1
|
Shang Z, Li X. Human cytomegalovirus: pathogenesis, prevention, and treatment. MOLECULAR BIOMEDICINE 2024; 5:61. [PMID: 39585514 PMCID: PMC11589059 DOI: 10.1186/s43556-024-00226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection remains a significant global health challenge, particularly for immunocompromised individuals and newborns. This comprehensive review synthesizes current knowledge on HCMV pathogenesis, prevention, and treatment strategies. We examine the molecular mechanisms of HCMV entry, focusing on the structure and function of key envelope glycoproteins (gB, gH/gL/gO, gH/gL/pUL128-131) and their interactions with cellular receptors such as PDGFRα, NRP2, and THBD. The review explores HCMV's sophisticated immune evasion strategies, including interference with pattern recognition receptor signaling, modulation of antigen presentation, and regulation of NK and T cell responses. We highlight recent advancements in developing neutralizing antibodies, various vaccine strategies (live-attenuated, subunit, vector-based, DNA, and mRNA), antiviral compounds (both virus-targeted and host-targeted), and emerging cellular therapies such as TCR-T cell approaches. By integrating insights from structural biology, immunology, and clinical research, we identify critical knowledge gaps and propose future research directions. This analysis aims to stimulate cross-disciplinary collaborations and accelerate the development of more effective prevention and treatment strategies for HCMV infections, addressing a significant unmet medical need.
Collapse
Affiliation(s)
- Zifang Shang
- Research Experiment Center, Meizhou Academy of Medical Sciences, Meizhou People's Hospital, Meizhou, 514031, Guangdong, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, Guangdong, China.
| | - Xin Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| |
Collapse
|
2
|
He L, Hertel L, James CD, Morgan IM, Klingelhutz AJ, Fu TM, Kauvar LM, McVoy MA. Inhibition of human cytomegalovirus entry into mucosal epithelial cells. Antiviral Res 2024; 230:105971. [PMID: 39074588 PMCID: PMC11408113 DOI: 10.1016/j.antiviral.2024.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Human cytomegalovirus (CMV) causes serious developmental disabilities in newborns infected in utero following oral acquisition by the mother. Thus, neutralizing antibodies in maternal saliva have potential to prevent maternal infection and, consequently, fetal transmission and disease. Based on standard cell culture models, CMV entry mediators (and hence neutralizing targets) are cell type-dependent: entry into fibroblasts requires glycoprotein B (gB) and a trimeric complex (TC) of glycoproteins H, L, and O, whereas endothelial and epithelial cell entry additionally requires a pentameric complex (PC) of glycoproteins H and L with UL128, UL130, and UL131A. However, as the mediators of mucosal cell entry and the potential impact of cellular differentiation remained unclear, the present studies utilized mutant viruses, neutralizing antibodies, and soluble TC-receptor to determine the entry mediators required for infection of mucocutaneus cell lines and primary tonsil epithelial cells. Entry into undifferentiated cells was largely PC-dependent, but PC-independent entry could be induced by differentiation. TC-independent entry was also observed and varied by cell line and differentiation. Infection of primary tonsil cells from some donors was entirely TC-independent. In contrast, an antibody to gB or disruption of virion attachment using heparin blocked entry into all cells. These findings indicate that CMV entry into the spectrum of cell types encountered in vivo is likely to be more complex than has been suggested by standard cell culture models and may be influenced by the relative abundance of virion envelope glycoprotein complexes as well as by cell type, tissue of origin, and state of differentiation.
Collapse
Affiliation(s)
- Li He
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Laura Hertel
- Department of Pediatrics, School of Medicine, University of California San Francisco, Oakland, CA, 94609, USA
| | - Claire D James
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Iain M Morgan
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Tong-Ming Fu
- Texas Therapeutics Institute, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
3
|
Sponholtz MR, Byrne PO, Lee AG, Ramamohan AR, Goldsmith JA, McCool RS, Zhou L, Johnson NV, Hsieh CL, Connors M, Karthigeyan KP, Crooks CM, Fuller AS, Campbell JD, Permar SR, Maynard JA, Yu D, Bottomley MJ, McLellan JS. Structure-based design of a soluble human cytomegalovirus glycoprotein B antigen stabilized in a prefusion-like conformation. Proc Natl Acad Sci U S A 2024; 121:e2404250121. [PMID: 39231203 PMCID: PMC11406251 DOI: 10.1073/pnas.2404250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Human cytomegalovirus (HCMV) glycoprotein B (gB) is a class III membrane fusion protein required for viral entry. HCMV vaccine candidates containing gB have demonstrated moderate clinical efficacy, but no HCMV vaccine has been approved. Here, we used structure-based design to identify and characterize amino acid substitutions that stabilize gB in its metastable prefusion conformation. One variant containing two engineered interprotomer disulfide bonds and two cavity-filling substitutions (gB-C7), displayed increased expression and thermostability. A 2.8 Å resolution cryoelectron microscopy structure shows that gB-C7 adopts a prefusion-like conformation, revealing additional structural elements at the membrane-distal apex. Unlike previous observations for several class I viral fusion proteins, mice immunized with postfusion or prefusion-stabilized forms of soluble gB protein displayed similar neutralizing antibody titers, here specifically against an HCMV laboratory strain on fibroblasts. Collectively, these results identify initial strategies to stabilize class III viral fusion proteins and provide tools to probe gB-directed antibody responses.
Collapse
Affiliation(s)
- Madeline R. Sponholtz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Patrick O. Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Alison G. Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ajit R. Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Jory A. Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ryan S. McCool
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ling Zhou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| | - Megan Connors
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Krithika P. Karthigeyan
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Chelsea M. Crooks
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Adelaide S. Fuller
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | | | - Sallie R. Permar
- Division of Infectious Diseases, Department of Pediatrics, Weill Cornell Medicine, New York, NY10065
| | - Jennifer A. Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Dong Yu
- Dynavax Technologies Corporation, Emeryville, CA94608
| | | | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
4
|
Valencia SM, Rochat E, Harnois MJ, Dennis M, Webster HS, Hora B, Kumar A, Wang HYS, Li L, Freed D, Zhang N, An Z, Wang D, Permar SR. Vaccination with a replication-defective cytomegalovirus vaccine elicits a glycoprotein B-specific monoclonal antibody repertoire distinct from natural infection. NPJ Vaccines 2023; 8:154. [PMID: 37816743 PMCID: PMC10564777 DOI: 10.1038/s41541-023-00749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Human Cytomegalovirus (HCMV) is the leading infectious congenital infection globally and the most common viral infection in transplant recipients, therefore identifying a vaccine for HCMV is a top priority. Humoral immunity is a correlate of protection for HCMV infection. The most effective vaccine tested to date, which achieved 50% reduction in acquisition of HCMV, was comprised of the glycoprotein B protein given with an oil-in-water emulsion adjuvant MF59. We characterize gB-specific monoclonal antibodies isolated from individuals vaccinated with a disabled infectious single cycle (DISC) CMV vaccine, V160, and compare these to the gB-specific monoclonal antibody repertoire isolated from naturally-infected individuals. We find that vaccination with V160 resulted in gB-specific antibodies that bound homogenously to gB expressed on the surface of a cell in contrast to antibodies isolated from natural infection which variably bound to cell-associated gB. Vaccination resulted in a similar breadth of gB-specific antibodies, with binding profile to gB genotypes 1-5 comparable to that of natural infection. Few gB-specific neutralizing antibodies were isolated from V160 vaccinees and fewer antibodies had identifiable gB antigenic domain specificity compared to that of naturally-infected individuals. We also show that glycosylation of gB residue N73 may shield binding of gB-specific antibodies.
