1
|
Kim M, Mahmood M, Estes LL, Wilson JW, Martin NJ, Marcus JE, Mittal A, O'Connell CR, Shah A. A narrative review on antimicrobial dosing in adult critically ill patients on extracorporeal membrane oxygenation. Crit Care 2024; 28:326. [PMID: 39367501 PMCID: PMC11453026 DOI: 10.1186/s13054-024-05101-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024] Open
Abstract
The optimal dosing strategy of antimicrobial agents in critically ill patients receiving extracorporeal membrane oxygenation (ECMO) is unknown. We conducted comprehensive review of existing literature on effect of ECMO on pharmacokinetics and pharmacodynamics of antimicrobials, including antibacterials, antifungals, and antivirals that are commonly used in critically ill patients. We aim to provide practical guidance to clinicians on empiric dosing strategy for these patients. Finally, we discuss importance of therapeutic drug monitoring, limitations of current literature, and future research directions.
Collapse
Affiliation(s)
- Myeongji Kim
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Maryam Mahmood
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lynn L Estes
- Department of Pharmacy, Mayo Clinic, Rochester, MN, USA
| | - John W Wilson
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Joseph E Marcus
- Department of Medicine, Brooke Army Medical Center, Joint Base San Antonio-Fort Sam Houston, Fort Sam Houston, TX, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ankit Mittal
- Department of Infectious Diseases, AIG Hospitals, Hyderabad, India
| | | | - Aditya Shah
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Hanberg P, Rasmussen HC, Bue M, Stilling M, Jørgensen AR, Petersen EK, Lilleøre JG, Hvistendahl MA, Bille J, Klug TE. Penicillin concentrations in oropharyngeal and frontal sinus tissue following enteral and intravenous administration measured by microdialysis in a porcine model. Eur J Pharm Sci 2024; 201:106859. [PMID: 39038689 DOI: 10.1016/j.ejps.2024.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Penicillin may be administered enterally or intravenously for the treatment of bacterial infections within the oropharynx and the frontal sinuses. We aimed to assess and compare penicillin concentrations in oropharyngeal and frontal sinus tissues following enteral and intravenous administration in a porcine model. METHOD Twelve pigs were randomized to receive either enteral (0.8 g Penicillin V) or intravenous (1.2 g Penicillin G) penicillin. Microdialysis was used for sampling in oropharyngeal and frontal sinus tissues during a six-hour dosing interval. In addition, plasma samples were collected. The primary endpoints were time with drug concentration above the minimal inhibitory concentration (T>MIC) for two MIC targets: 0.125 (low target) and 0.5 (high target) μg/mL (covering Group A Streptococci, Fusobactarium necrophorum, Streptococcus pneumoniae and Hemophilus influenza) and attainment of these treatment targets for ≥50 % T>MIC. RESULTS For both the low and high MIC targets, intravenous administration resulted in higher T>MIC in oropharyngeal and frontal sinus tissues compared to enteral administration. In oropharyngeal tissue, the treatment target (≥50 % T>MIC) was achieved for both the low target (96 %) and high target (68 %) when penicillin was administrated intravenously. In frontal sinus tissue, the treatment target was reached for the low target (70 %), but not the high target (35 %) when administered intravenously. None of the two tissues reached the treatment targets when penicillin was administered enterally. CONCLUSION Intravenous administrated penicillin in standard dosage is superior to enteral administration of penicillin in standard dosage in achieving clinically important T>MIC as the majority of targets were achieved following intravenously administration, while none of the targets were achieved following enteral administration. These results support the general notion of higher tissue concentrations following intravenous compared to enteral administration.
Collapse
Affiliation(s)
- Pelle Hanberg
- Department of Otorhinolaryngology, Head and Neck Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus Universitetshospital, FORUM, Palle Juul-Jensens Boulevard 11, 8200, Aarhus N, Denmark; Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus N, Denmark; Department of Otorhinolaryngology, Head and Neck Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.
| | | | - Mats Bue
- Department of Clinical Medicine, Aarhus Universitetshospital, FORUM, Palle Juul-Jensens Boulevard 11, 8200, Aarhus N, Denmark; Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus N, Denmark; Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| | - Maiken Stilling
- Department of Clinical Medicine, Aarhus Universitetshospital, FORUM, Palle Juul-Jensens Boulevard 11, 8200, Aarhus N, Denmark; Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus N, Denmark; Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| | - Andrea René Jørgensen
- Department of Clinical Medicine, Aarhus Universitetshospital, FORUM, Palle Juul-Jensens Boulevard 11, 8200, Aarhus N, Denmark; Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus N, Denmark
| | - Elisabeth Krogsgaard Petersen
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus N, Denmark
| | - Johanne Gade Lilleøre
- Department of Clinical Medicine, Aarhus Universitetshospital, FORUM, Palle Juul-Jensens Boulevard 11, 8200, Aarhus N, Denmark; Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus N, Denmark
| | - Magnus A Hvistendahl
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus N, Denmark
| | - Jesper Bille
- Department of Otorhinolaryngology, Head and Neck Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Tejs Ehlers Klug
- Department of Otorhinolaryngology, Head and Neck Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus Universitetshospital, FORUM, Palle Juul-Jensens Boulevard 11, 8200, Aarhus N, Denmark
| |
Collapse
|
3
|
Jørgensen AR, Hanberg P, Bue M, Hartig-Andreasen C, Jørgensen NP, Stilling M. Local cefuroxime tissue concentrations in the hand after single and repeated administration to 16 patients undergoing trapeziectomy: a randomized controlled trial. Acta Orthop 2024; 95:498-504. [PMID: 39240016 PMCID: PMC11378730 DOI: 10.2340/17453674.2024.41343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/09/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND AND PURPOSE The duration of antibiotic coverage in hand tissues during surgery is unknown. We investigated the time the free concentration of cefuroxime was above the minimal inhibitory concentration (fT>MIC) of 4 μg/mL in hand tissues after single and repeated administration. METHODS In a prospective, unblinded randomized study 16 patients (13 female, age range 51-80 years) underwent trapeziectomy. Microdialysis catheters were placed in the metacarpal bone (primary effect parameter), synovial sheath, and subcutaneous tissue. Patients were randomized to postoperative administration of either intravenous single administration of cefuroxime (1,500 mg) (Group 1, n = 8) or repeated dosing (2 x 1,500 mg) with a 4 h interval (Group 2, n = 8). Samples were taken over 8 h. RESULTS The fT>MIC of 4 μg/mL was found to be significantly longer in the metacarpal bone in Group 2 compared with Group 1 with a mean difference of 199 min (95% confidence interval 158-239). The same trend was evident in the remaining compartments. A concentration of 4 μg/mL was reached in all compartments in both groups within a mean time of 6 min (range 0-27 min). In Group 1, the mean concentrations decreased below 4 μg/mL between 3 h 59 min and 5 h 38 min. CONCLUSION The fT>MIC was longer after repeated administration compared with single administration in all compartments. A single administration of cefuroxime 1,500 mg provided antimicrobial hand tissue coverage for a minimum of 3 h 59 min. Cefuroxime administration in hand surgeries should be done minimum 27 min prior to incision to achieve sufficient coverage in all individuals. Cefuroxime readministration should be considered in hand surgeries lasting longer than 4 h from time of administration.
Collapse
Affiliation(s)
- Andrea René Jørgensen
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Orthopaedic Research Unit, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus
| | - Pelle Hanberg
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Orthopaedic Research Unit, Aarhus University Hospital, Aarhus
| | - Mats Bue
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Orthopaedic Research Unit, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus; Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus
| | | | | | - Maiken Stilling
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Orthopaedic Research Unit, Aarhus University Hospital, Aarhus; Department of Clinical Medicine, Aarhus University, Aarhus; Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus
| |
Collapse
|
4
|
Gras-Martín L, Plaza-Diaz A, Zarate-Tamames B, Vera-Artazcoz P, Torres OH, Bastida C, Soy D, Ruiz-Ramos J. Risk Factors Associated with Antibiotic Exposure Variability in Critically Ill Patients: A Systematic Review. Antibiotics (Basel) 2024; 13:801. [PMID: 39334976 PMCID: PMC11428266 DOI: 10.3390/antibiotics13090801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
(1) Background: Knowledge about the behavior of antibiotics in critically ill patients has been increasing in recent years. Some studies have concluded that a high percentage may be outside the therapeutic range. The most likely cause of this is the pharmacokinetic variability of critically ill patients, but it is not clear which factors have the greatest impact. The aim of this systematic review is to identify risk factors among critically ill patients that may exhibit significant pharmacokinetic alterations, compromising treatment efficacy and safety. (2) Methods: The search included the PubMed, Web of Science, and Embase databases. (3) Results: We identified 246 observational studies and ten clinical trials. The most studied risk factors in the literature were renal function, weight, age, sex, and renal replacement therapy. Risk factors with the greatest impact included renal function, weight, renal replacement therapy, age, protein or albumin levels, and APACHE or SAPS scores. (4) Conclusions: The review allows us to identify which critically ill patients are at a higher risk of not reaching therapeutic targets and helps us to recognize the extensive number of risk factors that have been studied, guiding their inclusion in future studies. It is essential to continue researching, especially in real clinical practice and with clinical outcomes.
Collapse
Affiliation(s)
- Laura Gras-Martín
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Adrián Plaza-Diaz
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
| | - Borja Zarate-Tamames
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
| | - Paula Vera-Artazcoz
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Intensive Care Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Olga H Torres
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Geriatric Unit, Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
| | - Carla Bastida
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, Universitat de Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Dolors Soy
- Pharmacy Department, Division of Medicines, Hospital Clinic of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutical Chemistry, Faculty of Pharmacy, Universitat de Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Jesús Ruiz-Ramos
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sat Quintí 77-79, 08041 Barcelona, Spain
- Department of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
5
|
Hansel J, Mannan F, Robey R, Kumarendran M, Bladon S, Mathioudakis AG, Ogungbenro K, Dark P, Felton TW. Covariates in population pharmacokinetic studies of critically ill adults receiving β-lactam antimicrobials: a systematic review and narrative synthesis. JAC Antimicrob Resist 2024; 6:dlae030. [PMID: 38410250 PMCID: PMC10895699 DOI: 10.1093/jacamr/dlae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024] Open
Abstract
Introduction Population pharmacokinetic studies of β-lactam antimicrobials in critically ill patients derive models that inform their dosing. In non-linear mixed-effects modelling, covariates are often used to improve model fit and explain variability. We aimed to investigate which covariates are most commonly assessed and which are found to be significant, along with global patterns of publication. Methods We conducted a systematic review, searching MEDLINE, Embase, CENTRAL and Web of Science on 01 March 2023, including studies of critically ill adults receiving β-lactam antimicrobials who underwent blood sampling for population pharmacokinetic studies. We extracted and categorized all reported covariates and assessed reporting quality using the ClinPK checklist. Results Our search identified 151 studies with 6018 participants. Most studies reported observational cohorts (120 studies, 80%), with the majority conducted in high-income settings (136 studies, 90%). Of the 1083 identified covariate instances, 237 were unique; the most common categories were patient characteristics (n = 404), biomarkers (n = 206) and physiological parameters (n = 163). Only seven distinct commonly reported covariates (CLCR, weight, glomerular filtration rate, diuresis, need for renal replacement, serum albumin and C-reactive protein) were significant more than 20% of the time. Conclusions Covariates are most commonly chosen based on biological plausibility, with patient characteristics and biomarkers the most frequently investigated. We developed an openly accessible database of reported covariates to aid investigators with covariate selection when designing population pharmacokinetic studies. Novel covariates, such as sepsis subphenotypes, have not been explored yet, leaving a research gap for future work.
Collapse
Affiliation(s)
- Jan Hansel
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Acute Intensive Care Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Fahmida Mannan
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Rebecca Robey
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mary Kumarendran
- Acute Intensive Care Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Siân Bladon
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Alexander G Mathioudakis
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| | - Kayode Ogungbenro
- Division of Pharmacy & Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paul Dark
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Critical Care Unit, Northern Care Alliance NHS Foundation Trust, Salford Care Organisation, Greater Manchester M6 8HD, UK
| | - Timothy W Felton
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Acute Intensive Care Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
| |
Collapse
|
6
|
Hermans E, Devreese M, Zeitlinger M, Dhont E, Verougstraete N, Colman R, Vande Walle J, De Paepe P, De Cock PA. Microdialysis as a safe and feasible method to study target-site piperacillin-tazobactam disposition in septic piglets and children. Int J Antimicrob Agents 2023; 62:106970. [PMID: 37716576 DOI: 10.1016/j.ijantimicag.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/17/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVES Knowledge on the tissue penetration of piperacillin-tazobactam in children with sepsis is lacking. In this study, the feasibility and performance of microdialysis experiments were explored in septic piglets and children as part of a translational research project. METHODS Multiple-day microdialysis investigations were performed in muscle tissue of 22 piglets (of which 11 were septic) and 6 children with sepsis. An in vitro experiment preceded the (pre)clinical trials to derive optimal experimental settings and calibration technique. Linear mixed-effects models quantified the impact of sepsis on relative recovery (RR) and intercatheter, interindividual, interoccasion, and residual variability. RESULTS In vivo microdialysis was well tolerated in piglets and children, with no significant adverse events reported. Using identical experimental settings, lower RR values were recorded in healthy and septic piglets (range: piperacillin, 17.2-29.1% and tazobactam, 23.5-29.1%) compared with the in vitro experiment (piperacillin, 43.3% and tazobactam, 55.3%), and there were unacceptably low values in children with sepsis (<10%). As a result, methodological changes were made in the pediatric trial. Realistic tissue concentration-time curves were derived in piglets and children. In piglets, sepsis reduced the RR. The greatest contributors to RR variability were residual (>40%) and interoccasion (>30%) variability. The internal standard method was the preferred calibration technique in both piglets and children. CONCLUSIONS Microdialysis is a safe and applicable method for the measurement of tissue drug concentrations in piglets and children. This study demonstrated the impact of experimental settings, sepsis, and target population on individual RR.
