1
|
Lin F. Tuberculous meningitis diagnosis and treatment: classic approaches and high-throughput pathways. Front Immunol 2025; 15:1543009. [PMID: 39867878 PMCID: PMC11757110 DOI: 10.3389/fimmu.2024.1543009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025] Open
Abstract
Tuberculous meningitis (TBM), a severe form of non-purulent meningitis caused by Mycobacterium tuberculosis (Mtb), is the most critical extrapulmonary tuberculosis (TB) manifestation, with a 30-40% mortality rate despite available treatment. The absence of distinctive clinical symptoms and effective diagnostic tools complicates early detection. Recent advancements in nucleic acid detection, genomics, metabolomics, and proteomics have led to novel diagnostic approaches, improving sensitivity and specificity. This review focuses on nucleic acid-based methods, including Xpert Ultra, metagenomic next-generation sequencing (mNGS), and single-cell sequencing of whole brain Tissue, alongside the diagnostic potential of metabolomic and proteomic biomarkers. By evaluating the technical features, diagnostic accuracy, and clinical applicability, this review aims to inform the optimization of TBM diagnostic strategies and explores the integration and clinical translation of multi-omics technologies.
Collapse
Affiliation(s)
- Fangbo Lin
- Rehabilitation Medicine Department, The Affiliated Changsha Hospital of Xiangya School
of Medicine, Central South University (The First Hospital of Changsha, Changsha, China
| |
Collapse
|
2
|
Liu X, Tang D, Qi M, He JQ. Efficacy of linezolid in the treatment of tuberculous meningitis: a meta-analysis. Arch Med Sci 2024; 20:1038-1042. [PMID: 39050154 PMCID: PMC11264080 DOI: 10.5114/aoms/189905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Tuberculous meningitis (TBM) is a severe extra-pulmonary tuberculosis with high fatality. This meta-analysis aimed to assess the impact of linezolid on TBM treatment outcomes. Methods We searched multiple databases for studies published up to May 18, 2024 comparing the effects of linezolid on TBM. Meta-analysis was conducted using Review Manager 5.4. Results Our findings indicated that linezolid may reduce treatment failure risk (RR = 0.42 (0.20, 0.89), p = 0.02) and improve temperature recovery (RR = 1.56 (1.21, 2.02), p < 0.001) in TBM patients. Conclusions The analysis suggests a positive association between linezolid treatment and therapeutic improvements, with no significant adverse reactions reported.
Collapse
Affiliation(s)
- Xiaoshu Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Daoyan Tang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Min Qi
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China
| |
Collapse
|
3
|
Miyakawa R, Louie J, Keh C, Chen L, Javid B, Ernst JD, Goswami N, Chow FC. A teenage girl with altered mental status and paraparesis. J Clin Tuberc Other Mycobact Dis 2024; 35:100425. [PMID: 38468819 PMCID: PMC10926304 DOI: 10.1016/j.jctube.2024.100425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
A teenage girl presented with fever and altered mental status. MRI showed diffuse leptomeningeal enhancement of the brain and spine. She was diagnosed by a positive cerebrospinal fluid (CSF) culture with tuberculous (TB) meningitis and was started on anti-TB medications and corticosteroids. Her mental status improved, but she was noted to have proximal weakness of the lower extremities. In the course of tapering corticosteroids at week 11 of anti-TB therapy, she became acutely confused and febrile. MRI demonstrated interval development of tuberculomas in the brain and a mass lesion in the thoracic spine causing cord compression. Given the clinical picture was suggestive of a paradoxical reaction, the dose of corticosteroids was increased. Infliximab was added when repeat MRI revealed enlargement of the mass lesion in the spine with worsening cord compression. She was successfully tapered off of corticosteroids. Over several months, the patient's motor function recovered fully, and she returned to ambulating without assistance.
Collapse
Affiliation(s)
- Ryo Miyakawa
- Department of Pediatrics, University of California, San Francisco, USA
| | - Janice Louie
- Department of Medicine, University of California, San Francisco, USA
- Department of Public Health, San Francisco, USA
| | - Chris Keh
- Department of Medicine, University of California, San Francisco, USA
- California Department of Public Health, USA
| | - Lisa Chen
- Department of Medicine, University of California, San Francisco, USA
- Curry International Tuberculosis Center, USA
| | - Babak Javid
- Department of Medicine, University of California, San Francisco, USA
| | - Joel D. Ernst
- Department of Medicine, University of California, San Francisco, USA
| | | | - Felicia C. Chow
- Department of Medicine, University of California, San Francisco, USA
- Department of Neurology, University of California, San Francisco, USA
| |
Collapse
|
4
|
Abdelgawad N, Wasserman S, Abdelwahab MT, Davis A, Stek C, Wiesner L, Black J, Meintjes G, Wilkinson RJ, Denti P. Linezolid Population Pharmacokinetic Model in Plasma and Cerebrospinal Fluid Among Patients With Tuberculosis Meningitis. J Infect Dis 2024; 229:1200-1208. [PMID: 37740554 PMCID: PMC11011161 DOI: 10.1093/infdis/jiad413] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Linezolid is evaluated in novel treatment regimens for tuberculous meningitis (TBM). Linezolid pharmacokinetics have not been characterized in this population, particularly in cerebrospinal fluid (CSF), as well as, following its co-administration with high-dose rifampicin. We aimed to characterize linezolid plasma and CSF pharmacokinetics in adults with TBM. METHODS In the LASER-TBM pharmacokinetic substudy, the intervention groups received high-dose rifampicin (35 mg/kg) plus 1200 mg/day of linezolid for 28 days, which was then reduced to 600 mg/day. Plasma sampling was done on day 3 (intensive) and day 28 (sparse). A lumbar CSF sample was obtained on both visits. RESULTS Thirty participants contributed 247 plasma and 28 CSF observations. Their median age and weight were 40 years (range, 27-56) and 58 kg (range, 30-96). Plasma pharmacokinetics was described by a 1-compartment model with first-order absorption and saturable elimination. Maximal clearance was 7.25 L/h, and the Michaelis-Menten constant was 27.2 mg/L. Rifampicin cotreatment duration did not affect linezolid pharmacokinetics. CSF-plasma partitioning correlated with CSF total protein up to 1.2 g/L, where the partition coefficient reached a maximal value of 37%. The plasma-CSF equilibration half-life was ∼3.5 hours. CONCLUSIONS Linezolid was readily detected in CSF despite high-dose rifampicin coadministration. These findings support continued clinical evaluation of linezolid plus high-dose rifampicin for the treatment of TBM in adults. Clinical Trials Registration. ClinicalTrials.gov (NCT03927313).
Collapse
Affiliation(s)
- Noha Abdelgawad
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Sean Wasserman
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Institute for Infection and Immunity, St George's University of London, United Kingdom
| | - Mahmoud Tareq Abdelwahab
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - Angharad Davis
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
- Faculty of Life Sciences, University College London, United Kingdom
| | - Cari Stek
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| | - John Black
- Department of Medicine, Walter Sisulu University, Mthatha, South Africa
| | - Graeme Meintjes
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Medicine, University of Cape Town, South Africa
| | - Robert J Wilkinson
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College London, United Kingdom
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
5
|
Tucker EW, Ruiz-Bedoya CA, Mota F, Erice C, Kim J, de Jesus P, Jahdav R, Bahr M, Flavahan K, Chen X, Peloquin CA, Freundlich JS, Jain SK. Linezolid does not improve bactericidal activity of rifampin-containing first-line regimens in animal models of TB meningitis. Int J Antimicrob Agents 2024; 63:107048. [PMID: 38061419 PMCID: PMC10841818 DOI: 10.1016/j.ijantimicag.2023.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 01/02/2024]
Abstract
Tuberculous meningitis (TB meningitis) is the most devastating form of tuberculosis (TB) and there is a critical need to optimize treatment. Linezolid is approved for multidrug resistant TB and has shown encouraging results in retrospective TB meningitis studies, with several clinical trials underway assessing its additive effects on high-dose (35 mg/kg/day) or standard-dose (10 mg/kg/day) rifampin-containing regimens. However, the efficacy of adjunctive linezolid to rifampin-containing first-line TB meningitis regimens and the tissue pharmacokinetics (PK) in the central nervous system (CNS) are not known. We therefore conducted cross-species studies in two mammalian (rabbits and mice) models of TB meningitis to test the efficacy of linezolid when added to the first-line TB regimen and measure detailed tissue PK (multicompartmental positron emission tomography [PET] imaging and mass spectrometry). Addition of linezolid did not improve the bactericidal activity of the high-dose rifampin-containing regimen in either animal model. Moreover, the addition of linezolid to standard-dose rifampin in mice also did not improve its efficacy. Linezolid penetration (tissue/plasma) into the CNS was compartmentalized with lower than previously reported brain and cerebrospinal fluid (CSF) penetration, which decreased further two weeks after initiation of treatment. These results provide important data regarding the addition of linezolid for the treatment of TB meningitis.
Collapse
Affiliation(s)
- Elizabeth W Tucker
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camilo A Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Filipa Mota
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clara Erice
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Kim
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia de Jesus
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ravindra Jahdav
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Melissa Bahr
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly Flavahan
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xueyi Chen
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University-New Jersey Medical School, Newark, NJ, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Muzumdar D, Bansal P, Rai S, Bhatia K. Surgery for Central Nervous System Tuberculosis in Children. Adv Tech Stand Neurosurg 2024; 49:255-289. [PMID: 38700688 DOI: 10.1007/978-3-031-42398-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Tuberculosis (TB) is the second most common cause of death due to a single infectious agent worldwide after COVID-19. Central nervous system tuberculosis is widely prevalent in the world, especially in the developing countries and continues to be a socioeconomic problem. It is highly devastating form of tuberculosis leading to unacceptable levels of morbidity and mortality despite appropriate antitubercular therapy. The clinical symptoms are varied and nonspecific. They can be easily overlooked. Tuberculous meningitis is the most common presentation and its sequelae viz. vasculitis, infarction and hydrocephalus can be devastating. The ensuing cognitive, intellectual, and endocrinological outcome can be a significant source of morbidity and mortality, especially in resource constrained countries. Early diagnosis and treatment of tuberculous meningitis and institution of treatment is helpful in limiting the course of disease process. The diagnosis of CNS tuberculosis remains a formidable diagnostic challenge. The microbiological methods alone cannot be relied upon. CSF diversion procedures need to be performed at the appropriate time in order to achieve good outcomes. Tuberculous pachymeningitis and arachnoiditis are morbid sequelae of tuberculous meningitis. Tuberculomas present as mass lesions in the craniospinal axis. Tuberculous abscess can mimic pyogenic abscess and requires high index of suspicion. Calvarial tuberculosis is seen in children and responds well to antituberculous chemotherapy. Tuberculosis of the spinal cord is seen similar to intracranial tuberculosis in pathogenesis but with its own unique clinical manifestations and management. Multidrug-resistant tuberculosis is a formidable problem, and alternate chemotherapy should be promptly instituted. The pathogenesis, clinical features, diagnosis, and management of central nervous system tuberculosis in children are summarized. Heightened clinical suspicion is paramount to ensure prompt investigation. Early diagnosis and treatment are essential to a gratifying outcome and prevent complications.