Collapse
Affiliation(s)
- Sarah M Valencia
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Eric Rochat
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Melissa J Harnois
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Maria Dennis
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Helen S Webster
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Bhavna Hora
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Amit Kumar
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
| | - Hsuan-Yuan Sherry Wang
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, 27710, USA
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Dai Wang
- Merck & Co., Inc., Rahway, NJ, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Nuévalos M, García-Ríos E, Mancebo FJ, Martín-Martín C, Pérez-Romero P. Novel monoclonal antibody-based therapies: implications for the treatment and prevention of HCMV disease. Trends Microbiol 2023; 31:480-497. [PMID: 36624009 DOI: 10.1016/j.tim.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Human cytomegalovirus (HCMV) is an important pathogen worldwide. Although HCMV infection is often asymptomatic in immunocompetent individuals, it can cause severe or even life-threatening symptoms in immunocompromised patients. Due to limitations of antiviral treatments, it is necessary to search for new therapeutic alternatives. Recent studies have highlighted the contribution of antibodies in protecting against HCMV disease, including neutralizing and non-neutralizing antibodies. Given the immunocompromised target population, monoclonal antibodies (mAbs) may represent an alternative to the clinical management of HCMV infection. In this context, we provide a synthesis of recent data revising the literature supporting and arguing about the role of the humoral immunity in controlling HCMV infection. Additionally, we review the state of the art in the development of therapies based on mAbs.
Collapse
Affiliation(s)
- Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; Department of Science, Universidad Internacional de Valencia-VIU, 46002 Valencia, Spain.
| | - Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Clara Martín-Martín
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
6
|
Okamoto M, Kurino R, Miura R, Takada K. A fully human neutralizing monoclonal antibody targeting a highly conserved epitope of the human cytomegalovirus glycoprotein B. PLoS One 2023; 18:e0285672. [PMID: 37192198 DOI: 10.1371/journal.pone.0285672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
Human cytomegalovirus causes severe diseases in children (by congenital infection) and immunocompromised patients. Treatment with antiviral agents, such as ganciclovir, is limited by their toxicity. In this study, we investigated the effectiveness of a fully human neutralizing monoclonal antibody to inhibit human cytomegalovirus infection and viral cell-to-cell spread. We isolated a potent neutralizing antibody, EV2038 (IgG1 lambda), targeting human cytomegalovirus glycoprotein B using Epstein-Barr virus transformation. This antibody inhibited human cytomegalovirus infection by all four laboratory strains and 42 Japanese clinical isolates, including ganciclovir-resistant isolates, with a 50% inhibitory concentration (IC50) ranging from 0.013 to 0.105 μg/mL, and 90% inhibitory concentration (IC90) ranging from 0.208 to 1.026 μg/mL, in both human embryonic lung fibroblasts (MRC-5) and human retinal pigment epithelial (ARPE-19) cells. Additionally, EV2038 prevented cell-to-cell spread of eight clinical viral isolates, with IC50 values ranging from 1.0 to 3.1 μg/mL, and IC90 values ranging from 13 to 19 μg/mL, in ARPE-19 cells. EV2038 recognized three discontinuous sequences on antigenic domain 1 of glycoprotein B (amino acids 549-560, 569-576, and 625-632), which were highly conserved among 71 clinical isolates from Japan and the United States. Pharmacokinetics study in cynomolgus monkeys suggested the potential efficacy of EV2038 in vivo, the concentration of which in serum remained higher than the IC90 values of cell-to-cell spread until 28 days after intravenous injection of 10 mg/kg EV2038. Our data strongly support EV2038 as a promising candidate and novel alternative for the treatment of human cytomegalovirus infection.
Collapse
Affiliation(s)
- Miwa Okamoto
- Sapporo Laboratory, EVEC, Inc., Sapporo, Hokkaido, Japan
| | - Rika Kurino
- Sapporo Laboratory, EVEC, Inc., Sapporo, Hokkaido, Japan
| | - Ryu Miura
- Sapporo Laboratory, EVEC, Inc., Sapporo, Hokkaido, Japan
| | - Kenzo Takada
- Sapporo Laboratory, EVEC, Inc., Sapporo, Hokkaido, Japan
| |
Collapse
|
7
|
Jenks JA, Amin S, Sponholtz MR, Kumar A, Wrapp D, Venkatayogi S, Tu JJ, Karthigeyan K, Valencia SM, Connors M, Harnois MJ, Hora B, Rochat E, McLellan JS, Wiehe K, Permar SR. A single, improbable B cell receptor mutation confers potent neutralization against cytomegalovirus. PLoS Pathog 2023; 19:e1011107. [PMID: 36662906 PMCID: PMC9891502 DOI: 10.1371/journal.ppat.1011107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/01/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Cytomegalovirus (CMV) is a leading cause of infant hearing loss and neurodevelopmental delay, but there are no clinically licensed vaccines to prevent infection, in part due to challenges eliciting neutralizing antibodies. One of the most well-studied targets for CMV vaccines is the viral fusogen glycoprotein B (gB), which is required for viral entry into host cells. Within gB, antigenic domain 2 site 1 (AD-2S1) is a target of potently neutralizing antibodies, but gB-based candidate vaccines have yet to elicit robust responses against this region. We mapped the genealogy of B cells encoding potently neutralizing anti-gB AD-2S1 antibodies from their inferred unmutated common ancestor (UCA) and characterized the binding and function of early lineage ancestors. Surprisingly, we found that a single amino acid heavy chain mutation A33N, which was an improbable mutation rarely generated by somatic hypermutation machinery, conferred broad CMV neutralization to the non-neutralizing UCA antibody. Structural studies revealed that this mutation mediated key contacts with the gB AD-2S1 epitope. Collectively, these results provide insight into potently neutralizing gB-directed antibody evolution in a single donor and lay a foundation for using this B cell-lineage directed approach for the design of next-generation CMV vaccines.