Collapse
Affiliation(s)
- Eline Hermans
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium; Department of Pediatrics, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | - Evelyn Dhont
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Pediatric Intensive Care, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Nick Verougstraete
- Department of Laboratory Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Roos Colman
- Biostatistics Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Johan Vande Walle
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Pediatric Nephrology, SafePeDrug, Erknet center, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Peter De Paepe
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Emergency Medicine, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Pieter A De Cock
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Pediatric Intensive Care, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium; Department of Pharmacy, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
| |
Collapse
|
7
|
Ullah S, Ursli M, Fuhr U, Wiesholzer M, Kussmann M, Poeppl W, Zeitlinger M, Taubert M. Population pharmacokinetics of meropenem in patients undergoing automated peritoneal dialysis. Perit Dial Int 2023; 43:402-410. [PMID: 37131320 DOI: 10.1177/08968608231167237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Meropenem is a second-line agent for the treatment of peritoneal dialysis-associated peritonitis (PD peritonitis), while information on pharmacokinetics (PK) of intraperitoneal (i.p.) meropenem is limited in this patient group. The objective of the present evaluation was to assess a pharmacokinetic rationale for the selection of meropenem doses in automated PD (APD) patients based on population PK modelling. METHODS Data were available from a PK study in six patients undergoing APD who received a single 500 mg dose of meropenem intravenous or i.p. A population PK model was developed for plasma and dialysate concentrations (n = 360) using Monolix. Monte Carlo simulations were carried out to assess the probability of achieving meropenem concentrations above minimum inhibitory concentrations (MICs) of 2 and 8 mg/L, representing susceptible and less susceptible pathogens respectively, for at least 40% of the dosing interval (T >MIC ≥ 40%). RESULTS A two-compartment model for each plasma and dialysate concentrations with one transit compartment for the transfer from plasma to dialysate fluid described the data well. An i.p. dose of 250 and 750 mg, for an MIC of 2 and 8 mg/L respectively, was sufficient to attain the pharmacokinetic/pharmacodynamic target (T >MIC ≥ 40%) in more than 90% patients in plasma and dialysate. Additionally, the model predicted that no relevant meropenem accumulation in plasma and/or peritoneal fluid would occur with prolonged treatment. CONCLUSION Our results suggest that an i.p. dose of 750 mg daily is optimal for pathogens with an MIC 2-8 mg/L in APD patients.
Collapse
Affiliation(s)
- Sami Ullah
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Germany
| | - Martin Ursli
- Department of Internal Medicine I, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Austria
| | - Uwe Fuhr
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Germany
| | - Martin Wiesholzer
- Department of Internal Medicine I, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, Austria
| | - Manuel Kussmann
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Austria
| | - Wolfgang Poeppl
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Austria
- Department of Dermatology and Tropical Medicine, Military Medical Cluster East, Austrian Armed Forces, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel, Austria
| | - Max Taubert
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Germany
| |
Collapse
|
8
|
Slater J, Stilling M, Hanberg P, Vittrup S, Bruun Knudsen M, Kousgaard Tøstesen S, Olsen Kipp J, Bue M. Concentrations of Co-Administered Meropenem and Vancomycin in Spinal Tissues Relevant for the Treatment of Pyogenic Spondylodiscitis-An Experimental Microdialysis Study. Antibiotics (Basel) 2023; 12:antibiotics12050907. [PMID: 37237810 DOI: 10.3390/antibiotics12050907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Co-administration of meropenem and vancomycin has been suggested as a systemic empirical antibiotic treatment of pyogenic spondylodiscitis. The aim of this study was, in an experimental porcine model, to evaluate the percentage of an 8-h dosing interval of co-administered meropenem and vancomycin concentrations above the relevant minimal inhibitory concentrations (MICs) (%T>MIC) in spinal tissues using microdialysis. Eight female pigs (Danish Landrace breed, weight 78-82 kg) received a single-dose bolus infusion of 1000 mg of meropenem and 1000 mg vancomycin simultaneously before microdialysis sampling. Microdialysis catheters were applied in the third cervical (C3) vertebral cancellous bone, the C3-C4 intervertebral disc, paravertebral muscle, and adjacent subcutaneous tissue. Plasma samples were obtained for reference. The main finding was that for both drugs, the %T>MICs were highly reliant on the applied MIC target, but were heterogeneous across all targeted tissues, ranging from 25-90% for meropenem, and 10-100% for vancomycin. For both MIC targets, the highest %T>MIC was demonstrated in plasma, and the lowest %T>MIC was demonstrated in the vertebral cancellous bone for meropenem, and in the intervertebral disc for vancomycin. When indicated, our findings may suggest a more aggressive dosing approach of both meropenem and vancomycin to increase the spinal tissue concentrations to treat the full spectrum of potentially encountered bacteria in a spondylodiscitis treatment setting.
Collapse
Affiliation(s)
- Josefine Slater
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Maiken Stilling
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Pelle Hanberg
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Sofus Vittrup
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Martin Bruun Knudsen
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Sara Kousgaard Tøstesen
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Josephine Olsen Kipp
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Mats Bue
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
9
|
Schatz LM, Brinkmann A, Röhr A, Frey O, Greppmair S, Weinelt F, Zoller M, Scharf C, Hempel G, Liebchen U. Systematic Evaluation of Pharmacokinetic Models for Model-Informed Precision Dosing of Meropenem in Critically Ill Patients Undergoing Continuous Renal Replacement Therapy. Antimicrob Agents Chemother 2023; 67:e0010423. [PMID: 37125925 DOI: 10.1128/aac.00104-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The altered pharmacokinetics of renally cleared drugs such as meropenem in critically ill patients receiving continuous renal replacement therapy (CRRT) might impact target attainment. Model-informed precision dosing (MIPD) is applied to individualize meropenem dosing. However, most population pharmacokinetic (PopPK) models developed to date have not yet been evaluated for MIPD. Eight PopPK models based on adult CRRT patients were identified in a systematic literature research and encoded in NONMEM 7.4. A data set of 73 CRRT patients from two different study centers was used to evaluate the predictive performance of the models using simulation and prediction-based diagnostics for i) a priori dosing based on patient characteristics only and ii) Bayesian dosing by including the first measured trough concentration. Median prediction error (MPE) for accuracy within |20%| (95% confidence intervals including zero) and median absolute prediction error (MAPE) for precision ≤ 30% were considered clinically acceptable. For a priori dosing, most models (n = 5) showed accuracy and precision MPE within |20%| and MAPE <35%. The integration of the first measured meropenem concentration improved the predictive performance of all models (median MAPE decreased from 35.4 to 25.0%; median MPE decreased from 21.8 to 4.6%). The best predictive performance for intermittent infusion was observed for the O'Jeanson model, including residual diuresis as covariate (a priori and Bayesian dosing MPE within |2%|, MAPE <30%). Our study revealed the O'Jeanson model as the best-predicting model for intermittent infusion. However, most of the selected PopPK models are suitable for MIPD in CRRT patients when one therapeutic drug monitoring sample is available.
Collapse
Affiliation(s)
- Lea Marie Schatz
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany
| | - Alexander Brinkmann
- Department of Anaesthesiology and Intensive Care Medicine, General Hospital of Heidenheim, Heidenheim, Germany
| | - Anka Röhr
- Department of Pharmacy, General Hospital of Heidenheim, Heidenheim, Germany
| | - Otto Frey
- Department of Pharmacy, General Hospital of Heidenheim, Heidenheim, Germany
| | - Sebastian Greppmair
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Ferdinand Weinelt
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Michael Zoller
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Christina Scharf
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Georg Hempel
- Department of Pharmaceutical and Medical Chemistry, Clinical Pharmacy, University of Muenster, Muenster, Germany
| | - Uwe Liebchen
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Lilleøre JG, Vittrup S, Tøstesen SK, Hanberg P, Stilling M, Bue M. Comparison of Intravenous Microdialysis and Standard Plasma Sampling for Monitoring of Vancomycin and Meropenem Plasma Concentrations-An Experimental Porcine Study. Antibiotics (Basel) 2023; 12:antibiotics12040791. [PMID: 37107154 PMCID: PMC10135263 DOI: 10.3390/antibiotics12040791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Microdialysis is a catheter-based method suitable for dynamic sampling of unbound antibiotic concentrations. Intravenous antibiotic concentration sampling by microdialysis has several advantages and may be a superior alternative to standard plasma sampling. We aimed to compare concentrations obtained by continuous intravenous microdialysis sampling and by standard plasma sampling of both vancomycin and meropenem in a porcine model. Eight female pigs received 1 g of both vancomycin and meropenem, simultaneously over 100 and 10 min, respectively. Prior to drug infusion, an intravenous microdialysis catheter was placed in the subclavian vein. Microdialysates were collected for 8 h. From a central venous catheter, plasma samples were collected in the middle of every dialysate sampling interval. A higher area under the concentration/time curve and peak drug concentration were found in standard plasma samples compared to intravenous microdialysis samples, for both vancomycin and meropenem. Both vancomycin and meropenem concentrations obtained with intravenous microdialysis were generally lower than from standard plasma sampling. The differences in key pharmacokinetic parameters between the two sampling techniques underline the importance of further investigations to find the most suitable and reliable method for continuous intravenous antibiotic concentration sampling.
Collapse
Affiliation(s)
- Johanne Gade Lilleøre
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Sofus Vittrup
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Sara Kousgaard Tøstesen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Pelle Hanberg
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Maiken Stilling
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Orthopedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Mats Bue
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Denmark Microdialysis Research Group (ADMIRE), Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Orthopedic Surgery, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
11
|
Shekar K, Abdul-Aziz MH, Cheng V, Burrows F, Buscher H, Cho YJ, Corley A, Diehl A, Gilder E, Jakob SM, Kim HS, Levkovich BJ, Lim SY, McGuinness S, Parke R, Pellegrino V, Que YA, Reynolds C, Rudham S, Wallis SC, Welch SA, Zacharias D, Fraser JF, Roberts JA. Antimicrobial Exposures in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation. Am J Respir Crit Care Med 2023; 207:704-720. [PMID: 36215036 DOI: 10.1164/rccm.202207-1393oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Data suggest that altered antimicrobial concentrations are likely during extracorporeal membrane oxygenation (ECMO). Objectives: The primary aim of this analysis was to describe the pharmacokinetics (PKs) of antimicrobials in critically ill adult patients receiving ECMO. Our secondary aim was to determine whether current antimicrobial dosing regimens achieve effective and safe exposure. Methods: This study was a prospective, open-labeled, PK study in six ICUs in Australia, New Zealand, South Korea, and Switzerland. Serial blood samples were collected over a single dosing interval during ECMO for 11 antimicrobials. PK parameters were estimated using noncompartmental methods. Adequacy of antimicrobial dosing regimens were evaluated using predefined concentration exposures associated with maximal clinical outcomes and minimal toxicity risks. Measurements and Main Results: We included 993 blood samples from 85 patients. The mean age was 44.7 ± 14.4 years, and 61.2% were male. Thirty-eight patients (44.7%) were receiving renal replacement therapy during the first PK sampling. Large variations (coefficient of variation of ⩾30%) in antimicrobial concentrations were seen leading to more than fivefold variations in all PK parameters across all study antimicrobials. Overall, 70 (56.5%) concentration profiles achieved the predefined target concentration and exposure range. Target attainment rates were not significantly different between modes of ECMO and renal replacement therapy. Poor target attainment was observed across the most frequently used antimicrobials for ECMO recipients, including for oseltamivir (33.3%), piperacillin (44.4%), and vancomycin (27.3%). Conclusions: Antimicrobial PKs were highly variable in critically ill patients receiving ECMO, leading to poor target attainment rates. Clinical trial registered with the Australian New Zealand Clinical Trials Registry (ACTRN12612000559819).
Collapse
Affiliation(s)
- Kiran Shekar
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Vesa Cheng
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Hergen Buscher
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
- St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Amanda Corley
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia
| | - Arne Diehl
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine and
| | - Eileen Gilder
- Experiential Development and Graduate Education and Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Stephan M Jakob
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Hyung-Sook Kim
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bianca J Levkovich
- Department of Pharmacy, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sung Yoon Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Shay McGuinness
- School of Nursing, The University of Auckland, Auckland, New Zealand
| | - Rachael Parke
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; and
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Vincent Pellegrino
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine and
| | - Yok-Ai Que
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Claire Reynolds
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Sam Rudham
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Steven C Wallis
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | | | - David Zacharias
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - John F Fraser
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; and
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
12
|
Li L, Sassen SDT, Ewoldt TMJ, Abdulla A, Hunfeld NGM, Muller AE, de Winter BCM, Endeman H, Koch BCP. Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It? Antibiotics (Basel) 2023; 12:antibiotics12020383. [PMID: 36830294 PMCID: PMC9951903 DOI: 10.3390/antibiotics12020383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The number of pharmacokinetic (PK) models of meropenem is increasing. However, the daily role of these PK models in the clinic remains unclear, especially for critically ill patients. Therefore, we evaluated the published meropenem models on real-world ICU data to assess their suitability for use in clinical practice. All models were built in NONMEM and evaluated using prediction and simulation-based diagnostics for the ability to predict the subsequent meropenem concentrations without plasma concentrations (a priori), and with plasma concentrations (a posteriori), for use in therapeutic drug monitoring (TDM). Eighteen PopPK models were included for evaluation. The a priori fit of the models, without the use of plasma concentrations, was poor, with a prediction error (PE)% of the interquartile range (IQR) exceeding the ±30% threshold. The fit improved when one to three concentrations were used to improve model predictions for TDM purposes. Two models were in the acceptable range with an IQR PE% within ±30%, when two or three concentrations were used. The role of PK models to determine the starting dose of meropenem in this population seems limited. However, certain models might be suitable for TDM-based dose adjustment using two to three plasma concentrations.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sebastiaan D. T. Sassen
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| | - Tim M. J. Ewoldt
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Alan Abdulla
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Nicole G. M. Hunfeld
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Anouk E. Muller
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Medical Microbiology, Haaglanden Medical Centre, 2597 AX The Hague, The Netherlands
| | - Brenda C. M. de Winter
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Birgit C. P. Koch
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Center for Antimicrobial Treatment Optimization Rotterdam (CATOR), 3015 GD Rotterdam, The Netherlands
- Rotterdam Clinical Pharmacometrics Group, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
13
|
Penicillin Binding Protein 7/8 Is a Potential Drug Target in Carbapenem-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2023; 67:e0103322. [PMID: 36475717 PMCID: PMC9872597 DOI: 10.1128/aac.01033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Limited therapeutic options dictate the need for new classes of antimicrobials active against carbapenem-resistant Acinetobacter baumannii. Presented data confirm and extend penicillin binding protein 7/8 (PBP 7/8) as a high-value target in the CR A. baumannii strain HUMC1. PBP 7/8 was essential for optimal growth/survival of HUMC1 in ex vivo human ascites and in a rat subcutaneous abscess model; in a mouse pneumonia model, the absence of PBP 7/8 decreased lethality 11-fold. The loss of PBP 7/8 resulted in increased permeability, sensitivity to complement, and lysozyme-mediated bactericidal activity. These changes did not appear to be due to alterations in the cellular fatty acid composition or capsule production. However, a decrease in lipid A and an increase in coccoidal cells and cell aggregation were noted. The compromise of the stringent permeability barrier in the PBP 7/8 mutant was reflected by an increased susceptibility to several antimicrobials. Importantly, expression of ampC was not significantly affected by the loss of PBP 7/8 and serial passage of the mutant strain in human ascites over 7 days did not yield revertants possessing a wild-type phenotype. In summary, these data and other features support PBP 7/8 as a high-value drug target for extensively drug-resistant and CR A. baumannii. Our results guide next-stage studies; the determination that the inactivation of PBP 7/8 results in an increased sensitivity to lysozyme enables the design of a high-throughput screening assay to identify small molecule compounds that can specifically inhibit PBP 7/8 activity.