Collapse
Affiliation(s)
- Dattatraya Muzumdar
- Department of Neurosurgery, Seth Gordhandas Sunderdas Medical College and King Edward VII Memorial Hospital, Mumbai, India
| | - Puru Bansal
- Department of Neurosurgery, Seth Gordhandas Sunderdas Medical College and King Edward VII Memorial Hospital, Mumbai, India
| | - Survender Rai
- Department of Neurosurgery, Seth Gordhandas Sunderdas Medical College and King Edward VII Memorial Hospital, Mumbai, India
| | - Kushal Bhatia
- Department of Neurosurgery, Seth Gordhandas Sunderdas Medical College and King Edward VII Memorial Hospital, Mumbai, India
| |
Collapse
|
7
|
Lanni F, Antilus Sainte R, Hansen, M, Parigi P, Kaya F, LoMauro K, Siow B, Wilkinson RJ, Wasserman S, Podell BK, Gengenbacher M, Dartois V. A preclinical model of TB meningitis to determine drug penetration and activity at the sites of disease. Antimicrob Agents Chemother 2023; 67:e0067123. [PMID: 37966227 PMCID: PMC10720511 DOI: 10.1128/aac.00671-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/29/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis meningitis (TBM) is essentially treated with the first-line regimen used against pulmonary tuberculosis, with a prolonged continuation phase. However, clinical outcomes are poor in comparison, for reasons that are only partially understood, highlighting the need for improved preclinical tools to measure drug distribution and activity at the site of disease. A predictive animal model of TBM would also be of great value to prioritize promising drug regimens to be tested in clinical trials, given the healthy state of the development pipeline for the first time in decades. Here, we report the optimization of a rabbit model of TBM disease induced via inoculation of Mycobacterium tuberculosis into the cisterna magna, recapitulating features typical of clinical TBM: neurological deterioration within months post-infection, acid-fast bacilli in necrotic lesions in the brain and spinal cord, and elevated lactate levels in cerebrospinal fluid (CSF). None of the infected rabbits recovered or controlled the disease. We used young adult rabbits, the size of which allows for spatial drug quantitation in critical compartments of the central nervous system that cannot be collected in clinical studies. To illustrate the translational value of the model, we report the penetration of linezolid from plasma into the CSF, meninges, anatomically distinct brain areas, cervical spine, and lumbar spine. Across animals, we measured the bacterial burden concomitant with neurological deterioration, offering a useful readout for drug efficacy studies. The model thus forms the basis for building a preclinical platform to identify improved regimens and inform clinical trial design.
Collapse
Affiliation(s)
- Faye Lanni
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | | | - Mark Hansen,
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Paul Parigi
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Firat Kaya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Katherine LoMauro
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Bernard Siow
- The Francis Crick Institute, London, United Kingdom
| | - Robert J. Wilkinson
- The Francis Crick Institute, London, United Kingdom
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brendan K. Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| |
Collapse
|
8
|
Mazanhanga M, Joubert A, Castel S, Van de Merwe M, Maartens G, Wasserman S, Wiesner L. Validation of a quantitative liquid chromatography tandem mass spectrometry assay for linezolid in cerebrospinal fluid and its application to patients with HIV-associated TB-meningitis. Heliyon 2023; 9:e21962. [PMID: 38034739 PMCID: PMC10685187 DOI: 10.1016/j.heliyon.2023.e21962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Tuberculous meningitis treatment outcomes are poor and alternative regimens are under investigation. Reliable methods to measure drug concentrations in cerebrospinal fluid are required to evaluate distribution into the cerebrospinal fluid. A simple and quick method was developed and validated to analyse linezolid in human cerebrospinal fluid. Samples were prepared by protein precipitation followed by isocratic liquid chromatography and tandem mass spectrometry. The run time was 3.5 min. Accuracy and precision were assessed in three independent validation batches with a calibration range of 0.100-20.0 μg/mL. The method was used to analyse cerebrospinal fluid samples from patients with tuberculous meningitis enrolled in a clinical trial. Potentially infective patient samples could be decontaminated using Nanosep® nylon and Costar® nylon filter tubes under biosafety level 3 conditions before analysis. The filtration process did not significantly affect the quantification of linezolid. Linezolid concentration in cerebrospinal fluid obtained from tuberculous meningitis patients ranged from 0.197 μg/mL to 15.0 μg/mL. The ratio between average CSF and plasma linezolid concentrations varied with time, reaching a maximum of 0.9 at 6 h after dosing.
Collapse
Affiliation(s)
- Marian Mazanhanga
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anton Joubert
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sandra Castel
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Marthinus Van de Merwe
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Sahib A, Bhatia R, Srivastava MVP, Singh MB, Komakula S, Vishnu VY, Rajan R, Gupta A, Srivastava AK, Wig N, Vikram NK, Biswas A. Escalate: Linezolid as an add on treatment in the intensive phase of tubercular meningitis. A randomized controlled pilot trial. Tuberculosis (Edinb) 2023; 142:102351. [PMID: 37394301 DOI: 10.1016/j.tube.2023.102351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/03/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023]
Abstract
Most drugs used in the treatment of Tuberculous Meningitis have limited CNS penetration thereby limiting efficacy. CSF penetration of linezolid is 80-100%.The study was a prospective, randomized, open label with blinded outcome assessment pilot trial carried out in patients with TBM. Patients were randomized in a 1:1 ratio into two treatment groups either to receive standard ATT alone or add on oral 600 mg BD Linezolid for 4 weeks along with standard four drug ATT [HRZE/S]. Primary outcome was safety and mortality at the end of one and three months measured by intention to treat analysis. 29 patients were recruited and 27 completed three months of follow up. There was no significant difference in terms of mortality with Odds ratio (95% CI) of 2 (0.161-24.87; p = 1) at one month and 0.385 (0.058-2.538; p = 0.39) at three months. There was a significant improvement in GCS in Linezolid group at one month and mRS within the Linezolid group at one and three months. No major safety concerns were observed. The sample size is underpowered to draw any definitive conclusions but improvement in mRS and GCS as well as mortality change make a case for a large sample size trial.
Collapse
Affiliation(s)
- Akhil Sahib
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Bhatia
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India.
| | - M V Padma Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Mamta Bhushan Singh
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Snigdha Komakula
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - V Y Vishnu
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Anu Gupta
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Naval K Vikram
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ashutosh Biswas
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Abdelgawad N, Wasserman S, Abdelwahab MT, Davis A, Stek C, Wiesner L, Black J, Meintjes G, Wilkinson RJ, Denti P. Linezolid population pharmacokinetic model in plasma and cerebrospinal fluid among patients with tuberculosis meningitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.06.23288230. [PMID: 37066148 PMCID: PMC10104225 DOI: 10.1101/2023.04.06.23288230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Linezolid is being evaluated in novel treatment regimens for tuberculous meningitis (TBM). The pharmacokinetics of linezolid have not been characterized in this population, particularly in cerebrospinal fluid (CSF) where exposures may be affected by changes in protein concentration and rifampicin co-administration. Methods This was a sub-study of a phase 2 clinical trial of intensified antibiotic therapy for adults with HIV-associated TBM. Participants in the intervention groups received high-dose rifampicin (35 mg/kg) plus linezolid 1200 mg daily for 28 days followed by 600 mg daily until day 56. Plasma was intensively sampled, and lumbar CSF was collected at a single timepoint in a randomly allocated sampling window, within 3 days after enrolment. Sparse plasma and CSF samples were also obtained on day 28. Linezolid concentrations were analyzed using non-linear mixed effects modelling. Results 30 participants contributed 247 plasma and 28 CSF linezolid observations. Plasma PK was best described by a one-compartment model with first-order absorption and saturable elimination. The typical value of maximal clearance was 7.25 L/h. Duration of rifampicin co-treatment (compared on day 3 versus day 28) did not affect linezolid pharmacokinetics. Partitioning between plasma and CSF correlated with CSF total protein concentration up to 1.2 g/L where the partition coefficient reached a maximal value of 37%. The equilibration half-life between plasma and CSF was estimated at ∼3.5 hours. Conclusion Linezolid was readily detected in CSF despite co-administration of the potent inducer rifampicin at high doses. These findings support continued clinical evaluation of linezolid plus high-dose rifampicin for the treatment of TBM in adults.
Collapse
|
11
|
Litjens CHC, Verscheijden LFM, Svensson EM, van den Broek PHH, van Hove H, Koenderink JB, Russel FGM, Aarnoutse RE, te Brake LHM. Physiologically-Based Pharmacokinetic Modelling to Predict the Pharmacokinetics and Pharmacodynamics of Linezolid in Adults and Children with Tuberculous Meningitis. Antibiotics (Basel) 2023; 12:antibiotics12040702. [PMID: 37107064 PMCID: PMC10135070 DOI: 10.3390/antibiotics12040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Linezolid is used off-label for treatment of central nervous system infections. However, its pharmacokinetics and target attainment in cranial cerebrospinal fluid (CSF) in tuberculous meningitis patients is unknown. This study aimed to predict linezolid cranial CSF concentrations and assess attainment of pharmacodynamic (PD) thresholds (AUC:MIC of >119) in plasma and cranial CSF of adults and children with tuberculous meningitis. A physiologically based pharmacokinetic (PBPK) model was developed to predict linezolid cranial CSF profiles based on reported plasma concentrations. Simulated steady-state PK curves in plasma and cranial CSF after linezolid doses of 300 mg BID, 600 mg BID, and 1200 mg QD in adults resulted in geometric mean AUC:MIC ratios in plasma of 118, 281, and 262 and mean cranial CSF AUC:MIC ratios of 74, 181, and 166, respectively. In children using ~10 mg/kg BID linezolid, AUC:MIC values at steady-state in plasma and cranial CSF were 202 and 135, respectively. Our model predicts that 1200 mg per day in adults, either 600 mg BID or 1200 mg QD, results in reasonable (87%) target attainment in cranial CSF. Target attainment in our simulated paediatric population was moderate (56% in cranial CSF). Our PBPK model can support linezolid dose optimization efforts by simulating target attainment close to the site of TBM disease.
