1
|
Levene RE, DeVincenzo J, Conery AL, Ahmed A, Or YS, Rhodin MHJ. EDP-938 Has a High Barrier to Resistance in Healthy Adults Experimentally Infected with Respiratory Syncytial Virus. J Infect Dis 2024:jiae471. [PMID: 39441691 DOI: 10.1093/infdis/jiae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND EDP-938 is an oral once-daily RSV nucleoprotein (N) inhibitor with potent antiviral activity. In a human RSV challenge trial, EDP-938 significantly reduced viral load and symptom severity. During antiviral development, it is critical to understand the propensity for resistance to develop. In vitro studies of EDP-938 suggest a higher barrier to resistance as compared to RSV fusion inhibitors. We evaluated the development of viral resistance to EDP-938 in a human challenge trial. METHODS A subset of the 124 participants with RSV infection were chosen for genetic analysis; 159 nasal wash samples from 48 participants were analyzed using next-generation sequencing of the N gene of RSV. Of the 48 participant sampled, 37 were from EDP-938-treated and 11 were placebo-treated participants, representing 45% and 26% of the participants, respectively. The effects of treatment-emergent mutations on viral load, EDP-938 efficacy, and viral fitness were evaluated. RESULTS Two of the 37 EDP-938-treated participants with samples sequenced had treatment-emergent mutations: N:L139I and N:E112G. From in vitro analysis, N:L139I reduced sensitivity to EDP-938 by approximately 10-fold, while N:E112G had no effect. However, N:L139I was associated with a reduction in viral fitness, suggesting clinical resistance is associated with fitness costs. Neither of these variants were associated with reduced viral clearance. CONCLUSIONS In human RSV infections treated with EDP-938, emergence of RSV variants with reduced sensitivity to EDP-938 occurred in only 1 participant and was associated with reduced viral fitness. EDP-938's high barrier to resistance highlights its robust mechanism of action. CLINICAL TRIALS REGISTRATION NCT03691623.
Collapse
Affiliation(s)
| | | | - Annie L Conery
- Enanta Pharmaceuticals, Inc, Watertown, Massachusetts, USA
| | - Alaa Ahmed
- Enanta Pharmaceuticals, Inc, Watertown, Massachusetts, USA
| | - Yat Sun Or
- Enanta Pharmaceuticals, Inc, Watertown, Massachusetts, USA
| | | |
Collapse
|
2
|
Song Q, Zhu H, Qiu M, Cai J, Hu Y, Yang H, Rao S, Li Y, Li M, Hu L, Wang S, Hong J, Ye W, Chen H, Wang Y, Tang W. A new mechanism of respiratory syncytial virus entry inhibition by small-molecule to overcome K394R-associated resistance. mBio 2024; 15:e0138524. [PMID: 39162560 PMCID: PMC11389407 DOI: 10.1128/mbio.01385-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Infection with respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract disease in young children and older people. Despite intensive efforts over the past few decades, no direct-acting small-molecule agents against RSV are available. Most small-molecule candidates targeting the RSV fusion (F) protein pose a considerable risk of inducing drug-resistant mutations. Here, we explored the in vitro and in vivo virological properties of the K394R variant, a cross-resistant mutant capable of evading multiple RSV fusion inhibitors. Our results demonstrated that the K394R variant is highly fusogenic in vitro and more pathogenic than the parental strain in vivo. The small molecule (2E,2'E)-N,N'-((1R,2S,3S)-3-hydroxycyclohexane-1,2-diyl)bis(3-(2-bromo-4-fluorophenyl) acrylamide) (CL-A3-7), a structurally optimized compound derived from a natural caffeoylquinic acid derivative, substantially reduced in vitro and in vivo infections of both wild-type RSV and the K394R variant. Mechanistically, CL-A3-7 significantly inhibited virus-cell fusion during RSV entry by blocking the interaction between the viral F protein and the cellular insulin-like growth factor 1 receptor (IGF1R). Collectively, these results indicate severe disease risks caused by the K394R variant and reveal a new anti-RSV mechanism to overcome K394R-associated resistance. IMPORTANCE Respiratory syncytial virus (RSV) infection is a major public health concern, and many small-molecule candidates targeting the viral fusion (F) protein are associated with a considerable risk of inducing drug-resistant mutations. This study investigated virological features of the K394R variant, a mutant strain conferring resistance to multiple RSV fusion inhibitors. Our results demonstrated that the K394R variant is highly fusogenic in cell cultures and more pathogenic than the parental strain in mice. The small-molecule inhibitor CL-A3-7 substantially reduced in vitro and in vivo infections of both wild-type RSV and the K394R variant by blocking the interaction of viral F protein with its cellular receptor, showing a new mechanism of action for small-molecules to inhibit RSV infection and overcome K394R-associated resistance.