Collapse
|
14
|
Kang S, Yang S, Hahn J, Jang JY, Min KL, Wi J, Chang MJ. Dose Optimization of Meropenem in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation in Critically Ill Cardiac Patients: Pharmacokinetic/Pharmacodynamic Modeling. J Clin Med 2022; 11:jcm11226621. [PMID: 36431106 PMCID: PMC9693387 DOI: 10.3390/jcm11226621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Our objective was to determine an optimal dosage regimen of meropenem in patients receiving veno-arterial extracorporeal membrane oxygenation (V-A ECMO) by developing a pharmacokinetic/pharmacodynamic (PK/PD) model. Methods: This was a prospective cohort study. Blood samples were collected during ECMO (ECMO-ON) and after ECMO (ECMO-OFF). The population pharmacokinetic model was developed using nonlinear mixed-effects modeling. A Monte Carlo simulation was used (n = 10,000) to assess the probability of target attainment. Results: Thirteen adult patients on ECMO receiving meropenem were included. Meropenem pharmacokinetics was best fitted by a two-compartment model. The final pharmacokinetic model was: CL (L/h) = 3.79 × 0.44CRRT, central volume of distribution (L) = 2.4, peripheral volume of distribution (L) = 8.56, and intercompartmental clearance (L/h) = 21.3. According to the simulation results, if more aggressive treatment is needed (100% fT > MIC target), dose increment or extended infusion is recommended. Conclusions: We established a population pharmacokinetic model for meropenem in patients receiving V-A ECMO and revealed that it is not necessary to adjust the dosage depending on V-A ECMO. Instead, more aggressive treatment is needed than that of standard treatment, and higher dosage is required without continuous renal replacement therapy (CRRT). Also, extended infusion could lead to better target attainment, and we could provide updated nomograms of the meropenem dosage regimen.
Collapse
Affiliation(s)
- Soyoung Kang
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea
| | - Seungwon Yang
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
- Department of Regulatory Science, College of Pharmacy, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jongsung Hahn
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Korea
| | - June Young Jang
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon 21983, Korea
| | - Kyoung Lok Min
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon 21983, Korea
| | - Jin Wi
- Division of Cardiology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 21565, Korea
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: or (J.W.); (M.J.C.); Tel.: +82-32-460-3663 (J.W.); +82-32-749-4517 (M.J.C.); Fax: +82-32-749-4105 (M.J.C.)
| | - Min Jung Chang
- Department of Pharmaceutical Medicine and Regulatory Science, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea
- Graduate Program of Industrial Pharmaceutical Science, Yonsei University, Incheon 21983, Korea
- Correspondence: or (J.W.); (M.J.C.); Tel.: +82-32-460-3663 (J.W.); +82-32-749-4517 (M.J.C.); Fax: +82-32-749-4105 (M.J.C.)
| |
Collapse
|
15
|
Patel JS, Kooda K, Igneri LA. A Narrative Review of the Impact of Extracorporeal Membrane Oxygenation on the Pharmacokinetics and Pharmacodynamics of Critical Care Therapies. Ann Pharmacother 2022; 57:706-726. [PMID: 36250355 DOI: 10.1177/10600280221126438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Extracorporeal membrane oxygenation (ECMO) utilization is increasing on a global scale, and despite technological advances, minimal standardized approaches to pharmacotherapeutic management exist. This objective was to create a comprehensive review for medication dosing in ECMO based on the most current evidence. Data Sources: A literature search of PubMed was performed for all pertinent articles prior to 2022. The following search terms were utilized: ECMO, pharmacokinetics, pharmacodynamics, sedation, analgesia, antiepileptic, anticoagulation, antimicrobial, antifungal, nutrition. Retrospective cohort studies, case-control studies, case series, case reports, and ex vivo investigations were reviewed. Study Selection and Data Extraction: PubMed (1975 through July 2022) was the database used in the literature search. Non-English studies were excluded. Search terms included both drug class categories, specific drug names, ECMO, and pharmacokinetics. Data Synthesis: Medications with high protein binding (>70%) and high lipophilicity (logP > 2) are associated with circuit sequestration and the potential need for dose adjustment. Volume of distribution changes with ECMO may also impact dosing requirements of common critical care medications. Lighter sedation targets and analgosedation may help reduce sedative and analgesia requirements, whereas higher antiepileptic dosing is recommended. Vancomycin is minimally affected by the ECMO circuit and recommendations for dosing in critically ill adults are reasonable. Anticoagulation remains challenging as optimal aPTT goals have not been established. Relevance to Patient Care and Clinical Practice: This review describes the anticipated impacts of ECMO circuitry on sedatives, analgesics, anticoagulation, antiepileptics, antimicrobials, antifungals, and nutrition support and provides recommendations for drug therapy management. Conclusions: Medication pharmacokinetic/pharmacodynamic parameters should be considered when determining the potential impact of the ECMO circuit on attainment of therapeutic effect and target serum drug concentrations, and should guide therapy choices and/or dose adjustments when data are not available.
Collapse
Affiliation(s)
| | - Kirstin Kooda
- Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
16
|
Finazzi S, Luci G, Olivieri C, Langer M, Mandelli G, Corona A, Viaggi B, Di Paolo A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part I. Antibiotics (Basel) 2022; 11:antibiotics11091164. [PMID: 36139944 PMCID: PMC9495190 DOI: 10.3390/antibiotics11091164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
The challenging severity of some infections, especially in critically ill patients, makes the diffusion of antimicrobial drugs within tissues one of the cornerstones of chemotherapy. The knowledge of how antibacterial agents penetrate tissues may come from different sources: preclinical studies in animal models, phase I–III clinical trials and post-registration studies. However, the particular physiopathology of critically ill patients may significantly alter drug pharmacokinetics. Indeed, changes in interstitial volumes (the third space) and/or in glomerular filtration ratio may influence the achievement of bactericidal concentrations in peripheral compartments, while inflammation can alter the systemic distribution of some drugs. On the contrary, other antibacterial agents may reach high and effective concentrations thanks to the increased tissue accumulation of macrophages and neutrophils. Therefore, the present review explores the tissue distribution of beta-lactams and other antimicrobials acting on the cell wall and cytoplasmic membrane of bacteria in critically ill patients. A systematic search of articles was performed according to PRISMA guidelines, and tissue/plasma penetration ratios were collected. Results showed a highly variable passage of drugs within tissues, while large interindividual variability may represent a hurdle which must be overcome to achieve therapeutic concentrations in some compartments. To solve that issue, off-label dosing regimens could represent an effective solution in particular conditions.
Collapse
Affiliation(s)
- Stefano Finazzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, Italy
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giacomo Luci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carlo Olivieri
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Anesthesia and Intensive Care, Sant’Andrea Hospital, ASL VC, 13100 Vercelli, Italy
| | - Martin Langer
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giulia Mandelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, Italy
| | - Alberto Corona
- ICU and Accident & Emergency Department, ASST Valcamonica, 25043 Breno, Italy
| | - Bruno Viaggi
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Department of Anesthesiology, Neuro-Intensive Care Unit, Florence Careggi University Hospital, 50139 Florence, Italy
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
17
|
Vittrup S, Stilling M, Hanberg P, Tøstesen SK, Knudsen MB, Kipp JO, Bue M. Concentrations of co-administered vancomycin and meropenem in the internal dead space of a cannulated screw and in cancellous bone adjacent to the screw - Evaluated by microdialysis in a porcine model. Injury 2022; 53:2734-2740. [PMID: 35710595 DOI: 10.1016/j.injury.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cannulated screws are often used in the management of open lower extremity fractures. These fractures exhibit broad contamination profiles, necessitating empirical Gram-positive and Gram-negative antibiotic coverage. To ensure full antibiotic protection of the cannulated screw and the bone tissue, it is generally accepted that target tissue antibiotic concentrations, as a minimum, reach and remain above relevant epidemiological cut-off minimal inhibitory concentrations (T>MIC) for a sufficient amount of time. METHODS 8 female pigs were included. Microdialysis catheters were placed in the internal dead space of a cannulated screw placed in tibial cancellous bone, in tibial cancellous bone adjacent to the screw (mean distance to the screw: 3 mm), and in cancellous bone on the contralateral tibia. Following single-dose simultaneous intravenous administrations of vancomycin (1000 mg) and meropenem (1000 mg), microdialysates and plasma were dynamically sampled over 8 h. The applied MIC targets ranged from 1 to 4 µg/mL for vancomycin and 0.125-2 µg/mL for meropenem RESULTS: For both drugs, and for all MIC targets investigated (except for the high vancomycin target: 4 µg/mL), the internal dead space of the cannulated screw had the shortest T>MIC. At the low MIC targets T>MIC ranged between 88 and 449 min across sampling sites for vancomycin (1 µg/mL), and 148-406 min for meropenem (0.125 µg/mL). For the high MIC targets, T>MIC ranged between 3 and 446 min for vancomycin (4 μg/mL) and 17-181 min for meropenem (2 μg/mL). Vancomycin displayed longer T>MIC (2 and 4 μg/mL), higher area under the concentration time curve (AUC0-last) and peak drug concentration in the proximal tibial cancellous bone without a screw nearby. For meropenem, only the cancellous bone AUC0-last was significantly higher on the side with no screw. CONCLUSION We found short T>MIC, particularly for the high MIC targets for vancomycin and meropenem, both inside the cannulated screw and in cancellous bone adjacent to the screw. The presence of a cannulated screw impaired the penetration of especially vancomycin into cancellous bone adjacent to the screw. More aggressive or different vancomycin and meropenem approaches may be considered to encompass contaminating differences and to ensure a theoretically more sufficient antibiotic protection of cannulated screws when used in the management of open lower extremity fractures.
Collapse
Affiliation(s)
- Sofus Vittrup
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, Aarhus N 8200, Denmark.
| | - Maiken Stilling
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, Aarhus N 8200, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, IN CUBA, Aarhus N 8200, Denmark; Department of Orthopaedic Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark
| | - Pelle Hanberg
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, Aarhus N 8200, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, IN CUBA, Aarhus N 8200, Denmark
| | - Sara Kousgaard Tøstesen
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, Aarhus N 8200, Denmark
| | - Martin Bruun Knudsen
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, Aarhus N 8200, Denmark
| | - Josephine Olsen Kipp
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, Aarhus N 8200, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, IN CUBA, Aarhus N 8200, Denmark
| | - Mats Bue
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, J112, Aarhus N 8200, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, IN CUBA, Aarhus N 8200, Denmark; Department of Orthopaedic Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N 8200, Denmark
| |
Collapse
|
18
|
Population Pharmacokinetics of Flucloxacillin In Bone and Soft Tissue- Standard Dosing is Not Sufficient to Achieve Therapeutic Concentrations. Pharm Res 2022; 39:1633-1643. [PMID: 35233728 DOI: 10.1007/s11095-022-03197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Flucloxacillin is a β-lactam penicillin commonly used in the treatment of bone and soft tissue infections. In a recent porcine study, we found surprisingly low time for which the free concentration was maintained above the minimal inhibitory concentration (fT>MIC) in bone and soft tissue, following flucloxacillin oral (PO) and intravenous (IV) administration at 1g every 6h (q6h). In addition to plasma, sampling was obtained from subcutaneous tissue, knee joint, cancellous bone and cortical bone, using microdialysis. To identify flucloxacillin dosing regimens that result in theoretically therapeutic concentrations, we developed a population pharmacokinetic (PK) model for the porcine data, and combined it with a human flucloxacillin population PK model for simulations. METHODS A four-compartment model was developed, and various dosing regimens and modes of administration were simulated. Predicted concentrations were compared to %fT>MIC (0.5 mg/L and 2 mg/L). RESULTS Continuous infusion (CI) resulted in higher %fT>MIC compared to intermittent administration. For intermittent IV dosing (4, 8 and 12g/24h), fT>MIC (0.5 mg/L) was ≥70% in plasma, and ranged between 42-96% in the sampled tissue in a typical individual. By applying CI, 4g/day was sufficient to achieve ≥98% fT>MIC (0.5 mg/L) in all sampled tissues. For MIC 2 mg/L, ≥50% fT>MIC was only achieved in plasma at CI 8 and 12g/24h and IV 3g q6h. CONCLUSIONS To reach efficacious flucloxacillin bone and tissue concentrations, dose increment or continuous infusion needs to be considered.