Collapse
Affiliation(s)
- Jennifer A. Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sharmi Amin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Madeline R. Sponholtz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Sravani Venkatayogi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Krithika Karthigeyan
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| | - Sarah M. Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Megan Connors
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| | - Melissa J. Harnois
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eric Rochat
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, United States of America
| |
Collapse
|
8
|
He L, Taylor S, Costa C, Görzer I, Kalser J, Fu TM, Freed D, Wang D, Cui X, Hertel L, McVoy MA. Polymorphic Forms of Human Cytomegalovirus Glycoprotein O Protect against Neutralization of Fibroblast Entry by Antibodies Targeting Epitopes Defined by Glycoproteins H and L. Viruses 2022; 14:1508. [PMID: 35891489 PMCID: PMC9323020 DOI: 10.3390/v14071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (CMV) utilizes different glycoproteins to enter into fibroblast and epithelial cells. A trimer of glycoproteins H, L, and O (gH/gL/gO) is required for entry into all cells, whereas a pentamer of gH/gL/UL128/UL130/UL131A is selectively required for infection of epithelial, endothelial, and some myeloid-lineage cells, but not of fibroblasts. Both complexes are of considerable interest for vaccine and immunotherapeutic development but present a conundrum: gH/gL-specific antibodies have moderate potency yet neutralize CMV entry into all cell types, whereas pentamer-specific antibodies are more potent but do not block fibroblast infection. Which cell types and neutralizing activities are important for protective efficacy in vivo remain unclear. Here, we present evidence that certain CMV strains have evolved polymorphisms in gO to evade trimer-specific neutralizing antibodies. Using luciferase-tagged variants of strain TB40/E in which the native gO is replaced by gOs from other strains, we tested the effects of gO polymorphisms on neutralization by monoclonal antibodies (mAbs) targeting four independent epitopes in gH/gL that are common to both trimer and pentamer. Neutralization of fibroblast entry by three mAbs displayed a range of potencies that depended on the gO type, a fourth mAb failed to neutralize fibroblast entry regardless of the gO type, while neutralization of epithelial cell entry by all four mAbs was potent and independent of the gO type. Thus, specific polymorphisms in gO protect the virus from mAb neutralization in the context of fibroblast but not epithelial cell entry. No influence of gO type was observed for protection against CMV hyperimmune globulin or CMV-seropositive human sera, suggesting that antibodies targeting protected gH/gL epitopes represent a minority of the polyclonal neutralizing repertoire induced by natural infection.
Collapse
Affiliation(s)
- Li He
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Scott Taylor
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (C.C.)
| | - Catherine Costa
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (C.C.)
| | - Irene Görzer
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (I.G.); (J.K.)
| | - Julia Kalser
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (I.G.); (J.K.)
| | - Tong-Ming Fu
- Texas Therapeutic Institute, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Daniel Freed
- Merck & Co., Inc., Rahway, NJ 07065, USA; (D.F.); (D.W.)
| | - Dai Wang
- Merck & Co., Inc., Rahway, NJ 07065, USA; (D.F.); (D.W.)
| | - Xiaohong Cui
- Department of Anatomy, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Laura Hertel
- Department of Pediatrics, University of California San Francisco, Oakland, CA 94609, USA;
| | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
9
|
Neutralizing Antibodies to Human Cytomegalovirus Recombinant Proteins Reduce Infection in an Ex Vivo Model of Developing Human Placentas. Vaccines (Basel) 2022; 10:vaccines10071074. [PMID: 35891239 PMCID: PMC9315547 DOI: 10.3390/vaccines10071074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading viral cause of congenital disease and permanent birth defects worldwide. Although the development of an effective vaccine is a public health priority, no vaccines are approved. Among the major antigenic targets are glycoproteins in the virion envelope, including gB, which facilitates cellular entry, and the pentameric complex (gH/gL/pUL128-131), required for the infection of specialized cell types. In this study, sera from rabbits immunized with the recombinant pentameric complex were tested for their ability to neutralize infection of epithelial cells, fibroblasts, and primary placental cell types. Sera from rhesus macaques immunized with recombinant gB or gB plus pentameric complex were tested for HCMV neutralizing activity on both cultured cells and cell column cytotrophoblasts in first-trimester chorionic villus explants. Sera from rabbits immunized with the pentameric complex potently blocked infection by pathogenic viral strains in amniotic epithelial cells and cytotrophoblasts but were less effective in fibroblasts and trophoblast progenitor cells. Sera from rhesus macaques immunized with the pentameric complex and gB more strongly reduced infection in fibroblasts, epithelial cells, and chorionic villus explants than sera from immunization with gB alone. These results suggest that the pentameric complex and gB together elicit antibodies that could have potential as prophylactic vaccine antigens.
Collapse
|
10
|
Perera MR, Wills MR, Sinclair JH. HCMV Antivirals and Strategies to Target the Latent Reservoir. Viruses 2021; 13:817. [PMID: 34062863 PMCID: PMC8147263 DOI: 10.3390/v13050817] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human herpesvirus. In healthy people, primary infection is generally asymptomatic, and the virus can go on to establish lifelong latency in cells of the myeloid lineage. However, HCMV often causes severe disease in the immunosuppressed: transplant recipients and people living with AIDS, and also in the immunonaive foetus. At present, there are several antiviral drugs licensed to control HCMV disease. However, these are all faced with problems of poor bioavailability, toxicity and rapidly emerging viral resistance. Furthermore, none of them are capable of fully clearing the virus from the host, as they do not target latent infection. Consequently, reactivation from latency is a significant source of disease, and there remains an unmet need for treatments that also target latent infection. This review briefly summarises the most common HCMV antivirals used in clinic at present and discusses current research into targeting the latent HCMV reservoir.
