1
|
Guinea J, Alcoceba E, Padilla E, Ramírez A, De Carolis E, Sanguinetti M, Muñoz-Algarra M, Durán-Valle T, Quiles-Melero I, Merino P, González-Romo F, Sánchez-García A, Gómez-García-de-la-Pedrosa E, Pérez-Ayala A, Mantecón-Vallejo MÁ, Pemán J, Cuétara MS, Zurita ND, García-Esteban C, Martínez-Jiménez MDC, Sánchez Castellano MÁ, Reigadas E, Muñoz P, Escribano P. Fluconazole-resistant Candida parapsilosis: fast detection of the Y132F ERG11p substitution, and a proposed microsatellite genotyping scheme. Clin Microbiol Infect 2024; 30:1447-1452. [PMID: 39002661 DOI: 10.1016/j.cmi.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/06/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVES We propose fast and accurate molecular detection of the Y132F ERG11p substitution directly on pure-cultured Candida parapsilosis isolates. We also assessed a discriminative genotyping scheme to track circulating genotypes. METHODS A total of 223 C. parapsilosis isolates (one patient each) from 20 hospitals, located in Spain and Italy were selected. Isolates were fluconazole-resistant (n = 94; harbouring the Y132F ERG11p substitution [n = 85], the G458S substitution [n = 6], the R398I substitution [n = 2], or the wild-type ERG11 gene sequence) or fluconazole-susceptible (n = 129). Two targeted-A395T-mutation PCR formats (conventional and real-time) were engineered and optimized on fluconazole-susceptible and fluconazole-resistant pure-cultured isolates, thus skipping DNA extraction. Two genotyping schemes were compared: Scheme 1 (CP1, CP4a, CP6, and B markers), and Scheme 2 (6A, 6B, 6C, CP1, CP4a, and CP6 markers). RESULTS The screening performed using both PCR formats showed 100% specificity (fluconazole-susceptible isolates; n = 129/129) and sensitivity (Y132F isolates; n = 85/85) values; however, results were available in 3 and 1.5 hours with the conventional and real-time PCR formats, respectively. Overall, Scheme 1 showed higher genetic diversity than Scheme 2, as shown by the number of alleles detected (n = 98; mean 23, range 13-38), the significantly higher observed and expected heterozygosity, and the probability of identity index (2.5 × 10-6). Scheme 2 markers did not provide further genotypic discrimination of Y132F fluconazole-resistant genotypes. CONCLUSION Both proposed PCR formats allow us to speed up the accurate detection of substitution Y132F ERG11p in C. parapsilosis isolates with 100% specificity and sensitivity. In addition, we recommend CP1, CP4a, CP6, and B microsatellite markers for genotyping fluconazole-resistant isolates.
Collapse
Affiliation(s)
- Jesús Guinea
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Faculty of Health Sciences - HM Hospitals, Universidad Camilo José Cela, Madrid, Spain.
| | - Eva Alcoceba
- Clinical Microbiology Department, Hospital Universitari Son Espases, Mallorca, Spain
| | | | - Aída Ramírez
- Clinical Microbiology Department, Hospital del Mar, Barcelona, Spain
| | - Elena De Carolis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - María Muñoz-Algarra
- Clinical Microbiology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Teresa Durán-Valle
- Clinical Microbiology Department, Hospital Universitario de Móstoles, Móstoles, Madrid, Spain
| | | | - Paloma Merino
- Clinical Microbiology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos IdISSC, Madrid, Spain
| | - Fernando González-Romo
- Clinical Microbiology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos IdISSC, Madrid, Spain
| | - Aída Sánchez-García
- Laboratorio Central de la CAM-URSalud-Hospital Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | - Elia Gómez-García-de-la-Pedrosa
- Clinical Microbiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Pérez-Ayala
- Clinical Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | | | - Javier Pemán
- Hospital Universitario y Politécnico La Fé, Valencia, Spain
| | - María Soledad Cuétara
- Clinical Microbiology Department, Hospital Universitario Severo Ochoa, Leganés, Spain
| | - Nelly Daniela Zurita
- Clinical Microbiology Department, Hospital Universitario de La Princesa, Madrid, Spain
| | - Coral García-Esteban
- Clinical Microbiology Department, Hospital Universitario de Getafe, Getafe, Spain
| | | | | | - Elena Reigadas
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Faculty of Health Sciences - HM Hospitals, Universidad Camilo José Cela, Madrid, Spain
| |
Collapse
|
2
|
Trevijano-Contador N, López-Peralta E, López-López J, Roldán A, de Armentia C, Zaragoza Ó. High-Resolution Melting Assay to Detect the Mutations That Cause the Y132F and G458S Substitutions at the ERG11 Gene Involved in Azole Resistance in Candida parapsilosis. Mycoses 2024; 67:e13811. [PMID: 39487103 DOI: 10.1111/myc.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Candida parapsilosis is a pathogenic yeast that has reduced susceptibility to echinocandins and ranks as the second or third leading cause of candidaemia, depending on the geographical region. This yeast often causes nosocomial infections, which are frequently detected as outbreaks. In recent years, resistance to azoles in C. parapsilosis has increased globally, primarily due to the accumulation of mutations in the ERG11 gene. OBJECTIVES In this study, we have developed an assay based on real-time PCR and high-resolution melting (HRM) curve analysis to detect two of the most prevalent mutations at ERG11 that confer resistance to fluconazole (Y132F and G458S). METHODS We designed allele-specific oligonucleotides that selectively bind to either the wild type or mutated sequences and optimised the conditions to ensure amplification of the specific allele, followed by detection via high-resolution melting (HRM) analysis. RESULTS The designed oligonucleotides to detect the Erg11Y132F and Erg11G458S mutations produced specific amplification of either WT or mutated alleles. We conducted a duplex real-time PCR combining oligonucleotides for the wild-type sequences in one mix, and oligonucleotides for the mutated alleles in another. Following this, we performed an analysis of the HRM curve to identify the amplified allele in each case. This technique was blindly evaluated on a set of 114 C. parapsilosis isolates, all of which were unequivocally identified using our approach. CONCLUSION This technique offers a new method for the early detection of azole resistance mechanism in C. parapsilosis.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena López-Peralta
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge López-López
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Roldán
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina de Armentia
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Odoj K, Garlasco J, Pezzani MD, Magnabosco C, Ortiz D, Manco F, Galia L, Foster SK, Arieti F, Tacconelli E. Tracking Candidemia Trends and Antifungal Resistance Patterns across Europe: An In-Depth Analysis of Surveillance Systems and Surveillance Studies. J Fungi (Basel) 2024; 10:685. [PMID: 39452637 PMCID: PMC11514733 DOI: 10.3390/jof10100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The WHO fungal priority list classifies Candida species as critical and high-priority pathogens, and the WHO GLASS fungi initiative seeks to establish a standardised global framework for antifungal resistance monitoring. We aimed to review resistance rates and antifungal resistance patterns across European surveillance systems and studies in response to these recent calls for action. METHODS A systematic review of national and international surveillance systems and peer-reviewed surveillance studies available up to June 2024 was conducted. Descriptive and trend analyses were performed on surveillance data reporting resistance to different antifungals in Candida spp. RESULTS In total, 6 national surveillance systems and 28 studies from 13 countries provided candidemia resistance data, mostly about the C. albicans, C. glabrata and C. parapsilosis complex. Azole resistance was most frequently reported (6/6 surveillance systems and 27/28 studies) with the highest resistance rate, especially for C. glabrata, in Croatia (100%, 28/28 isolates) and Slovenia (85.7%, 82/96) and C. parapsilosis in Croatia (80.6%, 54/67) and Italy (72.6%, 106/146). Echinocandin and polyene resistance rates were nearly zero. The number of isolates included in the surveillance systems increased over the years, particularly for C. albicans (+40-60 isolates/year), C. glabrata, and C. parapsilosis (+15-30 isolates/year). No surveillance system or study reported resistance data for C. auris. Pooled data from national surveillance revealed a decreasing trend in azole resistance in C. albicans and C. glabrata. The increasing azole-resistance trend in C. parapsilosis disappeared after adjusting for between-country heterogeneity. Overall, echinocandin and polyene resistance trends appeared relatively stable. CONCLUSIONS Awareness of antifungal resistance is growing, but further actions are needed to strengthen surveillance capacity and knowledge-sharing networks across Europe.
Collapse
Affiliation(s)
- Karin Odoj
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany; (K.O.); (D.O.); (S.K.F.)
| | - Jacopo Garlasco
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Maria Diletta Pezzani
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Cristina Magnabosco
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Diego Ortiz
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany; (K.O.); (D.O.); (S.K.F.)
| | - Federica Manco
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Liliana Galia
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Sarah K. Foster
- Division of Infectious Diseases, Department of Internal Medicine I, University Hospital Tübingen, 72076 Tübingen, Germany; (K.O.); (D.O.); (S.K.F.)
| | - Fabiana Arieti
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| | - Evelina Tacconelli
- Infectious Disease Unit, Department of Diagnostic and Public Health, University of Verona, 37129 Verona, Italy; (J.G.); (C.M.); (F.M.); (L.G.); (F.A.); (E.T.)
| |
Collapse
|
4
|
Won EJ, Sung H, Kim MN. Clinical Characteristics of Candidemia Due to Candida parapsilosis with Serial Episodes: Insights from 5-Year Data Collection at a Tertiary Hospital in Korea. J Fungi (Basel) 2024; 10:624. [PMID: 39330384 PMCID: PMC11433559 DOI: 10.3390/jof10090624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Candida parapsilosis is a common cause of non-albicans Candida species causing candidemia, particularly invasive candidiasis. This study aimed to characterize candidemia due to the C. parapsilosis complex with serial episodes, including clinical and mycological features. METHODS Blood isolates of the C. parapsilosis complex were collected from February 2019 to January 2023 at a tertiary Korean hospital. Species identification was performed using Vitek 2 or matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and antifungal susceptibility testing was performed using the Sensititre YeastOne® system. Clinical information was collected, and characteristics were analyzed according to single or serial isolates. RESULTS A total of 586 blood isolates of the C. parapsilosis complex were recovered from 68 candidemia patients during the study period. Of them, only the first isolate per patient was investigated. The only two isolates were resistant to fluconazole and no isolate was resistant to echinocandins, amphotericin B, or 5-FC. A single episode of candidemia occurred in 35 patients, while serial episodes occurred in 33 patients. Underlying liver diseases, use of vasopressors, ICU admission, severe sepsis, and CVC use were more frequent in patients with serial episodes. There was no significant difference in the median MIC values of antifungal agents or the use of azoles or amphotericin B between single and serial episodes. However, patients with serial episodes more frequently received echinocandin therapy. Overall, there was no significant difference in the 30-day mortality rate between patients with single and serial episodes. CONCLUSION Our data indicate that several factors related to the underlying conditions of the patients are associated with C. parapsilosis candidemia with serial episodes, rather than the characteristics of Candida itself.
Collapse
Affiliation(s)
- Eun Jeong Won
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| |
Collapse
|
5
|
Hartuis S, Ourliac-Garnier I, Robert E, Albassier M, Duchesne L, Beaufils C, Kuhn J, Le Pape P, Morio F. Precise genome editing underlines the distinct contributions of mutations in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in Candida parapsilosis. Antimicrob Agents Chemother 2024:e0002224. [PMID: 38624217 DOI: 10.1128/aac.00022-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Candida parapsilosis has recently emerged as a major threat due to the worldwide emergence of fluconazole-resistant strains causing clonal outbreaks in hospitals and poses a therapeutic challenge due to the limited antifungal armamentarium. Here, we used precise genome editing using CRISPR-Cas9 to gain further insights into the contribution of mutations in ERG11, ERG3, MRR1, and TAC1 genes and the influence of allelic dosage to antifungal resistance in C. parapsilosis. Seven of the most common amino acid substitutions previously reported in fluconazole-resistant clinical isolates (including Y132F in ERG11) were engineered in two fluconazole-susceptible C. parapsilosis lineages (ATCC 22019 and STZ5). Each mutant was then challenged in vitro against a large array of antifungals, with a focus on azoles. Any possible change in virulence was also assessed in a Galleria mellonella model. We successfully generated a total of 19 different mutants, using CRISPR-Cas9. Except for R398I (ERG11), all remaining amino acid substitutions conferred reduced susceptibility to fluconazole. However, the impact on fluconazole in vitro susceptibility varied greatly according to the engineered mutation, the stronger impact being noted for G583R acting as a gain-of-function mutation in MRR1. Cross-resistance with newer azoles, non-medical azoles, but also non-azole antifungals such as flucytosine, was occasionally noted. Posaconazole and isavuconazole remained the most active in vitro. Except for G583R, no fitness cost was associated with the acquisition of fluconazole resistance. We highlight the distinct contributions of amino acid substitutions in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in C. parapsilosis.
Collapse
Affiliation(s)
- Sophie Hartuis
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | | | - Estelle Robert
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Marjorie Albassier
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Léa Duchesne
- Department Public Health, Nantes Université, CHU Nantes, Nantes, France
| | - Clara Beaufils
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Joséphine Kuhn
- Nantes Université, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Patrice Le Pape
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de l'Immunité, Nantes, France
| |
Collapse
|
6
|
Mesquida A, Alcoceba E, Padilla E, Ramírez A, Merino P, González-Romo F, De Carolis E, Sanguinetti M, Mantecón-Vallejo MDLÁ, Muñoz-Algarra M, Durán-Valle T, Pérez-Ayala A, Gómez-García-de-la-Pedrosa E, Del Carmen Martínez-Jiménez M, Sánchez-Castellano MÁ, Quiles-Melero I, Cuétara MS, Sánchez-García A, Muñoz P, Escribano P, Guinea J. Fluconazole-resistant Candida parapsilosis genotypes from hospitals located in five Spanish cities and one in Italy: Description of azole-resistance profiles associated with the Y132F ERG11p substitution. Mycoses 2024; 67:e13706. [PMID: 38438313 DOI: 10.1111/myc.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Fluconazole-resistant Candida parapsilosis is a matter of concern. OBJECTIVES To describe fluconazole-resistant C. parapsilosis genotypes circulating across hospitals in Spain and Rome and to study their azole-resistance profile associated with ERG11p substitutions. PATIENTS/METHODS We selected fluconazole-resistant C. parapsilosis isolates (n = 528 from 2019 to 2023; MIC ≥8 mg/L according to EUCAST) from patients admitted to 13 hospitals located in five Spanish cities and Rome. Additionally, we tested voriconazole, posaconazole, isavuconazole, amphotericin B, micafungin, anidulafungin and ibrexafungerp susceptibility. RESULTS Of the 53 genotypes found, 49 harboured the Y132F substitution, five of which were dominating city-specific genotypes involving almost half the isolates. Another genotype involved isolates harbouring the G458S substitution. Finally, we found two genotypes with the wild-type ERG11 gene sequence and one with the R398I substitution. All isolates were fully susceptible/wild-type to amphotericin B, anidulafungin, micafungin and ibrexafungerp. The azole-resistance patterns found were: voriconazole-resistant (74.1%) or voriconazole-intermediate (25.2%), posaconazole-resistant (10%) and isavuconazole non-wild-type (47.5%). Fluconazole-resistant and voriconazole non-wild-type isolates were likely to harbour substitution Y132F if posaconazole was wild type; however, if posaconazole was non-wild type, substitution G458S was indicated if isavuconazole MIC was >0.125 mg/L or substitution Y132F if isavuconazole MIC was ≤0.125 mg/L. CONCLUSIONS We detected a recent clonal spread of fluconazole-resistant C. parapsilosis across some cities in Spain, mostly driven by dominating city-specific genotypes, which involved a large number of isolates harbouring the Y132F ERG11p substitution. Isolates harbouring substitution Y132F can be suspected because they are non-susceptible to voriconazole and rarely posaconazole-resistant.