Collapse
|
19
|
Vittrup SØ, Hanberg P, Knudsen MB, Tøstesen SK, Kipp JO, Hansen J, Jørgensen NP, Stilling M, Bue M. Tibial bone and soft-tissue concentrations following combination therapy with vancomycin and meropenem - evaluated by microdialysis in a porcine model : should patients with open fractures have higher doses of antibiotics? Bone Joint Res 2022; 11:112-120. [PMID: 35176868 PMCID: PMC8882321 DOI: 10.1302/2046-3758.112.bjr-2021-0321.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aims Prompt and sufficient broad-spectrum empirical antibiotic treatment is key to preventing infection following open tibial fractures. Succeeding co-administration, we dynamically assessed the time for which vancomycin and meropenem concentrations were above relevant epidemiological cut-off (ECOFF) minimal inhibitory concentrations (T > MIC) in tibial compartments for the bacteria most frequently encountered in open fractures. Low and high MIC targets were applied: 1 and 4 µg/ml for vancomycin, and 0.125 and 2 µg/ml for meropenem. Methods Eight pigs received a single dose of 1,000 mg vancomycin and 1,000 mg meropenem simultaneously over 100 minutes and 10 minutes, respectively. Microdialysis catheters were placed for sampling over eight hours in tibial cancellous bone, cortical bone, and adjacent subcutaneous adipose tissue. Venous blood samples were collected as references. Results Across the targeted ECOFF values, vancomycin displayed longer T > MIC in all the investigated compartments in comparison to meropenem. For both drugs, cortical bone exhibited the shortest T > MIC. For the low MIC targets and across compartments, mean T > MIC ranged between 208 and 449 minutes (46% to 100%) for vancomycin and between 189 and 406 minutes (42% to 90%) for meropenem. For the high MIC targets, mean T > MIC ranged between 30 and 446 minutes (7% to 99%) for vancomycin and between 45 and 181 minutes (10% to 40%) for meropenem. Conclusion The differences in the T > MIC between the low and high targets illustrate how the interpretation of these results is highly susceptible to the defined MIC target. To encompass any trauma, contamination, or individual tissue differences, a more aggressive dosing approach may be considered to achieve longer T > MIC in all the exposed tissues, and thereby lower the risk of acquiring an infection after open tibial fractures. Cite this article: Bone Joint Res 2022;11(2):112–120.
Collapse
Affiliation(s)
- Sofus Ørbæk Vittrup
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Pelle Hanberg
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Bruun Knudsen
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Sara Kousgaard Tøstesen
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Josephine Olsen Kipp
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | - Maiken Stilling
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Mats Bue
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Slater J, Stilling M, Hanberg P, Fichtner Bendtsen MA, Jørgensen AR, Søballe K, Jørgensen NP, Bue M. Moxifloxacin Concentrations in the Knee Joint, Tibial Bone, and Soft Tissue When Combined with Rifampicin: A Randomized Porcine Microdialysis Study. J Bone Joint Surg Am 2022; 104:49-54. [PMID: 34731098 DOI: 10.2106/jbjs.21.00549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Peri and postoperative antibiotics are key adjuvant treatment tools in the management of periprosthetic joint infection (PJI). The aim of this study was to evaluate the effect of rifampicin on the area under the moxifloxacin concentration-time curve from 0 to 24 hours (AUC0-24) in the synovial fluid of the knee joint, tibial bone, and adjacent subcutaneous tissue under steady-state conditions using microdialysis in a porcine model. METHODS Twenty female pigs were randomized to receive oral treatment with moxifloxacin monotherapy (Group A, n = 10) of 400 mg once daily for 3 days or a combination therapy (Group B, n = 10) of 400 mg of moxifloxacin once daily for 3 days and 450 mg of rifampicin twice daily for 7 days. Microdialysis was used for sampling the synovial fluid of the knee joint, tibial cancellous and cortical bone, and adjacent subcutaneous tissues. Plasma samples were taken as a reference. Measurements were obtained for 24 hours. RESULTS Coadministration of moxifloxacin and rifampicin resulted in reductions of the moxifloxacin AUC0-24 in all targeted tissue compartments by 67% to 85% (p < 0.05). The corresponding change in plasma was 20% (p = 0.49). For both groups, the tissue penetration (the ratio of tissue free fraction AUC0-24 to plasma free fraction AUC0-24 [fAUCtissue/fAUCplasma]) was incomplete in all investigated compartments. The highest moxifloxacin tissue penetration was in the knee joint synovial fluid: 0.59 (Group A) and 0.24 (Group B). The lowest tissue penetration was in the cortical bone: 0.17 (Group A) and 0.03 (Group B). CONCLUSIONS We found a significant reduction of the moxifloxacin concentration, expressed as the AUC0-24, in tissues relevant to acute PJI treatment when coadministered with rifampicin. CLINICAL RELEVANCE The concentrations within the targeted tissue compartments were reduced significantly more than the concentrations in plasma, which may be particularly important as plasma concentrations are used in clinical practice to assess moxifloxacin treatment sufficiency.
Collapse
Affiliation(s)
- Josefine Slater
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Aarhus Microdialysis Research Group, Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Maiken Stilling
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Aarhus Microdialysis Research Group, Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Pelle Hanberg
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Aarhus Microdialysis Research Group, Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| | - Mathias Alrø Fichtner Bendtsen
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Aarhus Microdialysis Research Group, Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Andrea René Jørgensen
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Aarhus Microdialysis Research Group, Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Kjeld Søballe
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Aarhus Microdialysis Research Group, Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | | | - Mats Bue
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Aarhus Microdialysis Research Group, Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Lan J, Wu Z, Wang X, Wang Y, Yao F, Zhao BX, Wang Y, Chen J, Chen C. Population pharmacokinetics analysis and dosing simulations of meropenem in critically ill patients with pulmonary infection. J Pharm Sci 2022; 111:1833-1842. [DOI: 10.1016/j.xphs.2022.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 01/02/2023]
|
22
|
Zhang Y, Hu H, Zhang Q, Ou Q, Zhou H, Sha T, Zeng Z, Wu J, Lu J, Chen Z. Effects of ex vivo Extracorporeal Membrane Oxygenation Circuits on Sequestration of Antimicrobial Agents. Front Med (Lausanne) 2021; 8:748769. [PMID: 34926498 PMCID: PMC8671752 DOI: 10.3389/fmed.2021.748769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives: Our ex vivo study was designed to determine the sequestration of teicoplanin, tigecycline, micafungin, meropenem, polymyxin B, caspofungin, cefoperazone sulbactam, and voriconazole in extracorporeal membrane oxygenation (ECMO) circuits. Methods: Simulated closed-loop ECMO circuits were prepared using 2 types of blood-primed ECMO. After the circulation was stabilized, the study drugs were injected into the circuit. Blood samples were collected at 2, 5, 15, 30 min, 1, 3, 6, 12, and 24 h after injection. Drug concentrations were measured by high-performance liquid chromatography-tandem mass spectrometry. Control groups were stored at 4°C after 3, 6, 12, and 24 h immersing in a water bath at 37°C to observe spontaneous drug degradation. Results: Twenty-six samples were analyzed. The average drug recoveries from the ECMO circuits and control groups at 24 h relative to baseline were 67 and 89% for teicoplanin, 100 and 145% for tigecycline, 67 and 99% for micafungin, 45 and 75% for meropenem, 62 and 60% for polymyxin B, 83 and 85% for caspofungin, 79 and 98% for cefoperazone, 75 and 87% for sulbactam, and 60 and 101% for voriconazole, respectively. Simple linear regression showed no significant correlation between lipophilicity (r2 = 0.008, P = 0.225) or the protein binding rate (r2 = 0.168, P = 0.479) of drugs and the extent of drug loss in the ECMO circuits. Conclusions: In the two ECMO circuits, meropenem and voriconazole were significantly lost, cefoperazone was slightly lost, while tigecycline and caspofungin were not lost. Drugs with high lipophilicity were lost more in the Maquet circuit than in the Sorin circuit. This study needs more in vivo studies with larger samples for further confirmation, and it suggests that therapeutic drug concentration monitoring should be strongly considered during ECMO.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Zhang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qing Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huayou Zhou
- Department of Blood Transfusion, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Sha
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingrui Lu
- Department of Mass Spectrometry, The Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Busse D, Simon P, Schmitt L, Petroff D, Dorn C, Dietrich A, Zeitlinger M, Huisinga W, Michelet R, Wrigge H, Kloft C. Comparative Plasma and Interstitial Tissue Fluid Pharmacokinetics of Meropenem Demonstrate the Need for Increasing Dose and Infusion Duration in Obese and Non-obese Patients. Clin Pharmacokinet 2021; 61:655-672. [PMID: 34894344 PMCID: PMC9095536 DOI: 10.1007/s40262-021-01070-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES A quantitative evaluation of the PK of meropenem, a broad-spectrum β-lactam antibiotic, in plasma and interstitial space fluid (ISF) of subcutaneous adipose tissue of obese patients is lacking as of date. The objective of this study was the characterisation of meropenem population pharmacokinetics in plasma and ISF in obese and non-obese patients for identification of adequate dosing regimens via Monte-Carlo simulations. METHODS We obtained plasma and microdialysate concentrations after administration of meropenem 1000 mg to 15 obese and 15 non-obese surgery patients from a prospective clinical trial. After characterizing plasma- and microdialysis-derived ISF pharmacokinetics via population pharmacokinetic analysis, we simulated thrice-daily (TID) meropenem short-term (0.5 h), prolonged (3.0 h), and continuous infusions. Adequacy of therapy was assessed by the probability of pharmacokinetic/pharmacodynamic (PK/PD) target attainment (PTA) analysis based on time unbound concentrations exceeded minimum inhibitory concentrations (MIC) on treatment day 1 (%fT > MIC) and the sum of PTA weighted by relative frequency of MIC values for infections by pathogens commonly treated with meropenem. To avoid interstitial tissue fluid concentrations below MIC for the entire dosing interval during continuous infusions, a more conservative PK/PD index was selected (%fT > 4 × MIC). RESULTS Adjusted body weight (ABW) and calculated creatinine clearance (CLCRCG_ABW) of all patients (body mass index [BMI] = 20.5-81.5 kg/m2) explained a considerable proportion of the between-patient pharmacokinetic variability (15.1-31.0% relative reduction). The ISF:plasma ratio of %fT > MIC was relatively similar for MIC ≤ 2 mg/L but decreased for MIC = 8 mg/L over ABW = 60-120 kg (0.50-0.20). Steady-state concentrations were 2.68 times (95% confidence interval [CI] = 2.11-3.37) higher in plasma than in ISF, supporting PK/PD targets related to four times the MIC during continuous infusions to avoid suspected ISF concentrations constantly below the MIC. A 3000 mg/24 h continuous infusion was sufficient at MIC = 2 mg/L for patients with CLCRCG_ABW ≤ 100 mL/min and ABW < 90 kg, whereas 2000 mg TID prolonged infusions were adequate for those with CLCRCG_ABW ≤ 100 mL/min and ABW > 90 kg. For MIC = 2 mg/L and %fT> MIC = 95, PTA was adequate in patients over the entire investigated range of body mass and renal function using a 6000 mg continuous infusion. A prolonged infusion of meropenem 2000 mg TID was sufficient for MIC ≤ 8 mg/L and all investigated ABW and CLCRCG_ABW when employing the PK/PD target %fT > MIC = 40. Short-term infusions of 1000 mg TID were sufficient for CLCRCG_ABW ≤ 130 mL/min and distributions of MIC values for Escherichia coli, Citrobacter freundii, and Klebsiella pneumoniae but not for Pseudomonas aeruginosa. CONCLUSIONS This analysis indicated a need for higher doses (≥ 2000 mg) and prolonged infusions (≥ 3 h) for obese and non-obese patients at MIC ≥ 2 mg/L. Higher PTA was achieved with prolonged infusions in obese patients and with continuous infusions in non-obese patients. TRIAL REGISTRATION EudraCT: 2012-004383-22.
Collapse
Affiliation(s)
- David Busse
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin, Germany
| | - Philipp Simon
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Lisa Schmitt
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin, Germany
| | - David Petroff
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Clinical Trial Centre Leipzig, University of Leipzig, Leipzig, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Arne Dietrich
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany
| | - Hermann Wrigge
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital Halle, Halle, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany.
| |
Collapse
|
24
|
Hanberg P, Bue M, Kabel J, Jørgensen AR, Jessen C, Søballe K, Stilling M. Effects of tourniquet inflation on peri- and postoperative cefuroxime concentrations in bone and tissue. Acta Orthop 2021; 92:746-752. [PMID: 34334093 PMCID: PMC8635659 DOI: 10.1080/17453674.2021.1942620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background and purpose - Tourniquet is widely used in orthopedic surgery to reduce intraoperative bleeding and improve visualization. We evaluated the effect of tourniquet application on peri- and postoperative cefuroxime concentrations in subcutaneous tissue, skeletal muscle, calcaneal cancellous bone, and plasma. The primary endpoint was the time for which the free cefuroxime concentration was maintained above the clinical breakpoint minimal inhibitory concentration (T > MIC) for Staphylococcus aureus (4 µg/mL).Patients and methods - 10 patients scheduled for hallux valgus or hallux rigidus surgery were included. Microdialysis catheters were placed for sampling of cefuroxime concentrations bilaterally in subcutaneous tissue, skeletal muscle, and calcaneal cancellous bone. A tourniquet was applied on the thigh of the leg scheduled for surgery (tourniquet duration time [range]: 65 minutes [58-77]). Cefuroxime (1.5 g) was administered intravenously 15 minutes prior to tourniquet inflation, followed by a second dose 6 hours later. Dialysates and venous blood samples were collected for 12 hours.Results - A cefuroxime concentration of 4 µg/mL was reached within 23 minutes in all compartments and patients. For cefuroxime the T > MIC (4 µg/mL) ranged between 4.8 and 5.4 hours across compartments, with similar results for the tourniquet and non-tourniquet leg. Comparable T > MIC and penetration ratios were found for the first and second dosing intervals.Interpretation - Administration of cefuroxime (1.5 g) 15 minutes prior to tourniquet inflation is safe in order to achieve tissue concentrations above 4 µg/mL throughout surgery. A tourniquet application time of approximately 1 hour did not affect the cefuroxime tissue penetration in the following dosing interval.