Collapse
Affiliation(s)
| | | | - John H. Sinclair
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (M.R.P.); (M.R.W.)
| |
Collapse
|
11
|
Siddiqui S, Hackl S, Ghoddusi H, McIntosh MR, Gomes AC, Ho J, Reeves MB, McLean GR. IgA binds to the AD-2 epitope of glycoprotein B and neutralizes human cytomegalovirus. Immunology 2021; 162:314-327. [PMID: 33283275 PMCID: PMC7884650 DOI: 10.1111/imm.13286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that is potentially pathogenic in immunosuppressed individuals and pregnant females during primary infection. The HCMV envelope glycoprotein B (gB) facilitates viral entry into all cell types and induces a potent immune response. AD-2 epitope is a highly conserved linear neutralizing epitope of gB and a critical target for antibodies; however, only 50% of sero-positive individuals make IgG antibodies to this site and IgA responses have not been fully investigated. This study aimed to compare IgG and IgA responses against gB and the AD-2 epitope in naturally exposed individuals and those receiving a recombinant gB/MF59 adjuvant vaccine. Thus, vaccination of sero-positive individuals improved pre-existing gB-specific IgA and IgG levels and induced de novo gB-specific IgA and IgG responses in sero-negative recipients. Pre-existing AD-2 IgG and IgA responses were boosted with vaccination, but de novo AD-2 responses were not detected. Naturally exposed individuals had dominant IgG responses towards gB and AD-2 compared with weaker and variable IgA responses, although a significant IgA binding response to AD-2 was observed within human breastmilk samples. All antibodies binding AD-2 contained kappa light chains, whereas balanced kappa/lambda light chain usage was found for those binding to gB. V region-matched AD-2-specific recombinant IgG and IgA bound both to gB and to AD-2 and neutralized HCMV infection in vitro. Overall, these results indicate that although human IgG responses dominate, IgA class antibodies against AD-2 are a significant component of human milk, which may function to protect neonates from HCMV.
Collapse
Affiliation(s)
- Saima Siddiqui
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK
| | - Sarah Hackl
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK
| | - Hamid Ghoddusi
- Microbiology Research UnitLondon Metropolitan UniversityLondonUK
| | - Megan R. McIntosh
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Ariane C. Gomes
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Joshua Ho
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Matthew B. Reeves
- Institute for Immunity and TransplantationUniversity College LondonLondonUK
| | - Gary R. McLean
- Cellular and Molecular Immunology Research CentreLondon Metropolitan UniversityLondonUK,National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
12
|
Vlahava VM, Murrell I, Zhuang L, Aicheler RJ, Lim E, Miners KL, Ladell K, Suárez NM, Price DA, Davison AJ, Wilkinson GW, Wills MR, Weekes MP, Wang EC, Stanton RJ. Monoclonal antibodies targeting nonstructural viral antigens can activate ADCC against human cytomegalovirus. J Clin Invest 2021; 131:139296. [PMID: 33586678 PMCID: PMC7880312 DOI: 10.1172/jci139296] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe disease following congenital infection and in immunocompromised individuals. No vaccines are licensed, and there are limited treatment options. We now show that the addition of anti-HCMV antibodies (Abs) can activate NK cells prior to the production of new virions, through Ab-dependent cellular cytotoxicity (ADCC), overcoming viral immune evasins. Quantitative proteomics defined the most abundant HCMV proteins on the cell surface, and we screened these targets to identify the viral antigens responsible for activating ADCC. Surprisingly, these were not structural glycoproteins; instead, the immune evasins US28, RL11, UL5, UL141, and UL16 each individually primed ADCC. We isolated human monoclonal Abs (mAbs) specific for UL16 or UL141 from a seropositive donor and optimized them for ADCC. Cloned Abs targeting a single antigen (UL141) were sufficient to mediate ADCC against HCMV-infected cells, even at low concentrations. Collectively, these findings validated an unbiased methodological approach to the identification of immunodominant viral antigens, providing a pathway toward an immunotherapeutic strategy against HCMV and potentially other pathogens.
Collapse
Affiliation(s)
- Virginia-Maria Vlahava
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Isa Murrell
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lihui Zhuang
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Eleanor Lim
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kelly L. Miners
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicolás M. Suárez
- University of Glasgow-MRC Centre for Virus Research, Glasgow, United Kingdom
| | - David A. Price
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andrew J. Davison
- University of Glasgow-MRC Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin W.G. Wilkinson
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eddie C.Y. Wang
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Acosta E, Bowlin T, Brooks J, Chiang L, Hussein I, Kimberlin D, Kauvar LM, Leavitt R, Prichard M, Whitley R. Advances in the Development of Therapeutics for Cytomegalovirus Infections. J Infect Dis 2021; 221:S32-S44. [PMID: 32134483 DOI: 10.1093/infdis/jiz493] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The development of therapeutics for cytomegalovirus (CMV) infections, while progressing, has not matched the pace of new treatments of human immunodeficiency virus (HIV) infections; nevertheless, recent developments in the treatment of CMV infections have resulted in improved human health and perhaps will encourage the development of new therapeutic approaches. First, the deployment of ganciclovir and valganciclovir for both the prevention and treatment of CMV infections and disease in transplant recipients has been further improved with the licensure of the efficacious and less toxic letermovir. Regardless, late-onset CMV disease, specifically pneumonia, remains problematic. Second, the treatment of congenital CMV infections with valganciclovir has beneficially improved both hearing and neurologic outcomes, both fundamental advances for these children. In these pediatric studies, viral load was decreased but not eliminated. Thus, an important lesson learned from studies in both populations is the need for new antiviral agents and the necessity for combination therapies as has been shown to be beneficial in the treatment of HIV infections, among others. The development of monoclonal antibodies, sirtuins, and cyclopropovir may provide new treatment options.
Collapse
Affiliation(s)
- Edward Acosta
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | - David Kimberlin
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Mark Prichard
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard Whitley
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Goodwin ML, Webster HS, Wang HY, Jenks JA, Nelson CS, Tu JJ, Mangold JF, Valencia S, Pollara J, Edwards W, McLellan JS, Wrapp D, Fu TM, Zhang N, Freed DC, Wang D, An Z, Permar SR. Specificity and effector functions of non-neutralizing gB-specific monoclonal antibodies isolated from healthy individuals with human cytomegalovirus infection. Virology 2020; 548:182-191. [PMID: 32838941 PMCID: PMC7447913 DOI: 10.1016/j.virol.2020.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 01/23/2023]
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection. A glycoprotein B (gB) subunit vaccine (gB/MF59) is the most efficacious clinically tested to date, having achieved 50% protection against primary infection of HCMV-seronegative women. We previously identified that gB/MF59 vaccination primarily elicits non-neutralizing antibody responses, with variable binding to gB genotypes, and protection associated with binding to membrane-associated gB. We hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on epitope and genotype specificity, and ability to interact with membrane-associated gB. We mapped twenty-four gB-specific monoclonal antibodies (mAbs) from naturally HCMV-infected individuals for gB domain specificity, genotype preference, and ability to mediate phagocytosis or NK cell activation. gB-specific mAbs were primarily specific for Domain II and demonstrated variable binding to gB genotypes. Two mAbs facilitated phagocytosis with binding specificities of Domain II and AD2. This investigation provides novel understanding on the relationship between gB domain specificity and antigenic variability on gB-specific antibody effector functions.