Collapse
Affiliation(s)
- Aina Mesquida
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Eva Alcoceba
- Clinical Microbiology Department, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | | | - Aída Ramírez
- Clinical Microbiology Department, Hospital del Mar, Barcelona, Spain
| | - Paloma Merino
- Clinical Microbiology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos IdISSC, Madrid, Spain
| | - Fernando González-Romo
- Clinical Microbiology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos IdISSC, Madrid, Spain
| | - Elena De Carolis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | | | - María Muñoz-Algarra
- Clinical Microbiology Department, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Spain
| | - Teresa Durán-Valle
- Clinical Microbiology Department, Hospital Universitario de Móstoles, Móstoles, Spain
| | - Ana Pérez-Ayala
- Clinical Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - Elia Gómez-García-de-la-Pedrosa
- Clinical Microbiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | - María Soledad Cuétara
- Clinical Microbiology Department, Hospital Universitario Severo Ochoa, Leganés, Spain
| | - Aída Sánchez-García
- Laboratorio Central de la CAM-UR Salud-Hospital Infanta Sofía, Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Faculty of Health Sciences - HM Hospitals, Universidad Camilo José Cela, Madrid, Spain
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Faculty of Health Sciences - HM Hospitals, Universidad Camilo José Cela, Madrid, Spain
| |
Collapse
|
7
|
Zeeshan M, Memon S, Malick A, Naqvi SF, Farooqi J, Ghanchi NK, Jabeen K. Fluconazole-resistant Candida parapsilosis complex candidemia and analysis of mutations in the ERG11 gene from Pakistan. Mycoses 2024; 67:e13677. [PMID: 37990393 DOI: 10.1111/myc.13677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Recent reports of the emergence of fluconazole resistance in Candida parapsilosis species complex poses a challenge, more specifically in settings where echinocandin-based treatment regime is not feasible. OBJECTIVE This study reported emergence of fluconazole resistance in C. parapsilosis species complex strains isolated from blood cultures. MATERIALS AND METHODS This retrospective observational study was conducted from 2018 to 2020 at a tertiary care laboratory from Pakistan. Fluconazole-resistant C. parapsilosis species complex fungemia cases were identified from laboratory database and clinical details were collected. Identification of C. parapsilosis species complex was done using API 20C AUX and Cornmeal Tween80 agar morphology. Minimum inhibitory concentrations (MICs) were determined using Sensititre YeastONE and interpretation was done with CLSI M60 ED1:2017. ERG11 gene region was amplified and sequenced by Sanger sequencing and analysed by MEGA 11 Software. RESULTS A total of 13 (8.5%) fluconazole-resistant isolates were identified from 152 C. parapsilosis species complex candidemia cases. Fluconazole MICs of resistant isolates ranged between 8 and 256 μg/mL. Analysis of ERG11 gene revealed nonsynonymous mutations at position Y132F in 86% of the fluconazole-resistant isolates. Diabetes and hospitalization were important risk factors for candidemia with fluconazole-resistant C. parapsilosis complex. CONCLUSION This is the first report of the emergence and molecular mechanisms of fluconazole resistance in C. parapsilosis species complex from Pakistan. Y132F mutation in the ERG11 gene was the most common mutation in fluconazole-resistant strains. These findings are concerning and necessitate better diagnostics, newer antifungals, ongoing surveillance and further insights on resistance mechanisms in the country.
Collapse
Affiliation(s)
- Mohammad Zeeshan
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Saba Memon
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Ayesha Malick
- Aga Khan University Medical College, Karachi, Pakistan
| | - Syed Faheem Naqvi
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Joveria Farooqi
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Najia Karim Ghanchi
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Kauser Jabeen
- Department of Pathology & Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
8
|
Govrins M, Lass-Flörl C. Candida parapsilosis complex in the clinical setting. Nat Rev Microbiol 2024; 22:46-59. [PMID: 37674021 DOI: 10.1038/s41579-023-00961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Representatives of the Candida parapsilosis complex are important yeast species causing human infections, including candidaemia as one of the leading diseases. This complex comprises C. parapsilosis, Candida orthopsilosis and Candida metapsilosis, and causes a wide range of clinical presentations from colonization to superficial and disseminated infections with a high prevalence in preterm-born infants and the potential to cause outbreaks in hospital settings. Compared with other Candida species, the C. parapsilosis complex shows high minimal inhibitory concentrations for echinocandin drugs due to a naturally occurring FKS1 polymorphism. The emergence of clonal outbreaks of strains with resistance to commonly used antifungals, such as fluconazole, is causing concern. In this Review, we present the latest medical data covering epidemiology, diagnosis, resistance and current treatment approaches for the C. parapsilosis complex. We describe its main clinical manifestations in adults and children and highlight new treatment options. We compare the three sister species, examining key elements of microbiology and clinical characteristics, including the population at risk, disease manifestation and colonization status. Finally, we provide a comprehensive resource for clinicians and researchers focusing on Candida species infections and the C. parapsilosis complex, aiming to bridge the emerging translational knowledge and future therapeutic challenges associated with this human pathogen.
Collapse
Affiliation(s)
- Miriam Govrins
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
9
|
Franconi I, Lupetti A. In Vitro Susceptibility Tests in the Context of Antifungal Resistance: Beyond Minimum Inhibitory Concentration in Candida spp. J Fungi (Basel) 2023; 9:1188. [PMID: 38132789 PMCID: PMC10744879 DOI: 10.3390/jof9121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Antimicrobial resistance is a matter of rising concern, especially in fungal diseases. Multiple reports all over the world are highlighting a worrisome increase in azole- and echinocandin-resistance among fungal pathogens, especially in Candida species, as reported in the recently published fungal pathogens priority list made by WHO. Despite continuous efforts and advances in infection control, development of new antifungal molecules, and research on molecular mechanisms of antifungal resistance made by the scientific community, trends in invasive fungal diseases and associated antifungal resistance are on the rise, hindering therapeutic options and clinical cures. In this context, in vitro susceptibility testing aimed at evaluating minimum inhibitory concentrations, is still a milestone in the management of fungal diseases. However, such testing is not the only type at a microbiologist's disposal. There are other adjunctive in vitro tests aimed at evaluating fungicidal activity of antifungal molecules and also exploring tolerance to antifungals. This plethora of in vitro tests are still left behind and performed only for research purposes, but their role in the context of invasive fungal diseases associated with antifungal resistance might add resourceful information to the clinical management of patients. The aim of this review was therefore to revise and explore all other in vitro tests that could be potentially implemented in current clinical practice in resistant and difficult-to-treat cases.
Collapse
Affiliation(s)
- Iacopo Franconi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
- Mycology Unit, Pisa University Hospital, 56126 Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
- Mycology Unit, Pisa University Hospital, 56126 Pisa, Italy
| |
Collapse
|
10
|
Chen YZ, Tseng KY, Wang SC, Huang CL, Lin CC, Zhou ZL, Tsai DJ, Lin CM, Chen YL, Chen KT, Liao YC, Chen FJ, Sytwu HK, Lan CY, Lo HJ. Fruits are vehicles of drug-resistant pathogenic Candida tropicalis. Microbiol Spectr 2023; 11:e0147123. [PMID: 37905800 PMCID: PMC10714812 DOI: 10.1128/spectrum.01471-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/03/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Of 123 identified isolates from the fruit surface, C. tropicalis was the most frequently found species, followed by Meyerozyma caribbica and Candida krusei. All three fluconazole-resistant C. tropicalis were non-susceptible to voriconazole and belonged to the same predominant genotype of azole-resistant C. tropicalis causing candidemia in patients in Taiwan. Our findings provide evidence that fruit should be washed before eaten not only to remove chemicals but also potential drug-resistant pathogenic microbes, especially for immunocompromised individuals. To keep precious treatment options in patients, we not only continuously implement antimicrobial stewardship in hospitals but also reducing/stopping the use of agricultural fungicide classes used in human medicine.
Collapse
Affiliation(s)
- Yin-Zhi Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Kuo-Yun Tseng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Si-Chong Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Ciao-Lin Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Chih-Chao Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Zi-Li Zhou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - De-Jiun Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Chiao-Mei Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Lian Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Kai-Ting Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- School of Dentistry, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Ning Y, Xiao M, Perlin DS, Zhao Y, Lu M, Li Y, Luo Z, Dai R, Li S, Xu J, Liu L, He H, Liu Y, Li F, Guo Y, Chen Z, Xu Y, Sun T, Zhang L. Decreased echinocandin susceptibility in Candida parapsilosis causing candidemia and emergence of a pan-echinocandin resistant case in China. Emerg Microbes Infect 2023; 12:2153086. [PMID: 36440795 PMCID: PMC9793909 DOI: 10.1080/22221751.2022.2153086] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Candida parapsilosis is becoming a predominant non-albicans cause of invasive candidiasis (IC). Echinocandins are the preferred choice for IC treatment and prophylaxis. Resistance to echinocandins in C. parapsilosis has emerged in several countries, but little is known about the susceptibility profile in China or about mechanisms of resistance. Here, we investigated the echinocandin susceptibilities of 2523 C. parapsilosis isolates collected from China and further explored the resistance mechanism among echinocandin-resistant isolates. Anidulafungin exhibited the highest MICs (MIC50/90, 1 and 2 µg/mL; GM, 0.948 µg/mL), while caspofungin showed better activity (0.5 and 1 µg/mL; 0.498 µg/mL). Significantly higher echinocandin MICs were observed among blood-derived isolates compared to others, especially for caspofungin (GM, 1.348 µg/mL vs 0.478 µg/mL). Isolates from ICU and surgical wards also showed higher MICs. Twenty isolates showed intermediate phenotypes for at least one echinocandin. One was resistant to all three echinocandins, fluconazole and voriconazole, which caused breakthrough IC during long-term exposure to micafungin. WGS revealed this isolate carried a mutation S656P in hotspot1 region of Fks1. Bioinformatics analyses suggested that this mutation might lead to an altered protein conformation. CRISPR Cas9-mediated introduction of this mutation into a susceptible reference C. parapsilosis strain increased MICs of all echinocandins 64-fold, with similar results found in the subspecies, C. orthopsilosis and C. metapsilosis. This is the first report of a multi-azole resistant and pan-echinocandin resistant C. parapsilosis isolate, and the identification of a FKS1S656P conferring pan-echinocandin resistance. Our study underscores the necessity of rigorous management of antifungal use and of monitoring for antifungal susceptibility.
Collapse
Affiliation(s)
- Yating Ning
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Yanan Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Minya Lu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Yi Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Zhengyu Luo
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Rongchen Dai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Shengjie Li
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, People’s Republic of China
| | - Jiajun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lingli Liu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hong He
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yun Liu
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Fushun Li
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yuguang Guo
- Department of Laboratory Medicine, Liaoning Provincial People’s Hospital, Shenyang, People’s Republic of China
| | - Zhongju Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, People’s Republic of China
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| |
Collapse
|
12
|
Doorley LA, Barker KS, Zhang Q, Rybak JM, Rogers PD. Mutations in TAC1 and ERG11 are major drivers of triazole antifungal resistance in clinical isolates of Candida parapsilosis. Clin Microbiol Infect 2023; 29:1602.e1-1602.e7. [PMID: 37666448 DOI: 10.1016/j.cmi.2023.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVES The aim of this study was to determine how mutations in CpERG11 and CpTAC1 contribute to fluconazole resistance in a collection of clinical isolates. METHODS Sequences of CpERG11 and CpTAC1 were determined for 35 resistant Candida parapsilosis clinical isolates. A plasmid-based CRISPR-Cas9 system was used to introduce mutations leading to amino acid substitution in CpTac1 and CpErg11. Triazole susceptibility was determined by broth microdilution and E-test. Differential expression of genes mediated by CpTAC1 mutation was determined by RNA sequencing, and relative expression of individual transporter genes was assessed with RT-qPCR. RESULTS Six isolates carried a mutation in CpTAC1 in combination with the CpERG11 mutation, leading to the CpErg11Y132F substitution. When introduced into susceptible isolates, this CpERG11 mutation led to a 4- to 8-fold increase in fluconazole minimum inhibitory concentrations (MIC; 0.125 μg/mL vs. 0.5 μg/mL, 0.125 μg/mL vs. 0.5 μg/mL, and 0.5 μg/mL vs. 4 μg/mL). When introduced into a susceptible isolate, the CpTAC1 mutation leading to the G650E substitution resulted in an 8-fold increase in fluconazole MIC (0.25 μg/mL vs. 2 μg/mL), whereas correction of this mutation in resistant isolates led to a 16-fold reduction in MIC (32 μg/mL vs. 2 μg/mL). CpCDR1, CpCDR1B, and CpCDR1C were overexpressed in the presence CpTac1G650E. Disruption of these genes in combination resulted in a 4-fold reduction in fluconazole MIC (32 μg/mL vs. 8 μg/mL). DISCUSSION These results define the specific contribution made by the Y132F substitution in CpERG11 and demonstrate a role for activating mutations in CpTAC1 in triazole resistance in C. parapsilosis.
