgow, UK
| | - David H Drewry
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC USA
| | - Christian Doerig
- Department of Laboratory Medicine, School of Health and Biomedical Sciences, Rmit University, Bundoora VIC Australia
| |
Collapse
|
11
|
Mohammed R, Asres MS, Gudina EK, Adissu W, Johnstone H, Marrast AC, Donini C, Duparc S, Yilma D. Efficacy, Safety, Tolerability, and Pharmacokinetics of MMV390048 in Acute Uncomplicated Malaria. Am J Trop Med Hyg 2023; 108:81-84. [PMID: 36509063 PMCID: PMC9833083 DOI: 10.4269/ajtmh.22-0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
An open label, phase IIa study conducted in Ethiopia evaluated the efficacy, safety, tolerability, and pharmacokinetics of a single 120-mg dose of the phosphatidylinositol 4-kinase inhibitor MMV390048 in Plasmodium vivax malaria. The study was not completed for operational reasons and emerging teratotoxicity data. For the eight adult male patients enrolled, adequate clinical and parasitological response at day 14 (primary endpoint) was 100% (8/8). Asexual parasites and gametocytes were cleared in all patients by 66 and 78 hours postdose, respectively. There were two recurrent P. vivax infections (days 20 and 28) and a new Plasmodium falciparum infection (day 22). MMV390048 exposure in P. vivax patients was lower than previously observed for healthy volunteers. Mild adverse events, mainly headache and gastrointestinal symptoms, were reported by eight patients. Single-dose MMV390048 (120 mg) rapidly cleared asexual parasites and gametocytes in patients with P. vivax malaria and was well tolerated.
Collapse
Affiliation(s)
- Rezika Mohammed
- Department of Internal Medicine, University of Gondar Hospital, Gondar, Ethiopia
| | | | - Esayas Kebede Gudina
- Jimma University Clinical Trial Unit, Jimma University Institute of Health, Jimma, Ethiopia;,Department of Internal Medicine, Jimma University Institute of Health, Jimma, Ethiopia
| | - Wondimagegn Adissu
- Jimma University Clinical Trial Unit, Jimma University Institute of Health, Jimma, Ethiopia;,School of Medical Laboratory Sciences, Jimma University Institute of Health, Jimma, Ethiopia
| | | | | | | | - Stephan Duparc
- Medicines for Malaria Venture, Geneva, Switzerland,Address correspondence to Stephan Duparc, Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215 Geneva 15, Switzerland. E-mail:
| | - Daniel Yilma
- Jimma University Clinical Trial Unit, Jimma University Institute of Health, Jimma, Ethiopia;,Department of Internal Medicine, Jimma University Institute of Health, Jimma, Ethiopia
| |
Collapse
|
12
|
Ji S, Galon EM, Amer MM, Zafar I, Yanagawa M, Asada M, Zhou J, Liu M, Xuan X. Phosphatidylinositol 4-kinase is a viable target for the radical cure of Babesia microti infection in immunocompromised hosts. Front Cell Infect Microbiol 2022; 12:1048962. [DOI: 10.3389/fcimb.2022.1048962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
Human babesiosis is a global emerging tick-borne disease caused by infection with intra-erythrocytic parasites of the genus Babesia. With the rise in human babesiosis cases, the discovery and development of new anti-Babesia drugs are essential. Phosphatidylinositol 4-kinase (PI4K) is a widely present eukaryotic enzyme that phosphorylates lipids to regulate intracellular signaling and trafficking. Previously, we have shown that MMV390048, an inhibitor of PI4K, showed potent inhibition against Babesia species, revealing PI4K as a druggable target for babesiosis. However, twice-administered, 7-day regimens failed to clear Babesia microti parasites from the immunocompromised host. Hence, in this study, we wanted to clarify whether targeting PI4K has the potential for the radical cure of babesiosis. In a B. microti-infected SCID mouse model, a 64-day-consecutive treatment with MMV390048 resulted in the clearance of parasites. Meanwhile, an atovaquone (ATO) resistant parasite line was isolated from the group treated with ATO plus azithromycin. A nonsynonymous variant in the Y272C of the cytochrome b gene was confirmed by sequencing. Likewise, MMV390048 showed potent inhibition against ATO-resistant parasites. These results provide evidence of PI4K as a viable drug target for the radical cure of babesiosis, which will contribute to designing new compounds that can eradicate parasites.
Collapse
|
13
|
Kar PP, Araveti PB, Srivastava A. Deciphering the kinome of Theileria annulata for identification of drug targets and anti-theilerial drug. Ticks Tick Borne Dis 2022; 13:102049. [PMID: 36215767 DOI: 10.1016/j.ttbdis.2022.102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022]
Abstract
Tropical theileriosis is one of the major parasitic diseases of ruminants. It is a tick-borne disease caused by an apicomplexan parasite, Theileria annulata. In the infected cells, these parasites induce phenotypes similar to cancerous cells. Among the most critical changes induced by the parasite are immortalization, hyperproliferation, and dissemination. The proliferative signal in the T. annulata transformed cells are provided by different kinases such as mitogen-activated protein kinases, SRC family kinases, casein kinase-2, and phosphatidylinositide 3-kinase. Deregulation of protein kinases in cancer is also well known. Targeting protein kinases in a cancerous cell is one of the most common methods in cancer therapy. Here, we revisited the kinome of T. annulata and studied its evolutionary relationship with other piroplasms. This analysis revealed that T. annulata kinome encodes 54 protein kinases. Based on our analysis, 12 of these 54 kinases were identified for the first time in the T. annulata proteome. Three protein kinases, TA16570, TA09820, and TA07000, had <40% identity with Bos taurus and >40% identity with the previously identified potential drug targets present in the Therapeutic Target Database (TTD). These 3 proteins were predicted to be essential for the survival of T. annulata and were selected as drug targets. Screening these drug targets in the Protein Kinase Inhibitor Database (PKID) led to shortlisting of 5 drugs. Only Dabrafenib, out of these 5 drugs, could bind to the ATP binding site (in silico) of the Calcium Dependent Protein Kinase 3 of both T. annulata and Theileria parva. Further, dabrafenib could inhibit the proliferation of T. annulata infected bovine leucocytes in 6 days proliferation assay with the IC50 value of 0.66 µM. Also, this drug did not have a cytotoxic effect on bovine peripheral blood mononuclear cells. In summary, the analysis of T. annulata kinome led to the identification of dabrafenib as a potential drug for treating theileriosis.