Collapse
Affiliation(s)
- Matthew L Goodwin
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Helen S Webster
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Hsuan-Yuan Wang
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Cody S Nelson
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Joshua J Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jesse F Mangold
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sarah Valencia
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Whitney Edwards
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel Wrapp
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Tong-Ming Fu
- Merck & Co., Inc., Kenilworth, NJ, USA; Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, USA
| | - Sallie R Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
15
|
Ye X, Su H, Wrapp D, Freed DC, Li F, Yuan Z, Tang A, Li L, Ku Z, Xiong W, Jaijyan D, Zhu H, Wang D, McLellan JS, Zhang N, Fu TM, An Z. Recognition of a highly conserved glycoprotein B epitope by a bivalent antibody neutralizing HCMV at a post-attachment step. PLoS Pathog 2020; 16:e1008736. [PMID: 32745149 PMCID: PMC7425986 DOI: 10.1371/journal.ppat.1008736] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/13/2020] [Accepted: 06/22/2020] [Indexed: 01/13/2023] Open
Abstract
Human cytomegalovirus (HCMV) is one of the main causative agents of congenital viral infection in neonates. HCMV infection also causes serious morbidity and mortality among organ transplant patients. Glycoprotein B (gB) is a major target for HCMV neutralizing antibodies, yet the underlying neutralization mechanisms remain largely unknown. Here we report that 3–25, a gB-specific monoclonal antibody previously isolated from a healthy HCMV-positive donor, efficiently neutralized 14 HCMV strains in both ARPE-19 cells and MRC-5 cells. The core epitope of 3–25 was mapped to a highly conserved linear epitope on antigenic domain 2 (AD-2) of gB. A 1.8 Å crystal structure of 3–25 Fab in complex with the peptide epitope revealed the molecular determinants of 3–25 binding to gB at atomic resolution. Negative-staining electron microscopy (EM) 3D reconstruction of 3–25 Fab in complex with de-glycosylated postfusion gB showed that 3–25 Fab fully occupied the gB trimer at the N-terminus with flexible binding angles. Functionally, 3–25 efficiently inhibited HCMV infection at a post-attachment step by interfering with viral membrane fusion, and restricted post-infection viral spreading in ARPE-19 cells. Interestingly, bivalency was required for HCMV neutralization by AD-2 specific antibody 3–25 but not the AD-4 specific antibody LJP538. In contrast, bivalency was not required for HCMV binding by both antibodies. Taken together, our results reveal the structural basis of gB recognition by 3–25 and demonstrate that inhibition of viral membrane fusion and a requirement of bivalency may be common for gB AD-2 specific neutralizing antibody. HCMV infection is usually asymptomatic in healthy individuals. However, life-threatening diseases frequently accompany HCMV infection in individuals with under-developed or compromised immune systems. Glycoprotein B antigenic domain 2 (AD-2) is a major target for HCMV-neutralizing antibodies that potentially provide immune protection. We report the structure-based study of gB recognition by a potent neutralizing antibody named 3–25 that binds a highly conserved epitope on AD-2. Functionally, 3–25 efficiently inhibited HCMV infection at a post-attachment step by interfering with viral membrane fusion, and restricted post-infection viral spreading. Furthermore, bivalency of 3–25 is required for viral neutralization but not for binding. Our findings advance understanding of gB antibody-mediated HCMV neutralization and facilitate development of gB-targeted vaccines and antibody drugs against HCMV infection.
Collapse
Affiliation(s)
- Xiaohua Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Hang Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Daniel Wrapp
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel C. Freed
- Merck Research Laboratory, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Fengsheng Li
- Merck Research Laboratory, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Zihao Yuan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Aimin Tang
- Merck Research Laboratory, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dabbu Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Dai Wang
- Merck Research Laboratory, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Jason S. McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (NZ); (TMF); (ZA)
| | - Tong-Ming Fu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Merck Research Laboratory, Merck & Co., Inc., Kenilworth, New Jersey, United States of America
- * E-mail: (NZ); (TMF); (ZA)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (NZ); (TMF); (ZA)
| |
Collapse
|
16
|
Qi Y, He L, Cui X, Hertel L, Freed DC, Fu TM, Kauvar LM, McVoy MA, Ruan Q. Comparative neutralizing potencies of antibodies suggest conservation as well as mechanistic differences in human cytomegalovirus entry into epithelial and endothelial cells. Virol J 2020; 17:50. [PMID: 32268919 PMCID: PMC7144056 DOI: 10.1186/s12985-020-01320-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/20/2020] [Indexed: 11/20/2022] Open
Abstract
Antibody neutralization of cytomegalovirus (CMV) entry into diverse cell types is a key consideration for development of vaccines and immunotherapeutics. CMV entry into fibroblasts differs significantly from entry into epithelial or endothelial cells: fibroblast entry is mediated by gB and gH/gL/gO, whereas both epithelial and endothelial cell entry require an additional pentameric complex (PC) comprised of gH/gL/UL128/UL130/UL131A. Because PC-specific antibodies in CMV-seropositive human sera do not affect fibroblast entry but potently block entry into epithelial or endothelial cells, substantially higher neutralizing potencies for CMV-positive sera are observed when assayed using epithelial cells as targets than when using fibroblasts. That certain sera exhibit similar discordances between neutralizing potencies measured using epithelial vs. endothelial cells (Gerna G. et al.J Gen Virol, 89:853–865, 2008) suggested that additional mechanistic differences may also exist between epithelial and endothelial cell entry. To further explore this issue, neutralizing potencies using epithelial and endothelial cells were simultaneously determined for eight CMV-positive human sera, CMV-hyperimmune globulin, and a panel of monoclonal or anti-peptide antibodies targeting specific epitopes in gB, gH, gH/gL, or the PC. No significant differences were observed between epithelial and endothelial neutralizing potencies of epitope-specific antibodies, CMV-hyperimmune globulin, or seven of the eight human sera. However, one human serum exhibited a six-fold higher potency for neutralizing entry into epithelial cells vs. endothelial cells. These results suggest that epitopes exist that are important for epithelial entry but are less critical, or perhaps dispensable, for endothelial cell entry. Their existence should be considered when developing monoclonal antibody therapies or subunit vaccines representing limited epitopes.