Collapse
Affiliation(s)
- Qiaoyun Song
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Haoyue Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Manlan Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jialiao Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Haixia Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuwen Rao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yaolan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Manmei Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Lijun Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Shuqin Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jian Hong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Heru Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei Tang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Bonneux B, Jacoby E, Ceconi M, Stobbelaar K, Delputte P, Herschke F. Direct-acting antivirals for RSV treatment, a review. Antiviral Res 2024; 229:105948. [PMID: 38972604 DOI: 10.1016/j.antiviral.2024.105948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Respiratory syncytial virus (RSV) causes respiratory disease and complications in infants, the elderly and the immunocompromised. While three vaccines and two prophylactic monoclonal antibodies are now available, only one antiviral, ribavirin, is currently approved for treatment. This review aims to summarize the current state of treatments directly targeting RSV. Two major viral processes are attractive for RSV-specific antiviral drug discovery and development as they play essential roles in the viral cycle: the entry/fusion process carried out by the fusion protein and the replication/transcription process carried out by the polymerase complex constituted of the L, P, N and M2-1 proteins. For each viral target resistance mutations to small molecules of different chemotypes seem to delineate definite binding pockets in the fusion proteins and in the large proteins. Elucidating the mechanism of action of these inhibitors thus helps to understand how the fusion and polymerase complexes execute their functions. While many inhibitors have been studied, few are currently in clinical development for RSV treatment: one is in phase III, three in phase II and two in phase I. Progression was halted for many others because of strategic decisions, low enrollment, safety, but also lack of efficacy. Lessons can be learnt from the halted programs to increase the success rate of the treatments currently in development.
Collapse
Affiliation(s)
- Brecht Bonneux
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium; Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Edgar Jacoby
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Martina Ceconi
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium
| | - Kim Stobbelaar
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610, Wilrijk, Belgium.
| | | |
Collapse
|
4
|
Felicetti T, Sarnari C, Gaito R, Tabarrini O, Manfroni G. Recent Progress toward the Discovery of Small Molecules as Novel Anti-Respiratory Syncytial Virus Agents. J Med Chem 2024; 67:11543-11579. [PMID: 38970494 DOI: 10.1021/acs.jmedchem.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Respiratory syncytial virus (RSV) stands as the foremost cause of infant hospitalization globally, ranking second only to malaria in terms of infant mortality. Although three vaccines have recently been approved for the prophylaxis of adults aged 60 and above, and pregnant women, there is currently no effective antiviral drug for treating RSV infections. The only preventive measure for infants at high risk of severe RSV disease is passive immunization through monoclonal antibodies. This Perspective offers an overview of the latest advancements in RSV drug discovery of small molecule antivirals, with particular focus on the promising findings from agents targeting the fusion and polymerase proteins. A comprehensive reflection on the current state of RSV research is also given, drawing inspiration from the lessons gleaned from HCV and HIV, while also considering the impact of the recent approval of the three vaccines.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Chiara Sarnari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Roberta Gaito
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| |
Collapse
|
5
|
Ferrero F, Lin CY, Liese J, Luz K, Stoeva T, Nemeth A, Gijón M, Calvo C, Natalini S, Toh TH, Deleu S, Chen B, Rusch S, Sánchez BL, Leipoldt I, Vijgen L, Huntjens D, Baguet T, Bertzos K, Gamil M, Stevens M. CROCuS, a Phase II Study Evaluating the Antiviral Activity, Clinical Outcomes, and Safety of Rilematovir in Children Aged ≥ 28 Days and ≤ 3 Years with Acute Respiratory Tract Infection Due to Respiratory Syncytial Virus. Paediatr Drugs 2024; 26:411-427. [PMID: 38649595 PMCID: PMC11192697 DOI: 10.1007/s40272-024-00625-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) causes significant morbidity and mortality in children aged ≤ 5 years and adults aged ≥ 60 years worldwide. Despite this, RSV-specific therapeutic options are limited. Rilematovir is an investigational, orally administered inhibitor of RSV fusion protein-mediated viral entry. OBJECTIVE To establish the antiviral activity, clinical outcomes, safety, and tolerability of rilematovir (low or high dose) in children aged ≥ 28 days and ≤ 3 years with RSV disease. METHODS CROCuS was a multicenter, international, double-blind, placebo-controlled, randomized, adaptive phase II study, wherein children aged ≥ 28 days and ≤ 3 years with confirmed RSV infection who were either hospitalized (Cohort 1) or treated as outpatients (Cohort 2) were randomized (1:1:1) to receive rilematovir (low or high dose) or placebo. Study treatment was administered