Collapse
Affiliation(s)
- Prajna Parimita Kar
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India; Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Prasanna Babu Araveti
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India; Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Anand Srivastava
- National Institute of Animal Biotechnology (NIAB), Hyderabad, India; Adjunct Assistant Professor, Regional Centre for Biotechnology (RCB), Faridabad, India.
| |
Collapse
|
14
|
Arendse LB, Murithi JM, Qahash T, Pasaje CFA, Godoy LC, Dey S, Gibhard L, Ghidelli-Disse S, Drewes G, Bantscheff M, Lafuente-Monasterio MJ, Fienberg S, Wambua L, Gachuhi S, Coertzen D, van der Watt M, Reader J, Aswat AS, Erlank E, Venter N, Mittal N, Luth MR, Ottilie S, Winzeler EA, Koekemoer LL, Birkholtz LM, Niles JC, Llinás M, Fidock DA, Chibale K. The anticancer human mTOR inhibitor sapanisertib potently inhibits multiple Plasmodium kinases and life cycle stages. Sci Transl Med 2022; 14:eabo7219. [PMID: 36260689 PMCID: PMC9951552 DOI: 10.1126/scitranslmed.abo7219] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Compounds acting on multiple targets are critical to combating antimalarial drug resistance. Here, we report that the human "mammalian target of rapamycin" (mTOR) inhibitor sapanisertib has potent prophylactic liver stage activity, in vitro and in vivo asexual blood stage (ABS) activity, and transmission-blocking activity against the protozoan parasite Plasmodium spp. Chemoproteomics studies revealed multiple potential Plasmodium kinase targets, and potent inhibition of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4Kβ) and cyclic guanosine monophosphate-dependent protein kinase (PKG) was confirmed in vitro. Conditional knockdown of PI4Kβ in ABS cultures modulated parasite sensitivity to sapanisertib, and laboratory-generated P. falciparum sapanisertib resistance was mediated by mutations in PI4Kβ. Parasite metabolomic perturbation profiles associated with sapanisertib and other known PI4Kβ and/or PKG inhibitors revealed similarities and differences between chemotypes, potentially caused by sapanisertib targeting multiple parasite kinases. The multistage activity of sapanisertib and its in vivo antimalarial efficacy, coupled with potent inhibition of at least two promising drug targets, provides an opportunity to reposition this pyrazolopyrimidine for malaria.
Collapse
Affiliation(s)
- Lauren B. Arendse
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - James M. Murithi
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tarrick Qahash
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Luiz C. Godoy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sumanta Dey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | | | - Gerard Drewes
- Cellzome GmbH, a GSK Company, Heidelberg 69117, Germany
| | | | - Maria J. Lafuente-Monasterio
- Tres Cantos Medicines Development Campus-Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid 28760, Spain
| | - Stephen Fienberg
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Lynn Wambua
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Samuel Gachuhi
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Mariëtte van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Ayesha S. Aswat
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Erica Erlank
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Nelius Venter
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Nimisha Mittal
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Madeline R. Luth
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sabine Ottilie
- School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2193, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield 0028, South Africa
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
15
|
Efficacy of the Antimalarial MMV390048 against Babesia Infection Reveals Phosphatidylinositol 4-Kinase as a Druggable Target for Babesiosis. Antimicrob Agents Chemother 2022; 66:e0057422. [PMID: 35924942 PMCID: PMC9487540 DOI: 10.1128/aac.00574-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to evaluate the anti-Babesia effect of MMV390048, a drug that inhibits Plasmodium by targeting the phosphatidylinositol 4-kinase (PI4K). The half inhibitory concentration (IC50) of MMV390048 against the in vitro growth of Babesia gibsoni was 6.9 ± 0.9 μM. In immunocompetent mice, oral treatment with MMV390048 at a concentration of 20 mg/kg effectively inhibited the growth of B. microti (Peabody mjr strain). The peak parasitemia in the control group was 30.5%, whereas the peak parasitemia in the MMV390048-treated group was 3.4%. Meanwhile, MMV390048 also showed inhibition on the growth of B. rodhaini (Australia strain), a highly pathogenic rodent Babesia species. All MMV390048-treated mice survived, whereas the mice in control group died within 10 days postinfection (DPI). The first 7-day administration of MMV390048 in B. microti-infected, severe combined immunodeficiency (SCID) mice delayed the rise of parasitemia by 26 days. Subsequently, a second 7-day administration was given upon recurrence. At 52 DPI, a parasite relapse (in 1 out of 5 mice) and a mutation in the B. microti PI4K L746S, a MMV390048 resistance-related gene, were detected. Although the radical cure of B. microti infection in immunocompromised host SCID mice was not achieved, results from this study showed that MMV390048 has excellent inhibitory effects on Babesia parasites, revealing a new treatment strategy for babesiosis: targeting the B. microti PI4K.
Collapse
|
16
|
Functional inactivation of Plasmodium falciparum glycogen synthase kinase GSK3 modulates erythrocyte invasion and blocks gametocyte maturation. J Biol Chem 2022; 298:102360. [PMID: 35961464 PMCID: PMC9478393 DOI: 10.1016/j.jbc.2022.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Malaria is responsible for hundreds of thousands of deaths every year. The lack of an effective vaccine and the global spread of multidrug resistant parasites hampers the fight against the disease and underlines the need for new antimalarial drugs. Central to the pathogenesis of malaria is the proliferation of Plasmodium parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor–ligand interactions between the parasite and the host cell. Posttranslational modifications such as protein phosphorylation are known to be key regulators in this process and are mediated by protein kinases. For several parasite kinases, including the Plasmodium falciparum glycogen synthase kinase 3 (PfGSK3), inhibitors have been shown to block erythrocyte invasion. Here, we provide an assessment of PfGSK3 function by reverse genetics. Using targeted gene disruption, we show the active gene copy, PfGSK3β, is not essential for asexual blood stage proliferation, although it modulates efficient erythrocyte invasion. We found functional inactivation leads to a 69% decreased growth rate and confirmed this growth defect by rescue experiments with wildtype and catalytically inactive mutants. Functional knockout of PfGSK3β does not lead to transcriptional upregulation of the second copy of PfGSK3. We further analyze expression, localization, and function of PfGSK3β during gametocytogenesis using a parasite line allowing conditional induction of sexual commitment. We demonstrate PfGSK3β-deficient gametocytes show a strikingly malformed morphology leading to the death of parasites in later stages of gametocyte development. Taken together, these findings are important for our understanding and the development of PfGSK3 as an antimalarial target.