Collapse
Affiliation(s)
- Laura A Doorley
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Katherine S Barker
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qing Zhang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey M Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - P David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
13
|
Douglas AP, Stewart AG, Halliday CL, Chen SCA. Outbreaks of Fungal Infections in Hospitals: Epidemiology, Detection, and Management. J Fungi (Basel) 2023; 9:1059. [PMID: 37998865 PMCID: PMC10672668 DOI: 10.3390/jof9111059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Nosocomial clusters of fungal infections, whilst uncommon, cannot be predicted and are associated with significant morbidity and mortality. Here, we review reports of nosocomial outbreaks of invasive fungal disease to glean insight into their epidemiology, risks for infection, methods employed in outbreak detection including genomic testing to confirm the outbreak, and approaches to clinical and infection control management. Both yeasts and filamentous fungi cause outbreaks, with each having general and specific risks. The early detection and confirmation of the outbreak are essential for diagnosis, treatment of affected patients, and termination of the outbreak. Environmental sampling, including the air in mould outbreaks, for the pathogen may be indicated. The genetic analysis of epidemiologically linked isolates is strongly recommended through a sufficiently discriminatory approach such as whole genome sequencing or a method that is acceptably discriminatory for that pathogen. An analysis of both linked isolates and epidemiologically unrelated strains is required to enable genetic similarity comparisons. The management of the outbreak encompasses input from a multi-disciplinary team with epidemiological investigation and infection control measures, including screening for additional cases, patient cohorting, and strict hygiene and cleaning procedures. Automated methods for fungal infection surveillance would greatly aid earlier outbreak detection and should be a focus of research.
Collapse
Affiliation(s)
- Abby P. Douglas
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Adam G. Stewart
- Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital Campus, The University of Queensland, Herston, QLD 4006, Australia;
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
14
|
Castro VDP, Thomaz DY, Vieira KDL, Lopes LG, Rossi F, Del Negro GMB, Benard G, Pires RH. In vitro activity of sanitizers against mono- and polymicrobial biofilms of C. parapsilosis and S. aureus. Antimicrob Agents Chemother 2023; 67:e0053423. [PMID: 37681981 PMCID: PMC10583669 DOI: 10.1128/aac.00534-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
The emergence of disinfectant-resistant microorganisms poses a significant threat to public health. These resilient pathogens can survive and thrive in hospital settings despite routine disinfection practices, leading to persistent infections and the potential for outbreaks. In this study, we investigated the impact of 11 different commercial sanitizers at various concentrations and exposure times on biofilms consisting of clinical and nosocomial environmental isolates of Candida parapsilosis and Staphylococcus aureus. Among the sanitizers tested, 0.5% and 2.0% chlorhexidine (CLX), 10% polyvinyl pyrrolidone (PVP-I), a disinfectant based on quaternary ammonium compound (QAC), 2% glutaraldehyde, and 0.55% orthophthalaldehyde (OPA) demonstrated efficacy against both C. parapsilosis and S. aureus in monospecies and mixed biofilms. Analysis showed that 0.5% CLX and 10% PVP-I had fungicidal and bactericidal activity against all biofilms. However, the sanitizer based on QAC and 0.55% OPA proved to be bacteriostatic and fungicidal against both monospecies and mixed biofilms. In mixed biofilms, despite the last four sanitizers exerting fungicidal action, the reduction of fungal cells was approximately 4 log10 CFU/mL compared to monospecies biofilms, showing that the interaction provided more resistance of the yeast to the sanitizer. Formation of mixed biofilms in hospital settings can create an ecological niche that enhances the survival of pathogens against routine sanitization procedures. Therefore, effective sanitization practices, including regular cleaning with effective sanitizers, should be implemented to prevent C. parapsilosis/S. aureus biofilm formation in healthcare settings.
Collapse
Affiliation(s)
- Vitor de Paula Castro
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo, Brazil
| | - Danilo Yamamoto Thomaz
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Kayro de Lima Vieira
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo, Brazil
| | - Leonardo Guedes Lopes
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo, Brazil
| | - Flavia Rossi
- Central Laboratory Division (LIM 03) – Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gilda M. B. Del Negro
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Gil Benard
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Regina Helena Pires
- Laboratory of Mycology and Environmental Diagnosis, Universidade de Franca, Franca, São Paulo, Brazil
| |
Collapse
|
15
|
De Carolis E, Posteraro B, Falasca B, Spruijtenburg B, Meis JF, Sanguinetti M. The Fourier-transform infrared spectroscopy-based method as a new typing tool for Candida parapsilosis clinical isolates. Microbiol Spectr 2023; 11:e0238823. [PMID: 37695061 PMCID: PMC10580913 DOI: 10.1128/spectrum.02388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
The Fourier-transform infrared spectroscopy-based IR Biotyper is a straightforward typing tool for bacterial species, but its use with Candida species is limited. We applied IR Biotyper to Candida parapsilosis, a common cause of nosocomial bloodstream infection (BSI), which is aggravated by the intra-hospital spread of fluconazole-resistant isolates. Of 59 C. parapsilosis isolates studied, n = 56 (48 fluconazole-resistant and 8 fluconazole-susceptible) and n = 3 (2 fluconazole-resistant and 1 fluconazole-susceptible) isolates, respectively, had been recovered from BSI episodes in 2 spatially distant Italian hospitals. The latter isolates served as an outgroup. Of fluconazole-resistant isolates, n = 40 (including one outgroup) harbored the Y132F mutation alone and n = 10 (including one outgroup) harbored both Y132F and R398I mutations in the ERG11-encoded azole-target enzyme. Using a microsatellite typing method, which relies on the amplification of genomic short tandem repeats (STR), two major clusters were obtained based on the mutation(s) (Y132F or Y132F/R398I) present in the isolates. Regarding IR Biotyper, each isolate was analyzed in quintuplicate using an automatic (i.e., proposed by the manufacturer's software) or tentative (i.e., proposed by us) cutoff value. In the first case, four clusters were identified, with clusters I and II formed by Y132F or Y132F/R398I isolates, respectively. In the second case, six subclusters (derived by the split of clusters I and II) were identified. This allowed to separate the outgroup isolates from other isolates and to increase the IR Biotyper typeability. The agreement of IR Biotyper with STR ranged from 47% to 74%, depending on type of cutoff value used in the analysis. IMPORTANCE Establishing relatedness between clinical isolates of Candida parapsilosis is important for implementing rapid measures to control and prevent nosocomial transmission of this Candida species. We evaluated the FTIR-based IR Biotyper, a new typing method in the Candida field, using a collection of fluconazole-resistant C. parapsilosis isolates supposed to be genetically related due to the presence of the Y132F mutation. We showed that IR Biotyper was discriminatory but not as much as the STR method, which is still considered the method of choice. Further studies on larger series of C. parapsilosis isolates or closely related Candida species will be necessary to confirm and/or extend the results from this study.
Collapse
Affiliation(s)
- Elena De Carolis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
- Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Benedetta Falasca
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Bram Spruijtenburg
- Radboudumc/Canisius Wilhelmina Hospital Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Jacques F. Meis
- Radboudumc/Canisius Wilhelmina Hospital Center of Expertise for Mycology, Nijmegen, the Netherlands
- Department I of Internal Medicine and ECMM Excellence Center for Medical Mycology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
16
|
Franconi I, Rizzato C, Poma N, Tavanti A, Lupetti A. Candida parapsilosis sensu stricto Antifungal Resistance Mechanisms and Associated Epidemiology. J Fungi (Basel) 2023; 9:798. [PMID: 37623569 PMCID: PMC10456088 DOI: 10.3390/jof9080798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Fungal diseases cause millions of deaths per year worldwide. Antifungal resistance has become a matter of great concern in public health. In recent years rates of non-albicans species have risen dramatically. Candida parapsilosis is now reported to be the second most frequent species causing candidemia in several countries in Europe, Latin America, South Africa and Asia. Rates of acquired azole resistance are reaching a worrisome threshold from multiple reports as in vitro susceptibility testing is now starting also to explore tolerance and heteroresistance to antifungal compounds. With this review, the authors seek to evaluate known antifungal resistance mechanisms and their worldwide distribution in Candida species infections with a specific focus on C. parapsilosis.
Collapse
Affiliation(s)
- Iacopo Franconi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (I.F.); (C.R.)
| | - Cosmeri Rizzato
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (I.F.); (C.R.)
| | - Noemi Poma
- Department of Biology, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (N.P.); (A.T.)
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (N.P.); (A.T.)
| | - Antonella Lupetti
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (I.F.); (C.R.)
| |
Collapse
|
17
|
Chew KL, Achik R, Osman NH, Octavia S, Teo JWP. Genomic epidemiology of human candidaemia isolates in a tertiary hospital. Microb Genom 2023; 9:mgen001047. [PMID: 37440287 PMCID: PMC10438824 DOI: 10.1099/mgen.0.001047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/17/2023] [Indexed: 07/14/2023] Open
Abstract
Invasive candida infections are significant infections that may occur in vulnerable patients with high rates of mortality or morbidity. Drug-resistance rates also appear to be on the rise which further complicate treatment options and outcomes. The aims of this study were to describe the prevalence, molecular epidemiology, and genetic features of Candida bloodstream isolates in a hospital setting. The resistance mechanisms towards the two most commonly administered antifungals, fluconazole and anidulafungin, were determined. Blood culture isolates between 1 January 2018 and 30 June 2021 positive for Candida spp. were included. Susceptibility testing was performed using Etest. Whole-genome-sequencing was performed using Illumina NovaSeq with bioinformatics analysis performed. A total of 203 isolates were sequenced: 56 C. glabrata, 53 C. tropicalis, 44 C. albicans, 36 C. parapsilosis complex (consisting of C. parapsilosis, C. orthopsilosis, and C. metapsilosis), six C. krusei, five C. dubliniensis, and three C. auris. A single cluster of azole-resistant C. tropicalis, and four clusters of C. parapsilosis isolates were observed, suggesting possible transmission occurring over several years. We found 11.3%, and 52.7 % of C. tropicalis and C. parapsilosis, respectively, clustered with other isolates, suggesting exogenous sources may play a significant role of transmission, particularly for C. parapsilosis. The clusters spanned over several years suggesting the possibility of environmental reservoirs contributing to the spread. Limited clonality was seen for C. albicans. Several sequence types appeared to be dominant for C. glabrata, however the SNP differences varied widely, indicating absence of sustained transmission.
Collapse
Affiliation(s)
- Ka Lip Chew
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Rosemini Achik
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Nurul Hudaa Osman
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Sophie Octavia
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Jeanette W. P. Teo
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| |
Collapse
|
18
|
Byun JH, Won EJ, Cho HW, Kim D, Lee H, Kim SH, Choi MJ, Byun SA, Lee GY, Kee SJ, Kim TY, Kim MN, Choi JY, Yong D, Shin JH. Detection and Characterization of Two Phenotypes of Candida parapsilosis in South Korea: Clinical Features and Microbiological Findings. Microbiol Spectr 2023; 11:e0006623. [PMID: 37154762 PMCID: PMC10269542 DOI: 10.1128/spectrum.00066-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/16/2023] [Indexed: 05/10/2023] Open
Abstract
We newly detected two (sinking and floating) phenotypes of Candida parapsilosis among bloodstream infection (BSI) isolates from Korean hospitals and assessed their microbiological and clinical characteristics. During the performance of a Clinical and Laboratory Standards Institute (CLSI) broth microdilution antifungal susceptibility testing, the sinking phenotype had a characteristic smaller button-like appearance because all yeast cells sank to the bottoms of the CLSI U-shaped round-bottom wells, whereas the floating phenotype comprised dispersed cells. Phenotypic analysis, antifungal susceptibility testing, ERG11 sequencing, microsatellite genotyping, and clinical analysis were performed on C. parapsilosis isolates from 197 patients with BSI at a university hospital during 2006 to 2018. The sinking phenotype was detected in 86.7% (65/75) of the fluconazole-nonsusceptible (FNS) isolates, 92.9% (65/70) of the isolates harboring the Y132F ERG11 gene substitution, and 49.7% (98/197) of all isolates. Clonality was more frequently observed for the Y132F-sinking isolates (84.6% [55/65]) than for all other isolates (26.5% [35/132]; P < 0.0001). Annual incidence of Y132F-sinking isolates increased 4.5-fold after 2014, and two dominant genotypes, persistently recovered for 6 and 10 years, accounted for 69.2% of all Y132F-sinking isolates. Azole breakthrough fungemia (odds ratio [OR], 6.540), admission to the intensive care unit (OR, 5.044), and urinary catheter placement (OR, 6.918) were independent risk factors for BSIs with Y132F-sinking isolates. The Y132F-sinking isolates exhibited fewer pseudohyphae, a higher chitin content, and lower virulence in the Galleria mellonella model than the floating isolates. These long-term results illustrate the increasing BSIs caused by clonal transmission of the Y132F-sinking isolates of C. parapsilosis. IMPORTANCE We believe that this is the first study describe the microbiological and molecular characteristics of bloodstream isolates of C. parapsilosis in Korea exhibiting two phenotypes (sinking and floating). An important aspect of our findings is that the sinking phenotype was observed predominantly in isolates harboring a Y132F substitution in the ERG11 gene (92.9%), fluconazole-nonsusceptible (FNS) isolates (86.7%), and clonal BSI isolates (74.4%) of C. parapsilosis. Although the increase in the prevalence of FNS C. parapsilosis isolates has been a major threat in developing countries, in which the vast majority of candidemia cases are treated with fluconazole, our long-term results show increasing numbers of BSIs caused by clonal transmission of Y132F-sinking isolates of C. parapsilosis in the period with an increased echinocandin use for candidemia treatment in Korea, which suggests that C. parapsilosis isolates with the sinking phenotype continue to be a nosocomial threat in the era of echinocandin therapy.