Collapse
Affiliation(s)
- Ying Qi
- Virology laboratory, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China
| | - Li He
- Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaohong Cui
- Virginia Commonwealth University, Richmond, VA, USA
| | - Laura Hertel
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | | | - Tong-Ming Fu
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | - Qiang Ruan
- Virology laboratory, Shengjing Hospital, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
17
|
Dibo M, Battocchio EC, dos Santos Souza LM, da Silva MDV, Banin-Hirata BK, Sapla MM, Marinello P, Rocha SP, Faccin-Galhardi LC. Antibody Therapy for the Control of Viral Diseases: An Update. Curr Pharm Biotechnol 2019; 20:1108-1121. [DOI: 10.2174/1389201020666190809112704] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/22/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022]
Abstract
The epidemiological impact of viral diseases, combined with the emergence and reemergence of some viruses, and the difficulties in identifying effective therapies, have encouraged several studies to develop new therapeutic strategies for viral infections. In this context, the use of immunotherapy for the treatment of viral diseases is increasing. One of the strategies of immunotherapy is the use of antibodies, particularly the monoclonal antibodies (mAbs) and multi-specific antibodies, which bind directly to the viral antigen and bring about activation of the immune system. With current advancements in science and technology, several such antibodies are being tested, and some are already approved and are undergoing clinical trials. The present work aims to review the status of mAb development for the treatment of viral diseases.
Collapse
Affiliation(s)
- Miriam Dibo
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Eduardo C. Battocchio
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Lucas M. dos Santos Souza
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | | | - Bruna K. Banin-Hirata
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Milena M.M. Sapla
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Poliana Marinello
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Sérgio P.D. Rocha
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Lígia C. Faccin-Galhardi
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| |
Collapse
|
18
|
Tabata T, Petitt M, Fang-Hoover J, Freed DC, Li F, An Z, Wang D, Fu TM, Pereira L. Neutralizing Monoclonal Antibodies Reduce Human Cytomegalovirus Infection and Spread in Developing Placentas. Vaccines (Basel) 2019; 7:vaccines7040135. [PMID: 31569508 PMCID: PMC6963214 DOI: 10.3390/vaccines7040135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/16/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022] Open
Abstract
Congenital human cytomegalovirus (HCMV) infection is a leading cause of birth defects worldwide, yet the most effective strategies for preventing virus transmission during pregnancy are unknown. We measured the efficacy of human monoclonal antibodies (mAbs) to HCMV attachment/entry factors glycoprotein B (gB) and the pentameric complex, gH/gL-pUL128–131, in preventing infection and spread of a clinical strain in primary placental cells and explants of developing anchoring villi. A total of 109 explants from five first-trimester placentas were cultured, and infection was analyzed in over 400 cell columns containing ~120,000 cytotrophoblasts (CTBs). mAbs to gB and gH/gL, 3-25 and 3-16, respectively, neutralized infection in stromal fibroblasts and trophoblast progenitor cells. mAbs to pUL128-131 of the pentameric complex, 1-103 and 2-18, neutralized infection of amniotic epithelial cells better than mAbs 3-25 and 3-16 and hyperimmune globulin. Select mAbs neutralized infection of cell column CTBs, with mAb 2-18 most effective, followed by mAb 3-25. Treatment of anchoring villi with mAbs postinfection reduced spread in CTBs and impaired formation of virion assembly compartments, with mAb 2-18 achieving better suppression at lower concentrations. These results predict that antibodies generated by HCMV vaccines or used for passive immunization have the potential to reduce transplacental transmission and congenital disease.
Collapse
Affiliation(s)
- Takako Tabata
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| | - Matthew Petitt
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| | - June Fang-Hoover
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| | | | | | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ 07033, USA.
| | - Tong-Ming Fu
- Merck & Co., Inc., Kenilworth, NJ 07033, USA.
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Lenore Pereira
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
19
|
Schleiss MR. Searching for a Serological Correlate of Protection for a CMV Vaccine. J Infect Dis 2019. [PMID: 29528437 DOI: 10.1093/infdis/jiy104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- M R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, and Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota Medical School, Minneapolis
| |
Collapse
|
20
|
Gomes AC, Griffiths PD, Reeves MB. The Humoral Immune Response Against the gB Vaccine: Lessons Learnt from Protection in Solid Organ Transplantation. Vaccines (Basel) 2019; 7:E67. [PMID: 31319553 PMCID: PMC6789498 DOI: 10.3390/vaccines7030067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (hCMV) is considered to be the highest priority for vaccine development. This view is underscored by the significant morbidity associated with congenital hCMV infection and viraemia in transplant patients. Although a number of vaccines have been trialed, none have been licensed. The hCMV vaccine candidate that has performed best in clinical trials to date is the recombinant glycoprotein B (gB) vaccine that has demonstrated protection, ranging from a 43% to 50% efficacy in three independent phase II trials. In this review, we focus on data from the phase II trial performed in solid organ transplant patients and the outcomes of follow-up studies attempting to identify immunological and mechanistic correlates of protection associated with this vaccine strategy. We relate this to other vaccine studies of gB as well as other vaccine strategies to determine areas of commonality and divergence. Finally, through the review, we discuss the unique challenges and opportunities presented with vaccine studies in transplant populations with recommendations that could empower subsequent trials.
Collapse
Affiliation(s)
- Ariane C Gomes
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK.
| |
Collapse
|
21
|
A Native Human Monoclonal Antibody Targeting HCMV gB (AD-2 Site I). Int J Mol Sci 2018; 19:ijms19123982. [PMID: 30544903 PMCID: PMC6321246 DOI: 10.3390/ijms19123982] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/22/2022] Open
Abstract
Hyperimmune globulin (HIG) has shown efficacy against human cytomegalovirus (HCMV) for both transplant and congenital transmission indications. Replicating that activity with a monoclonal antibody (mAb) offers the potential for improved consistency in manufacturing, lower infusion volume, and improved pharmacokinetics, as well as reduced risk of off-target reactivity leading to toxicity. HCMV pathology is linked to its broad cell tropism. The glycoprotein B (gB) envelope protein is important for infections in all cell types. Within gB, the antigenic determinant (AD)-2 Site I is qualitatively more highly-conserved than any other region of the virus. TRL345, a high affinity (Kd = 50 pM) native human mAb to this site, has shown efficacy in neutralizing the infection of fibroblasts, endothelial and epithelial cells, as well as specialized placental cells including trophoblast progenitor cells. It has also been shown to block the infection of placental fragments grown ex vivo, and to reduce syncytial spread in fibroblasts in vitro. Manufacturing and toxicology preparation for filing an IND (investigational new drug) application with the US Food and Drug Administration (FDA) are expected to be completed in mid-2019.