Collapse
|
17
|
Fostering drug discovery and development in Africa. Nat Med 2022; 28:1523-1526. [PMID: 35840729 DOI: 10.1038/s41591-022-01885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Singh V, Mambwe D, Korkor CM, Chibale K. Innovation Experiences from Africa-Led Drug Discovery at the Holistic Drug Discovery and Development (H3D) Centre. ACS Med Chem Lett 2022; 13:1221-1230. [PMID: 35978699 PMCID: PMC9377003 DOI: 10.1021/acsmedchemlett.2c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
![]()
As the so-called “next frontier” in global
economic
terms, Africa’s disease burden continues to choke and cripple
economic growth across the continent. The highest burden is attributable
to malaria and tuberculosis (TB), which also remain among the deadliest
infectious diseases affecting mankind the world over (Malaria, 627,000
deaths; TB, 1.5 million deaths, in 2020). In achieving self-determination
with respect to the health needs of all who live on the continent,
Africa must align with global north efforts and be a source of health
innovation. This will in part require the creation of an ecosystem
of innovative pharmaceutical R&D and expanding it across the continent
by scaling up through sustained performance and excellence. To this
end, the Holistic Drug Discovery and Development (H3D) Centre at University
of Cape Town in South Africa has risen to this challenge. Here, we
highlight the innovation experiences gained at H3D, covering the advances
made in our quest to contribute to a global pipeline of therapeutic
interventions against malaria and TB. We discuss selected chemical
series starting from their identification, structure–activity
relationships, mode of action, safety, proof-of-concept studies, and
lessons learned.
Collapse
Affiliation(s)
- Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Dickson Mambwe
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Kelly Chibale
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
19
|
Demarta-Gatsi C, Donini C, Duffy J, Sadler C, Stewart J, Barber JA, Tornesi B. Malarial PI4K inhibitor induced diaphragmatic hernias in rat: Potential link with mammalian kinase inhibition. Birth Defects Res 2022; 114:487-498. [PMID: 35416431 PMCID: PMC9321963 DOI: 10.1002/bdr2.2012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022]
Abstract
Background MMV390048 is an aminopyridine plasmodial PI4K inhibitor, selected as a Plasmodium blood‐stage schizonticide for a next generation of malaria treatments to overcome resistance to current therapies. MMV390048 showed an acceptable preclinical safety profile and progressed up to Phase 2a clinical trials. However, embryofetal studies revealed adverse developmental toxicity signals, including diaphragmatic hernias and cardiovascular malformations in rats but not rabbits. Methods In vivo exposures of free plasma concentrations of compound in rats were assessed in relation to in vitro human kinase inhibition by MMV390048, using the ADP‐Glo™ Kinase Assay. Results We demonstrate a potential link between the malformations seen in the embryofetal developmental (EFD) studies and inhibition of the mammalian PI4Kβ paralogue, as well as inhibition of the off‐target kinases MAP4K4 and MINK1. PI3Kγ may also play a role in the embryofetal toxicity as its in vitro inhibition is covered by in vivo exposure. The exposures in the rabbit embryofetal development studies did not reach concentrations likely to cause PI4K inhibition. Overall, we hypothesize that the in vivo malformations observed could be due to inhibition of the PI4K target in combination with the off‐targets, MAP4K4 and MINK1. However, these relationships are by association and not mechanistically proven. Conclusions Deciphering if the EFD effects are dependent on PI4K inhibition, and/or via inhibition of other off‐target kinases will require the generation of novel, more potent, and more specific PI4K inhibitors.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Translational Medicine department, Medicines for Malaria Venture, Geneva, Switzerland
| | - Cristina Donini
- Translational Medicine department, Medicines for Malaria Venture, Geneva, Switzerland
| | - James Duffy
- Translational Medicine department, Medicines for Malaria Venture, Geneva, Switzerland
| | | | | | | | - Belen Tornesi
- Translational Medicine department, Medicines for Malaria Venture, Geneva, Switzerland
| |
Collapse
|
20
|
Taft BR, Yokokawa F, Kirrane T, Mata AC, Huang R, Blaquiere N, Waldron G, Zou B, Simon O, Vankadara S, Chan WL, Ding M, Sim S, Straimer J, Guiguemde A, Lakshminarayana SB, Jain JP, Bodenreider C, Thompson C, Lanshoeft C, Shu W, Fang E, Qumber J, Chan K, Pei L, Chen YL, Schulz H, Lim J, Abas SN, Ang X, Liu Y, Angulo-Barturen I, Jiménez-Díaz MB, Gamo FJ, Crespo-Fernandez B, Rosenthal PJ, Cooper RA, Tumwebaze P, Aguiar ACC, Campo B, Campbell S, Wagner J, Diagana TT, Sarko C. Discovery and Preclinical Pharmacology of INE963, a Potent and Fast-Acting Blood-Stage Antimalarial with a High Barrier to Resistance and Potential for Single-Dose Cures in Uncomplicated Malaria. J Med Chem 2022; 65:3798-3813. [PMID: 35229610 PMCID: PMC9278664 DOI: 10.1021/acs.jmedchem.1c01995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A series of 5-aryl-2-amino-imidazothiadiazole (ITD) derivatives
were identified by a phenotype-based high-throughput screening using
a blood stage Plasmodium falciparum (Pf) growth inhibition assay. A lead optimization program focused on
improving antiplasmodium potency, selectivity against human kinases,
and absorption, distribution, metabolism, excretion, and toxicity
properties and extended pharmacological profiles culminated in the
identification of INE963 (1), which demonstrates
potent cellular activity against Pf 3D7 (EC50 = 0.006 μM) and achieves “artemisinin-like”
kill kinetics in vitro with a parasite clearance
time of <24 h. A single dose of 30 mg/kg is fully curative in the Pf-humanized severe combined immunodeficient mouse model. INE963 (1) also exhibits a high barrier to resistance
in drug selection studies and a long half-life (T1/2) across species. These properties suggest the significant
potential for INE963 (1) to provide a curative
therapy for uncomplicated malaria with short dosing regimens. For
these reasons, INE963 (1) was progressed
through GLP toxicology studies and is now undergoing Ph1 clinical
trials.