daily as an oral suspension from days 1 to 7, with dosing based on weight and age groups. The primary objective was to establish antiviral activity of rilematovir by evaluating the area under the plasma concentration-time curve of RSV viral load in nasal secretions from baseline through day 5. Severity and duration of RSV signs and symptoms and the safety and tolerability of rilematovir were also assessed through day 28 (± 3). RESULTS In total, 246 patients were randomized, treated, and included in the safety analysis population (Cohort 1: 147; Cohort 2: 99). Of these, 231 were included in the intent-to-treat-infected analysis population (Cohort 1: 138; Cohort 2: 93). In both cohorts, demographics were generally similar across treatment groups. In both cohorts combined, the difference (95% confidence interval) in the mean area under the plasma concentration-time curve of RSV RNA viral load through day 5 was - 1.25 (- 2.672, 0.164) and - 1.23 (- 2.679, 0.227) log10 copies∙days/mL for the rilematovir low-dose group and the rilematovir high-dose group, respectively, when compared with placebo. The estimated Kaplan-Meier median (95% confidence interval) time to resolution of key RSV symptoms in the rilematovir low-dose, rilematovir high-dose, and placebo groups of Cohort 1 was 6.01 (4.24, 7.25), 5.82 (4.03, 8.18), and 7.05 (5.34, 8.97) days, respectively; in Cohort 2, estimates were 6.45 (4.81, 9.70), 6.26 (5.41, 7.84), and 5.85 (3.90, 8.27) days, respectively. A similar incidence of adverse events was reported in patients treated with rilematovir and placebo in Cohort 1 (rilematovir: 61.9%; placebo: 58.0%) and Cohort 2 (rilematovir: 50.8%; placebo: 47.1%), with most reported as grade 1 or 2 and none leading to study discontinuation. The study was terminated prematurely, as the sponsor made a non-safety-related strategic decision to discontinue rilematovir development prior to full recruitment of Cohort 2. CONCLUSIONS Data from the combined cohort suggest that rilematovir has a small but favorable antiviral effect of indeterminate clinical relevance compared with placebo, as well as a favorable safety profile. Safe and effective therapeutic options for RSV in infants and young children remain an unmet need. CLINICAL TRIAL REGISTRATION EudraCT Number: 2016-003642-93; ClinicalTrials.gov Identifier: NCT03656510. First posted date: 4 September, 2018.
Collapse
Affiliation(s)
- Fernando Ferrero
- Departamento de Medicina, Hospital General de Niños "Pedro de Elizalde", Buenos Aires, Argentina
| | - Chien-Yu Lin
- Department of Pediatrics and Infectious Disease, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
| | - Johannes Liese
- Division of Paediatric Infectious Diseases, Department of Pediatrics, University Hospital of Würzburg, Würzburg, Germany
| | - Kleber Luz
- Departamento de Infectologia, Centro de Estudos e Pesquisas em Moléstias Infecciosas-CEPCLIN, Natal, Brazil
| | - Tatyana Stoeva
- DCC 'Sv. Vrach and Sv. Sv. Kuzma and Damyan', OOD, Sofia, Bulgaria
| | - Agnes Nemeth
- Unit of Pulmonology, Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Manuel Gijón
- Pediatric Infectious Diseases Unit, Department of Pediatrics, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Cristina Calvo
- Pediatrics and Infectious Disease Unit, Hospital Universitario La Paz, Madrid, Spain
- Fundación Idipaz, CIBERINFEC ISCIII, Madrid, Spain
| | - Silvina Natalini
- Department of Pediatrics, Vaccine Unit Department, Hospital HM Puerta del Sur, Móstoles, Spain
| | - Teck-Hock Toh
- Clinical Research Centre & Department of Paediatrics, Hospital Sibu, Ministry of Health Malaysia, Sibu, Malaysia
| | - Sofie Deleu
- Janssen Research & Development, Beerse, Belgium.
| | - Bohang Chen
- Janssen Research & Development, Titusville, NJ, USA
| | - Sarah Rusch
- Janssen Research & Development, Beerse, Belgium
| | | | - Illse Leipoldt
- Janssen-Cilag Pharmaceutical South Africa, Durban North, South Africa
| | - Leen Vijgen
- Janssen Research & Development, Beerse, Belgium
| | | | | | | | - Mohamed Gamil
- Janssen Research & Development, Spring House, PA, USA
| | | |
Collapse
|
6
|
Yang Q, Xue B, Liu F, Lu Y, Tang J, Yan M, Wu Q, Chen R, Zhou A, Liu L, Liu J, Qu C, Wu Q, Fu M, Zhong J, Dong J, Chen S, Wang F, Zhou Y, Zheng J, Peng W, Shang J, Chen X. Farnesyltransferase inhibitor lonafarnib suppresses respiratory syncytial virus infection by blocking conformational change of fusion glycoprotein. Signal Transduct Target Ther 2024; 9:144. [PMID: 38853183 PMCID: PMC11163014 DOI: 10.1038/s41392-024-01858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of bronchiolitis and pneumonia in young children and the elderly. There are currently no approved RSV-specific therapeutic small molecules available. Using high-throughput antiviral screening, we identified an oral drug, the prenylation inhibitor lonafarnib, which showed potent inhibition of the RSV fusion process. Lonafarnib exhibited antiviral activity against both the RSV A and B genotypes and showed low cytotoxicity in HEp-2 and human primary bronchial epithelial cells (HBEC). Time-of-addition and pseudovirus assays demonstrated that lonafarnib inhibits RSV entry, but has farnesyltransferase-independent antiviral efficacy. Cryo-electron microscopy revealed that lonafarnib binds to a triple-symmetric pocket within the central cavity of the RSV F metastable pre-fusion conformation. Mutants at the RSV F sites interacting with lonafarnib showed resistance to lonafarnib but remained fully sensitive to the neutralizing monoclonal antibody palivizumab. Furthermore, lonafarnib dose-dependently reduced the replication of RSV in BALB/c mice. Collectively, lonafarnib could be a potential fusion inhibitor for RSV infection.