Collapse
Affiliation(s)
- Pelle Hanberg
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens;;,Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N;;,Department of Clinical Medicine, Aarhus University, Aarhus N;;,Correspondence: Pelle HANBERG, Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens
| | - Mats Bue
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N;;,Department of Clinical Medicine, Aarhus University, Aarhus N;;,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N
| | - Jesper Kabel
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens
| | - Andrea René Jørgensen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N
| | - Christian Jessen
- Department of Clinical Medicine, Aarhus University, Aarhus N;;,Department of Anesthesiology, Horsens Regional Hospital, Horsens, Denmark
| | - Kjeld Søballe
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N;;,Department of Clinical Medicine, Aarhus University, Aarhus N;;,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N
| | - Maiken Stilling
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N;;,Department of Clinical Medicine, Aarhus University, Aarhus N;;,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N
| |
Collapse
|
25
|
Target Site Pharmacokinetics of Meropenem: Measurement in Human Explanted Lung Tissue by Bronchoalveolar Lavage, Microdialysis, and Homogenized Lung Tissue. Antimicrob Agents Chemother 2021; 65:e0156421. [PMID: 34570645 DOI: 10.1128/aac.01564-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumonia is one of the most common infections in intensive care patients, and it is often treated with beta-lactam antibiotics. Even if therapeutic drug monitoring in blood is available, it is unclear whether sufficient concentrations are reached at the target site: the lung. The present study was initiated to fill this knowledge gap. Various compartments from 10 patients' explanted lungs were subjected to laboratory analysis. Meropenem was quantified in serum, bronchoalveolar lavage (BAL) fluid, microdialysate, and homogenized lung tissue with isotope dilution liquid chromatography tandem mass spectrometry (ID-LC-MS/MS). BAL fluid represents diluted epithelial lining fluid (ELF), and microdialysate represents interstitial fluid (IF). Differences between target site and blood concentrations were investigated. The median meropenem concentration in blood, ELF, IF, and tissue were 26.8, 18.0, 12.1, and 9.1 mg/liter, respectively. A total of 37.5% of the target site ELF and IF meropenem concentrations were below the clinical EUCAST breakpoint of 8 mg/liter. The median ELF/serum quotient was 61.8% (interquartile range [IQR], 24.8% to 87.6%), the median IF/serum quotient was 35.4% (IQR, 23.8% to 54.3%), and the median tissue/serum quotient was 34.2% (IQR, 28.3% to 38.2%). We observed a substantial interindividual variability between the blood and the compartments (ELF and IF), whereas the intraindividual variability was relatively low. Target site measurement in different lung compartments was feasible and successfully applied in a clinical setting. A relevant amount of 37.5% of the target site concentrations were below the clinical EUCAST breakpoint, indicating subtherapeutic dosing in high-risk patients receiving perioperative antibiotic prophylaxis in lung transplantation. (This study has been registered at ClinicalTrials.gov under identifier NCT03970265.).
Collapse
|
26
|
Does Prolonged Infusion Time Really Improve the Efficacy of Meropenem Therapy? A Prospective Study in Critically Ill Patients. Infect Dis Ther 2021; 11:201-216. [PMID: 34748194 PMCID: PMC8847520 DOI: 10.1007/s40121-021-00551-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/13/2021] [Indexed: 11/06/2022] Open
Abstract
Introduction Meropenem is a carbapenem antibiotic, which has demonstrated excellent antimicrobial activity against gram-negative clinical isolates. It is also commonly used in critically ill patients. This study aimed to determine the pharmacokinetics/pharmacodynamics of meropenem in critically ill patients and whether prolonged injection duration is really beneficial to meropenem therapy. Methods We included 209 samples in 64 patients in this prospective study. PPK analysis and Monte Carlo dosing simulations were developed using Phoenix. Results A two-compartment model described the data adequately. Clearance (CL), volume (V), clearance of peripheral compartment (CL2), and volume of peripheral compartment (V2) were 6.15 l/h, 2.83 l/h, 17.40 l, and 17.48 l, respectively. Creatinine clearance and uric acid were significant covariates. Patients with creatinine clearance ≤ 60 ml/min and uric acid > 400 μmol/l could achieve the target > 90% under the minimum inhibitory concentration (MIC) of 8 mg/l, even with the administration dose of 500 mg/8 h with a 2-h infusion. Prolonging the infusion time significantly improved the therapeutic effect when MIC < 4. However, for the pharmacodynamic (PD) effects of 100% fT > MIC and 100% fT > 4 MIC, no significant statistical difference was observed in critically ill patients. Conclusions Critically ill patients with lower creatinine clearance and higher uric acid levels tended to need a lower dosage of meropenem. Prolonged infusion time was not always beneficial for those who needed a higher therapeutic target (100% fT > MIC, 100% fT > 4 MIC) or with MIC > 4 mg/l. Increasing dose or alternative therapeutic strategies may be required for critically ill patients with drug-resistant or severe infections. The study is of great significance to guide the rational use of meropenem in critically ill patients. Trial Registration The trial was registered in the China Clinical Trial (ChiCTR1900020672). Registered on 12 January 2019. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-021-00551-2. Meropenem is commonly used empirically or targeted in critically ill patients for bacterial infection. Many studies have reported that prolonged infusion time can improve the efficacy of meropenem therapy. However, we are skeptical about that. Meanwhile, prolonged injections can sometimes cause mobility problems for patients. A quantitative method is used to evaluate meropenem use. It is called the population pharmacokinetic model or pharmacodynamic study. Using this method, we found two significant influencing factors of meropenem metabolism: creatinine clearance and uric acid level. It is likely that patients with a lower level of creatinine clearance and a high uric acid level tend to require lower dosages of meropenem. As for the effect of infusion time, Monte Carlo simulation was used, which can do 3000 simulations on an individual. The result was complex. We found infusion time was beneficial only when bacteria were sensitive to meropenem. The evidence suggests that prolonged injection duration sometimes does not significantly improve the outcome of antimicrobial therapy.
Collapse
|
27
|
Population Pharmacokinetics of Meropenem in Critically Ill Korean Patients and Effects of Extracorporeal Membrane Oxygenation. Pharmaceutics 2021; 13:pharmaceutics13111861. [PMID: 34834278 PMCID: PMC8625191 DOI: 10.3390/pharmaceutics13111861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Limited studies have investigated population pharmacokinetic (PK) models and optimal dosage regimens of meropenem for critically ill adult patients using the probability of target attainment, including patients receiving extracorporeal membrane oxygenation (ECMO). A population PK analysis was conducted using non-linear mixed-effect modeling. Monte Carlo simulation was used to determine for how long the free drug concentration was above the minimum inhibitory concentration (MIC) at steady state conditions in patients with various degrees of renal function. Meropenem PK in critically ill patients was described using a two-compartment model, in which glomerular filtration rate was identified as a covariate for clearance. ECMO did not affect meropenem PK. The simulation results showed that the current meropenem dosing regimen would be sufficient for attaining 40%fT>MIC for Pseudomonas aeruginosa at MIC ≤ 4 mg/L. Prolonged infusion over 3 h or a high-dosage regimen of 2 g/8 h was needed for MIC > 2 mg/L or in patients with augmented renal clearance, for a target of 100%fT>MIC or 100%fT>4XMIC. Our study suggests that clinicians should consider prolonged infusion or a high-dosage regimen of meropenem, particularly when treating critically ill patients with augmented renal clearance or those infected with pathogens with decreased in vitro susceptibility, regardless of ECMO support.
Collapse
|
28
|
A personalised approach to antibiotic pharmacokinetics and pharmacodynamics in critically ill patients. Anaesth Crit Care Pain Med 2021; 40:100970. [PMID: 34728411 DOI: 10.1016/j.accpm.2021.100970] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/26/2021] [Accepted: 08/14/2021] [Indexed: 01/01/2023]
Abstract
Critically ill patients admitted to intensive care unit (ICU) with severe infections, or those who develop nosocomial infections, have poor outcomes with substantial morbidity and mortality. Such patients commonly have suboptimal antibiotic exposures at routinely used antibiotic doses related to an increased volume of distribution and altered clearance due to their underlying altered physiology. Furthermore, the use of extracorporeal devices such as renal replacement therapy and extracorporeal membrane oxygenation in these group of patients also has the potential to alter in vivo drug concentrations. Moreover, ICU patients are likely to be infected with less-susceptible pathogens. Therefore, one potential contributing cause to the poor outcomes observed in critically ill patients may be related to subtherapeutic antibiotic exposures. Newer concepts include the clinician considering optimised dosing based on a blood antibiotic exposure defined by pharmacokinetic modelling and therapeutic drug monitoring, combined with a knowledge of the antibiotic penetration into the site of infection, thereby achieving optimal bacterial killing. Such optimised dosing is likely to improve patient outcomes. The aim of this review is to highlight key aspects of antibiotic pharmacokinetics and pharmacodynamics (PK/PD) in critically ill patients and provide a PK/PD approach to tailor antibiotic dosing to the individual patient.
Collapse
|
29
|
Polain A, Gorham J, Romeo I, Belliato M, Peluso L, Partipilo F, Njimi H, Brasseur A, Jacobs F, Creteur J, Hites M, Taccone FS. Prediction of Insufficient Beta-Lactam Concentrations in Extracorporeal Membranous Oxygenation Patients. Microorganisms 2021; 9:2219. [PMID: 34835344 PMCID: PMC8625763 DOI: 10.3390/microorganisms9112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The aim of this study was to identify predictors of insufficient beta-lactam concentrations in patients undergoing extracorporeal membrane oxygenation (ECMO). METHODS Retrospective analysis of all patients receiving ECMO support and treated with ceftazidime or cefepime (CEF), piperacillin/tazobactam (TZP), or meropenem (MEM). Trough drug concentrations (Cmin) were measured before the subsequent dose, according to the decision of the attending physician. Insufficient drug concentrations were identified if Cmin was below the clinical breakpoint of Pseudomonas aeruginosa. RESULTS A total of 222 Cmin (CEF, n = 41; TZP, n = 85; MEM, n = 96) from 110 patients were included; insufficient concentrations were observed in 26 (12%) antibiotic assessments; 21 (81%) of those occurred during MEM therapy. Insufficient Cmin were associated with a shorter time from initiation of antibiotics to measurement, a lower single dose of antibiotic, a higher creatinine clearance (CrCL), lower sequential organ failure assessment (SOFA) scores, and less use of continuous renal replacement therapy (CRRT) when compared to others. CONCLUSIONS Insufficient broad-spectrum beta-lactam concentrations were observed in 12% of drug measurement during ECMO therapy. Higher than recommended drug regimens could be considered in the very early phase of therapy and in those patients with augmented renal clearance and with less severe organ dysfunction.
Collapse
Affiliation(s)
- Amandine Polain
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | - Julie Gorham
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | - Immacolata Romeo
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
- UOC Anestesia e Rianimazione 2 Cardiopolmonare, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mirko Belliato
- UOC Anestesia e Rianimazione 2 Cardiopolmonare, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Lorenzo Peluso
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | | | - Hassane Njimi
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | - Alexandre Brasseur
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | - Frederique Jacobs
- Clinic of Infectious Diseases, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (F.J.); (M.H.)
| | - Jacques Creteur
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| | - Maya Hites
- Clinic of Infectious Diseases, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (F.J.); (M.H.)
| | - Fabio Silvio Taccone
- Deparment of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (A.P.); (J.G.); (I.R.); (L.P.); (H.N.); (A.B.); (J.C.)
| |
Collapse
|
30
|
Hosmann A, Ritscher L, Burgmann H, Al Jalali V, Wulkersdorfer B, Wölfl-Duchek M, Sanz Codina M, Jäger W, Poschner S, Plöchl W, Reinprecht A, Rössler K, Gruber A, Zeitlinger M. Meropenem concentrations in brain tissue of neurointensive care patients exceed CSF levels. J Antimicrob Chemother 2021; 76:2914-2922. [PMID: 34392352 DOI: 10.1093/jac/dkab286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Inadequate antibiotic exposure in cerebral infections might have detrimental effects on clinical outcome. Commonly, antibiotic concentrations within the CSF were used to estimate cerebral target levels. However, the actual pharmacological active unbound drug concentration beyond the blood-brain barrier is unknown. OBJECTIVES To compare meropenem concentrations in blood, CSF and cerebral microdialysate of neurointensive care patients. PATIENTS AND METHODS In 12 patients suffering subarachnoid haemorrhage, 2000 mg of meropenem was administered every 8 h due to an extracerebral infection. Meropenem concentrations were determined in blood, CSF and cerebral microdialysate at steady state (n = 11) and following single-dose administration (n = 5). RESULTS At steady state, the free AUC0-8 was 233.2 ± 42.7 mg·h/L in plasma, 7.8 ± 1.9 mg·h/L in CSF and 26.6 ± 14.0 mg·h/L in brain tissue. The brain tissue penetration ratio (AUCbrain/AUCplasma) was 0.11 ± 0.06, which was more than 3 times higher than in CSF (0.03 ± 0.01), resulting in an AUCCSF/AUCbrain ratio of 0.41 ± 0.16 at steady state. After single-dose administration similar proportions were achieved (AUCbrain/AUCplasma = 0.09 ± 0.08; AUCCSF/AUCplasma = 0.02 ± 0.00). Brain tissue concentrations correlated well with CSF concentrations (R = 0.74, P < 0.001), but only moderately with plasma concentrations (R = 0.51, P < 0.001). Bactericidal thresholds were achieved in both plasma and brain tissue for MIC values ≤16 mg/L. In CSF, bactericidal effects were only reached for MIC values ≤1 mg/L. CONCLUSIONS Meropenem achieves sufficient bactericidal concentrations for the most common bacterial strains of cerebral infections in both plasma and brain tissue, even in non-inflamed brain tissue. CSF concentrations would highly underestimate the target site activity of meropenem beyond the blood-brain barrier.