Collapse
Affiliation(s)
- Jung-Hyun Byun
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hae Weon Cho
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Myongji Hospital, Goyang, South Korea
| | - Daewon Kim
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Hyun Kim
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Min Ji Choi
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Seung A. Byun
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Ga Yeong Lee
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Tae Yeul Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jun Yong Choi
- Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
19
|
Mohammad N, Normand AC, Nabet C, Godmer A, Brossas JY, Blaize M, Bonnal C, Fekkar A, Imbert S, Tannier X, Piarroux R. Improving the Detection of Epidemic Clones in Candida parapsilosis Outbreaks by Combining MALDI-TOF Mass Spectrometry and Deep Learning Approaches. Microorganisms 2023; 11:microorganisms11041071. [PMID: 37110493 PMCID: PMC10146746 DOI: 10.3390/microorganisms11041071] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Identifying fungal clones propagated during outbreaks in hospital settings is a problem that increasingly confronts biologists. Current tools based on DNA sequencing or microsatellite analysis require specific manipulations that are difficult to implement in the context of routine diagnosis. Using deep learning to classify the mass spectra obtained during the routine identification of fungi by MALDI-TOF mass spectrometry could be of interest to differentiate isolates belonging to epidemic clones from others. As part of the management of a nosocomial outbreak due to Candida parapsilosis in two Parisian hospitals, we studied the impact of the preparation of the spectra on the performance of a deep neural network. Our purpose was to differentiate 39 otherwise fluconazole-resistant isolates belonging to a clonal subset from 56 other isolates, most of which were fluconazole-susceptible, collected during the same period and not belonging to the clonal subset. Our study carried out on spectra obtained on four different machines from isolates cultured for 24 or 48 h on three different culture media showed that each of these parameters had a significant impact on the performance of the classifier. In particular, using different culture times between learning and testing steps could lead to a collapse in the accuracy of the predictions. On the other hand, including spectra obtained after 24 and 48 h of growth during the learning step restored the good results. Finally, we showed that the deleterious effect of the device variability used for learning and testing could be largely improved by including a spectra alignment step during preprocessing before submitting them to the neural network. Taken together, these experiments show the great potential of deep learning models to identify spectra of specific clones, providing that crucial parameters are controlled during both culture and preparation steps before submitting spectra to a classifier.
Collapse
Affiliation(s)
- Noshine Mohammad
- Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, AP-HP, 75013 Paris, France
- INSERM, Institut Pierre-Louis d'Épidémiologie et de Santé Publique, Sorbonne Université, 75013 Paris, France
| | - Anne-Cécile Normand
- Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, AP-HP, 75013 Paris, France
| | - Cécile Nabet
- Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, AP-HP, 75013 Paris, France
- INSERM, Institut Pierre-Louis d'Épidémiologie et de Santé Publique, Sorbonne Université, 75013 Paris, France
| | - Alexandre Godmer
- CIMI-Paris, Centre d'Immunologie et des Maladies Infectieuses, UMR 1135, Sorbonne Université, 75013 Paris, France
- Département de Bactériologie, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, 75012 Paris, France
| | - Jean-Yves Brossas
- Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, AP-HP, 75013 Paris, France
| | - Marion Blaize
- Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, AP-HP, 75013 Paris, France
- CIMI-Paris, Centre d'Immunologie et des Maladies Infectieuses, CNRS, INSERM, Sorbonne Université, 75013 Paris, France
| | - Christine Bonnal
- Service de Parasitologie Mycologie, Hôpital Bichat-Claude Bernard, AP-HP, 75018 Paris, France
| | - Arnaud Fekkar
- Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, AP-HP, 75013 Paris, France
- CIMI-Paris, Centre d'Immunologie et des Maladies Infectieuses, CNRS, INSERM, Sorbonne Université, 75013 Paris, France
| | - Sébastien Imbert
- Service de Parasitologie Mycologie, Centre Hospitalier Universitaire de Bordeaux, 33075 Bordeaux, France
| | - Xavier Tannier
- Sorbonne Université, Inserm, Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances en e-Santé, LIMICS, 75013 Paris, France
| | - Renaud Piarroux
- Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, AP-HP, 75013 Paris, France
- INSERM, Institut Pierre-Louis d'Épidémiologie et de Santé Publique, Sorbonne Université, 75013 Paris, France
| |
Collapse
|
20
|
Presente S, Bonnal C, Normand AC, Gaudonnet Y, Fekkar A, Timsit JF, Kernéis S. Hospital Clonal Outbreak of Fluconazole-Resistant Candida parapsilosis Harboring the Y132F ERG11p Substitution in a French Intensive Care Unit. Antimicrob Agents Chemother 2023; 67:e0113022. [PMID: 36853002 PMCID: PMC10019182 DOI: 10.1128/aac.01130-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/28/2023] [Indexed: 03/01/2023] Open
Abstract
We report the first identification of a fluconazole-resistant Candida parapsilosis (FR-Cp) strain in our hospital, which subsequently caused an outbreak involving 17 patients (12 deaths) within a 26-bed French intensive care unit. Microsatellite genotyping confirmed that all FR-Cp isolates belonged to the same clone. Given recent reports of rapid dissemination of these emerging clones, routine testing of azole susceptibility for all Candida parapsilosis isolates should be encouraged, at least in ICU patients.
Collapse
Affiliation(s)
- Simona Presente
- Medical and infectious diseases ICU, APHP, Bichat hospital, Paris, France
| | - Christine Bonnal
- Laboratoire de parasitologie mycologie, AP-HP, Hôpital Bichat Claude Bernard, Paris, France
| | - Anne-Cécile Normand
- Laboratoire de parasitologie mycologie, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Yannick Gaudonnet
- Equipe de Prévention du Risque Infectieux, AP-HP, Hôpital Bichat, Paris, France
| | - Arnaud Fekkar
- Laboratoire de parasitologie mycologie, AP-HP, Hôpital Pitié Salpêtrière, Paris, France
| | - Jean-François Timsit
- Medical and infectious diseases ICU, APHP, Bichat hospital, Paris, France
- Université Paris Cité, INSERM, IAME, Paris, France
| | - Solen Kernéis
- Equipe de Prévention du Risque Infectieux, AP-HP, Hôpital Bichat, Paris, France
- Université Paris Cité, INSERM, IAME, Paris, France
| |
Collapse
|
21
|
Zhang W, Zhan M, Wang N, Fan J, Han X, Li C, Liu J, Li J, Hou Y, Wang X, Zhang Z. In vitro susceptibility profiles of Candida parapsilosis species complex subtypes from deep infections to nine antifungal drugs. J Med Microbiol 2023; 72. [PMID: 36920840 DOI: 10.1099/jmm.0.001640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Introduction. The Candida parapsilosis complex can be divided into C. parapsilosis sensu stricto, C. orthopsilosis, and C. metapsilosis subtypes. It is uncommon for drug sensitivity tests to type them.Gap Statement. In routine susceptibility reports, drug susceptibility of C. parapsilosis complex subtypes is lacking.Aim. The aim of this study is to investigate the antifungal susceptibility and clinical distribution characteristics of the C. parapsilosis complex subtypes causing deep infection in patients.Methodology. Non-repetitive strains of C. parapsilosis complex isolated from deep infection from 2017 to 2019 were collected. Species-level identification was performed using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer and confirmed using ITS gene sequencing, when necessary. Antifungal susceptibility testing was performed using the Sensititre YeastOne system method.Results. A total of 244 cases were included in the study, including 176 males (72.13 %, 60.69±13.43 years) and 68 females (27.87 %, 60.21±10.59 years). The primary diseases were cancer (43.44 %), cardiovascular disease (25.00 %), digestive system diseases, (18.44 %), infection (6.97 %), and nephropathy (6.15 %). Strains were isolated from the bloodstream (63.11 %), central venous catheters (15.16 %), pus (6.56 %), ascites (5.74 %), sterile body fluid (5.33 %), and bronchoalveolar lavage fluid (BALF, 4.09 %). Of the 244 C. parapsilosis complex strains, 179 (73.26 %) were identified as C. parapsilosis sensu stricto, 62 (25.41 %) were C. orthopsilosis, and three (1.23 %) were C. metapsilosis. Only one C. parapsilosis sensu stricto strain was resistant to anidulafungin, micafungin, caspofungin, and voriconazole, and it was non-wild-type (NWT) to amphotericin B. Furthermore, six C. parapsilosis sensu stricto strains were resistant to fluconazole, and one was dose-dependent susceptible. Five C. parapsilosis sensu stricto strains were NWT to posaconazole. Only one C. orthopsilosis strain was NWT for anidulafungin, micafungin, caspofungin, fluconazole, voriconazole, amphotericin B, and posaconazole, while the rest of the strains were wild-type.Conclusion. C. parapsilosis sensu stricto was the main clinical isolate from the C. parapsilosis complex in our hospital. Most strains were isolated from the bloodstream. The susceptibility rate to commonly used antifungal drugs was more than 96 %. Furthermore, most of the infected patients were elderly male cancer patients.
Collapse
Affiliation(s)
- Wei Zhang
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, PR China.,Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, PR China, Beijing, 100730
| | - Minghua Zhan
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, PR China.,Clinical Laboratory Diagnostics, Peking University People's Hospital, 11 Xizhimen South Street, Beijing, 100044, PR China
| | - Na Wang
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, PR China
| | - Jingjing Fan
- Infectious Disease Department, The First Affiliated Hospital of Hebei North University, No. 12, 15 Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, PR China
| | - Xuying Han
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, PR China
| | - Caiqing Li
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, PR China
| | - Jinlu Liu
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, PR China
| | - Jia Li
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, PR China
| | - Yongwang Hou
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, PR China
| | - Xinsheng Wang
- Clinical Laboratory, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, PR China
| | - Zhihua Zhang
- Respiratory and Critical Care Medicine Intensive Care Unit, The First Affiliated Hospital of Hebei North University, No. 12, Changqing Road, Qiaoxi District, Zhangjiakou City, 075000, Hebei Province, PR China
| |
Collapse
|
22
|
Prigitano A, Blasi E, Calabrò M, Cavanna C, Cornetta M, Farina C, Grancini A, Innocenti P, Lo Cascio G, Nicola L, Trovato L, Cogliati M, Esposto MC, Tortorano AM, Romanò L. Yeast Bloodstream Infections in the COVID-19 Patient: A Multicenter Italian Study (FiCoV Study). J Fungi (Basel) 2023; 9:jof9020277. [PMID: 36836391 PMCID: PMC9962415 DOI: 10.3390/jof9020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Fungemia is a co-infection contributing to the worsening of the critically ill COVID-19 patient. The multicenter Italian observational study FiCoV aims to estimate the frequency of yeast bloodstream infections (BSIs), to describe the factors associated with yeast BSIs in COVID-19 patients hospitalized in 10 hospitals, and to analyze the antifungal susceptibility profiles of the yeasts isolated from blood cultures. The study included all hospitalized adult COVID-19 patients with a yeast BSI; anonymous data was collected from each patient and data about antifungal susceptibility was collected. Yeast BSI occurred in 1.06% of patients, from 0.14% to 3.39% among the 10 participating centers. Patients were mainly admitted to intensive or sub-intensive care units (68.6%), over 60 years of age (73%), with a mean and median time from the hospitalization to fungemia of 29 and 22 days, respectively. Regarding risk factors for fungemia, most patients received corticosteroid therapy during hospitalization (61.8%) and had a comorbidity (25.3% diabetes, 11.5% chronic respiratory disorder, 9.5% cancer, 6% haematological malignancies, 1.4% organ transplantation). Antifungal therapy was administered to 75.6% of patients, mostly echinocandins (64.5%). The fatality rate observed in COVID-19 patients with yeast BSI was significantly higher than that of COVID-19 patients without yeast BSI (45.5% versus 30.5%). Candida parapsilosis (49.8%) and C. albicans (35.2%) were the most fungal species isolated; 72% of C. parapsilosis strains were fluconazole-resistant (range 0-93.2% among the centers). The FiCoV study highlights a high prevalence of Candida BSIs in critically ill COVID-19 patients, especially hospitalized in an intensive care unit, a high fatality rate associated with the fungal co-infection, and the worrying spread of azole-resistant C. parapsilosis.
Collapse
Affiliation(s)
- Anna Prigitano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
- Correspondence:
| | - Elisabetta Blasi
- Laboratory of Microbiology, AOU-Policlinic/CHIMOMO, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Maria Calabrò
- Clinical Microbiology and Virology Laboratory, Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Caterina Cavanna
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Maria Cornetta
- Operative Unit 1—Clinical Pathology, Department of Pathology and Laboratory Medicine, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Claudio Farina
- Microbiology and Virology Laboratory, ASST “Papa Giovanni XXIII”, 24100 Bergamo, Italy
| | - Anna Grancini
- U.O.S. Microbiology—Analysis Laboratory, IRCCS Foundation, Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Patrizia Innocenti
- Laboratorio Aziendale di Microbiologia e Virologia di Bolzano, Comprensorio Sanitario di Bolzano, 39100 Bolzano, Italy
| | - Giuliana Lo Cascio
- Dipartimento di Patologia Clinica-Unità Operativa di Microbiologia e Virologia-AUSL Piacenza, 29121 Piacenza, Italy
| | - Lucia Nicola
- ASST Melegnano e Martesana, Laboratorio Microbiologia PO Cernusco s/N, 20063 Cernusco sul Naviglio, Italy
| | - Laura Trovato
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-San Marco”, 95125 Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Massimo Cogliati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria Carmela Esposto
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Anna Maria Tortorano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | - Luisa Romanò
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy
| | | |
Collapse
|
23
|
Nourrisson C, Moniot M, Lavergne RA, Robert E, Bonnin V, Hagen F, Grenouillet F, Cafarchia C, Butler G, Cassaing S, Sabou M, Le Pape P, Poirier P, Morio F. Acquired fluconazole resistance and genetic clustering in Diutina (Candida) catenulata from clinical samples. Clin Microbiol Infect 2023; 29:257.e7-257.e11. [PMID: 36209989 DOI: 10.1016/j.cmi.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Diutina (Candida) catenulata is an ascomycetous yeast isolated from environmental sources and animals, occasionally infecting humans. The aim of this study is to shed light on the in vitro antifungal susceptibility and genetic diversity of this opportunistic yeast. METHODS Forty-five D. catenulata strains isolated from various sources (including human and environmental sources) and originating from nine countries were included. Species identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and confirmed via internal transcribed spacer ribosomal DNA barcoding. In vitro antifungal susceptibility was determined for seven systemic antifungals via the gradient strip method after 48 hours of incubation at 35°C using Etest® (Biomérieux) or Liofilchem® strips. Isolates exhibiting fluconazole minimal inhibitory concentrations (MICs) of ≥8 μg/mL were investigated for mutations in the ERG11 gene. A novel microsatellite genotyping scheme consisting of four markers was developed to assess genetic diversity. RESULTS MIC ranges for amphotericin B, caspofungin, micafungin, isavuconazole, and posaconazole were 0.19-1 μg/mL, 0.094-0.5 μg/mL, 0.012-0.064 μg/mL, 0.003-0.047 μg/mL, and 0.006-0.032 μg/mL, respectively. By comparison, a broad range of MICs was noted for fluconazole (0.75 to >256 μg/mL) and voriconazole (0.012-0.38 mg/L), the higher values being observed among clinical strains. The Y132F amino acid substitution, associated with azole resistance in various Candida species (C. albicans, C. tropicalis, C. parapsilosis, and C. orthopsilosis), was the main substitution identified. Although microsatellite typing showed extensive genetic diversity, most strains with high fluconazole MICs clustered together, suggesting human-to-human transmission or a common source of contamination. DISCUSSION The high rate of acquired fluconazole resistance among clinical isolates of D. catenulata is of concern. In this study, we highlight a link between the genetic diversity of D. catenulata and its antifungal resistance patterns, suggesting possible clonal transmission of resistant isolates.