Collapse
Affiliation(s)
- Benjamin R Taft
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 5959 Horton Street, Emeryville, California 94608, United States
| | - Fumiaki Yokokawa
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 5959 Horton Street, Emeryville, California 94608, United States
| | - Tom Kirrane
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 5959 Horton Street, Emeryville, California 94608, United States
| | - Anne-Catherine Mata
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 5959 Horton Street, Emeryville, California 94608, United States
| | - Richard Huang
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 5959 Horton Street, Emeryville, California 94608, United States
| | - Nicole Blaquiere
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 5959 Horton Street, Emeryville, California 94608, United States
| | - Grace Waldron
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 5959 Horton Street, Emeryville, California 94608, United States
| | - Bin Zou
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Oliver Simon
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Subramanyam Vankadara
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Wai Ling Chan
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Mei Ding
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Sandra Sim
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Judith Straimer
- Novartis Institute for Tropical Diseases, 5959 Horton Street, Emeryville, California 94608, United States
| | - Armand Guiguemde
- Novartis Institute for Tropical Diseases, 5959 Horton Street, Emeryville, California 94608, United States
| | - Suresh B Lakshminarayana
- Novartis Institute for Tropical Diseases, 5959 Horton Street, Emeryville, California 94608, United States
| | - Jay Prakash Jain
- Novartis Institute for Tropical Diseases, 5959 Horton Street, Emeryville, California 94608, United States
| | - Christophe Bodenreider
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Christopher Thompson
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christian Lanshoeft
- Novartis Institutes for Biomedical Research, Fabrikstrasse 14, Basel CH-4056, Switzerland
| | - Wei Shu
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 5959 Horton Street, Emeryville, California 94608, United States
| | - Eric Fang
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 5959 Horton Street, Emeryville, California 94608, United States
| | - Jafri Qumber
- Novartis Institute for Tropical Diseases, 5959 Horton Street, Emeryville, California 94608, United States
| | - Katherine Chan
- Novartis Institute for Tropical Diseases, 5959 Horton Street, Emeryville, California 94608, United States
| | - Luying Pei
- Novartis Institute for Tropical Diseases, 5959 Horton Street, Emeryville, California 94608, United States
| | - Yen-Liang Chen
- Novartis Institute for Tropical Diseases, 5959 Horton Street, Emeryville, California 94608, United States
| | - Hanna Schulz
- Novartis Institute for Tropical Diseases, 5959 Horton Street, Emeryville, California 94608, United States
| | - Jessie Lim
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Siti Nurdiana Abas
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Xiaoman Ang
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Yugang Liu
- Technical Research and Development, Global Drug Development, Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Iñigo Angulo-Barturen
- The Art of Discovery, Astondo Bidea, BIC Bizkaia building, no. 612 Derio 48160 Bizkaia, Basque Country, Spain
| | - María Belén Jiménez-Díaz
- The Art of Discovery, Astondo Bidea, BIC Bizkaia building, no. 612 Derio 48160 Bizkaia, Basque Country, Spain
| | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Benigno Crespo-Fernandez
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Philip J Rosenthal
- Department of Medicine, University of California, 533 Parnassus Avenue, San Francisco, California 94143, Unites States
| | - Roland A Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Patrick Tumwebaze
- Infectious Diseases Research Collaboration, Plot 2C Nakasero Hill Road, P.O. Box 7475 Kampala, Uganda
| | | | - Brice Campo
- Medicines for Malaria Venture, 20 Route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Simon Campbell
- Medicines for Malaria Venture, 20 Route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Jürgen Wagner
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, no. 05-01, Chromos, Singapore 138670, Singapore
| | - Thierry T Diagana
- Novartis Institute for Tropical Diseases, 5959 Horton Street, Emeryville, California 94608, United States
| | - Christopher Sarko
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 5959 Horton Street, Emeryville, California 94608, United States
| |
Collapse
|
21
|
Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies. Pharmaceutics 2021; 13:pharmaceutics13122189. [PMID: 34959470 PMCID: PMC8706932 DOI: 10.3390/pharmaceutics13122189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs' target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them.
Collapse
|
22
|
Antimalarial drug candidates in phase I and II drug development: a scoping review. Antimicrob Agents Chemother 2021; 66:e0165921. [PMID: 34843390 PMCID: PMC8846400 DOI: 10.1128/aac.01659-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence and spread of parasite resistance to currently available antimalarials has highlighted the importance of developing novel antimalarials. This scoping review provides an overview of antimalarial drug candidates undergoing phase I and II studies between 1 January 2016 and 28 April 2021. PubMed, Web of Science, Embase, clinical trial registries, and reference lists were searched for relevant studies. Information regarding antimalarial compound details, clinical trial characteristics, study population, and drug pharmacokinetics and pharmacodynamics (PK-PD) were extracted. A total of 50 studies were included, of which 24 had published their results and 26 were unpublished. New antimalarial compounds were evaluated as monotherapy (28 studies, 14 drug candidates) and combination therapy (9 studies, 10 candidates). Fourteen active compounds were identified in the current antimalarial drug development pipeline together with 11 compounds that are inactive, 6 due to insufficient efficacy. PK-PD data were available from 24 studies published as open-access articles. Four unpublished studies have made their results publicly available on clinical trial registries. The terminal elimination half-life of new antimalarial compounds ranged from 14.7 to 483 h. The log10 parasite reduction ratio over 48 h and parasite clearance half-life for Plasmodium falciparum following a single-dose monotherapy were 1.55 to 4.1 and 3.4 to 9.4 h, respectively. The antimalarial drug development landscape has seen a number of novel compounds, with promising PK-PD properties, evaluated in phase I and II studies over the past 5 years. Timely public disclosure of PK-PD data is crucial for informative decision-making and drug development strategy.