Collapse
Affiliation(s)
- Qi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fengjiang Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yongzhi Lu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jielin Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengrong Yan
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qiong Wu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ruyi Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Anqi Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lijie Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junjun Liu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Changbin Qu
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Qingxin Wu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiayi Zhong
- Guangzhou National Laboratory, Guangzhou, 510005, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jianwei Dong
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Sijie Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fan Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yuan Zhou
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou lnstitute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Wei Peng
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Jinsai Shang
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
7
|
Sake SM, Zhang X, Rajak MK, Urbanek-Quaing M, Carpentier A, Gunesch AP, Grethe C, Matthaei A, Rückert J, Galloux M, Larcher T, Le Goffic R, Hontonnou F, Chatterjee AK, Johnson K, Morwood K, Rox K, Elgaher WAM, Huang J, Wetzke M, Hansen G, Fischer N, Eléouët JF, Rameix-Welti MA, Hirsch AKH, Herold E, Empting M, Lauber C, Schulz TF, Krey T, Haid S, Pietschmann T. Drug repurposing screen identifies lonafarnib as respiratory syncytial virus fusion protein inhibitor. Nat Commun 2024; 15:1173. [PMID: 38332002 PMCID: PMC10853176 DOI: 10.1038/s41467-024-45241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infection in infants, older adults and the immunocompromised. Effective directly acting antivirals are not yet available for clinical use. To address this, we screen the ReFRAME drug-repurposing library consisting of 12,000 small molecules against RSV. We identify 21 primary candidates including RSV F and N protein inhibitors, five HSP90 and four IMPDH inhibitors. We select lonafarnib, a licensed farnesyltransferase inhibitor, and phase III candidate for hepatitis delta virus (HDV) therapy, for further follow-up. Dose-response analyses and plaque assays confirm the antiviral activity (IC50: 10-118 nM). Passaging of RSV with lonafarnib selects for phenotypic resistance and fixation of mutations in the RSV fusion protein (T335I and T400A). Lentiviral pseudotypes programmed with variant RSV fusion proteins confirm that lonafarnib inhibits RSV cell entry and that these mutations confer lonafarnib resistance. Surface plasmon resonance reveals RSV fusion protein binding of lonafarnib and co-crystallography identifies the lonafarnib binding site within RSV F. Oral administration of lonafarnib dose-dependently reduces RSV virus load in a murine infection model using female mice. Collectively, this work provides an overview of RSV drug repurposing candidates and establishes lonafarnib as a bona fide fusion protein inhibitor.
Collapse
Affiliation(s)
- Svenja M Sake
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Xiaoyu Zhang
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Manoj Kumar Rajak
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Melanie Urbanek-Quaing
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Antonia P Gunesch
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Christina Grethe
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Alina Matthaei
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Ronan Le Goffic
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | | | | | | | - Katharina Rox
- Department of Chemical Biology, Helmholtz Center of Infection Research, Braunschweig, Germany
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
| | - Walid A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-HZI, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Jiabin Huang
- Insitute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Wetzke
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
| | - Gesine Hansen
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Lung Research, Partner Site Hannover, BREATH, Hannover, Germany
| | - Nicole Fischer
- Insitute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Marie-Anne Rameix-Welti
- Université Paris-Saclay, Université de Versailles St. Quentin; UMR 1173 (2I), INSERM; Assistance Publique des Hôpitaux de Paris, Hôpital Ambroise Paré, Laboratoire de Microbiologie, DMU15, Versailles, France
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-HZI, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- Helmholtz International Lab for Anti-infectives, HZI, Braunschweig, Germany
| | - Elisabeth Herold
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
| | - Martin Empting
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-HZI, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas F Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck, Luebeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Luebeck-Borstel-Riems, Luebeck, Germany
| | - Sibylle Haid
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
- German Centre for Infection Research, Partner site Braunschweig-Hannover, Braunschweig, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
- Helmholtz International Lab for Anti-infectives, HZI, Braunschweig, Germany.
| |
Collapse
|
8
|
Zou G, Cao S, Gao Z, Yie J, Wu JZ. Current state and challenges in respiratory syncytial virus drug discovery and development. Antiviral Res 2024; 221:105791. [PMID: 38160942 DOI: 10.1016/j.antiviral.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections (LRTI) in young children and elderly people worldwide. Recent significant progress in our understanding of the structure and function of RSV proteins has led to the discovery of several clinical candidates targeting RSV fusion and replication. These include both the development of novel small molecule interventions and the isolation of potent monoclonal antibodies. In this review, we summarize the state-of-the-art of RSV drug discovery, with a focus on the characteristics of the candidates that reached the clinical stage of development. We also discuss the lessons learned from failed and discontinued clinical developments and highlight the challenges that remain for development of RSV therapies.