Collapse
Affiliation(s)
- Céline Nourrisson
- Université Clermont Auvergne, Inserm, 3IHP, Centre Hospitalier Universitaire Clermont-Ferrand, Service de Parasitologie-Mycologie, Clermont-Ferrand, France; Université Clermont Auvergne/Inserm U1071, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Maxime Moniot
- Université Clermont Auvergne, Inserm, 3IHP, Centre Hospitalier Universitaire Clermont-Ferrand, Service de Parasitologie-Mycologie, Clermont-Ferrand, France
| | - Rose-Anne Lavergne
- Nantes Université, Centre Hospitalier Universitaire Nantes, Cibles et médicaments des infections et du cancer, IICiMed, UR 1155, Nantes, France
| | - Estelle Robert
- Nantes Université, Cibles et médicaments des infections et du cancer, IICiMed, UR 1155, Nantes, France
| | - Virginie Bonnin
- Université Clermont Auvergne/Inserm U1071, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frédéric Grenouillet
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire Besançon, Besançon, France
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi 'Aldo Moro', Bari, Italy
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Sophie Cassaing
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire Toulouse, Toulouse, France
| | - Marcela Sabou
- Laboratoire de Parasitologie et de Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut de Parasitologie et de Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Patrice Le Pape
- Nantes Université, Centre Hospitalier Universitaire Nantes, Cibles et médicaments des infections et du cancer, IICiMed, UR 1155, Nantes, France
| | - Philippe Poirier
- Université Clermont Auvergne, Inserm, 3IHP, Centre Hospitalier Universitaire Clermont-Ferrand, Service de Parasitologie-Mycologie, Clermont-Ferrand, France; Université Clermont Auvergne/Inserm U1071, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Clermont-Ferrand, France
| | - Florent Morio
- Nantes Université, Centre Hospitalier Universitaire Nantes, Cibles et médicaments des infections et du cancer, IICiMed, UR 1155, Nantes, France.
| |
Collapse
|
24
|
Hydrolytic Enzyme Production and Susceptibility to Antifungal Compounds of Opportunistic Candida parapsilosis Strains Isolated from Cucurbitaceae and Rosaceae Fruits. Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endophytic yeast species were studied in the internal tissues of ripe cultivated vegetables and fruits. A total of 19 yeast species, 11 ascomycete species, and 8 basidiomycete species were observed in the internal tissues of all fruits examined. The opportunistic yeast Candida parapsilosis was present in all plants studied. Several virulence factors (production of hydrolytic enzymes and sensitivity to antifungal agents) were examined in all 107 isolates of C. parapsilosis from the internal tissues of fruits. The most virulent isolates were found in vegetables. C. parapsilosis is widespread in nature and is often isolated from a variety of non-human sources. It is frequently involved in invasive infections that seriously affect human health. This species poses a high risk to immunocompromised individuals, such as HIV patients and surgical patients or children whose immune systems are not sufficiently mature. Since virulent isolates of Candida parapsilosis have been found in vegetables and fruits; their raw consumption may not be safe. Finally, we emphasize the importance of ongoing phenotypic and genetic studies of endophytic isolates of Candida parapsilosis and their comparison with clinical isolates.
Collapse
|
25
|
Branco J, Miranda IM, Rodrigues AG. Candida parapsilosis Virulence and Antifungal Resistance Mechanisms: A Comprehensive Review of Key Determinants. J Fungi (Basel) 2023; 9:jof9010080. [PMID: 36675901 PMCID: PMC9862255 DOI: 10.3390/jof9010080] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Candida parapsilosis is the second most common Candida species isolated in Asia, Southern Europe, and Latin America and is often involved in invasive infections that seriously impact human health. This pathogen is part of the psilosis complex, which also includes Candida orthopsilosis and Candida metapsilosis. C. parapsilosis infections are particularly prevalent among neonates with low birth weights, individuals who are immunocompromised, and patients who require prolonged use of a central venous catheter or other indwelling devices, whose surfaces C. parapsilosis exhibits an enhanced capacity to adhere to and form biofilms. Despite this well-acknowledged prevalence, the biology of C. parapsilosis has not been as extensively explored as that of Candida albicans. In this paper, we describe the molecular mechanistic pathways of virulence in C. parapsilosis and show how they differ from those of C. albicans. We also describe the mode of action of antifungal drugs used for the treatment of Candida infections, namely, polyenes, echinocandins, and azoles, as well as the resistance mechanisms developed by C. parapsilosis to overcome them. Finally, we stress the importance of the ongoing search for species-specific features that may aid the development of effective control strategies and thus reduce the burden on patients and healthcare costs.
Collapse
Affiliation(s)
- Joana Branco
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- Correspondence: ; Tel./Fax: +351-225513662
| | - Isabel M. Miranda
- Cardiovascular Research & Development Centre—UnIC@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Acácio G. Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research—CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
26
|
CRISPR-Cas9 Editing Induces Loss of Heterozygosity in the Pathogenic Yeast Candida parapsilosis. mSphere 2022; 7:e0039322. [PMID: 36416551 PMCID: PMC9769790 DOI: 10.1128/msphere.00393-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genetic manipulation is often used to study gene function. However, unplanned genome changes (including single nucleotide polymorphisms [SNPs], aneuploidy, and loss of heterozygosity [LOH]) can affect the phenotypic traits of the engineered strains. Here, we compared the effect of classical deletion methods (replacing target alleles with selectable markers by homologous recombination) with CRISPR-Cas9 editing in the diploid human-pathogenic yeast Candida parapsilosis. We sequenced the genomes of 9 isolates that were modified using classic recombination methods and 12 that were edited using CRISPR-Cas9. As a control, the genomes of eight isolates that were transformed with a Cas9-expressing plasmid in the absence of a guide RNA were also sequenced. Following gene manipulation using classic homologous recombination, only one strain exhibited extensive LOH near the targeted gene (8.9 kb), whereas another contained multiple LOH events not associated with the intended modification. In contrast, large regions of LOH (up to >1,100 kb) were observed in most CRISPR-Cas9-edited strains. LOH most commonly occurred adjacent to the Cas9 cut site and extended to the telomere in four isolates. In two isolates, we observed LOH on chromosomes that were not targeted by CRISPR-Cas9. Among the CRISPR-edited isolates, two exhibited cysteine and methionine auxotrophy caused by LOH at a heterozygous site in MET10, approximately 11 and 157 kb downstream from the Cas9 target site, respectively. C. parapsilosis isolates have relatively low levels of heterozygosity. However, our results show that mutation complementation to confirm observed phenotypes is required when using CRISPR-Cas9. IMPORTANCE CRISPR-Cas9 has greatly streamlined gene editing and is now the gold standard and first choice for genetic engineering. However, we show that in diploid species, extra care should be taken in confirming the cause of any phenotypic changes observed. We show that the Cas9-induced double-strand break is often associated with loss of heterozygosity in the asexual diploid human fungal pathogen Candida parapsilosis. This can result in deleterious heterozygous variants (e.g., stop gain in one allele) becoming homozygous, resulting in unplanned phenotypic changes. Our results stress the importance of mutation complementation even when using CRISPR-Cas9.
Collapse
|
27
|
Hoenigl M, Lewis R, van de Veerdonk FL, Verweij PE, Cornely OA. Liposomal amphotericin B—the future. J Antimicrob Chemother 2022; 77:ii21-ii34. [PMID: 36426674 PMCID: PMC9693803 DOI: 10.1093/jac/dkac353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in medicine have led to a growing number of people with compromised or suppressed immune systems who are susceptible to invasive fungal infections. In particular, severe fungal infections are becoming increasingly common in ICUs, affecting people within and outside of traditional risk groups alike. This is exemplified by the emergence of severe viral pneumonia as a significant risk factor for invasive pulmonary aspergillosis, and the recognition of influenza-associated pulmonary aspergillosis and, more recently, COVID-19-associated pulmonary aspergillosis. The treatment landscape for haematological malignancies has changed considerably in recent years, and some recently introduced targeted agents, such as ibrutinib, are increasing the risk of invasive fungal infections. Consideration must also be given to the risk of drug–drug interactions between mould-active azoles and small-molecule kinase inhibitors. At the same time, infections caused by rare moulds and yeasts are increasing, and diagnosis continues to be challenging. There is growing concern about azole resistance among both moulds and yeasts, mandating continuous surveillance and personalized treatment strategies. It is anticipated that the epidemiology of fungal infections will continue to change and that new populations will be at risk. Early diagnosis and appropriate treatment remain the most important predictors of survival, and broad-spectrum antifungal agents will become increasingly important. Liposomal amphotericin B will remain an essential therapeutic agent in the armamentarium needed to manage future challenges, given its broad antifungal spectrum, low level of acquired resistance and limited potential for drug–drug interactions.
Collapse
Affiliation(s)
- M Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz , Graz , Austria
- BioTechMed-Graz , Graz , Austria
- European Confederation of Medical Mycology (ECMM) Excellence Center, Medical University of Graz , Graz , Austria
| | - R Lewis
- Department of Medical and Surgical Sciences, Infectious Diseases Hospital, IRCSS S’Orsola-Malpighi, University of Bologna , Bologna , Italy
| | - F L van de Veerdonk
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center , Nijmegen , The Netherlands
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Center—CWZ Center of Expertise for Mycology , Nijmegen , The Netherlands
- Center for Infectious Disease Research, Diagnostics and Laboratory Surveillance, National Institute for Public Health and the Environment (RIVM) , Bilthoven , The Netherlands
| | - O A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) , Cologne , Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM) , Cologne , Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne , Cologne , Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln) , Cologne , Germany
| |
Collapse
|
28
|
Trevijano-Contador N, Torres-Cano A, Carballo-González C, Puig-Asensio M, Martín-Gómez MT, Jiménez-Martínez E, Romero D, Nuvials FX, Olmos-Arenas R, Moretó-Castellsagué MC, Fernández-Delgado L, Rodríguez-Sevilla G, Aguilar-Sánchez MM, Ayats-Ardite J, Ardanuy-Tisaire C, Sanchez-Romero I, Muñoz-Algarra M, Merino-Amador P, González-Romo F, Megías-Lobón G, García-Campos JA, Mantecón-Vallejo MÁ, Alcoceba E, Escribano P, Guinea J, Durán-Valle MT, Fraile-Torres AM, Roiz-Mesones MP, Lara-Plaza I, de Ayala AP, Simón-Sacristán M, Collazos-Blanco A, Nebreda-Mayoral T, March-Roselló G, Alcázar-Fuoli L, Zaragoza O. Global Emergence of Resistance to Fluconazole and Voriconazole in Candida parapsilosis in Tertiary Hospitals in Spain During the COVID-19 Pandemic. Open Forum Infect Dis 2022; 9:ofac605. [PMID: 36467290 PMCID: PMC9709632 DOI: 10.1093/ofid/ofac605] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/03/2022] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Candida parapsilosis is a frequent cause of candidemia worldwide. Its incidence is associated with the use of medical implants, such as central venous catheters or parenteral nutrition. This species has reduced susceptibility to echinocandins, and it is susceptible to polyenes and azoles. Multiple outbreaks caused by fluconazole-nonsusceptible strains have been reported recently. A similar trend has been observed among the C. parapsilosis isolates received in the last 2 years at the Spanish Mycology Reference Laboratory. METHODS Yeast were identified by molecular biology, and antifungal susceptibility testing was performed using the European Committee on Antimicrobial Susceptibility Testing protocol. The ERG11 gene was sequenced to identify resistance mechanisms, and strain typing was carried out by microsatellite analysis. RESULTS We examined the susceptibility profile of 1315 C. parapsilosis isolates available at our reference laboratory between 2000 and 2021, noticing an increase in the number of isolates with acquired resistance to fluconazole, and voriconazole has increased in at least 8 different Spanish hospitals in 2020-2021. From 121 recorded clones, 3 were identified as the most prevalent in Spain (clone 10 in Catalonia and clone 96 in Castilla-Leon and Madrid, whereas clone 67 was found in 2 geographically unrelated regions, Cantabria and the Balearic Islands). CONCLUSIONS Our data suggest that concurrently with the coronavirus disease 2019 pandemic, a selection of fluconazole-resistant C. parapsilosis isolates has occurred in Spain, and the expansion of specific clones has been noted across centers. Further research is needed to determine the factors that underlie the successful expansion of these clones and their potential genetic relatedness.