Collapse
Affiliation(s)
- Carlijn H. C. Litjens
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Laurens F. M. Verscheijden
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Elin M. Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Petra H. H. van den Broek
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Hedwig van Hove
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Jan B. Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Frans G. M. Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Rob E. Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Lindsey H. M. te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
12
|
Mota F, Ruiz-Bedoya CA, Tucker EW, Holt DP, De Jesus P, Lodge MA, Erice C, Chen X, Bahr M, Flavahan K, Kim J, Brosnan MK, Ordonez AA, Peloquin CA, Dannals RF, Jain SK. Dynamic 18F-Pretomanid PET imaging in animal models of TB meningitis and human studies. Nat Commun 2022; 13:7974. [PMID: 36581633 PMCID: PMC9800570 DOI: 10.1038/s41467-022-35730-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Pretomanid is a nitroimidazole antimicrobial active against drug-resistant Mycobacterium tuberculosis and approved in combination with bedaquiline and linezolid (BPaL) to treat multidrug-resistant (MDR) pulmonary tuberculosis (TB). However, the penetration of these antibiotics into the central nervous system (CNS), and the efficacy of the BPaL regimen for TB meningitis, are not well established. Importantly, there is a lack of efficacious treatments for TB meningitis due to MDR strains, resulting in high mortality. We have developed new methods to synthesize 18F-pretomanid (chemically identical to the antibiotic) and performed cross-species positron emission tomography (PET) imaging to noninvasively measure pretomanid concentration-time profiles. Dynamic PET in mouse and rabbit models of TB meningitis demonstrates excellent CNS penetration of pretomanid but cerebrospinal fluid (CSF) levels does not correlate with those in the brain parenchyma. The bactericidal activity of the BPaL regimen in the mouse model of TB meningitis is substantially inferior to the standard TB regimen, likely due to restricted penetration of bedaquiline and linezolid into the brain parenchyma. Finally, first-in-human dynamic 18F-pretomanid PET in six healthy volunteers demonstrates excellent CNS penetration of pretomanid, with significantly higher levels in the brain parenchyma than in CSF. These data have important implications for developing new antibiotic treatments for TB meningitis.
Collapse
Affiliation(s)
- Filipa Mota
- grid.21107.350000 0001 2171 9311Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Camilo A. Ruiz-Bedoya
- grid.21107.350000 0001 2171 9311Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Elizabeth W. Tucker
- grid.21107.350000 0001 2171 9311Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Daniel P. Holt
- grid.21107.350000 0001 2171 9311Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Patricia De Jesus
- grid.21107.350000 0001 2171 9311Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Martin A. Lodge
- grid.21107.350000 0001 2171 9311Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Clara Erice
- grid.21107.350000 0001 2171 9311Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Xueyi Chen
- grid.21107.350000 0001 2171 9311Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Melissa Bahr
- grid.21107.350000 0001 2171 9311Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Kelly Flavahan
- grid.21107.350000 0001 2171 9311Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - John Kim
- grid.21107.350000 0001 2171 9311Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Mary Katherine Brosnan
- grid.21107.350000 0001 2171 9311Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Alvaro A. Ordonez
- grid.21107.350000 0001 2171 9311Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Charles A. Peloquin
- grid.15276.370000 0004 1936 8091Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL 32610 USA
| | - Robert F. Dannals
- grid.21107.350000 0001 2171 9311Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Sanjay K. Jain
- grid.21107.350000 0001 2171 9311Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| |
Collapse
|
13
|
Davis AG, Wasserman S, Stek C, Maxebengula M, Liang CJ, Stegmann S, Koekemoer S, Jackson A, Kadernani Y, Bremer M, Daroowala R, Aziz S, Goliath R, Sai LL, Sihoyiya T, Denti P, Lai RP, Crede T, Naude J, Szymanski P, Vallie Y, Banderker IA, Moosa MS, Raubenheimer P, Candy S, Offiah C, Wahl G, Vorster I, Maartens G, Black J, Meintjes G, Wilkinson RJ. A phase 2A trial of the safety and tolerability of increased dose rifampicin and adjunctive linezolid, with or without aspirin, for HIV-associated tuberculous meningitis (The LASER-TBM Trial). Clin Infect Dis 2022; 76:1412-1422. [PMID: 36482216 PMCID: PMC10110270 DOI: 10.1093/cid/ciac932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/12/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Drug regimens which include intensified antibiotics alongside effective anti-inflammatory therapies may improve outcomes in Tuberculous Meningitis (TBM). Safety data on their use in combination and in the context of HIV is needed to inform clinical trial design. METHODS We conducted a phase 2 open-label parallel-design RCT to assess safety of high-dose rifampicin, linezolid and high-dose aspirin in HIV-associated TBM. Participants were randomised (1.4:1:1) to three treatment arms (arm 1, standard of care (SOC); arm 2 SOC + additional rifampicin (up to 35mg/kg/day)) + linezolid 1200mg/day reducing after 28/7 to 600mg/day; arm 3, as per arm 2 + aspirin 1000mg/day) for 56 days, when the primary outcome of adverse events of special interest (AESI) or death was assessed. RESULTS 52 participants with HIV-associated TBM were randomised. 59% had mild disease (MRC Grade 1) vs 39% (Grade 2) vs 2% (Grade 3). 33% had microbiologically-confirmed TBM; 41% 'possible', 25% 'probable'. AESI or death occurred in 10/16 (63%) (arm 3) vs 4/14 (29%) (arm 2) vs 6/20 (30%) (arm 1) (p = 0.083). The cumulative proportion of AESI or death (Kaplan-Meier) demonstrated worse outcomes in arm 3 vs arm 1 (p = 0.04), however only one event in arm 3 was attributable to aspirin and was mild. There was no difference in efficacy (modified Rankin scale) at day 56 between arms. CONCLUSIONS High-dose rifampicin and adjunctive linezolid can safely be added to SOC in HIV-associated TBM. Larger studies are required to evaluate whether potential toxicity associated with these interventions, particularly high-dose aspirin, is outweighed by mortality or morbidity benefit.
Collapse
Affiliation(s)
- Angharad G Davis
- The Francis Crick Institute, Midland Road, London, NW1 1AT, United Kingdom.,Faculty of Life Sciences, University College London, WC1E 6BT, United Kingdom.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Cari Stek
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa.,Department of Infectious Diseases, Imperial College London, W12 0NN, United Kingdom
| | - Mpumi Maxebengula
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - C Jason Liang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Maryland, USA
| | - Stephani Stegmann
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Sonya Koekemoer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Amanda Jackson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Yakub Kadernani
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Marise Bremer
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Remy Daroowala
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa.,Department of Infectious Diseases, Imperial College London, W12 0NN, United Kingdom
| | - Saalikha Aziz
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Rene Goliath
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Louise Lai Sai
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Thandi Sihoyiya
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Paolo Denti
- The Francis Crick Institute, Midland Road, London, NW1 1AT, United Kingdom.,Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Rachel Pj Lai
- The Francis Crick Institute, Midland Road, London, NW1 1AT, United Kingdom.,Department of Infectious Diseases, Imperial College London, W12 0NN, United Kingdom
| | - Thomas Crede
- Mitchells Plain Hospital, 8 A Z Berman Drive, Lentegeur, Cape Town, 7785, South Africa
| | - Jonathan Naude
- Mitchells Plain Hospital, 8 A Z Berman Drive, Lentegeur, Cape Town, 7785, South Africa
| | - Patryk Szymanski
- Mitchells Plain Hospital, 8 A Z Berman Drive, Lentegeur, Cape Town, 7785, South Africa
| | - Yakoob Vallie
- New Somerset Hospital, Portswood Rd, Green Point, Cape Town, 8051, South Africa
| | | | - Muhammed S Moosa
- New Somerset Hospital, Portswood Rd, Green Point, Cape Town, 8051, South Africa
| | - Peter Raubenheimer
- Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Sally Candy
- Division of Diagnostic Radiology, University of Cape Town, Groote Schuur Hospital, Observatory 7925, Republic of South Africa
| | - Curtis Offiah
- Department of Neuroradiology, Imaging Department, Royal London Hospital, Barts Health NHS Trust, Whitechapel, London, E1 1BB, United Kingdom
| | - Gerda Wahl
- Department of Medicine, Walter Sisulu University, Mthatha 5117, Republic of South Africa
| | - Isak Vorster
- Division of Diagnostic Radiology, University of Cape Town, Groote Schuur Hospital, Observatory 7925, Republic of South Africa
| | - Gary Maartens
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa.,Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - John Black
- Department of Medicine, Walter Sisulu University, Mthatha 5117, Republic of South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
| | - Robert J Wilkinson
- The Francis Crick Institute, Midland Road, London, NW1 1AT, United Kingdom.,Faculty of Life Sciences, University College London, WC1E 6BT, United Kingdom.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Republic of South Africa.,Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa.,Department of Infectious Diseases, Imperial College London, W12 0NN, United Kingdom
| |
Collapse
|
14
|
Kempker RR, Smith AGC, Avaliani T, Gujabidze M, Bakuradze T, Sabanadze S, Avaliani Z, Collins JM, Blumberg HM, Alshaer MH, Peloquin CA, Kipiani M. Cycloserine and Linezolid for Tuberculosis Meningitis: Pharmacokinetic Evidence of Potential Usefulness. Clin Infect Dis 2022; 75:682-689. [PMID: 34849645 PMCID: PMC9464073 DOI: 10.1093/cid/ciab992] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The ability of antituberculosis drugs to cross the blood-brain barrier and reach the central nervous system is critical to their effectiveness in treating tuberculosis meningitis (TBM). We sought to fill a critical knowledge gap by providing data on the ability of new and repurposed antituberculosis drugs to penetrate into the cerebrospinal fluid (CSF). METHODS We conducted a clinical pharmacology study among patients treated for TBM in Tbilisi, Georgia, from January 2019 until January 2020. Serial serum and CSF samples were collected while patients were hospitalized. CSF was collected from routine lumbar punctures with the timing of the lumbar puncture alternating between 2 and 6 hours to capture early and late CSF penetration. RESULTS A total of 17 patients treated for TBM (8 with confirmed disease) were included; all received linezolid, with a subset receiving cycloserine (5), clofazimine (5), delamanid (4), and bedaquiline (2). All CSF measurements of bedaquiline (12), clofazimine (24), and delamanid (19) were below the limit of detection. The median CSF concentrations of cycloserine at 2 and 6 hours were 15.90 and 15.10 µg/mL with adjusted CSF/serum ratios of 0.52 and 0.66. CSF concentrations of linezolid were 0.90 and 3.14 µg/mL at 2 and 6 hours, with adjusted CSF/serum ratios of 0.25 and 0.59, respectively. CSF serum linezolid concentrations were not affected by rifampin coadministration. CONCLUSIONS Based on moderate to high CSF penetration, linezolid and cycloserine may be effective drugs for TBM treatment, whereas the utility of bedaquiline, delamanid, and clofazimine is uncertain given their low CSF penetration.