Collapse
Affiliation(s)
- Gang Zou
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China.
| | - Sushan Cao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Zhao Gao
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Junming Yie
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jim Zhen Wu
- Shanghai Ark Biopharmaceutical Co., Ltd, Shanghai, 201203, China
| |
Collapse
|
9
|
Nilsson AC, Pullman J, Napora P, Luz K, Gupta A, Draghi J, Guzman Romero AK, Aggarwal N, Petrova G, Ianus J, Vijgen L, Scott J, Sinha R, Rusch S, Huntjens D, Bertzos K, Stevens M. A pilot phase 2a, randomized, double-blind, placebo-controlled study to explore the antiviral activity, clinical outcomes, safety, and tolerability of rilematovir at two dose levels in non-hospitalized adults with respiratory syncytial virus infection. Clin Microbiol Infect 2023; 29:1320-1327. [PMID: 37422079 DOI: 10.1016/j.cmi.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
OBJECTIVES To assess the antiviral effect, clinical outcomes, and safety of the respiratory syncytial virus (RSV) fusion inhibitor rilematovir in non-hospitalized RSV-infected adults. METHODS This phase 2a, double-blind, multicentre study randomly assigned RSV-positive adult outpatients ≤5 days from symptom onset 1:1:1 to receive rilematovir 500 mg, 80 mg, or placebo once-daily for 7 days. Antiviral effect was assessed by RSV RNA viral load (VL), measured by quantitative RT-PCR, and Kaplan-Meier (KM) estimates of time to undetectable VL. Clinical course was assessed by KM estimates of median time to resolution of key RSV symptoms assessed through patient-reported outcomes. RESULTS RSV-positive patients (n = 72) were randomly assigned; 66 had confirmed RSV infection and received rilematovir 500 mg (n = 23), 80 mg (n = 21) or placebo (n = 22). Differences versus placebo in mean RSV RNA VL area under the curve (90% CI) through days 3, 5 and 8, respectively, were 0.09 (-0.837; 1.011), -0.10 (-2.171; 1.963), and -1.03 (-4.746; 2.682) log10 copies.day/mL for rilematovir 500 mg, and 1.25 (0.291; 2.204), 2.53 (0.430; 4.634), and 3.85 (0.097; 7.599) log10 copies.day/mL for rilematovir 80 mg. KM estimates of median (90% CI) time-to-first confirmed undetectable VL were 5.9 (3.85; 6.90), 8.0 (6.86; 12.80) and 7.0 (6.62; 10.88) days and 5.7 (2.93; 7.01), 8.1 (6.74; 12.80) and 7.9 (6.62; 11.74) days in patients with symptom onset ≤3 days, for rilematovir 500 mg, 80 mg, and placebo, respectively. KM estimates of median (90% CI) time to resolution of key RSV symptoms were 7.1 (5.03; 11.43), 7.6 (5.93; 8.32), and 9.6 (5.95; 14.00) days for rilematovir 500 mg, 80 mg, and placebo, respectively; and in patients with symptom onset ≤3 days, median 8.0, 7.6, and 11.8 days, respectively. DISCUSSION Rilematovir use, initiated early, suggests a potential clinical benefit in RSV-infected adults, with data supporting development of RSV therapeutic options. TRIAL REGISTRATION This study is registered with clinicaltrials.gov (NCT03379675).
Collapse
Affiliation(s)
- Anna C Nilsson
- Infectious Disease Research Unit, SUS Malmö, Lund University, Lund, Sweden
| | | | | | - Kleber Luz
- Federal University of Rio Grande do Norte, Campus Universitário - Lagoa Nova, Natal, RN, Brazil
| | - Anil Gupta
- Albion Finch Medical Centre, Etobicoke, ON, Canada
| | - Jorge Draghi
- Centro de Investigacion Clinica Aplicada, Hospital Regional Español, Bahía Blanca, Provincia de Buenos Aires, Argentina
| | | | | | | | | | - Leen Vijgen
- Janssen Research & Development, Beerse, Belgium
| | - Jane Scott
- Janssen Global Services, High Wycombe, Buckinghamshire, UK
| | - Rekha Sinha
- Janssen Pharmaceuticals, Titusville, NJ, USA.
| | - Sarah Rusch
- Janssen Research & Development, Beerse, Belgium
| | | | | | | |
Collapse
|
10
|
Reina J, Iglesias C. [EDP-938, a new antiviral with inhibitory activity against the nucleoprotein of the respiratory syncytial virus]. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2023; 36:26-29. [PMID: 36401806 PMCID: PMC9910671 DOI: 10.37201/req/096.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The absence of an effective vaccine against respiratory syncytial virus (RSV) has led to the development of various drugs with the ability to inhibit or block its replicative activity. The first generation, called fusion inhibitors, bind to the protein on the viral surface and prevent the virus from binding and entering the cell. However, its low efficacy has determined the start of studies with second-generation compounds capable of binding or blocking the nucleoprotein (N); most of these compounds are analogs of 1,4-benzodiazepines. EDP-938 has shown high efficacy against RSV. The first trials in humans have shown that this antiviral is rapidly absorbed after oral administration and has a half-life of between 11-18 hours Administration for seven days of multiple oral doses of up to 600 mg/day or 300 mg/day/twice a day, there were hardly any significant adverse effects and the viral load in the lower respiratory tract decreased significantly.