Collapse
|
23
|
A New Thienopyrimidinone Chemotype Shows Multistage Activity against Plasmodium falciparum, Including Artemisinin-Resistant Parasites. Microbiol Spectr 2021; 9:e0027421. [PMID: 34724729 PMCID: PMC8557901 DOI: 10.1128/spectrum.00274-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human malaria infection begins with a one-time asymptomatic liver stage followed by a cyclic symptomatic blood stage. For decades, the research for novel antimalarials focused on the high-throughput screening of molecules that only targeted the asexual blood stages. In a search for new effective compounds presenting a triple action against erythrocytic and liver stages in addition to the ability to block the transmission of the disease via the mosquito vector, 2-amino-thienopyrimidinone derivatives were synthesized and tested for their antimalarial activity. One molecule, named gamhepathiopine (denoted as “M1” herein), was active at submicromolar concentrations against both erythrocytic (50% effective concentration [EC50] = 0.045 μM) and liver (EC50 = 0.45 μM) forms of Plasmodium falciparum. Furthermore, gamhepathiopine efficiently blocked the development of the sporogonic cycle in the mosquito vector by inhibiting the exflagellation step. Moreover, M1 was active against artemisinin-resistant forms (EC50 = 0.227 μM), especially at the quiescent stage. Nevertheless, in mice, M1 showed modest activity due to its rapid metabolization by P450 cytochromes into inactive derivatives, calling for the development of new parent compounds with improved metabolic stability and longer half-lives. These results highlight the thienopyrimidinone scaffold as a novel antiplasmodial chemotype of great interest to search for new drug candidates displaying multistage activity and an original mechanism of action with the potential to be used in combination therapies for malaria elimination in the context of artemisinin resistance. IMPORTANCE This work reports a new chemical structure that (i) displays activity against the human malaria parasite Plasmodium falciparum at 3 stages of the parasitic cycle (blood stage, hepatic stage, and sexual stages), (ii) remains active against parasites that are resistant to the first-line treatment recommended by the World Health Organization (WHO) for the treatment of severe malaria (artemisinins), and (iii) reduces transmission of the parasite to the mosquito vector in a mouse model. This new molecule family could open the way to the conception of novel antimalarial drugs with an original multistage mechanism of action to fight against Plasmodium drug resistance and block interhuman transmission of malaria.
Collapse
|
24
|
Ibraheem A, Pillai C, Okoye I, Smith JJ, Reidy-Lagunes D, Macaulay G, Alatise O. Cancer Clinical Trials in Africa-An Untapped Opportunity: Recommendations From AORTIC 2019 Conference Special Interest Group in Clinical Trials. JCO Glob Oncol 2021; 7:1358-1363. [PMID: 34506222 PMCID: PMC8440011 DOI: 10.1200/go.21.00096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cancer is now a formidable health care burden in sub-Saharan Africa (SSA) due to lifestyle westernization and longer life expectancy. The exponential increase in cancer incidence coupled with high mortality rate is not comparable with that seen in westernized countries. To address global cancer disparity, globalization of cancer clinical trials to involve sub-Saharan Africa can serve as a platform where innovative targeted therapies can be made available to patients in the environ. In the 2019 African Organization for Research and Training in Cancer (AORTIC) conference held at Maputo, Mozambique, a group of clinical trialists spanning across multiple continents highlighted the opportunities in Africa for the conduct of cancer clinical trials. The secondary purpose of the meeting was to address the belief that Africa was incapable of conducting interventional cancer trials but showed the in-continent strengths, such as available capacities, trained local clinical trialists with clinical trial experiences, clinical trial consortia, local capabilities, mapping out logistics, ethical consideration, political will, real-time benefits of clinical trials to clinical practice, and future directions for trials.
Collapse
Affiliation(s)
- Abiola Ibraheem
- Section of Hematology Oncology, University of Chicago, Chicago, IL
| | - Colin Pillai
- Division of Clinical Pharmacology, University of Cape Town, Cape Town, South Africa.,CP+ Associates GmbH, Basel, Switzerland
| | - Ifeoma Okoye
- Department of Radiology, College of Medicine, University of Nigeria, Nsukka, Nigeria.,University of Nigeria Centre for Clinical Trials, University of Nigeria Teaching Hospital, Enugu, Ituku Ozalla, Nigeria
| | - J Joshua Smith
- Colorectal Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Diane Reidy-Lagunes
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Grace Macaulay
- Medical Scientific Affairs and Strategy (Oncology), Cepheid Oncology, Sunnyvale, CA
| | - Olusegun Alatise
- Division of Gastrointestinal/Surgical Oncology, Department of Surgery, Obafemi Awolowo University/Teaching Hospitals, Ile-Ife, Nigeria
| |
Collapse
|
25
|
Lu KY, Mansfield CR, Fitzgerald MC, Derbyshire ER. Chemoproteomics for Plasmodium Parasite Drug Target Discovery. Chembiochem 2021; 22:2591-2599. [PMID: 33999499 PMCID: PMC8373781 DOI: 10.1002/cbic.202100155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/16/2021] [Indexed: 12/16/2022]
Abstract
Emerging Plasmodium parasite drug resistance is threatening progress towards malaria control and elimination. While recent efforts in cell-based, high-throughput drug screening have produced first-in-class drugs with promising activities against different Plasmodium life cycle stages, most of these antimalarial agents have elusive mechanisms of action. Though challenging to address, target identification can provide valuable information to facilitate lead optimization and preclinical drug prioritization. Recently, proteome-wide methods for direct assessment of drug-protein interactions have emerged as powerful tools in a number of systems, including Plasmodium. In this review, we will discuss current chemoproteomic strategies that have been adapted to antimalarial drug target discovery, including affinity- and activity-based protein profiling and the energetics-based techniques thermal proteome profiling and stability of proteins from rates of oxidation. The successful application of chemoproteomics to the Plasmodium blood stage highlights the potential of these methods to link inhibitors to their molecular targets in more elusive Plasmodium life stages and intracellular pathogens in the future.
Collapse
Affiliation(s)
- Kuan-Yi Lu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Christopher R Mansfield
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| | - Michael C Fitzgerald
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| |
Collapse
|
26
|
Dembele L, Aniweh Y, Diallo N, Sogore F, Sangare CPO, Haidara AS, Traore A, Diakité SAS, Diakite M, Campo B, Awandare GA, Djimde AA. Plasmodium malariae and Plasmodium falciparum comparative susceptibility to antimalarial drugs in Mali. J Antimicrob Chemother 2021; 76:2079-2087. [PMID: 34021751 DOI: 10.1093/jac/dkab133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To evaluate Plasmodium malariae susceptibility to current and lead candidate antimalarial drugs. METHODS We conducted cross-sectional screening and detection of all Plasmodium species malaria cases, which were nested within a longitudinal prospective study, and an ex vivo assessment of efficacy of a panel of antimalarials against P. malariae and Plasmodium falciparum, both PCR-confirmed mono-infections. Reference compounds tested included chloroquine, lumefantrine, artemether and piperaquine, while candidate antimalarials included the imidazolopiperazine GNF179, a close analogue of KAF156, and the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691. RESULTS We report a high frequency (3%-15%) of P. malariae infections with a significant reduction in ex vivo susceptibility to chloroquine, lumefantrine and artemether, which are the current frontline drugs against P. malariae infections. Unlike these compounds, potent inhibition of P. malariae and P. falciparum was observed with piperaquine exposure. Furthermore, we evaluated advanced lead antimalarial compounds. In this regard, we identified strong inhibition of P. malariae using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drug currently in clinical Phase IIb testing. Finally, in addition to GNF179, we demonstrated that the Plasmodium PI4K-specific inhibitor KDU691 is highly inhibitory against P. malariae and P. falciparum. CONCLUSIONS Our data indicated that chloroquine, lumefantrine and artemether may not be suitable for the treatment of P. malariae infections and the potential of piperaquine, as well as new antimalarials imidazolopiperazines and PI4K-specific inhibitor, for P. malariae cure.