Collapse
Affiliation(s)
- Russell R Kempker
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | | | - Teona Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Mariam Gujabidze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Tinatin Bakuradze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Shorena Sabanadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Jeffrey M Collins
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Henry M Blumberg
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, USA
| | - Mohammad H Alshaer
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Maia Kipiani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- The University of Georgia, Tbilisi, Georgia
| |
Collapse
|
15
|
Evans EE, Avaliani T, Gujabidze M, Bakuradze T, Kipiani M, Sabanadze S, Smith AGC, Avaliani Z, Collins JM, Kempker RR. Long term outcomes of patients with tuberculous meningitis: The impact of drug resistance. PLoS One 2022; 17:e0270201. [PMID: 35749509 PMCID: PMC9232145 DOI: 10.1371/journal.pone.0270201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/06/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Little is known about the impact of drug-resistance on clinical outcomes among patients with tuberculosis meningitis (TBM). METHODS A retrospective cohort study among patients treated for TBM in Tbilisi, Georgia. We performed medical chart abstraction to collect patient data. Long-term vital status was assessed using the Georgia National Death Registry. We utilized a Cox proportional-hazards model to evaluate the association of drug-resistance and mortality. RESULTS Among 343 TBM suspects, 237 had a presentation consistent with TBM. Drug resistance was suspected (n = 5) or confirmed (n = 31) in 36 patients including 30 with multidrug- or rifampin-resistance and 6 with isoniazid-resistance. Thirty-four patients had HIV. The median follow-up time was 1331 days (IQR, 852-1767). Overall, 73 of 237 (30%) people died with 50 deaths occurring during and 23 after treatment. The proportion of death was higher among patients with drug-resistant vs. drug-susceptible disease (67% vs. 24%, p<0.001) and with HIV versus no HIV (59% vs 27%, p<0.001). Mortality was significantly higher in patients with drug-resistant TBM after 90 days of treatment (aHR = 7.2, CI95% [3.6-14.3], p < 0.001). CONCLUSIONS Mortality was high among patients with drug-resistant TBM with many deaths occurring post treatment. More effective treatment options are urgently needed for drug-resistant TBM.
Collapse
Affiliation(s)
- Emily E. Evans
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Teona Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Mariam Gujabidze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Tinatin Bakuradze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Maia Kipiani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Shorena Sabanadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Alison G. C. Smith
- Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Jeffrey M. Collins
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, United States of America
| | - Russell R. Kempker
- Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
16
|
Cao X, Yang Q, Zhou X, Lv K, Zhou Z, Sun F, Ruan Q, Zhang J, Shao L, Geng D. Cerebral Infarction and Evan's Ratio on MRI Affect the Severity and Prognosis of Tuberculosis Meningitis Patients. Diagnostics (Basel) 2022; 12:1264. [PMID: 35626418 PMCID: PMC9141437 DOI: 10.3390/diagnostics12051264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Magnetic resonance imaging (MRI) is widely used in the diagnosis of tuberculous meningitis (TBM) and its complications. We aimed to explore the relationship between MRI features and neurological deficits and TBM patients’ prognosis. Methods: patients diagnosed with TBM were subjected to a neurological evaluation on admission and divided into groups based on the Medical Research Council (MRC) scale. After several years of follow-up, the patients were further divided into groups according to the Modified Rankin Score (MRS). Their MR images were analyzed for meningeal enhancement, tuberculomas, infarction, hydrocephalus, and abscess, including the location and size of the lesion. Any changes in MRI features during the follow-up were recorded. MRI features between groups were compared, and the relationship between dynamic changes in images and Rankin grading was explored. Results: We found significant differences in acute cerebral infarction (ACI) and old cerebral infarctions (OCI) between the MRC groups, and the ORs of ACI and OCI were 21.818 (95% CI: 2.440−195.075) and 6.788 (95% CI: 1.516−30.392), respectively. There were significant differences in ACI, OCI, and Evan’s ratio between the MRS groups (p < 0.05), and the ORs of ACI, OCI, and hydrocephalus were 6.375 (95% CI: 1.501−27.080), 5.556 (95% CI: 1.332−23.177), and 9.139 (95% CI: 2.052−40.700), respectively. The changes of Evan’s ratio were related to the MRS grading (r = 0.335, p = 0.040). Conclusions: For patients with TBM, the presence of ACI or OCI is associated with neurological deficits, and ACI, OCI, and hydrocephalus can be regarded as poor prognostic predictors. Changes in Evan’s ratio will affect the outcome.
Collapse
Affiliation(s)
- Xin Cao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.C.); (K.L.); (J.Z.); (D.G.)
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai 200040, China
| | - Qingluan Yang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; (Q.Y.); (X.Z.); (Z.Z.); (F.S.); (L.S.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xian Zhou
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; (Q.Y.); (X.Z.); (Z.Z.); (F.S.); (L.S.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.C.); (K.L.); (J.Z.); (D.G.)
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai 200040, China
| | - Zhe Zhou
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; (Q.Y.); (X.Z.); (Z.Z.); (F.S.); (L.S.)
| | - Feng Sun
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; (Q.Y.); (X.Z.); (Z.Z.); (F.S.); (L.S.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiaoling Ruan
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; (Q.Y.); (X.Z.); (Z.Z.); (F.S.); (L.S.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.C.); (K.L.); (J.Z.); (D.G.)
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai 200040, China
| | - Lingyun Shao
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; (Q.Y.); (X.Z.); (Z.Z.); (F.S.); (L.S.)
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.C.); (K.L.); (J.Z.); (D.G.)
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai 200040, China
| |
Collapse
|
17
|
Abstract
Tuberculosis (TB) is one of the leading causes of mortality in children worldwide, but there remain significant challenges in diagnosing and treating TB infection and disease. Treatment of TB infection in children and adolescents is critical to prevent progression to TB disease and to prevent them from becoming the future reservoir for TB transmission. This article reviews the clinical approach to diagnosing and treating latent TB infection and pulmonary and extrapulmonary TB disease in children. Also discussed are emerging diagnostics and therapeutic regimens that aim to improve pediatric TB detection and outcomes.
Collapse
Affiliation(s)
- Devan Jaganath
- Division of Pediatric Infectious Diseases, University of California, San Francisco
| | - Jeanette Beaudry
- Division of Pediatric Infectious Diseases, Johns Hopkins University Baltimore, USA
| | - Nicole Salazar-Austin
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 N Wolfe Street, Room 3147, Baltimore, MD 21287, USA.
| |
Collapse
|
18
|
Sullivan A, Nathavitharana RR. Addressing TB-related mortality in adults living with HIV: a review of the challenges and potential solutions. Ther Adv Infect Dis 2022; 9:20499361221084163. [PMID: 35321342 PMCID: PMC8935406 DOI: 10.1177/20499361221084163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/12/2022] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death in people living with HIV (PLHIV) globally, causing 208,000 deaths in PLHIV in 2019. PLHIV have an 18-fold higher risk of TB, and HIV/TB mortality is highest in inpatient facilities, compared with primary care and community settings. Here we discuss challenges and potential mitigating solutions to address TB-related mortality in adults with HIV. Key factors that affect healthcare engagement are stigma, knowledge, and socioeconomic constraints, which are compounded in people with HIV/TB co-infection. Innovative approaches to improve healthcare engagement include optimizing HIV/TB care integration and interventions to reduce stigma. While early diagnosis of both HIV and TB can reduce mortality, barriers to early diagnosis of TB in PLHIV include difficulty producing sputum specimens, lower sensitivity of TB diagnostic tests in PLHIV, and higher rates of extra pulmonary TB. There is an urgent need to develop higher sensitivity biomarker-based tests that can be used for point-of-care diagnosis. Nonetheless, the implementation and scale-up of existing tests including molecular World Health Organization (WHO)-recommended diagnostic tests and urine lipoarabinomannan (LAM) should be optimized along with expanded TB screening with tools such as C-reactive protein and digital chest radiography. Decreased survival of PLHIV with TB disease is more likely with late HIV diagnosis and delayed start of antiretroviral (ART) treatment. The WHO now recommends starting ART within 2 weeks of initiating TB treatment in the majority of PLHIV, aside from those with TB meningitis. Dedicated TB treatment trials focused on PLHIV are needed, including interventions to improve TB meningitis outcomes given its high mortality, such as the use of intensified regimens using high-dose rifampin, new and repurposed drugs such as linezolid, and immunomodulatory therapy. Ultimately holistic, high-quality, person-centered care is needed for PLHIV with TB throughout the cascade of care, which should address biomedical, socioeconomic, and psychological barriers.
Collapse
Affiliation(s)
- Amanda Sullivan
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Ruvandhi R. Nathavitharana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
19
|
Tuberculous Meningitis in Children: Reducing the Burden of Death and Disability. Pathogens 2021; 11:pathogens11010038. [PMID: 35055986 PMCID: PMC8778027 DOI: 10.3390/pathogens11010038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
Tuberculous meningitis disproportionately affects young children. As the most devastating form of tuberculosis, it is associated with unacceptably high rates of mortality and morbidity even if treated. Challenging to diagnose and treat, tuberculous meningitis commonly causes long-term neurodisability in those who do survive. There remains an urgent need for strengthened surveillance, improved rapid diagnostics technology, optimised anti-tuberculosis drug therapy, investigation of new host-directed therapy, and further research on long-term functional and neurodevelopmental outcomes to allow targeted intervention. This review focuses on the neglected field of paediatric tuberculous meningitis and bridges current clinical gaps with research questions to improve outcomes from this crippling disease.