Collapse
Affiliation(s)
- Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Lavinia Ritscher
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Valentin Al Jalali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Michael Wölfl-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maria Sanz Codina
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Stefan Poschner
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Walter Plöchl
- Department of Anaesthesia, General Intensive Care Medicine and Pain Management, Medical University of Vienna, Vienna, Austria
| | - Andrea Reinprecht
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Gruber
- Department of Neurosurgery, Johannes Kepler University, Linz, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Cheng V, Abdul-Aziz MH, Roberts JA. Applying Antimicrobial Pharmacokinetic Principles for Complex Patients: Critically Ill Adult Patients Receiving Extracorporeal Membrane Oxygenation and Renal Replacement Therapy. Curr Infect Dis Rep 2021. [DOI: 10.1007/s11908-021-00757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Duceppe MA, Kanji S, Do AT, Ruo N, Cavayas YA, Albert M, Robert-Halabi M, Zavalkoff S, Dupont P, Samoukovic G, Williamson DR. Pharmacokinetics of Commonly Used Antimicrobials in Critically Ill Adults During Extracorporeal Membrane Oxygenation: A Systematic Review. Drugs 2021; 81:1307-1329. [PMID: 34224115 DOI: 10.1007/s40265-021-01557-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Adequate dosing of antimicrobials is critical to properly treat infections and limit development of resistance and adverse effects. Limited guidance exists for antimicrobial dosing adjustments in patients requiring extracorporporeal membrane oxygenation (ECMO) therapy. A systematic review was conducted to delineate the pharmacokinetics (PK) and pharmacodynamics (PD) of antimicrobials in critically ill adult patients requiring ECMO. METHODS Medline, EMBASE, Global Health, and All EBM Reviews databases were searched. Grey literature was examined. All studies reporting PK/PD parameters of antimicrobials in critically ill adults treated with ECMO were included, except for case reports and congress abstracts. Ex vivo studies were included. Two independent reviewers applied the inclusion and exclusion criteria. Reviewers were then paired to independently abstract data and evaluate methodological quality of studies using the ROBINS-I tool and the compliance with ClinPK guidelines. Patients' and studies' characteristics, key PK/PD findings, details of ECMO circuits and co-treatments were summarized qualitatively. Dosing recommendations were formulated based on data from controlled studies. RESULTS Thirty-two clinical studies were included; most were observational and uncontrolled. Fourteen ex vivo studies were analysed. Information on patient characteristics and co-treatments was often missing. The effect of ECMO on PK/PD parameters of antimicrobials varied depending on the studied drugs. Few dosing recommendations could be formulated given the lack of good quality data. CONCLUSION Limited data exist on the PK/PD of antimicrobials during ECMO therapy. Rigorously designed and well powered populational PK studies are required to establish empiric dosing guidelines for antimicrobials in patients requiring ECMO support. PROSPERO REGISTRATION NUMBER CRD42018099992 (Registered: July 24th 2018).
Collapse
Affiliation(s)
- Marc-Alexandre Duceppe
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada.
| | - Salmaan Kanji
- Department of Pharmacy, The Ottawa Hospital, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Faculté de Pharmacie, Université de Montréal, Montreal, Canada
| | - Anh Thu Do
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada
| | - Ni Ruo
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada
| | - Yiorgos Alexandros Cavayas
- Department of Medicine, Division of Critical Care, Hôpital du Sacré-Coeur de Montréal Research Centre, Montreal, Canada.,Department of Surgery, Division of Critical Care, Montreal Heart Institute, Montreal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Canada
| | - Martin Albert
- Department of Medicine, Division of Critical Care, Hôpital du Sacré-Coeur de Montréal Research Centre, Montreal, Canada.,Department of Surgery, Division of Critical Care, Montreal Heart Institute, Montreal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Canada
| | - Maxime Robert-Halabi
- Department of Medicine, Division of Cardiology, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Samara Zavalkoff
- Department of Pediatrics, Division of Pediatric Critical Care, McGill University Health Centre, Montreal, Canada.,Faculty of Medicine, McGill University, Montreal, Canada
| | - Patrice Dupont
- Bibliothèque de la santé, Université de Montréal, Montreal, Canada
| | - Gordan Samoukovic
- Faculty of Medicine, McGill University, Montreal, Canada.,Department of Surgery, Division of Critical Care, McGill University Health Centre, Montreal, Canada
| | - David R Williamson
- Faculté de Pharmacie, Université de Montréal, Montreal, Canada.,Department of Pharmacy, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| |
Collapse
|
33
|
Zhang Y, Zeng Z, Zhang Q, Ou Q, Chen Z. [Effect of extracorporeal membrane oxygenation on pharmacokinetics of antimicrobial drugs: recent progress and recommendations]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:793-800. [PMID: 34134970 DOI: 10.12122/j.issn.1673-4254.2021.05.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) is an effective means to provide life support for patients with severe respiratory or heart failure. Existing studies have shown that ECMO may affect the metabolic process of some drugs by drug adsorption, increasing the apparent distribution volume and changing the clearance rate of the drugs. This review summarizes the recent progress in the studies of the effect of ECMO on the pharmacokinetics of antibacterial and antifungal drugs. For the antibacterial drugs, it is recommended that the dose of teicoplanin, imipenem, and linezolid should be increased during ECMO support, while the dose of azithromycin, ciprofloxacin, and tigecycline should not be modified for the time being. Currently studies on pharmacokinetic changes of antifungal drugs during ECMO support remain limited. Voriconazole can be absorbed substantially by ECMO due to its high lipophilicity, and higher doses are therefore recommended. The dose of micafungin also needs to be increased in children undergoing ECMO. However, current evidence concerning the dose of caspofungin and fluconazole are limited, and it is not clear whether the routine dose should be adjusted during ECMO support.
Collapse
Affiliation(s)
- Y Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Z Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Q Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Q Ou
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Z Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
34
|
Gijsen M, Dreesen E, Annaert P, Nicolai J, Debaveye Y, Wauters J, Spriet I. Meropenem Pharmacokinetics and Target Attainment in Critically Ill Patients Are Not Affected by Extracorporeal Membrane Oxygenation: A Matched Cohort Analysis. Microorganisms 2021; 9:microorganisms9061310. [PMID: 34208553 PMCID: PMC8234236 DOI: 10.3390/microorganisms9061310] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022] Open
Abstract
Existing evidence is inconclusive whether meropenem dosing should be adjusted in patients receiving extracorporeal membrane oxygenation (ECMO). Therefore, the aim of this observational matched cohort study was to evaluate the effect of ECMO on pharmacokinetic (PK) variability and target attainment (TA) of meropenem. Patients admitted to the intensive care unit (ICU) simultaneously treated with meropenem and ECMO were eligible. Patients were matched 1:1, based on renal function and body weight, with non-ECMO ICU patients. Meropenem blood sampling was performed over one or two dosing intervals. Population PK modelling was performed using NONMEM7.5. TA was defined as free meropenem concentrations >2 or 8 mg/L (i.e., 1 or 4× minimal inhibitory concentration, respectively) throughout the whole dosing interval. In total, 25 patients were included, contributing 27 dosing intervals. The overall TA was 56% and 26% for the 2 mg/L and 8 mg/L target, respectively. Population PK modelling identified estimated glomerular filtration rate according to the Chronic Kidney Disease Epidemiology equation and body weight, but not ECMO, as significant predictors. In conclusion, TA of meropenem was confirmed to be poor under standard dosing in critically ill patients but was not found to be influenced by ECMO. Future studies should focus on applying dose optimisation strategies for meropenem based on renal function, regardless of ECMO.
Collapse
Affiliation(s)
- Matthias Gijsen
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (E.D.); (I.S.)
- Pharmacy Department, UZ Leuven, 3000 Leuven, Belgium
- Correspondence:
| | - Erwin Dreesen
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (E.D.); (I.S.)
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (P.A.); (J.N.)
- BioNotus, 2845 Niel, Belgium
| | - Johan Nicolai
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (P.A.); (J.N.)
- Development Science, UCB Biopharma SRL, 1420 Braine-l’Alleud, Belgium
| | - Yves Debaveye
- Laboratory for Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium;
| | - Joost Wauters
- Medical Intensive Care Unit, UZ Leuven, 3000 Leuven, Belgium;
- Laboratory for Clinical Infectious and Inflammatory Diseases, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Isabel Spriet
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; (E.D.); (I.S.)
- Pharmacy Department, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
35
|
Cies JJ, Nikolos P, Moore WS, Giliam N, Low T, Marino D, Deacon J, Enache A, Chopra A. Oxygenator impact on meropenem/vaborbactam in extracorporeal membrane oxygenation circuits. Perfusion 2021; 37:729-737. [PMID: 34034594 DOI: 10.1177/02676591211018985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION To determine the oxygenator impact on alterations of meropenem (MEM)/vaborbactam (VBR) in a contemporary neonatal/pediatric (1/4-inch) and adolescent/adult (3/8-inch) extra corporeal membrane oxygenation (ECMO) circuit including the Quadrox-i® oxygenator. METHODS 1/4-inch and 3/8-inch, simulated closed-loop ECMO circuits were prepared with a Quadrox-i pediatric and Quadrox-i adult oxygenator and blood primed. Additionally, 1/4-inch and 3/8-inch circuits were also prepared without an oxygenator in series. A one-time dose of MEM/VBR was administered into the circuits and serial pre- and post-oxygenator concentrations were obtained at 5 minutes, 1, 2, 3, 4, 5, 6, 8, 12, and 24-hour time points. MEM/VBR was also maintained in a glass vial and samples were taken from the vial at the same time periods for control purposes to assess for spontaneous drug degradation. RESULTS For the 1/4-inch circuit, there was an approximate mean 55% MEM loss with the oxygenator in series and a mean 33%-40% MEM loss without an oxygenator in series at 24 hours. For the 3/8-inch circuit, there was an approximate mean 70% MEM loss with the oxygenator in series and a mean 30%-38% MEM loss without an oxygenator in series at 24 hours. For both the 1/4-inch circuit and 3/8-inch circuits with and without an oxygenator, there was <10% VBR loss for the duration of the experiment. CONCLUSIONS This ex-vivo investigation demonstrated substantial MEM loss within an ECMO circuit with an oxygenator in series with both sizes of the Quadrox-i oxygenator at 24 hours and no significant VBR loss. Further evaluations with multiple dose in-vitro and in-vivo investigations are needed before specific MEM/VBR dosing recommendations can be made for clinical application with ECMO.
Collapse
Affiliation(s)
- Jeffrey J Cies
- The Center for Pediatric Pharmacotherapy LLC, Pottstown, PA, USA.,St. Christopher's Hospital for Children, Philadelphia, PA, USA.,Drexel University College of Medicine, Philadelphia, PA, USA
| | - Peter Nikolos
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, NY, USA.,New York Presbyterian Weill Cornell Medical Center, New York, NY, USA
| | - Wayne S Moore
- The Center for Pediatric Pharmacotherapy LLC, Pottstown, PA, USA
| | - Nadji Giliam
- St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Tracy Low
- St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Daniel Marino
- St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Jillian Deacon
- St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Adela Enache
- Atlantic Diagnostic Laboratories, Bensalem, PA, USA
| | - Arun Chopra
- The Center for Pediatric Pharmacotherapy LLC, Pottstown, PA, USA.,NYU Langone Medical Center, New York, NY, USA.,NYU School of Medicine, New York, NY, USA
| |
Collapse
|
36
|
Jørgensen AR, Hanberg P, Bue M, Thomassen MB, Pedersen Jørgensen N, Stilling M. Double-dose cefuroxime concentrations in bone, synovial fluid of the knee joint and subcutaneous adipose tissue-A randomised porcine microdialysis study. Eur J Pharm Sci 2021; 160:105754. [PMID: 33582285 DOI: 10.1016/j.ejps.2021.105754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
This study evaluated target tissue concentrations of double dose cefuroxime administered intravenously as either one 15 min infusion of 3000 mg (Group 1) or two single 15 min infusions of 1500 mg administered 4 h apart (Group 2). Sixteen pigs were randomised into two groups of eight. Cortical and cancellous bone, synovial fluid of the knee joint and subcutaneous adipose tissue concentrations were measured based on sampling via microdialysis. Plasma samples were collected as a reference. Comparison of the groups was based on time with concentrations above relevant minimal inhibitory concentrations (fT>MIC) of 4 μg/mL. The mean time fT>MIC (4 μg/mL) across compartments was longer for Group 2 (280-394 min) than for Group 1 (207-253 min) (p<0.01). Cortical bone showed a tendency towards longer fT>MIC (4 μg/mL) in Group 2 (280 min) than in Group 1 (207 min) (p = 0.053). Within 50 min after administration, the mean concentration of 4 μg/mL was reached in all compartments for both groups. The mean concentrations decreased below 4 μg/mL after approximately 4 h (Group 1) and 3 h (Group 2) from initiation of administration (time zero). During an 8 h interval, double-dose cefuroxime administered as 2 × 1500 mg with a 4 h interval provides longer time above MIC breakpoint for Staphylococcus aureus (4 μg/mL) than a single bolus of 3000 mg cefuroxime. To maintain sufficient tissue concentrations during longer surgeries, re-administration of cefuroxime (1500 mg) should be considered 3 h after the first administration.
Collapse
Affiliation(s)
- A R Jørgensen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark.
| | - P Hanberg
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark; Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark.
| | - M Bue
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark; Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark.
| | - M B Thomassen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark.
| | - N Pedersen Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark.
| | - M Stilling
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark; Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark.
| |
Collapse
|
37
|
Hanberg P, Bue M, Thomassen M, Løve US, Kipp JO, Harlev C, Petersen E, Søballe K, Stilling M. Influence of anastomoses on intestine ischemia and cefuroxime concentrations: Evaluated in the ileum and colon in a porcine model. World J Gastrointest Pathophysiol 2021; 12:1-13. [PMID: 33585069 PMCID: PMC7852486 DOI: 10.4291/wjgp.v12.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Anastomotic leakage is a serious complication following gastrointestinal surgery and is associated with increased morbidity and mortality. The incidence of anastomotic leakage is determined by anatomy and is reported to be between 4%-33% for colon anastomosis and 1%-3% for small intestine anastomosis. The etiology of anastomotic leakage of the intestine has been divided into three main factors: healing disturbances, communication between intra- and extra-luminal compartments, and infection. All three factors interact, and one factor will inevitably lead to the other two factors resulting in tissue ischemia, tissue necrosis, and anastomotic leakage.
AIM To evaluate ischemic metabolites and cefuroxime concentrations in both anastomosis and non-anastomosis ileum and colon in a porcine model.
METHODS Eight healthy female pigs (Danish Landrace breed, weight 58-62 kg) were included in this study. Microdialysis catheters were placed for sampling of ischemic metabolites (glucose, lactate, glycerol, and pyruvate) and cefuroxime concentrations in both anastomosis and non-anastomosis ileum and colon. Cefuroxime 1.5 g was administered as an intravenous infusion over 15 min. Subsequently, dialysates and blood samples were collected over 8 h and the ischemic metabolites and cefuroxime concentrations were quantified in all samples. The concentrations of glucose, lactate, glycerol and pyruvate were determined using the CMA 600 Microdialysis Analyzer with Reagent Set A (M Dialysis AB, Sweden), and the concentrations of cefuroxime and meropenem were quantified using a validated ultra-high-performance liquid chromatography assay.