Collapse
Affiliation(s)
- Jordi Reina
- Correspondencia: Jordi Reina Unidad de Virología, Servicio de Microbiología, Hospital Universitario Son Espases, Facultad de Medicina (UIB). Carretera Valldemossa 79, 07120 Palma de Mallorca E-mail:
| | | |
Collapse
|
11
|
Bergeron HC, Kauvar LM, Tripp RA. Anti-G protein antibodies targeting the RSV G protein CX3C chemokine region improve the interferon response. Ther Adv Infect Dis 2023; 10:20499361231161157. [PMID: 36938145 PMCID: PMC10017941 DOI: 10.1177/20499361231161157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/01/2023] [Indexed: 03/15/2023] Open
Abstract
Background Respiratory syncytial virus (RSV) is a poor inducer of antiviral interferon (IFN) responses which result in incomplete immunity and RSV disease. Several RSV proteins alter antiviral responses, including the non-structural proteins (NS1, NS2) and the major viral surface proteins, that is, fusion (F) and attachment (G) proteins. The G protein modifies the host immune response to infection linked in part through a CX3 C chemokine motif. Anti-G protein monoclonal antibodies (mAbs), that is, clones 3D3 and 2D10 that target the G protein CX3C chemokine motif can neutralize RSV and inhibit G protein-CX3CR1 mediated chemotaxis. Objectives Determine how monoclonal antibodies against the RSV F and G proteins modify the type I and III IFN responses to RSV infection. Design As the G protein CX3 C motif is implicated in IFN antagonism, we evaluated two mAbs that block G protein CX3C-CX3CR1 interaction and compared responses to isotype mAb control using a functional cellular assay and mouse model. Methods Mouse lung epithelial cells (MLE-15 cells) and BALB/c mice were infected with RSV Line19 F following prophylactic mAb treatment. Cell supernatant or bronchoalveolar lavage fluid (BALF) were assayed for types I and III IFNs. Cells were interrogated for changes in IFN-related gene expression. Results Treatment with an anti-G protein mAb (3D3) resulted in improved IFN responses compared with isotype control following infection with RSV, partially independently of neutralization, and this was linked to upregulated SOCS1 expression. Conclusions These findings show that anti-G protein antibodies improve the protective early antiviral response, which has important implications for vaccine and therapeutic design. Plain Language Summary RSV is a leading cause of respiratory disease in infants and the elderly. The only Food and Drug Administration-approved prophylactic treatment is limited to an anti-F protein monoclonal antibody (mAb), that is, palivizumab which has modest efficacy against RSV disease. Accumulating evidence suggests that targeting the RSV attachment (G) protein may provide improved protection from RSV disease. It is known that the G protein is an IFN antagonist, and IFN has been shown to be protective against RSV disease. In this study, we compared IFN responses in mouse lung epithelial (MLE-15) cells and in mice infected with RSV Line19 F treated with anti-G protein or anti-F protein mAbs. The levels of type I and III IFNs were determined. Anti-G protein mAbs improved the levels of IFNs compared with isotype-treated controls. These findings support the concept that anti-G protein mAbs mediate improved IFN responses against RSV disease, which may enable improved treatment of RSV infections.
Collapse
Affiliation(s)
- Harrison C. Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
12
|
Respiratory Syncytial Virus Two-Step Infection Screen Reveals Inhibitors of Early and Late Life Cycle Stages. Antimicrob Agents Chemother 2022; 66:e0103222. [PMID: 36346232 PMCID: PMC9765014 DOI: 10.1128/aac.01032-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) infection is a leading cause of severe respiratory tract infections. Effective, directly acting antivirals against hRSV are not available. We aimed to discover new and chemically diverse candidates to enrich the hRSV drug development pipeline. We used a two-step screen that interrogates compound efficacy after primary infection and a consecutive virus passaging. We resynthesized selected hit molecules and profiled their activities with hRSV lentiviral pseudotype cell entry, replicon, and time-of-addition assays. The breadth of antiviral activity was tested against recent RSV clinical strains and human coronavirus (hCoV-229E), and in pseudotype-based entry assays with non-RSV viruses. Screening 6,048 molecules, we identified 23 primary candidates, of which 13 preferentially scored in the first and 10 in the second rounds of infection, respectively. Two of these molecules inhibited hRSV cell entry and selected for F protein resistance within the fusion peptide. One molecule inhibited transcription/replication in hRSV replicon assays, did not select for phenotypic hRSV resistance and was active against non-hRSV viruses, including hCoV-229E. One compound, identified in the second round of infection, did not measurably inhibit hRSV cell entry or replication/transcription. It selected for two coding mutations in the G protein and was highly active in differentiated BCi-NS1.1 lung cells. In conclusion, we identified four new hRSV inhibitor candidates with different modes of action. Our findings build an interesting platform for medicinal chemistry-guided derivatization approaches followed by deeper phenotypical characterization in vitro and in vivo with the aim of developing highly potent hRSV drugs.