Collapse
|
20
|
Komorowski AS, Lo CKL, Irfan N, Singhal N. Meningitis caused by Mycobacterium tuberculosis in a recent immigrant to Canada. CMAJ 2021; 193:E1807-E1810. [PMID: 34844938 PMCID: PMC8654888 DOI: 10.1503/cmaj.210740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Adam S Komorowski
- Division of Medical Microbiology (Komorowski), Department of Pathology and Molecular Medicine; Clinician-Investigator Program (Komorowski); Division of Infectious Diseases (Lo, Irfan, Singhal), Department of Medicine, McMaster University, Hamilton, Ont.
| | - Carson K L Lo
- Division of Medical Microbiology (Komorowski), Department of Pathology and Molecular Medicine; Clinician-Investigator Program (Komorowski); Division of Infectious Diseases (Lo, Irfan, Singhal), Department of Medicine, McMaster University, Hamilton, Ont
| | - Neal Irfan
- Division of Medical Microbiology (Komorowski), Department of Pathology and Molecular Medicine; Clinician-Investigator Program (Komorowski); Division of Infectious Diseases (Lo, Irfan, Singhal), Department of Medicine, McMaster University, Hamilton, Ont
| | - Nishma Singhal
- Division of Medical Microbiology (Komorowski), Department of Pathology and Molecular Medicine; Clinician-Investigator Program (Komorowski); Division of Infectious Diseases (Lo, Irfan, Singhal), Department of Medicine, McMaster University, Hamilton, Ont
| |
Collapse
|
21
|
Fang MT, Su YF, An HR, Zhang PZ, Deng GF, Liu HM, Mao Z, Zeng JF, Li G, Yang QT, Wang ZY. Decreased mortality seen in rifampicin/multidrug-resistant tuberculous meningitis treated with linezolid in Shenzhen, China. BMC Infect Dis 2021; 21:1015. [PMID: 34583653 PMCID: PMC8480033 DOI: 10.1186/s12879-021-06705-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 09/16/2021] [Indexed: 11/28/2022] Open
Abstract
Background The morbidity of rifampicin/multidrug-resistant tuberculous meningitis (RR/MDR-TBM) has shown an increasing trend globally. Its mortality rate is significantly higher than that of non-rifampicin/multidrug-resistant tuberculous meningitis (NRR/MDR-TBM). This article aimed to explore risk factors related to RR/MDR-TBM, and compare therapeutic effects of linezolid (LZD)- and non-linezolid-containing regimen for RR/MDR-TB patients in Shenzhen city. Furthermore, we aimed to find a better therapy for pathogen-negative TBM with RR/MDR-TBM related risk factors. Methods We conducted a retrospective study enrolling 137 hospitalized cases with confirmed TBM from June 2014 to March 2020. All patients were divided into RR/MDR-TBM group (12 cases) and NRR/MDR-TBM group (125 cases) based on GeneXpert MTB/RIF and (or) phenotypic drug susceptibility test results using cerebral spinal fluid (CSF). The risk factors related to RR/MDR-TBM were investigated through comparing clinical and examination features between the two groups. The mortality rate of RR/MDR-TBM patients treated with different regimens was analyzed to compare their respective therapeutic effects. A difference of P < 0.05 was considered statistically significant. Results Most patients (111/137, 81%) were from southern or southwestern China, and a large proportion (72/137, 52.55%) belonged to migrant workers. 12 cases were RR/MDR-TBM (12/137, 8.8%) while 125 cases were NRR/MDR-TBM (125/137, 91.2%). The proportion of patients having prior TB treatment history in the RR/MDR-TBM group was significantly higher than that of the NRR/MDR-TBM group (6/12 vs. 12/125, 50% vs. 10.5%, P < 0.01). No significant difference was observed on other clinical and examination features between the two groups. Mortality was significantly lower in RR/MDR-TBM patients on linezolid-containing treatment regimen than those who were not (0/7 versus 3/5, 0% versus 60%, P = 0.045). Conclusions The main related risk factor of RR/MDR-TBM is the history of anti-tuberculosis treatment. Linezolid-containing regimen appears to lower mortality rate of RR/MDR-TBM significantly in our study. We think Linezolid should be evaluated prospectively in the treatment of RR/MDR-TBM.
Collapse
Affiliation(s)
- Mu-Tong Fang
- National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - You-Feng Su
- National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Hui-Ru An
- Tuberculosis Sector of 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Pei-Ze Zhang
- National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Guo-Fang Deng
- National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Hou-Ming Liu
- National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Zhi Mao
- National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Jian-Feng Zeng
- National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Guobao Li
- National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Qian-Ting Yang
- National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Zhong-Yuan Wang
- National Clinical Research Center for Infectious Disease (Shenzhen), Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China. .,Tuberculosis Sector of 8th Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
22
|
Davis AG, Wasserman S, Maxebengula M, Stek C, Bremer M, Daroowala R, Aziz S, Goliath R, Stegmann S, Koekemoer S, Jackson A, Lai Sai L, Kadernani Y, Sihoyiya T, Liang CJ, Dodd L, Denti P, Crede T, Naude J, Szymanski P, Vallie Y, Banderker I, Moosa S, Raubenheimer P, Lai RPJ, Joska J, Nightingale S, Dreyer A, Wahl G, Offiah C, Vorster I, Candy S, Robertson F, Meintjes E, Maartens G, Black J, Meintjes G, Wilkinson RJ. Study protocol for a phase 2A trial of the safety and tolerability of increased dose rifampicin and adjunctive linezolid, with or without aspirin, for HIV-associated tuberculous meningitis [LASER-TBM]. Wellcome Open Res 2021; 6:136. [PMID: 34286103 PMCID: PMC8283551 DOI: 10.12688/wellcomeopenres.16783.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Tuberculous meningitis (TBM) is the most lethal form of tuberculosis with a mortality of ~50% in those co-infected with HIV-1. Current antibiotic regimens are based on those known to be effective in pulmonary TB and do not account for the differing ability of the drugs to penetrate the central nervous system (CNS). The host immune response drives pathology in TBM, yet effective host-directed therapies are scarce. There is sufficient data to suggest that higher doses of rifampicin (RIF), additional linezolid (LZD) and adjunctive aspirin (ASA) will be beneficial in TBM yet rigorous investigation of the safety of these interventions in the context of HIV associated TBM is required. We hypothesise that increased dose RIF, LZD and ASA used in combination and in addition to standard of care for the first 56 days of treatment with be safe and tolerated in HIV-1 infected people with TBM. Methods: In an open-label randomised parallel study, up to 100 participants will receive either; i) standard of care (n=40, control arm), ii) standard of care plus increased dose RIF (35mg/kg) and LZD (1200mg OD for 28 days, 600mg OD for 28 days) (n=30, experimental arm 1), or iii) as per experimental arm 1 plus additional ASA 1000mg OD (n=30, experimental arm 2). After 56 days participants will continue standard treatment as per national guidelines. The primary endpoint is death and the occurrence of solicited treatment-related adverse events at 56 days. In a planned pharmacokinetic (PK) sub-study we aim to assess PK/pharmacodynamic (PD) of oral vs IV rifampicin, describe LZD and RIF PK and cerebrospinal fluid concentrations, explore PK/PD relationships, and investigate drug-drug interactions between LZD and RIF. Safety and pharmacokinetic data from this study will inform a planned phase III study of intensified therapy in TBM. Clinicaltrials.gov registration: NCT03927313 (25/04/2019)
Collapse
Affiliation(s)
- Angharad G Davis
- The Francis Crick Institute, Midland Rd, London, NW1 1AT, UK.,Faculty of Life Sciences, University College London, London, WC1E 6BT, UK.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Mpumi Maxebengula
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Cari Stek
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Marise Bremer
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Remy Daroowala
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - Saalikha Aziz
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Rene Goliath
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Stephani Stegmann
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Sonya Koekemoer
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Amanda Jackson
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Louise Lai Sai
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Yakub Kadernani
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Thandi Sihoyiya
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - C Jason Liang
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Maryland, USA
| | - Lori Dodd
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, Maryland, USA
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Thomas Crede
- Mitchells Plain Hospital, 8 A Z Berman Drive, Lentegeur, Cape Town, 7785, South Africa
| | - Jonathan Naude
- Mitchells Plain Hospital, 8 A Z Berman Drive, Lentegeur, Cape Town, 7785, South Africa
| | - Patryk Szymanski
- Mitchells Plain Hospital, 8 A Z Berman Drive, Lentegeur, Cape Town, 7785, South Africa
| | - Yakoob Vallie
- New Somerset Hospital, Portswood Rd, Green Point, Cape Town, 8051, South Africa
| | - Ismail Banderker
- New Somerset Hospital, Portswood Rd, Green Point, Cape Town, 8051, South Africa
| | - Shiraz Moosa
- New Somerset Hospital, Portswood Rd, Green Point, Cape Town, 8051, South Africa
| | - Peter Raubenheimer
- Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Rachel P J Lai
- The Francis Crick Institute, Midland Rd, London, NW1 1AT, UK.,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| | - John Joska
- Department of Psychiatry and Mental Health, HIV Mental Health Research Unit, Neuroscience Institute, University of Cape Town, Observatory, 7925, South Africa
| | - Sam Nightingale
- Department of Psychiatry and Mental Health, HIV Mental Health Research Unit, Neuroscience Institute, University of Cape Town, Observatory, 7925, South Africa
| | - Anna Dreyer
- Department of Psychiatry and Mental Health, HIV Mental Health Research Unit, Neuroscience Institute, University of Cape Town, Observatory, 7925, South Africa
| | - Gerda Wahl
- Department of Medicine, Water Sisulu University, Mthatha, 5117, South Africa
| | - Curtis Offiah
- Department of Neuroradiology, Imaging Department, Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK
| | - Isak Vorster
- Division of Diagnostic Radiology, University of Cape Town, Groote Schuur Hospital, Observatory, 7925, South Africa
| | - Sally Candy
- Division of Diagnostic Radiology, University of Cape Town, Groote Schuur Hospital, Observatory, 7925, South Africa
| | - Frances Robertson
- MRC/UCT Medical Imaging Research Unit Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| | - Ernesta Meintjes
- MRC/UCT Medical Imaging Research Unit Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - John Black
- Department of Medicine, Water Sisulu University, Mthatha, 5117, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Robert J Wilkinson
- The Francis Crick Institute, Midland Rd, London, NW1 1AT, UK.,Faculty of Life Sciences, University College London, London, WC1E 6BT, UK.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, Cape Town, 7925, South Africa.,Department of Medicine, University of Cape Town, Observatory, 7925, South Africa.,Department of Infectious Diseases, Imperial College London, London, W12 0NN, UK
| |
Collapse
|
23
|
Sturkenboom MGG, Märtson AG, Svensson EM, Sloan DJ, Dooley KE, van den Elsen SHJ, Denti P, Peloquin CA, Aarnoutse RE, Alffenaar JWC. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet 2021; 60:685-710. [PMID: 33674941 PMCID: PMC7935699 DOI: 10.1007/s40262-021-00997-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Tuberculosis (TB) is still the number one cause of death due to an infectious disease. Pharmacokinetics and pharmacodynamics of anti-TB drugs are key in the optimization of TB treatment and help to prevent slow response to treatment, acquired drug resistance, and adverse drug effects. The aim of this review was to provide an update on the pharmacokinetics and pharmacodynamics of anti-TB drugs and to show how population pharmacokinetics and Bayesian dose adjustment can be used to optimize treatment. We cover aspects on preclinical, clinical, and population pharmacokinetics of different drugs used for drug-susceptible TB and multidrug-resistant TB. Moreover, we include available data to support therapeutic drug monitoring of these drugs and known pharmacokinetic and pharmacodynamic targets that can be used for optimization of therapy. We have identified a wide range of population pharmacokinetic models for first- and second-line drugs used for TB, which included models built on NONMEM, Pmetrics, ADAPT, MWPharm, Monolix, Phoenix, and NPEM2 software. The first population models were built for isoniazid and rifampicin; however, in recent years, more data have emerged for both new anti-TB drugs, but also for defining targets of older anti-TB drugs. Since the introduction of therapeutic drug monitoring for TB over 3 decades ago, further development of therapeutic drug monitoring in TB next steps will again depend on academic and clinical initiatives. We recommend close collaboration between researchers and the World Health Organization to provide important guideline updates regarding therapeutic drug monitoring and pharmacokinetics/pharmacodynamics.