Collapse
Affiliation(s)
- Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo, Madrid, Spain
| | - Alba Torres-Cano
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo, Madrid, Spain
| | - Cristina Carballo-González
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo, Madrid, Spain
| | - Mireia Puig-Asensio
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC, CB21/13/00009), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Martín-Gómez
- Department of Microbiology, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emilio Jiménez-Martínez
- Department of Infectious Diseases, Hospital Universitari de Bellvitge-Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Daniel Romero
- Department of Microbiology, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Xavier Nuvials
- Intensive Care Unit, Vall D'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto Olmos-Arenas
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | | | | | | | | | - Josefina Ayats-Ardite
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
| | - Carmen Ardanuy-Tisaire
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, Barcelona, Spain
- Center for Biomedical Research Network in Respiratory Diseases (CIBERES-CB06/06/0037), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Sanchez-Romero
- Microbiology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - María Muñoz-Algarra
- Microbiology Department, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Paloma Merino-Amador
- Microbiology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Medicine, Universidad Complutense School of Medicine, Madrid, Spain
| | - Fernando González-Romo
- Microbiology Department, Hospital Universitario Clínico San Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Medicine, Universidad Complutense School of Medicine, Madrid, Spain
| | - Gregoria Megías-Lobón
- Department of Clinical Microbiology, Hospital Universitario de Burgos, Burgos, Castilla y León, Spain
| | - Jose Angel García-Campos
- Department of Clinical Microbiology, Hospital Universitario de Burgos, Burgos, Castilla y León, Spain
| | | | - Eva Alcoceba
- Clinical Microbiology Department, Hospital Universitari Son Espases, Mallorca, Spain
| | - Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Jesús Guinea
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Center for Biomedical Research Network in Respiratory Diseases (CIBERES-CB06/06/0058), Madrid, Spain
| | | | | | - María Pía Roiz-Mesones
- Microbiology Department, Marqués de Valdecilla Universitary Hospital and Instituto de Investigación Valdecilla (IDIVAL), Santander, Cantabria,Spain
| | - Isabel Lara-Plaza
- Microbiology Department, Marqués de Valdecilla Universitary Hospital and Instituto de Investigación Valdecilla (IDIVAL), Santander, Cantabria,Spain
| | | | - María Simón-Sacristán
- Microbiology and Parasitology Department, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| | - Ana Collazos-Blanco
- Microbiology and Parasitology Department, Hospital Central de la Defensa Gómez Ulla, Madrid, Spain
| | - Teresa Nebreda-Mayoral
- Microbiology and Immunology Unit, Universitary Clinic Hospital of Valladolid, Valladolid, Spain
| | - Gabriel March-Roselló
- Microbiology and Immunology Unit, Universitary Clinic Hospital of Valladolid, Valladolid, Spain
| | - Laura Alcázar-Fuoli
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III. Carretera Majadahonda-Pozuelo, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Escribano P, Guinea J. Fluconazole-resistant Candida parapsilosis: A new emerging threat in the fungi arena. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1010782. [PMID: 37746202 PMCID: PMC10512360 DOI: 10.3389/ffunb.2022.1010782] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/06/2022] [Indexed: 09/26/2023]
Abstract
Candida parapsilosis is a leading cause of invasive candidiasis in southern Europe, Latin America and Asia. C. parapsilosis has been mostly considered susceptible to triazoles, but fluconazole resistance is on the rise in some countries. The main mechanism related to fluconazole resistance is the presence of ERG11p substitutions, dominated by the Y132F amino acid substitution. Isolates harbouring this substitution mimic C. auris given that they may cause hospital outbreaks, become endemic, and emerge simultaneously in distant areas around the world. At the moment, Spain is experiencing a brusque emergence of fluconazole resistance in C. parapsilosis; isolates harbouring the Y132F substitution were detected for the first time in 2019. A recent study on Candida spp isolates from blood cultures collected in 16 hospitals located in the Madrid metropolitan area (2019 to 2021) reported that fluconazole resistance in C. parapsilosis reached as high as 13.6%. Resistance rates rose significantly during those three years: 3.8% in 2019, 5.7% in 2020, and 29.1% in 2021; resistant isolates harboured either the dominant Y132F substitution (a single clone found in four hospitals) or G458S (another clone found in a fifth hospital). The COVID-19 pandemic may have increased the number of candidaemia cases. The reason for such an increase might be a consequence of uncontrolled intra-hospital patient-to-patient transmission in some hospitals, as an increase not only in C. parapsilosis candidaemia episodes but also in the spread of clonal fluconazole-resistant isolates might have occurred in other hospitals during the pandemic period. Patients affected with fluconazole-resistant C. parapsilosis harbouring the Y132F substitution presented a mortality rate ranging from 9% to 78%, were mainly admitted to intensive care wards but did not have differential risk factors compared to those infected by susceptible isolates. With scarce exceptions, few patients (≤20%) infected with fluconazole-resistant isolates had previously received fluconazole, thus supporting the fact that, although fluconazole might have been a key factor to promote resistance, the main driver promoting the spread of fluconazole-resistant isolates was patient-to-patient transmission.
Collapse
Affiliation(s)
- Pilar Escribano
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| |
Collapse
|
30
|
Evolution of Fluconazole Resistance Mechanisms and Clonal Types of Candida parapsilosis Isolates from a Tertiary Care Hospital in South Korea. Antimicrob Agents Chemother 2022; 66:e0088922. [PMID: 36226945 PMCID: PMC9664844 DOI: 10.1128/aac.00889-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the evolution of fluconazole resistance mechanisms and clonal types of Candida parapsilosis isolates from a tertiary care hospital in South Korea. A total of 45 clinical isolates, including 42 collected between 2017 and 2021 and 3 collected between 2012 and 2013, were subjected to antifungal susceptibility testing, sequencing of fluconazole resistance genes (ERG11, CDR1, TAC1, and MRR1), and microsatellite typing. Twenty-two isolates carried Y132F (n = 21; fluconazole MIC = 2 to >256 mg/L) or Y132F+R398I (n = 1; fluconazole MIC = 64 mg/L) in ERG11 and four isolates harbored N1132D in CDR1 (fluconazole MIC = 16 to 64 mg/L). All 21 Y132F isolates exhibited similar microsatellite profiles and formed a distinct group in the dendrogram. All four N1132D isolates displayed identical microsatellite profiles. Fluconazole MIC values of the Y132F isolates varied depending on their MRR1 mutation status (number of isolates, year of isolation, and MIC): K177N (n = 8, 2012 to 2020, 2 to 8 mg/L); K177N + heterozygous G982R (n = 1, 2017, 64 mg/L); K177N + heterozygous S614P (n = 2, 2019 to 2020, 16 mg/L); and K177N + homozygous S614P (n = 10, 2020 to 2021, 64 to > 256 mg/L). Our study revealed that Y132F in ERG11 and N1132D in CDR1 were the major mechanisms of fluconazole resistance in C. parapsilosis isolates. Furthermore, our results suggested that the clonal evolution of Y132F isolates persisting and spreading in hospital settings for several years occurred with the acquisition of heterozygous or homozygous MRR1 mutations associated with a gradual increase in fluconazole resistance.
Collapse
|
31
|
Branco J, Ryan AP, Silva AP, Butler G, Miranda IM, Rodrigues AG. Clinical azole cross-resistance in Candida parapsilosis is related to a novel MRR1 gain-of-function mutation. Clin Microbiol Infect 2022; 28:1655.e5-1655.e8. [PMID: 36028086 DOI: 10.1016/j.cmi.2022.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Hereby is described the molecular mechanisms underlying the acquisition of azole resistance by a C. parapsilosis isolate following fluconazole treatment due to candiduria. METHODS A set of three consecutive C. parapsilosis isolates were recovered from urine samples of a patient with candiduria. Whole-genome sequencing (WGS) and antifungal susceptibility assays were performed. Expression of MRR1, MDR1, ERG11 and CDR1B (CPAR2_304370) was quantified by RT-qPCR. RESULTS The initial isolate CPS-A, was susceptible to all three azoles tested (fluconazole, voriconazole and posaconazole); isolate CPS-B, collected after the 2nd cycle of treatment, exhibited a susceptible-dose dependent phenotype to fluconazole, while isolate CPS-C, recovered after the 3rd cycle, exhibited a cross-resistance profile to fluconazole and voriconazole. WGS revealed a putative resistance mechanism in isolate CPS-C, associated with a G1810A nucleotide substitution, leading to a G604R change in the Mrr1p transcription factor. Introducing this mutation into the susceptible CPS-A isolate (MRR1RI) resulted in resistance to fluconazole and voriconazole, as well as upregulation of MRR1 and MDR1. Interestingly, the susceptible-dose dependent phenotype exhibited by isolate CPS-B is associated with an increased copy number of the CDR1B gene. Expression of CDR1B is increased in both isolates CPS-B and CPS-C, and in the MRR1RI strain, harboring the gain-of-function (GOF) mutation. CONCLUSIONS Our results describe clinical azole cross-resistance acquisition in C. parapsilosis due to a G1810A (G604R) GOF mutation resulting in MRR1 hyperactivation and consequently, MDR1 efflux pump overexpression. We also associated amplification of CDR1B gene with decreased fluconazole susceptibility and showed that it is a putative target of the MRR1 GOF mutation.
Collapse
Affiliation(s)
- Joana Branco
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; Center for Health Technology and Services Research - CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adam P Ryan
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ana Pinto Silva
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; Center for Health Technology and Services Research - CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Isabel M Miranda
- Cardiovascular Research & Development Centre - UnIC@RISE, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Acácio Gonçalves Rodrigues
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal; Center for Health Technology and Services Research - CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
32
|
Yamin D, Akanmu MH, Al Mutair A, Alhumaid S, Rabaan AA, Hajissa K. Global Prevalence of Antifungal-Resistant Candida parapsilosis: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:188. [PMID: 36006280 PMCID: PMC9416642 DOI: 10.3390/tropicalmed7080188] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
A reliable estimate of Candida parapsilosis antifungal susceptibility in candidemia patients is increasingly important to track the spread of C. parapsilosis bloodstream infections and define the true burden of the ongoing antifungal resistance. A systematic review and meta-analysis (SRMA) were conducted aiming to estimate the global prevalence and identify patterns of antifungal resistance. A systematic literature search of the PubMed, Scopus, ScienceDirect and Google Scholar electronic databases was conducted on published studies that employed antifungal susceptibility testing (AFST) on clinical C. parapsilosis isolates globally. Seventy-nine eligible studies were included. Using meta-analysis of proportions, the overall pooled prevalence of three most important antifungal drugs; Fluconazole, Amphotericin B and Voriconazole resistant C. parapsilosis were calculated as 15.2% (95% CI: 9.2-21.2), 1.3% (95% CI: 0.0-2.9) and 4.7% (95% CI: 2.2-7.3), respectively. Based on study enrolment time, country/continent and AFST method, subgroup analyses were conducted for the three studied antifungals to determine sources of heterogeneity. Timeline and regional differences in C. parapsilosis prevalence of antifungal resistance were identified with the same patterns among the three antifungal drugs. These findings highlight the need to conduct further studies to assess and monitor the growing burden of antifungal resistance, to revise treatment guidelines and to implement regional surveillance to prevent further increase in C. parapsilosis drug resistance emerging recently.
Collapse
Affiliation(s)
- Dina Yamin
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Mutiat Hammed Akanmu
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Khalid Hajissa
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, George Town 16150, Malaysia
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| |
Collapse
|
33
|
Evidence of Fluconazole-Resistant Candida parapsilosis Genotypes Spreading across Hospitals Located in Madrid, Spain and Harboring the Y132F ERG11p Substitution. Antimicrob Agents Chemother 2022; 66:e0071022. [PMID: 35852369 PMCID: PMC9380585 DOI: 10.1128/aac.00710-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have been monitoring the antifungal resistance in Candida parapsilosis isolates collected from inpatients at Madrid metropolitan area hospitals for the last 3 years. The study aimed to elucidate the presence of fluconazole-resistant C. parapsilosis genotypes in Madrid. From January 2019 to December 2021, a total of 354 C. parapsilosis isolates (n = 346 patients) from blood (76.6%) or intraabdominal samples were collected and genotyped using species-specific microsatellite markers. Antifungal susceptibilities to amphotericin B, the triazoles, micafungin, anidulafungin, and ibrexafungerp were performed according to EUCAST E.Def 7.3.2; the ERG11 gene was sequenced in fluconazole-resistant isolates. A total of 13.6% (n = 48/354) isolates (one per patient) were found to be resistant to fluconazole and non-wild-type to voriconazole but fully susceptible to ibrexafungerp. Resistant isolates were mostly sourced from blood (n = 45/48, 93.8%) and were detected in five hospitals. Two hospitals accounted for a high proportion of resistant isolates (n = 41/48). Resistant isolates harbored either the Y132F ERG11p amino acid substitution (n = 43) or the G458S substitution (n = 5). Isolates harboring the Y132F substitution clustered into a clonal complex involving three genotypes (one genotype accounted for n = 39/43 isolates) that were found in four hospitals. Isolates harboring the G458S substitution clustered into another genotype found in a fifth hospital. C. parapsilosis genotypes demonstrating resistance to fluconazole have been spreading across hospitals in Madrid, Spain. Over the last 3 years, the frequency of isolation of such isolates and the number of hospitals affected is on the rise.
Collapse
|
34
|
Daneshnia F, Hilmioğlu Polat S, Ilkit M, Shor E, de Almeida Júnior JN, Favarello LM, Colombo AL, Arastehfar A, Perlin DS. Determinants of fluconazole resistance and the efficacy of fluconazole and milbemycin oxim combination against Candida parapsilosis clinical isolates from Brazil and Turkey. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:906681. [PMID: 37746198 PMCID: PMC10512262 DOI: 10.3389/ffunb.2022.906681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/11/2022] [Indexed: 09/26/2023]
Abstract
Fluconazole-resistant Candida parapsilosis (FLZR-CP) outbreaks are a growing public health concern and have been reported in numerous countries. Patients infected with FLZR-CP isolates show fluconazole therapeutic failure and have a significantly increased mortality rate. Because fluconazole is the most widely used antifungal agent in most regions with outbreaks, it is paramount to restore its antifungal activity. Milbemycin oxim (MOX), a well-known canine endectocide, is a potent efflux pump inhibitor that significantly potentiates the activity of fluconazole against FLZR C. glabrata and C. albicans. However, the FLZ-MOX combination has not been tested against FLZR-CP isolates, nor is it known whether MOX may also potentiate the activity of echinocandins, a different class of antifungal drugs. Furthermore, the extent of involvement of efflux pumps CDR1 and MDR1 and ergosterol biosynthesis enzyme ERG11 and their link with gain-of-function (GOF) mutations in their transcription regulators (TAC1, MRR1, and UPC2) are poorly characterized among FLZR-CP isolates. We analyzed 25 C. parapsilosis isolates collected from outbreaks in Turkey and Brazil by determining the expression levels of CDR1, MDR1, and ERG11, examining the presence of potential GOF mutations in their transcriptional regulators, and assessing the antifungal activity of FLZ-MOX and micafungin-MOX against FLZR and multidrug-resistant (MDR) C. parapsilosis isolates. ERG11 was found to be universally induced by fluconazole in all isolates, while expression of MDR1 was unchanged. Whereas mutations in MRR1 and UPC2 were not detected, CDR1 was overexpressed in three Brazilian FLZR-CP isolates, which also carried a novel TAC1L518F mutation. Of these three isolates, one showed increased basal expression of CDR1, while the other two overexpressed CDR1 only in the presence of fluconazole. Interestingly, MOX showed promising antifungal activity against FLZR isolates, reducing the FLZ MIC 8- to 32-fold. However, the MOX and micafungin combination did not exert activity against an MDR C. parapsilosis isolate. Collectively, our study documents that the mechanisms underpinning FLZR are region specific, where ERG11 mutations were the sole mechanism of FLZR in Turkish FLZR-CP isolates, while simultaneous overexpression of CDR1 was observed in some Brazilian counterparts. Moreover, MOX and fluconazole showed potent synergistic activity, while the MOX-micafungin combination showed no synergy.