Collapse
Affiliation(s)
- Laurent Dembele
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Volta Road, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Nouhoum Diallo
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Fanta Sogore
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Cheick Papa Oumar Sangare
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Aboubecrin Sedhigh Haidara
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Aliou Traore
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Seidina A S Diakité
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali.,West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Volta Road, Legon, Accra, Ghana
| | - Mahamadou Diakite
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| | - Brice Campo
- Medicines for Malaria Venture (MMV) ICC Building Entrance G, 3rd floor Route de Pré-Bois 20 Post Box 1826 CH-1215, Geneva 15, Switzerland
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Volta Road, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Abdoulaye A Djimde
- Malaria Research and Training Centre (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB); Point G, P.O. Box: 1805, Bamako, Mali
| |
Collapse
|
27
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
28
|
Paymode DJ, Chang L, Chen D, Wang B, Kashinath K, Gopalsamuthiram V, McQuade DT, Vasudevan N, Ahmad S, Snead DR. Application of Vinamidinium Salt Chemistry for a Palladium Free Synthesis of Anti-Malarial MMV048: A "Bottom-Up" Approach. Org Lett 2021; 23:5400-5404. [PMID: 34185545 PMCID: PMC9385109 DOI: 10.1021/acs.orglett.1c01725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
MMV390048 (1) is a clinical compound under investigation
for antimalarial activity. A new synthetic route was developed which
couples two aromatic fragments while forming the central pyridine
ring over two steps. This sequence takes advantage of raw materials
used in the existing etoricoxib supply chain and eliminates the need
for palladium catalysts, which were projected to be major cost-drivers.
Collapse
Affiliation(s)
- Dinesh J Paymode
- Medicines for All Institute, 737 North Fifth Street, Box 980100, Richmond, Virginia 23298, United States
| | - Le Chang
- WuXi AppTec (Wuhan) Co. Ltd., Wuhan East Lake High-tech Development Zone, Wuhan 430075, P. R. of China
| | - Dan Chen
- WuXi AppTec (Wuhan) Co. Ltd., Wuhan East Lake High-tech Development Zone, Wuhan 430075, P. R. of China
| | - Binglin Wang
- WuXi AppTec (Wuhan) Co. Ltd., Wuhan East Lake High-tech Development Zone, Wuhan 430075, P. R. of China
| | - Komirishetty Kashinath
- Medicines for All Institute, 737 North Fifth Street, Box 980100, Richmond, Virginia 23298, United States
| | | | - D Tyler McQuade
- Medicines for All Institute, 737 North Fifth Street, Box 980100, Richmond, Virginia 23298, United States
| | - N Vasudevan
- Medicines for All Institute, 737 North Fifth Street, Box 980100, Richmond, Virginia 23298, United States
| | - Saeed Ahmad
- Medicines for All Institute, 737 North Fifth Street, Box 980100, Richmond, Virginia 23298, United States
| | - David R Snead
- Medicines for All Institute, 737 North Fifth Street, Box 980100, Richmond, Virginia 23298, United States
| |
Collapse
|
29
|
Sharma N, Kashif M, Singh V, Fontinha D, Mukherjee B, Kumar D, Singh S, Prudencio M, Singh AP, Rathi B. Novel Antiplasmodial Compounds Leveraged with Multistage Potency against the Parasite Plasmodium falciparum: In Vitro and In Vivo Evaluations and Pharmacokinetic Studies. J Med Chem 2021; 64:8666-8683. [PMID: 34124905 DOI: 10.1021/acs.jmedchem.1c00659] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxyethylamine (HEA)-based novel compounds were synthesized and their activity against Plasmodium falciparum 3D7 was assessed, identifying a few hits without any apparent toxicity. Hits 5c and 5d also exhibited activity against resistant field strains, PfRKL-9 and PfC580Y. A single dose, 50 mg/Kg, of hits administered to the rodent parasite Plasmodium berghei ANKA exhibited up to 70% reduction in the parasite load. Compound 5d tested in combination with artesunate produced an additional antiparasitic effect with a prolonged survival period. Additionally, compound 5d showed 50% inhibition against hepatic P. berghei infection at 1.56 ± 0.56 μM concentration. This compound also considerably delayed the progression of transmission stages, ookinete and oocyst. Furthermore, the toxicity of 5d assessed in mice supported the normal liver and kidney functions. Altogether, HEA analogues (5a-m), particularly 5d, are nontoxic multistage antiplasmodial agents with therapeutic and transmission-blocking efficacy, along with favorable preliminary pharmacokinetic properties.