Collapse
|
13
|
Protein and Peptide Substances in the Treatment of Respiratory Syncytial Infection: Current State. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072263. [PMID: 35408661 PMCID: PMC9000545 DOI: 10.3390/molecules27072263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/05/2022]
Abstract
Respiratory syncytial virus infection (RSVI) is an acute medical and social problem in many countries globally. Infection is most dangerous for infants under one year old and the elderly. Despite its epidemiological relevance, only two drugs are registered for clinical use against RSVI: ribavirin (approved in a limited number of countries due to side effects) and palivizumab (Synagis), which is intended only for the prevention, but not the treatment, of infection. Currently, various research groups are searching for new drugs against RSV, with three main areas of research: small molecules, polymeric drugs (proteins and peptides), and plant extracts. This review is devoted to currently developed protein and peptide anti-RSV drugs.
Collapse
|
14
|
Rios Guzman E, Hultquist JF. Clinical and biological consequences of respiratory syncytial virus genetic diversity. Ther Adv Infect Dis 2022; 9:20499361221128091. [PMID: 36225856 PMCID: PMC9549189 DOI: 10.1177/20499361221128091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common etiological agents of global acute respiratory tract infections with a disproportionate burden among infants, individuals over the age of 65, and immunocompromised populations. The two major subtypes of RSV (A and B) co-circulate with a predominance of either group during different epidemic seasons, with frequently emerging genotypes due to RSV's high genetic variability. Global surveillance systems have improved our understanding of seasonality, disease burden, and genomic evolution of RSV through genotyping by sequencing of attachment (G) glycoprotein. However, the integration of these systems into international infrastructures is in its infancy, resulting in a relatively low number (~2200) of publicly available RSV genomes. These limitations in surveillance hinder our ability to contextualize RSV evolution past current canonical attachment glycoprotein (G)-oriented understanding, thus resulting in gaps in understanding of how genetic diversity can play a role in clinical outcome, therapeutic efficacy, and the host immune response. Furthermore, utilizing emerging RSV genotype information from surveillance and testing the impact of viral evolution using molecular techniques allows us to establish causation between the clinical and biological consequences of arising genotypes, which subsequently aids in informed vaccine design and future vaccination strategy. In this review, we aim to discuss the findings from current molecular surveillance efforts and the gaps in knowledge surrounding the consequence of RSV genetic diversity on disease severity, therapeutic efficacy, and RSV-host interactions.
Collapse
Affiliation(s)
- Estefany Rios Guzman
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - Judd F. Hultquist
- Robert H. Lurie Medical Research Center,
Northwestern University, 9-141, 303 E. Superior St., Chicago, IL 60611,
USA
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
EDP-938, a novel nucleoprotein inhibitor of respiratory syncytial virus, demonstrates potent antiviral activities in vitro and in a non-human primate model. PLoS Pathog 2021; 17:e1009428. [PMID: 33720995 PMCID: PMC7993833 DOI: 10.1371/journal.ppat.1009428] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/25/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
EDP-938 is a novel non-fusion replication inhibitor of respiratory syncytial virus (RSV). It is highly active against all RSV-A and B laboratory strains and clinical isolates tested in vitro in various cell lines and assays, with half-maximal effective concentrations (EC50s) of 21, 23 and 64 nM against Long (A), M37 (A) and VR-955 (B) strains, respectively, in the primary human bronchial epithelial cells (HBECs). EDP-938 inhibits RSV at a post-entry replication step of the viral life cycle as confirmed by time-of-addition study, and the activity appears to be mediated by viral nucleoprotein (N). In vitro resistance studies suggest that EDP-938 presents a higher barrier to resistance compared to viral fusion or non-nucleoside L polymerase inhibitors with no cross-resistance observed. Combinations of EDP-938 with other classes of RSV inhibitors lead to synergistic antiviral activity in vitro. Finally, EDP-938 has also been shown to be efficacious in vivo in a non-human primate model of RSV infection. Respiratory syncytial virus (RSV) is a ubiquitous viral pathogen which inflicts a significant healthcare burden and is responsible for thousands of deaths annually. Currently no vaccine or targeted therapeutic exists. This work characterizes a newly discovered small molecule inhibitor of the virus, EDP-938, whose activity is mediated through the viral nucleoprotein. EDP-938 has potent in vitro activities against laboratory strains and clinical isolates of the virus, presents a high-barrier to resistance, can work synergistically with other known fusion or L protein inhibitors, and displays strong in vivo efficacy in a non-human primate model for RSV infection. EDP-938 is currently under evaluation in Phase 2 clinical studies.