Collapse
Affiliation(s)
- Marieke G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anne-Grete Märtson
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Derek J Sloan
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Liverpool School of Tropical Medicine, Liverpool, UK.,School of Medicine, University of St Andrews, St Andrews, UK
| | - Kelly E Dooley
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Simone H J van den Elsen
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy, Hospital Group Twente, Almelo, Hengelo, the Netherlands
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Charles A Peloquin
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. .,Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Pharmacy Building (A15), Sydney, NSW, 2006, Australia. .,Westmead Hospital, Westmead, NSW, Australia. .,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Huynh J, Thwaites G, Marais BJ, Schaaf HS. Tuberculosis treatment in children: The changing landscape. Paediatr Respir Rev 2020; 36:33-43. [PMID: 32241748 DOI: 10.1016/j.prrv.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
Traditionally children have been treated for tuberculosis (TB) based on data extrapolated from adults. However, we know that children present unique challenges that deserve special focus. New data on optimal drug selection and dosing are emerging with the inclusion of children in clinical trials and ongoing research on age-related pharmacokinetics and pharmacodynamics. We discuss the changing treatment landscape for drug-susceptible and drug-resistant paediatric tuberculosis in both the most common (intrathoracic) and most severe (central nervous system) forms of disease, and address the current knowledge gaps for improving patient outcomes.
Collapse
Affiliation(s)
- Julie Huynh
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam; Nuffield Department of Medicine, Department of Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom.
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam; Nuffield Department of Medicine, Department of Tropical Medicine and Global Health, Oxford University, Oxford, United Kingdom
| | - Ben J Marais
- Department of Infectious Diseases and Microbiology, The Children's Hospital Westmead, Westmead, Australia; Discipline of Child and Adolescent Health, University of Sydney, The Children's Hospital Westmead, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | - H Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
25
|
Clifford KM, Szumowski JD. Disseminated Mycobacterium bovis Infection Complicated by Meningitis and Stroke: A Case Report. Open Forum Infect Dis 2020; 7:ofaa475. [PMID: 33134425 PMCID: PMC7588105 DOI: 10.1093/ofid/ofaa475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 09/30/2020] [Indexed: 11/29/2022] Open
Abstract
We describe a case of a 19-year-old female presenting with Mycobacterium bovis meningitis, a rarely encountered infection. We discuss the use of pyrosequencing to aid in prompt diagnosis of M. bovis infection, as well as treatment strategies and challenges given the organism’s intrinsic resistance to pyrazinamide.
Collapse
Affiliation(s)
- Katherine M Clifford
- Department of Neurology, Stanford University School of Medicine, Stanford, California, USA
| | - John D Szumowski
- Division of HIV, ID and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Stadelman AM, Ellis J, Samuels THA, Mutengesa E, Dobbin J, Ssebambulidde K, Rutakingirwa MK, Tugume L, Boulware DR, Grint D, Cresswell FV. Treatment Outcomes in Adult Tuberculous Meningitis: A Systematic Review and Meta-analysis. Open Forum Infect Dis 2020; 7:ofaa257. [PMID: 32818138 PMCID: PMC7423296 DOI: 10.1093/ofid/ofaa257] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/23/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND There is substantial variation in the reported treatment outcomes for adult tuberculous meningitis (TBM). Data on survival and neurological disability by continent and HIV serostatus are scarce. METHODS We performed a systematic review and meta-analysis to characterize treatment outcomes for adult TBM. Following a systematic literature search (MEDLINE and EMBASE), studies underwent duplicate screening by independent reviewers in 2 stages to assess eligibility for inclusion. Two independent reviewers extracted data from included studies. We employed a random effects model for all meta-analyses. We evaluated heterogeneity by the I 2 statistic. RESULTS We assessed 2197 records for eligibility; 39 primary research articles met our inclusion criteria, reporting on treatment outcomes for 5752 adults with TBM. The commonest reported outcome measure was 6-month mortality. Pooled 6-month mortality was 24% and showed significant heterogeneity (I 2 > 95%; P < .01). Mortality ranged from 2% to 67% in Asian studies and from 23% to 80% in Sub-Saharan African studies. Mortality was significantly worse in HIV-positive adults at 57% (95% CI, 48%-67%), compared with 16% (95% CI, 10%-24%) in HIV-negative adults (P < .01). Physical disability was reported in 32% (95% CI, 22%-43%) of adult TBM survivors. There was considerable heterogeneity between studies in all meta-analyses, with I 2 statistics consistently >50%. CONCLUSIONS Mortality in adult TBM is high and varies considerably by continent and HIV status. The highest mortality is among HIV-positive adults in Sub-Saharan Africa. Standardized reporting of treatment outcomes will be essential to improve future data quality and increase potential for data sharing, meta-analyses, and facilitating multicenter tuberculosis research to improve outcomes.
Collapse
Affiliation(s)
- Anna M Stadelman
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jayne Ellis
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Ernest Mutengesa
- Hillingdon Hospital, The Hillingdon Hospitals NHS Foundation Trust, Uxbridge, UK
| | - Joanna Dobbin
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - Lillian Tugume
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Grint
- Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Fiona V Cresswell
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- MRC-UVRI-London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| |
Collapse
|
27
|
Pintado V, Pazos R, Jiménez-Mejías ME, Rodríguez-Guardado A, Díaz-Pollán B, Cabellos C, García-Lechuz JM, Lora-Tamayo J, Domingo P, Muñez E, Domingo D, González-Romo F, Lepe-Jiménez JA, Rodríguez-Lucas C, Valencia E, Pelegrín I, Chaves F, Pomar V, Ramos A, Alarcón T, Pérez-Cecilia E. Linezolid for therapy of Staphylococcus aureus meningitis: a cohort study of 26 patients. Infect Dis (Lond) 2020; 52:808-815. [PMID: 32648796 DOI: 10.1080/23744235.2020.1789212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Linezolid has good penetration to the meninges and could be an alternative for treatment of Staphylococcus aureus meningitis. We assessed the efficacy and safety of linezolid therapy for this infection. METHODS Retrospective multicenter cohort study of 26 adults treated with linezolid, derived from a cohort of 350 cases of S. aureus meningitis diagnosed at 11 university hospitals in Spain (1981-2015). RESULTS There were 15 males (58%) and mean age was 47.3 years. Meningitis was postoperative in 21 (81%) patients. The infection was nosocomial in 23 (88%) cases, and caused by methicillin-resistant S. aureus in 15 cases and methicillin-susceptible S. aureus in 11. Linezolid was given as empirical therapy in 10 cases, as directed therapy in 10, and due to failure of vancomycin in 6. Monotherapy was given to 16 (62%) patients. Median duration of linezolid therapy was 17 days (IQR 12-22 days) with a daily dose of 1,200 mg in all cases. The clinical response rate to linezolid was 69% (18/26) and microbiological response was observed in 14 of 15 cases evaluated (93%). Overall 30-day mortality was 23% and was directly associated with infection in most cases. When compared with the patients of the cohort, no significant difference in mortality was observed between patients receiving linezolid or vancomycin for therapy of methicillin-resistant S. aureus meningitis (9% vs. 20%; p = .16) nor between patients receiving linezolid or cloxacillin for therapy of methicillin-susceptible S. aureus meningitis (20% vs 14%; p = .68). Adverse events appeared in 14% (3/22) of patients, but linezolid was discontinued in only one patient. CONCLUSIONS Linezolid appears to be effective and safe for therapy of S. aureus meningitis. Our findings showed that linezolid may be considered an adequate alternative to other antimicrobials in meningitis caused by S. aureus.