Collapse
Affiliation(s)
- Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Budhaditya Mukherjee
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur 721302, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida 201301, Uttar Pradesh, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Miguel Prudencio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Agam P Singh
- Infectious Diseases Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi 110007, India
| |
Collapse
|
30
|
McCarthy JS, Donini C, Chalon S, Woodford J, Marquart L, Collins KA, Rozenberg FD, Fidock DA, Cherkaoui-Rbati MH, Gobeau N, Möhrle JJ. A Phase 1, Placebo-controlled, Randomized, Single Ascending Dose Study and a Volunteer Infection Study to Characterize the Safety, Pharmacokinetics, and Antimalarial Activity of the Plasmodium Phosphatidylinositol 4-Kinase Inhibitor MMV390048. Clin Infect Dis 2021; 71:e657-e664. [PMID: 32239164 PMCID: PMC7744986 DOI: 10.1093/cid/ciaa368] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/01/2020] [Indexed: 02/01/2023] Open
Abstract
Background MMV390048 is the first Plasmodium phosphatidylinositol 4-kinase inhibitor to reach clinical development as a new antimalarial. We aimed to characterize the safety, pharmacokinetics, and antimalarial activity of a tablet formulation of MMV390048. Methods A 2-part, phase 1 trial was conducted in healthy adults. Part 1 was a double-blind, randomized, placebo-controlled, single ascending dose study consisting of 3 cohorts (40, 80, 120 mg MMV390048). Part 2 was an open-label volunteer infection study using the Plasmodium falciparum induced blood-stage malaria model consisting of 2 cohorts (40 mg and 80 mg MMV390048). Results Twenty four subjects were enrolled in part 1 (n = 8 per cohort, randomized 3:1 MMV390048:placebo) and 15 subjects were enrolled in part 2 (40 mg [n = 7] and 80 mg [n = 8] cohorts). One subject was withdrawn from part 2 (80 mg cohort) before dosing and was not included in analyses. No serious or severe adverse events were attributed to MMV390048. The rate of parasite clearance was greater in subjects administered 80 mg compared to those administered 40 mg (clearance half-life 5.5 hours [95% confidence interval {CI}, 5.2–6.0 hours] vs 6.4 hours [95% CI, 6.0–6.9 hours]; P = .005). Pharmacokinetic/pharmacodynamic modeling estimated a minimum inhibitory concentration of 83 ng/mL and a minimal parasiticidal concentration that would achieve 90% of the maximum effect of 238 ng/mL, and predicted that a single 120-mg dose would achieve an adequate clinical and parasitological response with 92% certainty. Conclusions The safety, pharmacokinetics, and pharmacodynamics of MMV390048 support its further development as a partner drug of a single-dose combination therapy for malaria. Clinical Trials Registration NCT02783820 (part 1); NCT02783833 (part 2).
Collapse
Affiliation(s)
- James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | | | - John Woodford
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Felix D Rozenberg
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | | | | | | |
Collapse
|
31
|
Parasite-Host Dynamics throughout Antimalarial Drug Development Stages Complicate the Translation of Parasite Clearance. Antimicrob Agents Chemother 2021; 65:AAC.01539-20. [PMID: 33526486 PMCID: PMC8097426 DOI: 10.1128/aac.01539-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/20/2021] [Indexed: 11/21/2022] Open
Abstract
Ensuring continued success against malaria depends on a pipeline of new antimalarials. Antimalarial drug development utilizes preclinical murine and experimental human malaria infection studies to evaluate drug efficacy. Ensuring continued success against malaria depends on a pipeline of new antimalarials. Antimalarial drug development utilizes preclinical murine and experimental human malaria infection studies to evaluate drug efficacy. A sequential approach is typically adapted, with results from each stage informing the design of the next stage of development. The validity of this approach depends on confidence that results from murine malarial studies predict the outcome of clinical trials in humans. Parasite clearance rates following treatment are key parameters of drug efficacy. To investigate the validity of forward predictions, we developed a suite of mathematical models to capture parasite growth and drug clearance along the drug development pathway and estimated parasite clearance rates. When comparing the three infection experiments, we identified different relationships of parasite clearance with dose and different maximum parasite clearance rates. In Plasmodium berghei-NMRI mouse infections, we estimated a maximum parasite clearance rate of 0.2 (1/h); in Plasmodium falciparum-SCID mouse infections, 0.05 (1/h); and in human volunteer infection studies with P. falciparum, we found a maximum parasite clearance rate of 0.12 (1/h) and 0.18 (1/h) after treatment with OZ439 and MMV048, respectively. Sensitivity analysis revealed that host-parasite driven processes account for up to 25% of variance in parasite clearance for medium-high doses of antimalarials. Although there are limitations in translating parasite clearance rates across these experiments, they provide insight into characterizing key parameters of drug action and dose response and assist in decision-making regarding dosage for further drug development.
Collapse
|
32
|
Ippolito MM, Moser KA, Kabuya JBB, Cunningham C, Juliano JJ. Antimalarial Drug Resistance and Implications for the WHO Global Technical Strategy. CURR EPIDEMIOL REP 2021; 8:46-62. [PMID: 33747712 PMCID: PMC7955901 DOI: 10.1007/s40471-021-00266-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Five years have passed since the World Health Organization released its Global Technical Strategy for Malaria (GTS). In that time, progress against malaria has plateaued. This review focuses on the implications of antimalarial drug resistance for the GTS and how interim progress in parasite genomics and antimalarial pharmacology offer a bulwark against it. RECENT FINDINGS For the first time, drug resistance-conferring genes have been identified and validated before their global expansion in malaria parasite populations. More efficient methods for their detection and elaboration have been developed, although low-density infections and polyclonality remain a nuisance to be solved. Clinical trials of alternative regimens for multidrug-resistant malaria have delivered promising results. New agents continue down the development pipeline, while a nascent infrastructure in sub-Saharan Africa for conducting phase I trials and trials of transmission-blocking agents has come to fruition after years of preparation. SUMMARY These and other developments can help inform the GTS as the world looks ahead to the next two decades of its implementation. To remain ahead of the threat that drug resistance poses, wider application of genomic-based surveillance and optimization of existing and forthcoming antimalarial drugs are essential.
Collapse
Affiliation(s)
- Matthew M. Ippolito
- Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University School of Public Health, Baltimore, MD USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kara A. Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA
| | | | - Clark Cunningham
- School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, CB#7030, 130 Mason Farm Rd, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
33
|
Hitz E, Grüninger O, Passecker A, Wyss M, Scheurer C, Wittlin S, Beck HP, Brancucci NMB, Voss TS. The catalytic subunit of Plasmodium falciparum casein kinase 2 is essential for gametocytogenesis. Commun Biol 2021; 4:336. [PMID: 33712726 PMCID: PMC7954856 DOI: 10.1038/s42003-021-01873-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/17/2021] [Indexed: 01/31/2023] Open
Abstract
Casein kinase 2 (CK2) is a pleiotropic kinase phosphorylating substrates in different cellular compartments in eukaryotes. In the malaria parasite Plasmodium falciparum, PfCK2 is vital for asexual proliferation of blood-stage parasites. Here, we applied CRISPR/Cas9-based gene editing to investigate the function of the PfCK2α catalytic subunit in gametocytes, the sexual forms of the parasite that are essential for malaria transmission. We show that PfCK2α localizes to the nucleus and cytoplasm in asexual and sexual parasites alike. Conditional knockdown of PfCK2α expression prevented the transition of stage IV into transmission-competent stage V gametocytes, whereas the conditional knockout of pfck2a completely blocked gametocyte maturation already at an earlier stage of sexual differentiation. In summary, our results demonstrate that PfCK2α is not only essential for asexual but also sexual development of P. falciparum blood-stage parasites and encourage studies exploring PfCK2α as a potential target for dual-active antimalarial drugs.