Collapse
|
16
|
Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2021; 57:49-107. [PMID: 34744210 PMCID: PMC8563371 DOI: 10.1016/bs.armc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite considerable progress in the development of antiviral drugs, among which anti-immunodeficiency virus (HIV) and anti-hepatitis C virus (HCV) medications can be considered real success stories, many viral infections remain without an effective treatment. This not only applies to infectious outbreaks caused by zoonotic viruses that have recently spilled over into humans such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), but also ancient viral diseases that have been brought under control by vaccination such as variola (smallpox), poliomyelitis, measles, and rabies. A largely unsolved problem are endemic respiratory infections due to influenza, respiratory syncytial virus (RSV), and rhinoviruses, whose associated morbidity will likely worsen with increasing air pollution. Furthermore, climate changes will expose industrialized countries to a dangerous resurgence of viral hemorrhagic fevers, which might also become global infections. Herein, we summarize the recent progress that has been made in the search for new antivirals against these different threats that the world population will need to confront with increasing frequency in the next decade.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,Corresponding author:
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Pharmacological Characterization of TP0591816, a Novel Macrocyclic Respiratory Syncytial Virus Fusion Inhibitor with Antiviral Activity against F Protein Mutants. Antimicrob Agents Chemother 2020; 65:AAC.01407-20. [PMID: 33046486 DOI: 10.1128/aac.01407-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/01/2020] [Indexed: 11/20/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in early childhood. However, no vaccines have yet been approved for prevention of RSV infection, and the treatment options are limited. Therefore, development of effective and safe anti-RSV drugs is needed. In this study, we evaluated the antiviral activity and mechanism of action of a novel macrocyclic anti-RSV compound, TP0591816. TP0591816 showed significant antiviral activities against both subgroup A and subgroup B RSV, while exerting no cytotoxicity. Notably, the antiviral activity of TP0591816 was maintained against a known fusion inhibitor-resistant RSV strain with a mutation in the cysteine-rich region or in heptad repeat B. Results of a time-of-addition assay and a temperature shift assay indicated that TP0591816 inhibited fusion of RSV with the cell membrane during viral entry. In addition, TP0591816 added after cell infection also inhibited cell-cell fusion. A TP0591816-resistant virus strain selected by serial passage had an L141F mutation, but no mutation in the cysteine-rich region or in heptad repeat B in the fusion (F) protein. Treatment with TP0591816 reduced lung virus titers in a dose-dependent manner in a mouse model of RSV infection. Furthermore, the estimated effective dose of TP0591816 for use against F protein mutants was thought to be clinically realistic and potentially tolerable. Taken together, these findings suggest that TP0591816 is a promising novel candidate for the treatment of resistant RSV infection.
Collapse
|
18
|
Targeting the Respiratory Syncytial Virus N 0-P Complex with Constrained α-Helical Peptides in Cells and Mice. Antimicrob Agents Chemother 2020; 64:AAC.00717-20. [PMID: 32660994 PMCID: PMC7508628 DOI: 10.1128/aac.00717-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. Respiratory syncytial virus (RSV) is the main cause of severe respiratory infection in young children worldwide, and no therapies have been approved for the treatment of RSV infection. Data from recent clinical trials of fusion or L polymerase inhibitors for the treatment of RSV-infected patients revealed the emergence of escape mutants, highlighting the need for the discovery of inhibitors with novel mechanisms of action. Here we describe stapled peptides derived from the N terminus of the phosphoprotein (P) that act as replication inhibitors. We demonstrate that these peptides inhibit RSV replication in vitro and in vivo by preventing the formation of the N0-P complex. The present strategy provides a novel means of targeting RSV replication with constrained macrocyclic peptides or small molecules and is broadly applicable to other viruses of the Mononegavirales order.
Collapse
|
19
|
Aggarwal M, Plemper RK. Structural Insight into Paramyxovirus and Pneumovirus Entry Inhibition. Viruses 2020; 12:E342. [PMID: 32245118 PMCID: PMC7150754 DOI: 10.3390/v12030342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/04/2023] Open
Abstract
Paramyxoviruses and pneumoviruses infect cells through fusion (F) protein-mediated merger of the viral envelope with target membranes. Members of these families include a range of major human and animal pathogens, such as respiratory syncytial virus (RSV), measles virus (MeV), human parainfluenza viruses (HPIVs), and highly pathogenic Nipah virus (NiV). High-resolution F protein structures in both the metastable pre- and the postfusion conformation have been solved for several members of the families and a number of F-targeting entry inhibitors have progressed to advanced development or clinical testing. However, small-molecule RSV entry inhibitors have overall disappointed in clinical trials and viral resistance developed rapidly in experimental settings and patients, raising the question of whether the available structural information may provide a path to counteract viral escape through proactive inhibitor engineering. This article will summarize current mechanistic insight into F-mediated membrane fusion and examine the contribution of structural information to the development of small-molecule F inhibitors. Implications are outlined for future drug target selection and rational drug engineering strategies.
Collapse
Affiliation(s)
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|