Collapse
Affiliation(s)
- Vicente Pintado
- Infectious Diseases Service, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Rosario Pazos
- Infectious Diseases Service, Hospital Ramón y Cajal, IRYCIS, Madrid, Spain.,Department of Biomedical Sciences and Medicine, Universidade do Algarve, Faro, Portugal
| | - Manuel Enrique Jiménez-Mejías
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Infectious Diseases Research Group, Institute of Biomedicine of Seville (IBIS), University of Seville/CSIC/University Hospital Virgen del Rocío, Seville, Spain
| | | | - Beatriz Díaz-Pollán
- Infectious Diseases Unit/Department of Internal Medicine, Hospital La Paz, Madrid, Spain
| | - Carmen Cabellos
- Infectious Diseases Service, Hospital Bellvitge, L'Hospitalet, Barcelona, Spain
| | - Juan Manuel García-Lechuz
- Clinical Microbiology Service, Hospital Universitario Miguel Servet, Zaragoza, Spain.,Department of Clinical Microbiology, Hospital Gregorio Marañon, Madrid, Spain
| | | | - Pere Domingo
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Elena Muñez
- Infectious Diseases Unit, Hospital Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Diego Domingo
- Microbiology Service, Hospital de La Princesa, Madrid, Spain
| | | | - José Antonio Lepe-Jiménez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Infectious Diseases Research Group, Institute of Biomedicine of Seville (IBIS), University of Seville/CSIC/University Hospital Virgen del Rocío, Seville, Spain
| | | | - Eulalia Valencia
- Infectious Diseases Unit/Department of Internal Medicine, Hospital La Paz, Madrid, Spain
| | - Iván Pelegrín
- Infectious Diseases Service, Hospital Bellvitge, L'Hospitalet, Barcelona, Spain
| | - Fernando Chaves
- Clinical Microbiology Department, Hospital 12 de Octubre, Madrid, Spain
| | - Virginia Pomar
- Infectious Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Antonio Ramos
- Infectious Diseases Unit, Hospital Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Teresa Alarcón
- Microbiology Service, Hospital de La Princesa, Madrid, Spain
| | | |
Collapse
|
28
|
Tucker EW, Pieterse L, Zimmerman MD, Udwadia ZF, Peloquin CA, Gler MT, Ganatra S, Tornheim JA, Chawla P, Caoili JC, Ritchie B, Jain SK, Dartois V, Dooley KE. Delamanid Central Nervous System Pharmacokinetics in Tuberculous Meningitis in Rabbits and Humans. Antimicrob Agents Chemother 2019; 63:e00913-19. [PMID: 31383662 PMCID: PMC6761520 DOI: 10.1128/aac.00913-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022] Open
Abstract
Central nervous system tuberculosis (TB) is devastating and affects vulnerable populations. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculous meningitis (TBM) specifically are nearly uniformly fatal, with little information being available to guide the treatment of these patients. Delamanid (DLM), a nitro-dihydro-imidazooxazole, is a new, well-tolerated anti-TB drug with a low MIC (1 to 12 ng/ml) against Mycobacterium tuberculosis It is used for the treatment of pulmonary MDR-TB, but pharmacokinetic (PK) data for DLM in the central nervous system (CNS) of patients with TBM are not available. In the present study, we measured DLM concentrations in the brain and cerebrospinal fluid (CSF) of six rabbits with and without experimentally induced TBM receiving single-dose DLM. We report the steady-state CSF concentrations from three patients receiving DLM as part of multidrug treatment who underwent therapeutic drug monitoring. Drug was quantified using liquid chromatography-tandem mass spectrometry. In rabbits and humans, mean concentrations in CSF (in rabbits, 1.26 ng/ml at 9 h and 0.47 ng/ml at 24 h; in humans, 48 ng/ml at 4 h) were significantly lower than those in plasma (in rabbits, 124 ng/ml at 9 h and 14.5 ng/ml at 24 h; in humans, 726 ng/ml at 4 h), but the estimated free CSF/plasma ratios were generally >1. In rabbits, DLM concentrations in the brain were 5-fold higher than those in plasma (means, 518 ng/ml at 9 h and 74.0 ng/ml at 24 h). All patients with XDR-TBM receiving DLM experienced clinical improvement and survival. Collectively, these results suggest that DLM achieves adequate concentrations in brain tissue. Despite relatively low total CSF drug levels, free drug may be sufficient and DLM may have a role in treating TBM. More studies are needed to develop a fuller understanding of its distribution over time with treatment and clinical effectiveness.
Collapse
Affiliation(s)
- Elizabeth W Tucker
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Lisa Pieterse
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew D Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Zarir F Udwadia
- P.D. National Hospital and Medical Research Centre, Mumbai, India
| | - Charles A Peloquin
- University of Florida College of Pharmacy, Gainesville, Florida, USA
- Emerging Pathogens Institute, Gainesville, Florida, USA
| | | | - Shashank Ganatra
- P.D. National Hospital and Medical Research Centre, Mumbai, India
| | | | - Prerna Chawla
- P.D. National Hospital and Medical Research Centre, Mumbai, India
| | | | - Brittaney Ritchie
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay K Jain
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Kelly E Dooley
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Huynh J, Vosu J, Marais BJ, Britton PN. Multidrug-resistant tuberculous meningitis in a returned traveller. J Paediatr Child Health 2019; 55:981-984. [PMID: 30746823 DOI: 10.1111/jpc.14387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/10/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Julie Huynh
- Department of Infectious Diseases and Microbiology, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Joel Vosu
- Department of General Paediatrics, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Ben J Marais
- Department of Infectious Diseases and Microbiology, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| | - Philip N Britton
- Department of Infectious Diseases and Microbiology, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Child and Adolescent Health, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Wasserman S, Davis A, Wilkinson RJ, Meintjes G. Key considerations in the pharmacotherapy of tuberculous meningitis. Expert Opin Pharmacother 2019; 20:1791-1795. [PMID: 31305179 DOI: 10.1080/14656566.2019.1638912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa.,Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town , Cape Town , South Africa
| | - Angharad Davis
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa.,Faculty of Life Sciences, University College London , London , UK.,The Francis Crick Institute , London , UK
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa.,The Francis Crick Institute , London , UK.,Department of Medicine, Imperial College London , London , UK
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town , Cape Town , South Africa.,Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town , Cape Town , South Africa
| |
Collapse
|
31
|
Garg RK, Rizvi I, Malhotra HS, Uniyal R, Kumar N. Management of complex tuberculosis cases: a focus on drug-resistant tuberculous meningitis. Expert Rev Anti Infect Ther 2019; 16:813-831. [PMID: 30359140 DOI: 10.1080/14787210.2018.1540930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Drug-resistant tuberculous meningitis has been reported worldwide. Isoniazid mono-resistance is the most frequent cause of drug-resistant tuberculous meningitis, a life-threatening disease. Extensive drug-resistant tuberculous meningitis has also been reported in some isolated case reports. Areas covered: We reviewed the current literature on drug-resistant tuberculous meningitis, as well as drug-resistant tuberculosis. Expert commentary: Drug-resistant tuberculous meningitis is a life-threatening disease and needs prompt diagnosis and treatment. Xpert MTB/RIF Ultra technology can detect Mycobacterium tuberculosis and rifampicin resistance in cerebrospinal fluid (CSF) even with low numbers of bacilli. The optimum antituberculosis drug regimen for multidrug-resistant tuberculous meningitis is largely unknown as no second-line antituberculosis drug-containing regimen has been tested in a randomized controlled fashion in drug-resistant tuberculous meningitis. A combination of levofloxacin, kanamycin, ethionamide, linezolid, and pyrazinamide would be an appropriate regimen because of excellent CSF profile of most of these drugs. End TB Strategy will help in checking the increasing challenge of drug-resistant tuberculous meningitis as it aims to eliminate all kinds of tuberculosis by the year 2035.
Collapse
Affiliation(s)
- Ravindra Kumar Garg
- a Department of Neurology , King George Medical University , Lucknow , India
| | - Imran Rizvi
- a Department of Neurology , King George Medical University , Lucknow , India
| | | | - Ravi Uniyal
- a Department of Neurology , King George Medical University , Lucknow , India
| | - Neeraj Kumar
- a Department of Neurology , King George Medical University , Lucknow , India
| |
Collapse
|
32
|
Cresswell FV, Te Brake L, Atherton R, Ruslami R, Dooley KE, Aarnoutse R, Van Crevel R. Intensified antibiotic treatment of tuberculosis meningitis. Expert Rev Clin Pharmacol 2019; 12:267-288. [PMID: 30474434 DOI: 10.1080/17512433.2019.1552831] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Meningitis is the most severe manifestation of tuberculosis, resulting in death or disability in over 50% of those affected, with even higher morbidity and mortality among patients with HIV or drug resistance. Antimicrobial treatment of Tuberculous meningitis (TBM) is similar to treatment of pulmonary tuberculosis, although some drugs show poor central nervous system penetration. Therefore, intensification of antibiotic treatment may improve TBM treatment outcomes. Areas covered: In this review, we address three main areas: available data for old and new anti-tuberculous agents; intensified treatment in specific patient groups like HIV co-infection, drug-resistance, and children; and optimal research strategies. Expert commentary: There is good evidence from preclinical, clinical, and modeling studies to support the use of high-dose rifampicin in TBM, likely to be at least 30 mg/kg. Higher dose isoniazid could be beneficial, especially in rapid acetylators. The role of other first and second line drugs is unclear, but observational data suggest that linezolid, which has good brain penetration, may be beneficial. We advocate the use of molecular pharmacological approaches, physiologically based pharmacokinetic modeling and pharmacokinetic-pharmacodynamic studies to define optimal regimens to be tested in clinical trials. Exciting data from recent studies hold promise for improved regimens and better clinical outcomes in future.
Collapse
Affiliation(s)
- Fiona V Cresswell
- a Clinical Research Department , London School of Hygiene and Tropical Medicine , London , UK.,b Research Department , Infectious Diseases Institute , Kampala , Uganda
| | - Lindsey Te Brake
- c Department of Pharmacy , Radboud Institute of Health Sciences, Radboud Center for Infectious Diseases Radboud university medical center , Nijmegen , The Netherlands
| | - Rachel Atherton
- b Research Department , Infectious Diseases Institute , Kampala , Uganda
| | - Rovina Ruslami
- d TB-HIV Research Centre, Faculty of Medicine , Universitas Padjadjaran , Bandung , Indonesia
| | - Kelly E Dooley
- e Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Rob Aarnoutse
- c Department of Pharmacy , Radboud Institute of Health Sciences, Radboud Center for Infectious Diseases Radboud university medical center , Nijmegen , The Netherlands
| | - Reinout Van Crevel
- f Department of Internal Medicine and Radboud Center for Infectious Diseases , Radboud university medical center , Nijmegen , the Netherlands.,g Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
33
|
Huynh J, Marais BJ. Multidrug-resistant tuberculosis infection and disease in children: a review of new and repurposed drugs. Ther Adv Infect Dis 2019; 6:2049936119864737. [PMID: 31367376 PMCID: PMC6643170 DOI: 10.1177/2049936119864737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
The World Health Organization estimates that 10 million new cases of tuberculosis (TB) occurred worldwide in 2017, of which 600,000 were rifampicin or multidrug-resistant (RR/MDR) TB. Modelling estimates suggest that 32,000 new cases of MDR-TB occur in children annually, but only a fraction of these are correctly diagnosed and treated. Accurately diagnosing TB in children, who usually have paucibacillary disease, and implementing effective TB prevention and treatment programmes in resource-limited settings remain major challenges. In light of the underappreciated RR/MDR-TB burden in children, and the lack of paediatric data on newer drugs for TB prevention and treatment, we present an overview of new and repurposed TB drugs, describing the available evidence for safety and efficacy in children to assist clinical care and decision-making.
Collapse
Affiliation(s)
- Julie Huynh
- Department of Infectious Diseases and
Microbiology, The Children’s Hospital Westmead, New South Wales, 2145,
Australia
- Discipline of Child and Adolescent Health,
University of Sydney, The Children’s Hospital Westmead, Westmead, New South
Wales, 2145, Australia
| | - Ben J. Marais
- Department of Infectious Diseases and
Microbiology, The Children’s Hospital Westmead, New South Wales,
Australia
- Discipline of Child and Adolescent Health,
University of Sydney, The Children’s Hospital Westmead, New South Wales,
Australia
- Marie Bashir Institute for Infectious Diseases
and Biosecurity, University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
Jain SK, Tobin DM, Tucker EW, Venketaraman V, Ordonez AA, Jayashankar L, Siddiqi OK, Hammoud DA, Prasadarao NV, Sandor M, Hafner R, Fabry Z. Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat Immunol 2018; 19:521-525. [PMID: 29777209 PMCID: PMC6089350 DOI: 10.1038/s41590-018-0119-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tuberculous meningitis is a serious, life-threatening disease affecting vulnerable populations, including HIV-infected individuals and young children. The US National Institutes of Health convened a workshop to identify knowledge gaps in the molecular and immunopathogenic mechanisms of tuberculous meningitis and to develop a roadmap for basic and translational research that could guide clinical studies.