RESULTS Only the colon anastomosis induced mean ischemic lactate/pyruvate ratios above 25 (ischemic cut-off) throughout the entire sampling interval, and simultaneously decreased glucose concentrations. The mean time for which cefuroxime concentrations were maintained above the clinical breakpoint minimal inhibitory concentration for Escherichia coli (8 µg/mL) ranged between 116-128 min across all the investigated compartments, and was similar between the anastomosis and non-anastomosis ileum and colon. For all pigs and in all the investigated compartments, a cefuroxime concentration of 8 µg/mL was reached within 10 min after administration. When comparing the pharmacokinetic parameters between the anastomosis and non-anastomosis sites for both ileum and colon, only colon Tmax and half-life differed between anastomosis and non-anastomosis (P < 0.03). Incomplete tissue penetrations were found in all tissues except for the non-anastomosis colon.
CONCLUSION Administering 1.5 g cefuroxime 10 min prior to intestine surgery seems sufficient, and effective concentrations are sustained for approximately 2 h. Only colon anastomosis was locally vulnerable to ischemia.
Collapse
Affiliation(s)
- Pelle Hanberg
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens 8700, Denmark
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N 8200, Denmark
| | - Mats Bue
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N 8200, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Maja Thomassen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Uffe Schou Løve
- Department of Surgery, Viborg Regional Hospital, Viborg 8800, Denmark
| | - Josephine Olsen Kipp
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Christina Harlev
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Elisabeth Petersen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Kjeld Søballe
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N 8200, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N 8200, Denmark
| | - Maiken Stilling
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N 8200, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N 8200, Denmark
| |
Collapse
|
38
|
Wang Y, Li Z, Chen W, Yan G, Wang G, Lu G, Chen C. Pharmacokinetics of meropenem in children with sepsis undergoing extracorporeal life support: A prospective observational study. J Clin Pharm Ther 2021; 46:754-761. [PMID: 33476064 PMCID: PMC8248190 DOI: 10.1111/jcpt.13344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 01/28/2023]
Abstract
What is known and Objective Meropenem, a broad‐spectrum carbapenem, is frequently used to treat severe bacterial infections in critically ill children. Recommendations for meropenem doses in adult infections are available; however, few studies have been published regarding the use of meropenem in children with sepsis, especially in those receiving continuous renal replacement therapy (CRRT) and extracorporeal membrane oxygenation (ECMO). We aimed to investigate the pharmacokinetic (PK) parameters of meropenem in children with sepsis receiving extracorporeal life support (ECLS). Methods This was a prospective observational clinical study of children with sepsis receiving ECMO or CRRT in the paediatric intensive care unit (PICU) of a children's hospital. The enrolled children received 20 mg/kg meropenem infusion over 1 hour, every 8 hours, and were grouped into children receiving ECMO, children receiving CRRT and children receiving neither ECMO nor CRRT. Plasma meropenem concentrations were determined using a validated high‐performance liquid chromatography‐tandem mass spectrometry (HPLC‐MS/MS). The key PK parameters were determined using the non‐compartmental approach. Results and discussion Twenty‐seven patients were finally enrolled. The eCLCR of the CRRT group was lower than that of the ECMO group. The values of elimination half‐life (t1/2), area under the plasma concentration‐time curve (AUCtau), area under the plasma concentration‐time curve from time zero to infinity (AUC0‐∞), and total clearance (CL) in the ECMO group were not different from those of the other groups (all p > 0.05). However, the AUCtau (p = 0.0137) and AUC0‐∞ (p = 0.0234) significantly decreased after filtration through a hemofiltration membrane in patients receiving CRRT. What is new and Conclusion No significant alterations in the PK parameters of meropenem occurred in children with sepsis administered ECMO and/or CRRT. Further investigations including PK modelling could provide evidence for appropriate meropenem dosing regimens during ECLS administration.
Collapse
Affiliation(s)
- Yixue Wang
- PICU of Children's Hospital of Fudan University, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Weiming Chen
- PICU of Children's Hospital of Fudan University, Shanghai, China
| | - Gangfeng Yan
- PICU of Children's Hospital of Fudan University, Shanghai, China
| | - Guangfei Wang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, Shanghai, China
| | - Guoping Lu
- PICU of Children's Hospital of Fudan University, Shanghai, China
| | - Chao Chen
- NICU of Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
39
|
Lee JH, Lee DH, Kim JS, Jung WB, Heo W, Kim YK, Kim SH, No TH, Jo KM, Ko J, Lee HY, Jun KR, Choi HS, Jang JH, Jang HJ. Pharmacokinetics and Monte Carlo Simulation of Meropenem in Critically Ill Adult Patients Receiving Extracorporeal Membrane Oxygenation. Front Pharmacol 2021; 12:768912. [PMID: 34790131 PMCID: PMC8591204 DOI: 10.3389/fphar.2021.768912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: There have been few clinical studies of ECMO-related alterations of the PK of meropenem and conflicting results were reported. This study investigated the pharmacokinetics (PK) of meropenem in critically ill adult patients receiving extracorporeal membrane oxygenation (ECMO) and used Monte Carlo simulations to determine appropriate dosage regimens. Methods: After a single 0.5 or 1 g dose of meropenem, 7 blood samples were drawn. A population PK model was developed using nonlinear mixed-effects modeling. The probability of target attainment was evaluated using Monte Carlo simulation. The following treatment targets were evaluated: the cumulative percentage of time during which the free drug concentration exceeds the minimum inhibitory concentration of at least 40% (40% fT>MIC), 100% fT>MIC, and 100% fT>4xMIC. Results: Meropenem PK were adequately described by a two-compartment model, in which creatinine clearance and ECMO flow rate were significant covariates of total clearance and central volume of distribution, respectively. The Monte Carlo simulation predicted appropriate meropenem dosage regimens. For a patient with a creatinine clearance of 50-130 ml/min, standard regimen of 1 g q8h by i. v. infusion over 0.5 h was optimal when a MIC was 4 mg/L and a target was 40% fT>MIC. However, the standard regimen did not attain more aggressive target of 100% fT>MIC or 100% fT>4xMIC. Conclusion: The population PK model of meropenem for patients on ECMO was successfully developed with a two-compartment model. ECMO patients exhibit similar PK with patients without ECMO. If more aggressive targets than 40% fT>MIC are adopted, dose increase may be needed.
Collapse
Affiliation(s)
- Jae Ha Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Dong-Hwan Lee
- Department of Clinical Pharmacology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Jin Soo Kim
- Division of General Surgery, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Won-Beom Jung
- Division of General Surgery, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Woon Heo
- Division of Cardiac Surgery, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Yong Kyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Se Hun Kim
- Department of Anesthesiology, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Tae-Hoon No
- Department of Infectious Diseases, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kyeong Min Jo
- Department of Infectious Diseases, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Junghae Ko
- Department of Endocrinology, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Ho Young Lee
- Department of Pulmonology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Kyung Ran Jun
- Department of Laboratory Medicine, Inje University Haeundea Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Hye Sook Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, South Korea
| | - Ji Hoon Jang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Hang-Jea Jang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, South Korea
- *Correspondence: Hang-Jea Jang,
| |
Collapse
|
40
|
Bendtsen MAF, Bue M, Hanberg P, Slater J, Thomassen MB, Hansen J, Søballe K, Öbrink-Hansen K, Stilling M. Flucloxacillin bone and soft tissue concentrations assessed by microdialysis in pigs after intravenous and oral administration. Bone Joint Res 2021; 10:60-67. [PMID: 33448872 PMCID: PMC7845458 DOI: 10.1302/2046-3758.101.bjr-2020-0250.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aims Flucloxacillin is commonly administered intravenously for perioperative antimicrobial prophylaxis, while oral administration is typical for prophylaxis following smaller traumatic wounds. We assessed the time, for which the free flucloxacillin concentration was maintained above the minimum inhibitory concentration (fT > MIC) for methicillin-susceptible Staphylococcus aureus in soft and bone tissue, after intravenous and oral administration, using microdialysis in a porcine model. Methods A total of 16 pigs were randomly allocated to either intravenous (Group IV) or oral (Group PO) flucloxacillin 1 g every six hours during a 24-hour period. Microdialysis was used for sampling in cancellous and cortical bone, subcutaneous tissue, and the knee joint. In addition, plasma was sampled. The flucloxacillin fT > MIC was evaluated using a low MIC target (0.5 μg/ml) and a high MIC target (2.0 μg/ml). Results Intravenous administration resulted in longer fT > MIC (0.5 μg/ml) compared to oral administration, except for cortical bone. In Group IV, all pigs reached a concentration of 0.5 μg/ml in all compartments. The mean fT > MIC (0.5 μg/ml) was 149 minutes (95% confidence interval (CI) 119 to 179; range 68 to 323) in subcutaneous tissue and 61 minutes (95% CI 29 to 94; range 0 to 121) to 106 minutes (95% CI 76 to 136; range 71 to 154) in bone tissue. In Group PO, 0/8 pigs reached a concentration of 0.5 μg/ml in all compartments. For the high MIC target (2.0 μg/ml), fT > MIC was close to zero minutes in both groups across compartments. Conclusion Although intravenous administration of flucloxacillin 1 g provided higher fT > MIC for the low MIC target compared to oral administration, concentrations were surprisingly low, particularly for bone tissue. Achievement of sufficient bone and soft tissue flucloxacillin concentrations may require a dose increase or continuous administration. Cite this article: Bone Joint Res 2021;10(1):60–67.
Collapse
Affiliation(s)
- Mathias A F Bendtsen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Mats Bue
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Pelle Hanberg
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| | - Josefine Slater
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Maja B Thomassen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Hansen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Institute of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Kjeld Søballe
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Kristina Öbrink-Hansen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maiken Stilling
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.,Aarhus Microdialysis Research Group, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
41
|
Nonoshita K, Suzuki Y, Tanaka R, Kaneko T, Ohchi Y, Sato Y, Yasuda N, Goto K, Kitano T, Itoh H. Population pharmacokinetic analysis of doripenem for Japanese patients in intensive care unit. Sci Rep 2020; 10:22148. [PMID: 33335198 PMCID: PMC7747597 DOI: 10.1038/s41598-020-79076-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/25/2020] [Indexed: 12/01/2022] Open
Abstract
We aimed to construct a novel population pharmacokinetics (PPK) model of doripenem (DRPM) for Japanese patients in intensive care unit, incorporating the clearance of DRPM by continuous renal replacement therapy (CRRT). Twenty-one patients treated with DRPM (0.25 or 0.5 g) by intravenous infusion over 1 h were included in the study. Nine of the 21 patients were receiving CRRT. Plasma samples were obtained before and 1, 2, 4, 6 and 8 h after the first DRPM administration. PPK analysis was conducted by nonlinear mixed effects modeling using a two-compartment model. Total clearance (CLtotal) in the model was divided into CRRT clearance (CLCRRT) and body clearance (CLbody). The final model was: CLtotal (L h-1) = CLbody(non-CRRT) = 3.65 × (Ccr/62.25)0.64 in the absence of CRRT, or = CLbody(CRRT) + CLCRRT = 2.49 × (Ccr/52.75)0.42 + CLCRRT in the presence of CRRT; CLCRRT = QE × 0.919 (0.919 represents non-protein binding rate of DRPM); V1 (L) = 10.04; V2 (L) = 8.13; and Q (L h-1) = 3.53. Using this model, CLtotal was lower and the distribution volumes (V1 and V2) tended to be higher compared to previous reports. Also, Ccr was selected as a significant covariate for CLbody. Furthermore, the contribution rate of CLCRRT to CLtotal was 30-40%, suggesting the importance of drug removal by CRRT. The population analysis model used in this study is a useful tool for planning DRPM regimen and administration. Our novel model may contribute greatly to proper use of DRPM in patients requiring intensive care.
Collapse
Affiliation(s)
- Ko Nonoshita
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, Japan.
| | - Yosuke Suzuki
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, Japan
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, Japan
| | - Tetsuya Kaneko
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, Japan
| | - Yoshifumi Ohchi
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Yuhki Sato
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, Japan
| | - Norihisa Yasuda
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Koji Goto
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Takaaki Kitano
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Oita University, Hasama-machi, Oita, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, Hasama-machi, Oita, Japan
| |
Collapse
|
42
|
Hanberg P, Bue M, Öbrink-Hansen K, Thomassen M, Søballe K, Stilling M. Timing of Antimicrobial Prophylaxis and Tourniquet Inflation: A Randomized Controlled Microdialysis Study. J Bone Joint Surg Am 2020; 102:1857-1864. [PMID: 32769808 DOI: 10.2106/jbjs.20.00076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Tourniquets are widely used during extremity surgery. In order to prevent surgical site infection, correct timing of antimicrobial prophylaxis and tourniquet inflation is important. We aimed to evaluate the time for which the free drug concentration of cefuroxime is maintained above the minimum inhibitory concentration (t > MIC) in porcine subcutaneous adipose tissue and calcaneal cancellous bone during 3 clinically relevant tourniquet application scenarios. METHODS Twenty-four female Danish Landrace pigs were included. Microdialysis catheters were placed bilaterally for sampling of cefuroxime concentrations in calcaneal cancellous bone and subcutaneous adipose tissue, and a tourniquet was applied to a randomly picked leg of each pig. Subsequently, the pigs were randomized into 3 groups to receive 1.5 g of cefuroxime by intravenous injection 15 minutes prior to tourniquet inflation (Group A), 45 minutes prior to tourniquet inflation (Group B), and at the time of tourniquet release (Group C). The tourniquet duration was 90 minutes in all groups. Dialysates and venous blood samples were collected for 8 hours after cefuroxime administration. Cefuroxime and various ischemic marker concentrations were quantified. RESULTS Cefuroxime concentrations were maintained above the clinical breakpoint MIC for Staphylococcus aureus (4 µg/mL) in calcaneal cancellous bone and subcutaneous adipose tissue throughout the 90-minute tourniquet duration in Groups A and B. Cefuroxime administration at the time of tourniquet release (Group C) resulted in concentrations of >4 µg/mL for approximately of 3.5 hours in the tissues on the tourniquet side. Furthermore, tourniquet application induced ischemia (increased lactate:pyruvate ratio) and cell damage (increased glycerol) in subcutaneous adipose tissue and calcaneal cancellous bone. Tissue ischemia was sustained for 2.5 hours after tourniquet release in calcaneal cancellous bone. CONCLUSIONS Administration of cefuroxime (1.5 g) in the 15 to 45-minute window prior to tourniquet inflation resulted in sufficient concentrations in calcaneal cancellous bone and subcutaneous adipose tissue throughout the 90-minute tourniquet application. Furthermore, tourniquet-induced tissue ischemia fully resolved 2.5 hours after tourniquet release. CLINICAL RELEVANCE Cefuroxime administration 15 to 45 minutes prior to tourniquet inflation seems to be a safe window. If the goal is to maintain postoperative cefuroxime concentrations above relevant MIC values, our results suggest that a second dose of cefuroxime should be administered at the time of tourniquet release.