Collapse
Affiliation(s)
- Eva Hitz
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Olivia Grüninger
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Armin Passecker
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Matthias Wyss
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Christian Scheurer
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Sergio Wittlin
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Hans-Peter Beck
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Nicolas M. B. Brancucci
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| | - Till S. Voss
- grid.416786.a0000 0004 0587 0574Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
34
|
Arendse LB, Wyllie S, Chibale K, Gilbert IH. Plasmodium Kinases as Potential Drug Targets for Malaria: Challenges and Opportunities. ACS Infect Dis 2021; 7:518-534. [PMID: 33590753 PMCID: PMC7961706 DOI: 10.1021/acsinfecdis.0c00724] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 12/30/2022]
Abstract
Protein and phosphoinositide kinases have been successfully exploited as drug targets in various disease areas, principally in oncology. In malaria, several protein kinases are under investigation as potential drug targets, and an inhibitor of Plasmodium phosphatidylinositol 4-kinase type III beta (PI4KIIIβ) is currently in phase 2 clinical studies. In this Perspective, we review the potential of kinases as drug targets for the treatment of malaria. Kinases are known to be readily druggable, and many are essential for parasite survival. A key challenge in the design of Plasmodium kinase inhibitors is obtaining selectivity over the corresponding human orthologue(s) and other human kinases due to the highly conserved nature of the shared ATP binding site. Notwithstanding this, there are some notable differences between the Plasmodium and human kinome that may be exploitable. There is also the potential for designed polypharmacology, where several Plasmodium kinases are inhibited by the same drug. Prior to starting the drug discovery process, it is important to carefully assess potential kinase targets to ensure that the inhibition of the desired kinase will kill the parasites in the required life-cycle stages with a sufficiently fast rate of kill. Here, we highlight key target attributes and experimental approaches to consider and summarize the progress that has been made targeting Plasmodium PI4KIIIβ, cGMP-dependent protein kinase, and cyclin-dependent-like kinase 3.
Collapse
Affiliation(s)
- Lauren B. Arendse
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Susan Wyllie
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), South African Medical Research
Council Drug Discovery and Development Research Unit, Department of
Chemistry, and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town, Western Cape 7701, South Africa
| | - Ian H. Gilbert
- Wellcome
Centre for Anti-Infectives Research, Division of Biological Chemistry
and Drug Discovery, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
35
|
Adderley J, Williamson T, Doerig C. Parasite and Host Erythrocyte Kinomics of Plasmodium Infection. Trends Parasitol 2021; 37:508-524. [PMID: 33593681 DOI: 10.1016/j.pt.2021.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Malaria remains a heavy public health and socioeconomic burden in tropical and subtropical regions. Increasing resistance against front-line treatments implies that novel targets for antimalarial intervention are urgently required. Protein kinases of both the parasites and their host cells possess strong potential in this respect. We present an overview of the updated kinome of Plasmodium falciparum, the species that is the largest contributor to malaria mortality, and of current knowledge pertaining to the function of parasite-encoded protein kinases during the parasite's life cycle. Furthermore, we detail recent advances in drug initiatives targeting Plasmodium kinases and outline the potential of protein kinases in the context of the growing field of host-directed therapies, which is currently being explored as a novel way to combat parasite drug resistance.
Collapse
Affiliation(s)
- Jack Adderley
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tayla Williamson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
36
|
Cheuka PM, Centani L, Arendse LB, Fienberg S, Wambua L, Renga SS, Dziwornu GA, Kumar M, Lawrence N, Taylor D, Wittlin S, Coertzen D, Reader J, van der Watt M, Birkholtz LM, Chibale K. New Amidated 3,6-Diphenylated Imidazopyridazines with Potent Antiplasmodium Activity Are Dual Inhibitors of Plasmodium Phosphatidylinositol-4-kinase and cGMP-Dependent Protein Kinase. ACS Infect Dis 2021; 7:34-46. [PMID: 33319990 DOI: 10.1021/acsinfecdis.0c00481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies on 3,6-diphenylated imidazopyridazines have demonstrated impressive in vitro activity and in vivo efficacy in mouse models of malaria infection. Herein, we report the synthesis and antiplasmodium evaluation of a new series of amidated analogues and demonstrate that these compounds potently inhibit Plasmodium phosphatidylinositol-4-kinase (PI4K) type IIIβ while moderately inhibiting cyclic guanidine monophosphate (cGMP)-dependent protein kinase (PKG) activity in vitro. Using in silico docking, we predict key binding interactions for these analogues within the adenosine triphosphate (ATP)-binding site of PI4K and PKG, paving the way for structure-based optimization of imidazopyridazines targeting both Plasmodium PI4K and PKG. While several derivatives showed low nanomolar antiplasmodium activity (IC50 < 100 nM), some compounds, including piperazine analogue 28, resulted in strong dual PI4K and PKG inhibition. The compounds also demonstrated transmission-blocking potential, evident from their potent inhibition of early- and late-stage gametocytes. Finally, the current compounds generally showed improved aqueous solubility and reduced hERG (human ether-a-go-go-related gene) channel inhibition.
Collapse
Affiliation(s)
- Peter Mubanga Cheuka
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Department of Chemistry, University of Zambia, Great East Road Campus, P.O Box 32379, Lusaka, Zambia
| | - Luyanda Centani
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Lauren B. Arendse
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Drug Discovery and Development Centre (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Stephen Fienberg
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Drug Discovery and Development Centre (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Lynn Wambua
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Shoneeze S. Renga
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Godwin Akpeko Dziwornu
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | - Dina Coertzen
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Mariette van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
- Drug Discovery and Development Centre (H3D) and South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
37
|
Moolman C, van der Sluis R, Beteck RM, Legoabe LJ. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020; 25:E5182. [PMID: 33171706 PMCID: PMC7664427 DOI: 10.3390/molecules25215182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.
Collapse
Affiliation(s)
- Chantalle Moolman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Rencia van der Sluis
- Focus Area for Human Metabolomics, Biochemistry, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| | - Richard M. Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; (C.M.); (R.M.B.)
| |
Collapse
|