Collapse
Affiliation(s)
- Sanjay K Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - David M Tobin
- Departments of Molecular Genetics and Microbiology and of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth W Tucker
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Alvaro A Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lakshmi Jayashankar
- Columbus Technologies, Inc., Contractor to the National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Omar K Siddiqi
- Global Neurology Program, Division of Neuro-Immunology, Center for Virology and Vaccine Research, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine, University of Zambia School of Medicine, Lusaka, Zambia
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Nemani V Prasadarao
- Sabin Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Richard Hafner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Tuberculous meningitis (TBM) is a global health problem. In this review, we systematically evaluate the evidence for current and emerging antimicrobials, host-directed therapies and supportive managements. RECENT FINDINGS Current antimicrobial regimes do not factor the differing ability of drugs to cross the blood-brain barrier. Rifampicin may be more effective at higher doses yet the most recent clinical trial failed to demonstrate survival benefit at 15 mg/kg/day. Dose finding studies suggest that higher doses still may be safe and more effective. Fluoroquinolones are currently listed as important second-line agents in drug-resistant TBM; however, a survival benefit as a first-line agent has yet to be shown. Linezolid may be a promising antimicrobial with good central nervous system penetrance. Dexamethasone reduces mortality in HIV-uninfected individuals yet evidence for its use in HIV co-infection is lacking. Aspirin has anti-inflammatory and anti-thrombotic properties. Small studies have demonstrated efficacy in reducing stroke but further research is required to better understand its effect on controlling the host inflammatory response. Discovery of genetic polymorphisms may direct individualized immune therapies and mediators of the innate immune response may provide targets for the development of novel therapies. There is at present no significant evidence base to guide management of hydrocephalus in HIV co-infection. Further clinical trial data is required to improve treatment outcomes in TBM in particularly in regard to the value of high-dose rifampicin, newer antimicrobials with improved central nervous system penetration and host-directed therapies. Supportive measures in particular the management of hydrocephalus in HIV co-infection should be an area for future research.
Collapse
Affiliation(s)
- Angharad Davis
- National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, WC1N 3BG, UK.
- University College London, Gower Street, London, WC1E 6BT, UK.
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Cape Town, 7925, Republic of South Africa.
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Cape Town, 7925, Republic of South Africa
| | - Robert J Wilkinson
- University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, Cape Town, 7925, Republic of South Africa
- The Francis Crick Institute, London, NW1 2AT, UK
- Department of Medicine, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
36
|
Kaplan SR, Topal J, Sosa L, Malinis M, Huttner A, Malhotra A, Friedland G. A patient with central nervous system tuberculomas and a history of disseminated multi-drug-resistant tuberculosis. J Clin Tuberc Other Mycobact Dis 2018; 10:9-16. [PMID: 31720380 PMCID: PMC6830180 DOI: 10.1016/j.jctube.2017.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 12/02/2022] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide, particularly in low- and middle-income countries. The global rates and numbers of drug resistant TB are rising. With increasing globalization, the spread of drug-resistant strains of TB has become a mounting global public health concern. We present a case of a young man previously treated for multi-drug resistant (MDR) TB in India who presented with neurological symptoms and central nervous system TB in the United States. His case highlights unique diagnostic and treatment challenges that are likely to become more commonplace with the increase of patients infected with drug-resistant TB and complicated extrapulmonary disease.
Collapse
Key Words
- AFB, acid-fast bacilli
- BAL, bronchoalveolar lavage
- Bedaquiline
- CNS, central nervous system
- CSF, cerebrospinal fluid
- CT, computerized tomography
- Central nervous system (CNS) TB
- DOT, directly observed therapy
- DST, drug susceptibility testing
- Extensively drug-resistant tuberculosis (XDR-TB)
- FDA, Food and Drug Administration
- IV, intravenous
- LUL, left upper lobe
- MDR-TB, multidrug-resistant tuberculosis
- MRI, magnetic resonance imaging
- Multi-drug resistant tuberculosis (MDR-TB)
- TB, tuberculosis
- Tuberculoma
- Tuberculosis (TB)
- WHO, World Health Organization
- XDR-TB, extensively drug-resistant tuberculosis
Collapse
Affiliation(s)
- Samantha R. Kaplan
- Yale School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, 135 College St, New Haven, CT 06510, United States
| | - Jeffrey Topal
- Yale School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, 135 College St, New Haven, CT 06510, United States
| | - Lynn Sosa
- Connecticut Department of Public Health, 410 Capitol Avenue, Hartford, CT 06134, United States
| | - Maricar Malinis
- Yale School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, 135 College St, New Haven, CT 06510, United States
| | - Anita Huttner
- Yale School of Medicine, Department of Pathology, 333 Cedar St, New Haven, CT 06510, United States
| | - Ajay Malhotra
- Yale School of Medicine, Department of Radiology, 333 Cedar St, New Haven, CT 06510, United States
| | - Gerald Friedland
- Yale School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, AIDS Program, 135 College St, New Haven, CT 06510, United States
| |
Collapse
|
37
|
Srivastava S, Deshpande D, Pasipanodya J, Nuermberger E, Swaminathan S, Gumbo T. Optimal Clinical Doses of Faropenem, Linezolid, and Moxifloxacin in Children With Disseminated Tuberculosis: Goldilocks. Clin Infect Dis 2017; 63:S102-S109. [PMID: 27742641 PMCID: PMC5064158 DOI: 10.1093/cid/ciw483] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background. When treated with the same antibiotic dose, children achieve different 0- to 24-hour area under the concentration-time curves (AUC0–24) because of maturation and between-child physiological variability on drug clearance. Children are also infected by Mycobacterium tuberculosis isolates with different antibiotic minimum inhibitory concentrations (MICs). Thus, each child will achieve different AUC0–24/MIC ratios when treated with the same dose. Methods. We used 10 000-subject Monte Carlo experiments to identify the oral doses of linezolid, moxifloxacin, and faropenem that would achieve optimal target exposures associated with optimal efficacy in children with disseminated tuberculosis. The linezolid and moxifloxacin exposure targets were AUC0–24/MIC ratios of 62 and 122, and a faropenem percentage of time above MIC >60%, in combination therapy. A linezolid AUC0–24 of 93.4 mg × hour/L was target for toxicity. Population pharmacokinetic parameters of each drug and between-child variability, as well as MIC distribution, were used, and the cumulative fraction of response (CFR) was calculated. We also considered drug penetration indices into meninges, bone, and peritoneum. Results. The linezolid dose of 15 mg/kg in full-term neonates and infants aged up to 3 months and 10 mg/kg in toddlers, administered once daily, achieved CFR ≥ 90%, with <10% achieving linezolid AUC0–24 associated with toxicity. The moxifloxacin dose of 25 mg/kg/day achieved a CFR > 90% in infants, but the optimal dose was 20 mg/kg/day in older children. The faropenem medoxomil optimal dosage was 30 mg/kg 3–4 times daily. Conclusions. The regimen and doses of linezolid, moxifloxacin, and faropenem identified are proposed to be adequate for all disseminated tuberculosis syndromes, whether drug-resistant or -susceptible.
Collapse
Affiliation(s)
- Shashikant Srivastava
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Devyani Deshpande
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Jotam Pasipanodya
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas
| | - Eric Nuermberger
- Center for Tuberculosis Research, Department of Medicine Department of International Health, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Tawanda Gumbo
- Center for Infectious Diseases Research and Experimental Therapeutics, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas Department of Medicine, University of Cape Town, Observatory, South Africa
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Tuberculous meningitis is the most devastating manifestation of infection with Mycobacterium tuberculosis and represents a medical emergency. Approximately one half of tuberculous meningitis patients die or suffer severe neurologic disability. The goal of this review will be to review the pathogenic, clinical, and radiologic features of tuberculous meningitis and to highlight recent advancements in translational and clinical science. RECENT FINDINGS Pharmacologic therapy includes combination anti-tuberculosis drug regimens and adjunctive corticosteroids. It is becoming clear that a successful treatment outcome depends on an immune response that is neither too weak nor overly robust, and genetic determinants of this immune response may identify which patients will benefit from adjunctive corticosteroids. Recent clinical trials of intensified anti-tuberculosis treatment regimens conducted in Indonesia and Vietnam, motivated by the pharmacologic challenges of treating M. tuberculosis infections of the central nervous system, have yielded conflicting results regarding the survival benefit of intensified treatment regimens. More consistent findings have been observed regarding the relationship between initial anti-tuberculosis drug resistance and mortality among tuberculous meningitis patients. Prompt initiation of anti-tuberculosis treatment for all suspected cases remains a key aspect of management. Priorities for research include the improvement of diagnostic testing strategies and the optimization of host-directed and anti-tuberculosis therapies.
Collapse
|
39
|
Li H, Liu J, Zhao S. Re: "Linezolid for Children With Tuberculous Meningitis: More Evidence Required". Pediatr Infect Dis J 2017; 36:439-440. [PMID: 28288084 DOI: 10.1097/inf.0000000000001465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Huimin Li
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Linezolid serves as an important component for the treatment of drug-resistant tuberculosis although there is little published data about linezolid use in children, especially in childhood tuberculous meningitis (TBM). METHODS In this study, we retrospectively reviewed records of childhood TBM patients who started treatment between January 2012 and August 2014. A total of 86 childhood TBM patients younger than 15 years old were enrolled. Out of 86 children, 36 (41.9%) received the regimen containing linezolid. RESULTS Thirty-two (88.9%) of 36 linezolid-treated cases had favorable outcomes, and 35 (70.0%) cases were successfully treated in the control group. The frequency of favorable outcome of linezolid group was significantly higher than that of control group (P = 0.037). In addition, compared with cases with fever clearance time of <1 week, the control group had more cases with fever clearance time of 1-4 weeks (P = 0.010) and >4 weeks (P = 0.000) than linezolid group. Furthermore, there was no significant difference in the frequency of adverse events between the two regimens (P = 0.896). In addition, the patients with adverse events were more likely to have treatment failure, the P value of which was 0.008. CONCLUSIONS Our data demonstrate that linezolid improves early outcome of childhood TBM. The low frequency of linezolid-associated adverse effects highlights the promising prospects of its use for treatment of childhood TBM.
Collapse
|