Collapse
Affiliation(s)
- Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | | | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - João Nobrega de Almeida Júnior
- Laboratorio de Micologia Medica (LIM 53), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
- Laboratório Central (LIM 03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Larissa M. Favarello
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arnaldo Lopes Colombo
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Hackensack Meridian School of Medicine, Nutley, NJ, United States
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, United States
| |
Collapse
|
35
|
Blaize M, Raoelina A, Kornblum D, Kamus L, Lampros A, Berger M, Demeret S, Constantin JM, Monsel A, Mayaux J, Luyt CE, Piarroux R, Fekkar A. Occurrence of Candidemia in Patients with COVID-19 Admitted to Five ICUs in France. J Fungi (Basel) 2022; 8:jof8070678. [PMID: 35887435 PMCID: PMC9320616 DOI: 10.3390/jof8070678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/26/2022] Open
Abstract
Whether severe COVID-19 is by itself a significant risk factor for the development of candidemia currently remains an open question as conflicting results have been published. We aim to assess the occurrence of candidemia in patients with severe COVID-19 admitted to the intensive care unit (ICU). We conducted a retrospective study on patients with severe SARS-CoV-2-related pneumonia admitted to 5 ICUs in France who were specifically screened for fungal complications between March 2020 and January 2021. The study population included a total of 264 patients; the median age was 56 years old and most of them were male (n = 186; 70.5%) and immunocompetent (n = 225; 87.5%), and 62.7% (n = 153/244) were on extracorporeal membrane oxygenation support. Microbiological analysis included 4864 blood culture samples and beta-glucan test performed on 975 sera. Candidemia was diagnosed in 13 (4.9%) patients. The species involved were mainly C. albicans (n = 6) and C. parapsilosis (n = 5). Almost all patients (12/13; 92.3%) had a colonization by yeasts. ICU mortality was not significantly impacted by the occurrence of candidemia. Unrelated positive beta-glucan tests were observed in 49 patients (23.4%), including 6 with mold infections and 43 with false positive results. In our series, patients with severe SARS-CoV-2-related pneumonia seemed at low risk of developing invasive candidiasis.
Collapse
Affiliation(s)
- Marion Blaize
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Parasitologie Mycologie, F-75013 Paris, France;
| | - Audrey Raoelina
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Parasitologie Mycologie, F-75013 Paris, France; (A.R.); (D.K.); (L.K.); (A.L.); (M.B.); (R.P.)
| | - Dimitri Kornblum
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Parasitologie Mycologie, F-75013 Paris, France; (A.R.); (D.K.); (L.K.); (A.L.); (M.B.); (R.P.)
| | - Laure Kamus
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Parasitologie Mycologie, F-75013 Paris, France; (A.R.); (D.K.); (L.K.); (A.L.); (M.B.); (R.P.)
| | - Alexandre Lampros
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Parasitologie Mycologie, F-75013 Paris, France; (A.R.); (D.K.); (L.K.); (A.L.); (M.B.); (R.P.)
| | - Marie Berger
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Parasitologie Mycologie, F-75013 Paris, France; (A.R.); (D.K.); (L.K.); (A.L.); (M.B.); (R.P.)
| | - Sophie Demeret
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Réanimation Neurologique, F-75013 Paris, France;
| | - Jean-Michel Constantin
- Sorbonne Université, GRC 29, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Département d’Anesthésie Réanimation, F-75013 Paris, France;
| | - Antoine Monsel
- Sorbonne Université, INSERM, Immunology Immunopathology Immunotherapy (I3), Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Département d’Anesthésie Réanimation, F-75013 Paris, France;
| | - Julien Mayaux
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Réanimation Médicale, F-75013 Paris, France;
| | - Charles-Edouard Luyt
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition, Assistance Publique–Hôpitaux de Paris (APHP), Médecine Intensive Réanimation-Institut de Cardiologie, F-75013 Paris, France;
| | - Renaud Piarroux
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Parasitologie Mycologie, F-75013 Paris, France; (A.R.); (D.K.); (L.K.); (A.L.); (M.B.); (R.P.)
| | - Arnaud Fekkar
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, Cimi-Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier La Pitié-Salpêtrière, Parasitologie Mycologie, F-75013 Paris, France;
- Correspondence: ; Tel.: +33-1-42-16-01-84
| |
Collapse
|
36
|
Ramos-Martínez A, Pintos-Pascual I, Guinea J, Gutiérrez-Villanueva A, Gutiérrez-Abreu E, Díaz-García J, Asensio Á, Iranzo R, Sánchez-Romero I, Muñoz-Algarra M, Moreno-Torres V, Calderón-Parra J, Múñez E, Fernández-Cruz A. Impact of the COVID-19 Pandemic on the Clinical Profile of Candidemia and the Incidence of Fungemia Due to Fluconazole-Resistant Candida parapsilosis. J Fungi (Basel) 2022; 8:451. [PMID: 35628707 PMCID: PMC9147669 DOI: 10.3390/jof8050451] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 01/14/2023] Open
Abstract
Severely ill COVID-19 patients are at high risk of nosocomial infections. The aim of the study was to describe the characteristics of candidemia during the pre-pandemic period (January 2019−February 2020) compared to the pandemic period (March 2020−September 2021). Antifungal susceptibilities were assessed using the EUCAST E.Def 7.3.2 broth dilution method. Fluconazole-resistant C. parapsilosis isolates (FRCP) were studied for sequencing of the ERG11 gene. The incidence of candidemia and C. parapsilosis bloodstream infection increased significantly in the pandemic period (p = 0.021). ICU admission, mechanical ventilation, parenteral nutrition and corticosteroids administration were more frequent in patients with candidemia who had been admitted due to COVID-19. Fifteen cases of FRCP fungemia were detected. The first case was recorded 10 months before the pandemic in a patient transferred from another hospital. The incidence of FRCP in patients admitted for COVID-19 was 1.34 and 0.16 in all other patients (p < 0.001). ICU admission, previous Candida spp. colonization, arterial catheter use, parenteral nutrition and renal function replacement therapy were more frequent in patients with candidemia due to FRCP. All FRCP isolates showed the Y132F mutation. In conclusion, the incidence of candidemia experienced an increase during the COVID-19 pandemic and FRCP fungemia was more frequent in patients admitted due to COVID-19.
Collapse
Affiliation(s)
- Antonio Ramos-Martínez
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain; (J.C.-P.); (E.M.); (A.F.-C.)
- Instituto de Investigación Sanitaria Puerta de Hierro—Segovia de Arana (IDIPHSA), 28222 Majadahonda, Spain
| | - Ilduara Pintos-Pascual
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain; (I.P.-P.); (A.G.-V.); (E.G.-A.); (V.M.-T.)
| | - Jesús Guinea
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.G.); (J.D.-G.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28009 Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), 28029 Madrid, Spain
| | - Andrea Gutiérrez-Villanueva
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain; (I.P.-P.); (A.G.-V.); (E.G.-A.); (V.M.-T.)
| | - Edith Gutiérrez-Abreu
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain; (I.P.-P.); (A.G.-V.); (E.G.-A.); (V.M.-T.)
| | - Judith Díaz-García
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.G.); (J.D.-G.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28009 Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), 28029 Madrid, Spain
| | - Ángel Asensio
- Servicio de Medicina Preventiva, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain;
| | - Reyes Iranzo
- Servicio de Anestesia y Reanimación, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain;
| | - Isabel Sánchez-Romero
- Servicio de Microbiología, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain; (I.S.-R.); (M.M.-A.)
| | - María Muñoz-Algarra
- Servicio de Microbiología, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain; (I.S.-R.); (M.M.-A.)
| | - Víctor Moreno-Torres
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain; (I.P.-P.); (A.G.-V.); (E.G.-A.); (V.M.-T.)
| | - Jorge Calderón-Parra
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain; (J.C.-P.); (E.M.); (A.F.-C.)
| | - Elena Múñez
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain; (J.C.-P.); (E.M.); (A.F.-C.)
| | - Ana Fernández-Cruz
- Unidad de Enfermedades Infecciosas, Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro, 28222 Majadahonda, Spain; (J.C.-P.); (E.M.); (A.F.-C.)
| |
Collapse
|
37
|
Genetic relatedness among azole-resistant Candida tropicalis clinical strains in Taiwan from 2014 to 2018. Int J Antimicrob Agents 2022; 59:106592. [PMID: 35460852 DOI: 10.1016/j.ijantimicag.2022.106592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/26/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
Abstract
To monitor trends in the distributions of yeast species and susceptibilities of those species to commonly prescribed antifungal drugs, we conduct the Taiwan Surveillance of Antimicrobial Resistance of Yeasts (TSARY) every four years. We found that 25 of the 294 Candida tropicalis from TSARY 2014 and 31 of the 314 C. tropicalis from TSARY 2018 were resistant to fluconazole. We determined the genetic relatedness among fluconazole-resistant C. tropicalis by multilocus sequence typing. Of the 174 C. tropicalis isolates, including all 56 fluconazole-resistant, all 26 -susceptible-dose dependent, and 92 selected fluconazole-susceptible isolates, 59 diploid sequence types (DSTs) were identified. We found that 22 of the 25 and 29 of the 31 fluconazole-resistant C. tropicalis from TSARY 2014 and 2018, respectively, were genetically related and belonged to the same cluster: clade 4. A combination of mutation and overexpression of ERG11, the target of azole drugs, was the major mechanism contributing to drug resistance. Approximately two thirds of reviewed patients infected/colonized by fluconazole-resistant C. tropicalis were azole-naïve. Furthermore, there was no evidence of patient-to-patient transmission. Because the clade 4 fluconazole-resistant C. tropicalis strain persists in Taiwan, it is important to identify the source of azole-resistant C. tropicalis to prevent the spread of this resistant strain.
Collapse
|
38
|
Arastehfar A, Ünal N, Hoşbul T, Alper Özarslan M, Sultan Karakoyun A, Polat F, Fuentes D, Gümral R, Turunç T, Daneshnia F, Perlin DS, Lass-Flörl C, Gabaldón T, Ilkit M, Nguyen MH. Candidemia Among Coronavirus Disease 2019 Patients in Turkey Admitted to Intensive Care Units: A Retrospective Multicenter Study. Open Forum Infect Dis 2022; 9:ofac078. [PMID: 35345665 PMCID: PMC8903397 DOI: 10.1093/ofid/ofac078] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background We evaluated the epidemiology of candidemia among coronavirus disease 2019 (COVID-19) patients admitted to intensive care units (ICUs). Methods We conducted a retrospective multicenter study in Turkey between April and December 2020. Results Twenty-eight of 148 enrolled patients developed candidemia, yielding an incidence of 19% and incidence rate of 14/1000 patient-days. The probability of acquiring candidemia at 10, 20, and 30 days of ICU admission was 6%, 26%, and 50%, respectively. More than 80% of patients received antibiotics, corticosteroid, and mechanical ventilation. Receipt of a carbapenem (odds ratio [OR] = 6.0, 95% confidence interval [CI] = 1.6-22.3, P = .008), central venous catheter (OR = 4.3, 95% CI = 1.3-14.2, P = .02), and bacteremia preceding candidemia (OR = 6.6, 95% CI = 2.1-20.1, P = .001) were independent risk factors for candidemia. The mortality rate did not differ between patients with and without candidemia. Age (OR = 1.05, 95% CI = 1.01-1.09, P = .02) and mechanical ventilation (OR = 61, 95% CI = 15.8-234.9, P < .0001) were independent risk factors for death. Candida albicans was the most prevalent species overall. In Izmir, Candida parapsilosis accounted for 50% (2 of 4) of candidemia. Both C parapsilosis isolates were fluconazole nonsusceptible, harbored Erg11-Y132F mutation, and were clonal based on whole-genome sequencing. The 2 infected patients resided in ICUs with ongoing outbreaks due to fluconazole-resistant C parapsilosis. Conclusions Physicians should be aware of the elevated risk for candidemia among patients with COVID-19 who require ICU care. Prolonged ICU exposure and ICU practices rendered to COVID-19 patients are important contributing factors to candidemia. Emphasis should be placed on (1) heightened infection control in the ICU and (2) developing antibiotic stewardship strategies to reduce irrational antimicrobial therapy.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Nevzat Ünal
- University of Health Sciences, Adana City Training and Research Hospital, Laboratory of Medical Microbiology, Adana, Turkey
| | - Tuğrul Hoşbul
- Department of Microbiology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | | | | | - Furkan Polat
- Department of Microbiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Diego Fuentes
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ramazan Gümral
- Department of Microbiology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Tuba Turunç
- University of Health Sciences, Adana Faculty of Medicine, Adana City Training and Research Hospital, Department of Infectious Diseases and Clinical Microbiology, Adana, Turkey
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Barcelona, Spain
| | - Macit Ilkit
- Division of Mycology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - M Hong Nguyen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
Castelo-Branco D, Lockhart SR, Chen YC, Santos DA, Hagen F, Hawkins NJ, Lavergne RA, Meis JF, Le Pape P, Rocha MFG, Sidrim JJC, Arendrup M, Morio F. Collateral consequences of agricultural fungicides on pathogenic yeasts: A One Health perspective to tackle azole resistance. Mycoses 2022; 65:303-311. [PMID: 34821412 PMCID: PMC11268486 DOI: 10.1111/myc.13404] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023]
Abstract
Candida and Cryptococcus affect millions of people yearly, being responsible for a wide array of clinical presentations, including life-threatening diseases. Interestingly, most human pathogenic yeasts are not restricted to the clinical setting, as they are also ubiquitous in the environment. Recent studies raise concern regarding the potential impact of agricultural use of azoles on resistance to medical antifungals in yeasts, as previously outlined with Aspergillus fumigatus. Thus, we undertook a narrative review of the literature and provide lines of evidence suggesting that an alternative, environmental route of azole resistance, may develop in pathogenic yeasts, in addition to patient route. However, it warrants sound evidence to support that pathogenic yeasts cross border between plants, animals and humans and that environmental reservoirs may contribute to azole resistance in Candida or other yeasts for humans. As these possibilities could concern public health, we propose a road map for future studies under the One Health perspective.