Collapse
Affiliation(s)
- Pelle Hanberg
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Mats Bue
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Kristina Öbrink-Hansen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Maja Thomassen
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Kjeld Søballe
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Maiken Stilling
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
43
|
Hanberg P, Bue M, Jørgensen AR, Thomassen M, Öbrink-Hansen K, Søballe K, Stilling M. Pharmacokinetics of double-dose cefuroxime in porcine intervertebral disc and vertebral cancellous bone-a randomized microdialysis study. Spine J 2020; 20:1327-1332. [PMID: 32194245 DOI: 10.1016/j.spinee.2020.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Postoperative pyogenic spondylodiscitis is associated with prolonged antimicrobial therapy and high relapse rates. Cefuroxime is a time-dependent antimicrobial widely used for intravenous perioperative prophylaxis in spine surgery. A previous study has indicated that a single dose of cefuroxime (1.5 g) provides insufficient spine tissue concentrations for spine procedures lasting more than 2 to 3 hours. PURPOSE To evaluate the time with concentrations above relevant minimal inhibitory concentrations (T>MIC) in plasma, subcutaneous adipose tissue, vertebral cancellous bone, and intervertebral disc after a twofold increase of the standard dosage of 1.5 g cefuroxime given as one double dose (1×3 g) or two single doses (2×1.5 g) with a four-hour interval. METHODS Sixteen pigs were randomized into two groups: Group 1 received one double dose of cefuroxime (1×3 g) as an intravenous bolus and Group 2 received two single doses of cefuroxime (2×1.5 g) as an intravenous bolus with a four-hour interval. Cefuroxime measurements were obtained from plasma, subcutaneous adipose tissue, vertebral cancellous bone, and intervertebral disc for eight hours thereafter. Microdialysis was applied for sampling in solid tissues. The cefuroxime concentrations were determined using ultra-high performance liquid chromatography. This work was supported by grants from the Health Research Foundation of Central Denmark Region (Level E). The funding source did not play any role in the investigation. RESULTS The time with concentrations above the Staphylococcus aureus clinical breakpoint minimal inhibitory concentration of 4 μg/mL was higher in all compartments for Group 2 compared to Group 1. The mean T>MIC (4 μg/mL) in all compartments ranged between 47% and 67% for Group 1 and 72% and 92% for Group 2. Furthermore, a delayed tissue penetration into all tissues for both groups was demonstrated. CONCLUSIONS This study suggests that cefuroxime should be given at least 45 minutes prior to spine procedures and as two single doses at a maximum interval of four hours for extended spine procedures. Clinical studies verifying these results are warranted. CLINICAL SIGNIFICANCE Administering cefuroxime as two single doses (2×1.5 g) with a four-hour interval compared to one double dose (1×3 g) resulted in higher T>MIC. Furthermore, we found delayed and incomplete cefuroxime tissue penetration.
Collapse
Affiliation(s)
- Pelle Hanberg
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark; Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.
| | - Mats Bue
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark; Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | | | - Maja Thomassen
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Kjeld Søballe
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark; Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| | - Maiken Stilling
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark; Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
44
|
Antibiotic dosing during extracorporeal membrane oxygenation: does the system matter? Curr Opin Anaesthesiol 2020; 33:71-82. [PMID: 31764007 DOI: 10.1097/aco.0000000000000810] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW The aims of this review are to discuss the impact of extracorporeal membrane oxygenation (ECMO) on antibiotic pharmacokinetics and how this phenomenon may influence antibiotic dosing requirements in critically ill adult ECMO patients. RECENT FINDINGS The body of literature describing antibiotic pharmacokinetic and dosing requirements during ECMO support in critically adult patients is currently scarce. However, significant development has recently been made in this research area and more clinical pharmacokinetic data have emerged to inform antibiotic dosing in these patients. Essentially, these clinical data highlight several important points that clinicians need to consider when dosing antibiotics in critically ill adult patients receiving ECMO: physicochemical properties of antibiotics can influence the degree of drug loss/sequestration in the ECMO circuit; earlier pharmacokinetic data, which were largely derived from the neonatal and paediatric population, are certainly useful but cannot be extrapolated to the critically ill adult population; modern ECMO circuitry has minimal adsorption and impact on the pharmacokinetics of most antibiotics; and pharmacokinetic changes in ECMO patients are more reflective of critical illness rather than the ECMO therapy itself. SUMMARY An advanced understanding of the pharmacokinetic alterations in critically ill patients receiving ECMO is essential to provide optimal antibiotic dosing in these complex patients pending robust dosing guidelines. Antibiotic dosing in this patient population should generally align with the recommended dosing strategies for critically ill patients not on ECMO support. Performing therapeutic drug monitoring (TDM) to guide antibiotic dosing in this patient population appears useful.
Collapse
|
45
|
Population pharmacokinetics of piperacillin in plasma and subcutaneous tissue in patients on continuous renal replacement therapy. Int J Infect Dis 2020; 92:133-140. [PMID: 31978581 DOI: 10.1016/j.ijid.2020.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Piperacillin is a β-lactam antimicrobial frequently used in critically ill patients with acute kidney injury treated with continuous renal replacement therapy (CRRT). However, data regarding piperacillin tissue concentrations in this patient population are limited. A prospective observational study was conducted of free piperacillin concentrations during a single 8-h dosing interval in plasma (8 samples) and subcutaneous tissue (SCT) (13 samples), in 10 patients treated with CRRT following piperacillin 4 g given every 8 h as intermittent administration over 3 min. METHODS A population pharmacokinetic model was developed using NONMEM 7.4.3, to simulate alternative administration modes and dosing regimens. SCT concentrations were obtained using microdialysis. Piperacillin concentrations were compared to the clinical breakpoint minimum inhibitory concentration (MIC) for Pseudomonas aeruginosa (16 mg/l), with evaluation of the following pharmacokinetic/pharmacodynamics targets: 50% fT > 1 × MIC, 100% fT > 1 × MIC, and 100% fT > 4 × MIC. RESULTS SCT concentrations were generally lower than plasma concentrations. For the target of 50% free time (fT) > 1 × MIC and 100% fT > 1 × MIC, piperacillin 4 g every 8 h resulted in probability of target attainment (PTA) >90% in both plasma and SCT. PTA > 90% for the target of 100% fT > 4 × MIC was only achieved for continuous infusion. CONCLUSIONS Piperacillin 4 g every 8 h is likely to provide sufficient exposure in both plasma and SCT to treat P.aeruginosa infections in critically ill patients on CRRT, given that targets of 50% fT > 1 × MIC or 100% fT > 1 × MIC are adequate. However, if a more aggressive target of 100% fT > 4 × MIC is adopted, continuous infusion is needed.
Collapse
|
46
|
Clinical pharmacokinetics of 3-h extended infusion of meropenem in adult patients with severe sepsis and septic shock: implications for empirical therapy against Gram-negative bacteria. Ann Intensive Care 2020; 10:4. [PMID: 31925610 PMCID: PMC6954163 DOI: 10.1186/s13613-019-0622-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/26/2019] [Indexed: 12/29/2022] Open
Abstract
Background Optimal anti-bacterial activity of meropenem requires maintenance of its plasma concentration (Cp) above the minimum inhibitory concentration (MIC) of the pathogen for at least 40% of the dosing interval (fT > MIC > 40). We aimed to determine whether a 3-h extended infusion (EI) of meropenem achieves fT > MIC > 40 on the first and third days of therapy in patients with severe sepsis or septic shock. We also simulated the performance of the EI with respect to other pharmacokinetic (PK) targets such as fT > 4 × MIC > 40, fT > MIC = 100, and fT > 4 × MIC = 100. Methods Arterial blood samples of 25 adults with severe sepsis or septic shock receiving meropenem 1000 mg as a 3-h EI eight hourly (Q8H) were obtained at various intervals during and after the first and seventh doses. Plasma meropenem concentrations were determined using a reverse-phase high-performance liquid chromatography assay, followed by modeling and simulation of PK data. European Committee on Antimicrobial Susceptibility Testing (EUCAST) definitions of MIC breakpoints for sensitive and resistant Gram-negative bacteria were used. Results A 3-h EI of meropenem 1000 mg Q8H achieved fT > 2 µg/mL > 40 on the first and third days, providing activity against sensitive strains of Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii. However, it failed to achieve fT > 4 µg/mL > 40 to provide activity against strains susceptible to increased exposure in 33.3 and 39.1% patients on the first and the third days, respectively. Modeling and simulation showed that a bolus dose of 500 mg followed by 3-h EI of meropenem 1500 mg Q8H will achieve this target. A bolus of 500 mg followed by an infusion of 2000 mg would be required to achieve fT > 8 µg > 40. Targets of fT > 4 µg/mL = 100 and fT > 8 µg/mL = 100 may be achievable in two-thirds of patients by increasing the frequency of dosing to six hourly (Q6H). Conclusions In patients with severe sepsis or septic shock, EI of 1000 mg of meropenem over 3 h administered Q8H is inadequate to provide activity (fT > 4 µg/mL > 40) against strains susceptible to increased exposure, which requires a bolus of 500 mg followed by EI of 1500 mg Q8H. While fT > 8 µg/mL > 40 require escalation of EI dose, fT > 4 µg/mL = 100 and fT > 8 µg/mL = 100 require escalation of both EI dose and frequency.
Collapse
|
47
|
Hanberg P, Bue M, Öbrink-Hansen K, Kabel J, Thomassen M, Tøttrup M, Søballe K, Stilling M. Simultaneous Retrodialysis by Drug for Cefuroxime Using Meropenem as an Internal Standard-A Microdialysis Validation Study. J Pharm Sci 2019; 109:1373-1379. [PMID: 31756324 DOI: 10.1016/j.xphs.2019.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Microdialysis is a valuable pharmacokinetic tool for obtaining samples of drug concentrations from tissues of interest. When an absolute tissue concentration is needed, a calibration of the microdialysis catheter is required. The use of an internal standard offers a number of advantages compared to standard calibration methods. However, meticulous validation both in vitro and in vivo is needed, as this method requires an internal standard with physiochemical similarities to the analyte of interest with no interference. A series of in vitro and in vivo setups were conducted to determine the relative recovery by gain and by loss for cefuroxime, with and without a constant meropenem concentration. The cefuroxime and meropenem concentrations were determined using ultra-HPLC. The main finding was that cefuroxime and meropenem relative recovery behaved similarly both in vitro and in vivo, signifying that meropenem is a representative internal standard for cefuroxime. Furthermore, cefuroxime relative recovery in vitro was not affected by either the cefuroxime concentration or the presence of meropenem, and the in vivo meropenem relative recovery was constant over 6 h.
Collapse
Affiliation(s)
- Pelle Hanberg
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Sundvej 30, 8700 Horsens, Denmark; Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark.
| | - Mats Bue
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Sundvej 30, 8700 Horsens, Denmark; Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Kristina Öbrink-Hansen
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jesper Kabel
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Sundvej 30, 8700 Horsens, Denmark
| | - Maja Thomassen
- Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Mikkel Tøttrup
- Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Orthopaedic Surgery, Randers Regional Hospital, Skovlyvej 15, 8930 Randers NØ, Denmark
| | - Kjeld Søballe
- Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Orthopaedic Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Maiken Stilling
- Orthopaedic Research Unit, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Orthopaedic Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| |
Collapse
|
48
|
[Clinical pharmacokinetics of anti-infective drugs in extracorporeal membrane oxygenation]. Anaesthesist 2019; 68:821-826. [PMID: 31740986 DOI: 10.1007/s00101-019-00702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Extracorporeal membrane oxygenation (ECMO) is becoming more and more clinically important. The extracorporeal circuit for membrane oxygenation consists of a pump, a membrane oxygenator and large volume tubing. The ECMO device forms an additional compartment, which can absorb drugs with high lipophilia and protein binding. Thus, ECMO affects the volume of distribution and the clearance. As a consequence, the pharmacokinetic-pharmacodynamic (pk-pd) target parameters cannot be achieved. The selection of an appropriate substance and the mode of application, combined with therapeutic drug monitoring (TDM), can significantly improve the therapeutic outcome of critically ill patients.
Collapse
|
49
|
Pham TNM, Le TB, Le DD, Ha TH, Nguyen NS, Pham TD, Hauser PC, Nguyen TAH, Mai TD. Determination of carbapenem antibiotics using a purpose-made capillary electrophoresis instrument with contactless conductivity detection. J Pharm Biomed Anal 2019; 178:112906. [PMID: 31634756 DOI: 10.1016/j.jpba.2019.112906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023]
Abstract
In this study, the employment of a purpose-made capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C4D) as a simple and cost-effective approach for simultaneous determination of different carbapenem antibiotics is reported. The developed CE-C4D approach was for the first time applied for quality control of various pharmaceutical formulations in Vietnam, as well as for therapeutic monitoring of these antibiotics in plasma samples from patients under intensive care. Four of the most popular carbapenems in Vietnam, doripenem, meropenem, imipenem and ertapenem, were determined using an electrolyte composed of 10 mM Tris adjusted to pH 8.0 with acetic acid. The best detection limits achieved using the developed CE-C4D method were 0.36 mg/L and 0.45 mg/L for pharmaceutical and plasma samples, respectively. Good agreement between results from CE-C4D and the confirmation method (HPLC-PDA) was achieved, with a coefficient of determination (r2) for the two pairs of data of 0.9967.
Collapse
Affiliation(s)
- Thi Ngoc Mai Pham
- Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Thai Binh Le
- Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Duc Dung Le
- Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Tran Hung Ha
- Poison Control Center, Bach Mai Hospital, 78 Giai Phong Road, Dong Da, Hanoi, Viet Nam
| | - Ngoc Son Nguyen
- Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Tien Duc Pham
- Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Peter C Hauser
- University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Thi Anh Huong Nguyen
- Department of Analytical Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| | - Thanh Duc Mai
- Institut Galien Paris Sud, UMR 8612, Protein and Nanotechnology in Analytical Science (PNAS), CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 5 Rue Jean Baptiste Clément, 92290, Châtenay-Malabry, France.
| |
Collapse
|