Collapse
|
22
|
Large-Scale Screening of HCMV-Seropositive Blood Donors Indicates that HCMV Effectively Escapes from Antibodies by Cell-Associated Spread. Viruses 2018; 10:v10090500. [PMID: 30223489 PMCID: PMC6163834 DOI: 10.3390/v10090500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulins are only moderately effective for the treatment of human cytomegalovirus (HCMV) infections, possibly due to ineffectiveness against cell-associated virus spread. To overcome this limitation, we aimed to identify individuals with exceptional antibodies in their plasma that can efficiently block the cell-associated spread of HCMV. A Gaussia luciferase-secreting mutant of the cell-associated HCMV strain Merlin was generated, and luciferase activity evaluated as a readout for the extent of cell-associated focal spread. This reporter virus-based assay was then applied to screen plasma samples from 8400 HCMV-seropositive individuals for their inhibitory effect, including direct-acting antiviral drugs as positive controls. None of the plasmas reduced virus spread to the level of these controls. Even the top-scoring samples that partially reduced luciferase activity in the screening assay failed to inhibit focal growth when reevaluated with a more accurate, immunofluorescence-based assay. Selected sera with high neutralizing capacity against free viruses were analyzed separately, and none of them prevented the focal spread of three recent clinical HCMV isolates nor reduced the number of particles transmitted, as demonstrated with a fluorescent Merlin mutant. We concluded that donors with cell-to-cell-spread-inhibiting plasma are nonexistent or extremely rare, emphasizing cell-associated spread as a highly efficient immune escape mechanism of HCMV.
Collapse
|
23
|
Zika virus infection of first-trimester human placentas: utility of an explant model of replication to evaluate correlates of immune protection ex vivo. Curr Opin Virol 2018; 27:48-56. [PMID: 29172071 DOI: 10.1016/j.coviro.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
The emergence of congenital Zika virus (ZIKV) disease, with its devastating effects on the fetus, has prompted development of vaccines and examination of how ZIKV breaches the maternal-fetal barrier. Infection of placental and decidual tissue explants has demonstrated cell types at the uterine-placental interface susceptible to infection and suggests routes for transmission across the placenta and amniochorionic membrane. ZIKV replicates in proliferating Hofbauer cells within chorionic villi in placentas from severe congenital infection. Explants of anchoring villi recapitulate placental architecture and early-stage development and suggest infected Hofbauer cells disseminate virus to fetal blood vessels. ZIKV infection of explants represents a surrogate human model for evaluating protection against transmission by antibodies in vaccine recipients and passive immune formulations and novel therapeutics.
Collapse
|
24
|
Recombinant cytomegalovirus glycoprotein B vaccine: Rethinking the immunological basis of protection. Proc Natl Acad Sci U S A 2018; 115:6110-6112. [PMID: 29875141 DOI: 10.1073/pnas.1806420115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Baraniak I, Kropff B, McLean GR, Pichon S, Piras-Douce F, Milne RSB, Smith C, Mach M, Griffiths PD, Reeves MB. Epitope-Specific Humoral Responses to Human Cytomegalovirus Glycoprotein-B Vaccine With MF59: Anti-AD2 Levels Correlate With Protection From Viremia. J Infect Dis 2018; 217:1907-1917. [PMID: 29528415 PMCID: PMC5972559 DOI: 10.1093/infdis/jiy102] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/23/2018] [Indexed: 12/05/2022] Open
Abstract
The human cytomegalovirus (HCMV) virion envelope protein glycoprotein B (gB) is essential for viral entry and represents a major target for humoral responses following infection. Previously, a phase 2 placebo-controlled clinical trial conducted in solid organ transplant candidates demonstrated that vaccination with gB plus MF59 adjuvant significantly increased gB enzyme-linked immunosorbent assay (ELISA) antibody levels whose titer correlated directly with protection against posttransplant viremia. The aim of the current study was to investigate in more detail this protective humoral response in vaccinated seropositive transplant recipients. We focused on 4 key antigenic domains (AD) of gB (AD1, AD2, AD4, and AD5), measuring antibody levels in patient sera and correlating these with posttransplant HCMV viremia. Vaccination of seropositive patients significantly boosted preexisting antibody levels against the immunodominant region AD1 as well as against AD2, AD4, and AD5. A decreased incidence of viremia correlated with higher antibody levels against AD2 but not with antibody levels against the other 3 ADs. Overall, these data support the hypothesis that antibodies against AD2 are a major component of the immune protection of seropositives seen following vaccination with gB/MF59 vaccine and identify a correlate of protective immunity in allograft patients.
Collapse
Affiliation(s)
- Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, United Kingdom
| | - Barbara Kropff
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Gary R McLean
- Cellular and Molecular Immunology Research Centre, London Metropolitan University, United Kingdom
| | - Sylvie Pichon
- Clinical Development, Sanofi Pasteur, Marcy l’Etoile, France
| | | | - Richard S B Milne
- Institute for Immunity and Transplantation, University College London, United Kingdom
| | - Colette Smith
- Research Department of Infection and Population Health, University College London, United Kingdom
| | - Michael Mach
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, United Kingdom
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, United Kingdom
| |
Collapse
|
26
|
Native Human Monoclonal Antibodies with Potent Cross-Lineage Neutralization of Influenza B Viruses. Antimicrob Agents Chemother 2018; 62:AAC.02269-17. [PMID: 29507069 PMCID: PMC5923107 DOI: 10.1128/aac.02269-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/12/2023] Open
Abstract
Although antibodies that effectively neutralize a broad set of influenza viruses exist in the human antibody repertoire, they are rare. We used a single-cell screening technology to identify rare monoclonal antibodies (MAbs) that recognized a broad set of influenza B viruses (IBV). The screen yielded 23 MAbs with diverse germ line origins that recognized hemagglutinins (HAs) derived from influenza strains of both the Yamagata and Victoria lineages of IBV. Of the 23 MAbs, 3 exhibited low expression in a transient-transfection system, 4 were neutralizers that bound to the HA head region, 11 were stalk-binding nonneutralizers, and 5 were stalk-binding neutralizers, with 4 of these 5 having unique antibody sequences. Of these four unique stalk-binding neutralizing MAbs, all were broadly reactive and neutralizing against a panel of multiple strains spanning both IBV lineages as well as highly effective in treating lethal IBV infections in mice at both 24 and 72 h postinfection. The MAbs in this group were thermostable and bound different epitopes in the highly conserved HA stalk region. These characteristics suggest that these MAbs are suitable for consideration as candidates for clinical studies to address their effectiveness in the treatment of IBV-infected patients.