Collapse
Affiliation(s)
- Débora Castelo-Branco
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Shawn R Lockhart
- Centers for Disease Control and Prevention, Mycotic Diseases Branch, Atlanta, Georgia, USA
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Rose-Anne Lavergne
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| | - Jacques F Meis
- Center of Expertise in Mycology, Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Patrice Le Pape
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| | - Marcos Fabio Gadelha Rocha
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - José Julio Costa Sidrim
- Specialized Medical Mycology Center, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Brazil
| | - Maiken Arendrup
- Copenhagen University Hospital, and Statens Serum Institut, Copenhagen, Denmark
| | - Florent Morio
- Nantes University Hospital and EA1155 IICiMed, Nantes University, Nantes, France
| |
Collapse
|
40
|
Candidemia among Hospitalized Pediatric Patients Caused by Several Clonal Lineages of Candida parapsilosis. J Fungi (Basel) 2022; 8:jof8020183. [PMID: 35205937 PMCID: PMC8880282 DOI: 10.3390/jof8020183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Candida parapsilosis is the second most common cause of candidemia in some geographical areas and in children in particular. Yet, the proportion among children varies, for example, from 10.4% in Denmark to 24.7% in Tehran, Iran. As this species is also known to cause hospital outbreaks, we explored if the relatively high number of C. parapsilosis pediatric cases in Tehran could in part be explained by undiscovered clonal outbreaks. Among 56 C. parapsilosis complex isolates, 50 C. parapsilosis were genotyped by Amplified Fragment Length Polymorphism (AFLP) fingerprinting and microsatellite typing and analyzed for nucleotide polymorphisms by FKS1 and ERG11 sequencing. AFLP fingerprinting grouped Iranian isolates in two main clusters. Microsatellite typing separated the isolates into five clonal lineages, of which four were shared with Danish isolates, and with no correlation to the AFLP patterns. ERG11 and FKS1 sequencing revealed few polymorphisms in ERG11 leading to amino-acid substitutions (D133Y, Q250K, I302T, and R398I), with no influence on azole-susceptibilities. Collectively, this study demonstrated that there were no clonal outbreaks at the Iranian pediatric ward. Although possible transmission of a diverse C. parapsilosis community within the hospital cannot be ruled out, the study also emphasizes the necessity of applying appropriately discriminatory methods for outbreak investigation.
Collapse
|
41
|
Normand AC, Chaline A, Mohammad N, Godmer A, Acherar A, Huguenin A, Ranque S, Tannier X, Piarroux R. Identification of a clonal population of Aspergillus flavus by MALDI-TOF mass spectrometry using deep learning. Sci Rep 2022; 12:1575. [PMID: 35091651 PMCID: PMC8799650 DOI: 10.1038/s41598-022-05647-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
The spread of fungal clones is hard to detect in the daily routines in clinical laboratories, and there is a need for new tools that can facilitate clone detection within a set of strains. Currently, Matrix Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry is extensively used to identify microbial isolates at the species level. Since most of clinical laboratories are equipped with this technology, there is a question of whether this equipment can sort a particular clone from a population of various isolates of the same species. We performed an experiment in which 19 clonal isolates of Aspergillus flavus initially collected on contaminated surgical masks were included in a set of 55 A. flavus isolates of various origins. A simple convolutional neural network (CNN) was trained to detect the isolates belonging to the clone. In this experiment, the training and testing sets were totally independent, and different MALDI-TOF devices (Microflex) were used for the training and testing phases. The CNN was used to correctly sort a large portion of the isolates, with excellent (> 93%) accuracy for two of the three devices used and with less accuracy for the third device (69%), which was older and needed to have the laser replaced.
Collapse
Affiliation(s)
- Anne-Cécile Normand
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013, Paris, France.
| | - Aurélien Chaline
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013, Paris, France
- Section Informatique et Communication, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Noshine Mohammad
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Alexandre Godmer
- Département de Bactériologie, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, U1135, Sorbonne Université, Paris, France
| | - Aniss Acherar
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Antoine Huguenin
- Université de Reims Champagne Ardenne, ESCAPE EA7510, 51100, Reims, France
- Laboratoire de Parasitologie Mycologie, Pôle de Biopathologie, CHU de Reims Hôpital Maison Blanche, 51100, Reims, France
| | | | - Xavier Tannier
- Sorbonne Université, Université Sorbonne Paris Nord, INSERM, Laboratoire d'Informatique Médicale et d'Ingénierie des connaissances en e-Santé, LIMICS, Paris, France
| | - Renaud Piarroux
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013, Paris, France
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, 75013, Paris, France
| |
Collapse
|
42
|
Mamali V, Siopi M, Charpantidis S, Samonis G, Tsakris A, Vrioni G. Increasing Incidence and Shifting Epidemiology of Candidemia in Greece: Results from the First Nationwide 10-Year Survey. J Fungi (Basel) 2022; 8:jof8020116. [PMID: 35205870 PMCID: PMC8879520 DOI: 10.3390/jof8020116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 12/30/2022] Open
Abstract
Globally, candidemia displays geographical variety in terms of epidemiology and incidence. In that respect, a nationwide Greek study was conducted, reporting the epidemiology of Candida bloodstream infections and susceptibility of isolates to antifungal agents providing evidence for empirical treatment. All microbiologically confirmed candidemia cases in patients hospitalized in 28 Greek centres during the period 2009–2018 were recorded. The study evaluated the incidence of infection/100,000 inhabitants, species distribution, and antifungal susceptibilities of isolated strains. Overall, 6057 candidemic episodes occurred during the study period, with 3% of them being mixed candidemias. The average annual incidence was 5.56/100,000 inhabitants, with significant increase over the years (p = 0.0002). C. parapsilosis species complex (SC) was the predominant causative agent (41%), followed by C. albicans (37%), C. glabrata SC (10%), C. tropicalis (7%), C. krusei (1%), and other rare Candida spp. (4%). C. albicans rates decreased from 2009 to 2018 (48% to 31%) in parallel with a doubling incidence of C. parapsilosis SC rates (28% to 49%, p < 0.0001). Resistance to amphotericin B and flucytosine was not observed. Resistance to fluconazole was detected in 20% of C. parapsilosis SC isolates, with a 4% of them being pan-azole-resistant. A considerable rising rate of resistance to this agent was observed over the study period (p < 0.0001). Echinocandin resistance was found in 3% of C. glabrata SC isolates, with 70% of them being pan-echinocandin-resistant. Resistance rate to this agent was stable over the study period. This is the first multicentre nationwide study demonstrating an increasing incidence of candidemia in Greece with a species shift toward C. parapsilosis SC. Although the overall antifungal resistance rates remain relatively low, fluconazole-resistant C. parapsilosis SC raises concern.
Collapse
Affiliation(s)
- Vasiliki Mamali
- Department of Microbiology, Tzaneio General Hospital, 18536 Piraeus, Greece;
| | - Maria Siopi
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stefanos Charpantidis
- Department of Microbiology, “Elena Venizelou” Maternity Hospital, 11521 Athens, Greece;
| | - George Samonis
- Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-746-2129
| | | |
Collapse
|
43
|
Thomaz DY, Del Negro GMB, Ribeiro LB, da Silva M, Carvalho GOMH, Camargo CH, de Almeida JN, Motta AL, Siciliano RF, Sejas ONE, Rossi F, Abdala E, Strabelli TMV, Benard G. A Brazilian Inter-Hospital Candidemia Outbreak Caused by Fluconazole-Resistant Candida parapsilosis in the COVID-19 Era. J Fungi (Basel) 2022; 8:jof8020100. [PMID: 35205855 PMCID: PMC8874954 DOI: 10.3390/jof8020100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
Horizontal transmission of fluconazole-resistant Candida parapsilosis (FRCP) through healthcare workers’ hands has contributed to the occurrence of candidemia outbreaks worldwide. Since the first COVID-19 case in Brazil was detected in early 2020, hospitals have reinforced hand hygiene and disinfection practices to minimize SARS-CoV-2 contamination. However, a Brazilian cardiology center, which shares ICU patients with a cancer center under a FRCP outbreak since 2019, reported an increased FRCP candidemia incidence in May 2020. Therefore, the purpose of this study was to investigate an inter-hospital candidemia outbreak caused by FRCP isolates during the first year of the COVID-19 pandemic in Brazil. C. parapsilosis bloodstream isolates obtained from the cancer (n = 35) and cardiology (n = 30) centers in 2020 were submitted to microsatellite genotyping and fluconazole susceptibility testing. The ERG11 gene of all isolates from the cardiology center was sequenced and compared to the corresponding sequences of the FRCP genotype responsible for the cancer center outbreak in 2019. Unprecedentedly, most of the FRCP isolates from the cardiology center presented the same genetic profile and Erg11-Y132F mutation detected in the strain that has been causing the persistent outbreak in the cancer center, highlighting the uninterrupted horizontal transmission of clonal isolates in our hospitals during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Danilo Y. Thomaz
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (L.B.R.); (M.d.S.); (G.O.M.H.C.)
| | - Gilda M. B. Del Negro
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (L.B.R.); (M.d.S.); (G.O.M.H.C.)
| | - Leidiane B. Ribeiro
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (L.B.R.); (M.d.S.); (G.O.M.H.C.)
| | - Mirian da Silva
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (L.B.R.); (M.d.S.); (G.O.M.H.C.)
| | - Gabrielle O. M. H. Carvalho
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (L.B.R.); (M.d.S.); (G.O.M.H.C.)
| | - Carlos H. Camargo
- Bacteriology Center, Instituto Adolfo Lutz, Sao Paulo 01246-000, Brazil;
| | - João N. de Almeida
- Central Laboratory Division (LIM-03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil; (J.N.d.A.J.); (A.L.M.); (F.R.)
| | - Adriana L. Motta
- Central Laboratory Division (LIM-03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil; (J.N.d.A.J.); (A.L.M.); (F.R.)
| | - Rinaldo F. Siciliano
- Infection Control Team, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-000, Brazil; (R.F.S.); (T.M.V.S.)
| | - Odeli N. E. Sejas
- Cancer Institute of São Paulo State, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 01246-000, Brazil; (O.N.E.S.); (E.A.)
| | - Flávia Rossi
- Central Laboratory Division (LIM-03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-010, Brazil; (J.N.d.A.J.); (A.L.M.); (F.R.)
| | - Edson Abdala
- Cancer Institute of São Paulo State, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 01246-000, Brazil; (O.N.E.S.); (E.A.)
| | - Tânia M. V. Strabelli
- Infection Control Team, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-000, Brazil; (R.F.S.); (T.M.V.S.)
| | - Gil Benard
- Laboratory of Medical Mycology (LIM-53), Instituto de Medicina Tropical e Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo 05403-000, Brazil; (D.Y.T.); (G.M.B.D.N.); (L.B.R.); (M.d.S.); (G.O.M.H.C.)
- Correspondence:
| |
Collapse
|
44
|
Papadimitriou-Olivgeris M, Spiliopoulou A, Fligou F, Tsiata E, Kolonitsiou F, Nikolopoulou A, Papamichail C, Spiliopoulou I, Marangos M, Christofidou M. Risk factors for isolation of fluconazole and echinocandin non-susceptible Candida species in critically ill patients. J Med Microbiol 2021; 70. [PMID: 34431765 DOI: 10.1099/jmm.0.001401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Resistance rates to azoles and echinocandins of Candida spp. increased over the last decade.Hypothesis/Gap Statement. Widespread use of antifungals could lead to development and dissemination of resistant Candida spp.Aim. To identify risk factors for isolation of Candida spp. non-susceptible to either fluconazole or echinocandins.Methodology. All patients hospitalized in the Intensive Care Unit (ICU) of the University General Hospital of Patras, Greece with Candida spp. isolated from clinical specimens during a ten-year period (2010-19) were included. Candida isolates were identified using Vitek-2 YST card. Consumption of antifungals was calculated.Results. During the study period, 253 isolates were included. C. non-albicans predominated (64.4 %) with C. parapsilosis being the most commonly isolated (42.3 %) followed by C. glabrata (nomenclatural change to Nakaseomyces glabrataa; 8.7 %) and C. tropicalis (11.9 %). Among all isolates, 45.8 and 28.5 % were non-susceptible and resistant to fluconazole, respectively. Concerning echinocandins, 8.7 % of isolates were non-susceptible to at least one echinocandin (anidulafungin or micafungin) and 3.1 % resistant. Multivariate analysis revealed that hospitalization during 2015-19, as compared to 2010-14, isolate being non-albicans or non-susceptible to at least one echinocandin was associated with isolation of fluconazole non-susceptible isolate. Administration of echinocandin, isolate being C. glabrata or C. tropicalis, or Candida spp. non-susceptible to fluconazole were independently associated with isolation of Candida spp. non-susceptible to at least one echinocandin. Fluconazole's administration decreased during the study period, whereas liposomal-amphotericin B's and echinoncandins' administration remained stable.Conclusion. Fluconazole's non-susceptibility increased during the study period, despite the decrease of its administration. Although echinocandins' administration remained stable, non-susceptibility among Candida spp. increased.
Collapse
Affiliation(s)
- Matthaios Papadimitriou-Olivgeris
- Division of Infectious Diseases, School of Medicine, University of Patras, Patras, Greece
- Present address: Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Fotini Fligou
- Division of Anaesthesiology and Intensive Care Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Ekaterini Tsiata
- Department of Pharmacy, University General Hospital of Patras, Patras, Greece
| | - Fevronia Kolonitsiou
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | - Alexandra Nikolopoulou
- Division of Anaesthesiology and Intensive Care Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Chrysavgi Papamichail
- Division of Anaesthesiology and Intensive Care Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Iris Spiliopoulou
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, School of Medicine, University of Patras, Patras, Greece
| | - Myrto Christofidou
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|