Collapse
|
27
|
Li F, Freed DC, Tang A, Rustandi RR, Troutman MC, Espeseth AS, Zhang N, An Z, McVoy M, Zhu H, Ha S, Wang D, Adler SP, Fu TM. Complement enhances in vitro neutralizing potency of antibodies to human cytomegalovirus glycoprotein B (gB) and immune sera induced by gB/MF59 vaccination. NPJ Vaccines 2017; 2:36. [PMID: 29263890 PMCID: PMC5730571 DOI: 10.1038/s41541-017-0038-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/21/2017] [Accepted: 11/23/2017] [Indexed: 11/25/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the leading cause of in utero viral infection in the United States. Since congenital HCMV infection can lead to birth defects in newborns, developing a prophylactic vaccine is a high priority. One of the early experimental vaccines, composed of a recombinant glycoprotein B (gB) formulated with MF59 adjuvant, has demonstrated approximately 50% efficacy against HCMV infection in seronegative women. Using immune sera from two gB/MF59 Phase 1 studies in humans we showed that complement can enhance the in vitro HCMV neutralizing potency of antibodies induced by the gB/MF59 vaccination. To characterize this complement-dependent antiviral activity, we analyzed three rabbit non-neutralizing gB monoclonal antibodies (mAbs) with different biochemical profiles including epitope specificity. Two of the three mAbs, r272.7 and r210.4, exhibited neutralizing activity when complement was added to the assays, and this complement-dependent antiviral activity was not related to the antibody's affinity to gB but appeared to be associated with their epitope specificities. Moreover, neutralization could only be demonstrated when complement was present at or before viral entry, suggesting that IgG Fc-mediated function was not the basis for this antiviral activity. Lastly, we demonstrated that gB/MF59 immune sera contained antibodies that can cross-compete with r272.7 for gB binding and that the titers of these antibodies correlated with complement-dependent neutralization titers. These results suggested that gB antibodies with certain biochemical properties have neutralizing potency when complement is present and that this complement-dependent antiviral activity may be a part of immune components which conferred protection against HCMV infection by gB/MF59 vaccination.
Collapse
Affiliation(s)
- Fengsheng Li
- Department of Vaccines Research, MRL, Merck & Co., Inc, Kenilworth, NJ USA
| | - Daniel C. Freed
- Department of Vaccines Research, MRL, Merck & Co., Inc, Kenilworth, NJ USA
| | - Aimin Tang
- Department of Vaccines Research, MRL, Merck & Co., Inc, Kenilworth, NJ USA
| | | | | | - Amy S. Espeseth
- Department of Vaccines Research, MRL, Merck & Co., Inc, Kenilworth, NJ USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | | | - Hua Zhu
- Rutgers New Jersey Medical School, Newark, NJ USA
| | - Sha Ha
- Department of Vaccines Research, MRL, Merck & Co., Inc, Kenilworth, NJ USA
| | - Dai Wang
- Department of Vaccines Research, MRL, Merck & Co., Inc, Kenilworth, NJ USA
| | | | - Tong-Ming Fu
- Department of Vaccines Research, MRL, Merck & Co., Inc, Kenilworth, NJ USA
| |
Collapse
|
28
|
Petersen RL. Strategies Using Bio-Layer Interferometry Biosensor Technology for Vaccine Research and Development. BIOSENSORS-BASEL 2017; 7:bios7040049. [PMID: 29088096 PMCID: PMC5746772 DOI: 10.3390/bios7040049] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022]
Abstract
Bio-layer interferometry (BLI) real-time, label-free technology has greatly contributed to advances in vaccine research and development. BLI Octet platforms offer high-throughput, ease of use, reliability, and high precision analysis when compared with common labeling techniques. Many different strategies have been used to immobilize the pathogen or host molecules on BLI biosensors for real-time kinetics and affinity analysis, quantification, or high-throughput titer. These strategies can be used in multiple applications and shed light onto the structural and functional aspects molecules play during pathogen-host interactions. They also provide crucial information on how to achieve protection. This review summarizes some key BLI strategies used in human vaccine research and development.
Collapse
|
29
|
Ryser S, Estellés A, Tenorio E, Kauvar LM, Gishizky ML. High affinity anti-TIM-3 and anti-KIR monoclonal antibodies cloned from healthy human individuals. PLoS One 2017; 12:e0181464. [PMID: 28723950 PMCID: PMC5517007 DOI: 10.1371/journal.pone.0181464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/30/2017] [Indexed: 01/23/2023] Open
Abstract
We report here the cloning of native high affinity anti-TIM-3 and anti-KIR IgG monoclonal antibodies (mAbs) from peripheral blood mononuclear cells (PBMC) of healthy human donors. The cells that express these mAbs are rare, present at a frequency of less than one per 105 memory B-cells. Using our proprietary multiplexed screening and cloning technology CellSpot™ we assessed the presence of memory B-cells reactive to foreign and endogenous disease-associated antigens within the same individual. When comparing the frequencies of antigen-specific memory B-cells analyzed in over 20 screening campaigns, we found a strong correlation of the presence of anti-TIM-3 memory B-cells with memory B-cells expressing mAbs against three disease-associated antigens: (i) bacterial DNABII proteins that are a marker for Gram negative and Gram positive bacterial infections, (ii) hemagglutinin (HA) of influenza virus and (iii) the extracellular domain of anaplastic lymphoma kinase (ALK). One of the native anti-KIR mAbs has similar characteristics as lirilumab, an anti-KIR mAb derived from immunization of humanized transgenic mice that is in ongoing clinical trials. It is interesting to speculate that these native anti-TIM-3 and anti-KIR antibodies may function as natural regulatory antibodies, analogous to the pharmacological use in cancer treatment of engineered antibodies against the same targets. Further characterization studies are needed to define the mechanisms through which these native antibodies may function in healthy and disease conditions.
Collapse
Affiliation(s)
- Stefan Ryser
- Trellis Bioscience LLC, Menlo Park, California, United States of America
- * E-mail: (SR); (MG)
| | - Angeles Estellés
- Trellis Bioscience LLC, Menlo Park, California, United States of America
| | - Edgar Tenorio
- Trellis Bioscience LLC, Menlo Park, California, United States of America
| | - Lawrence M. Kauvar
- Trellis Bioscience LLC, Menlo Park, California, United States of America
| | - Mikhail L. Gishizky
- Trellis Bioscience LLC, Menlo Park, California, United States of America
- * E-mail: (SR); (MG)
| |
Collapse
|
30
|
Impact of Antibodies and Strain Polymorphisms on Cytomegalovirus Entry and Spread in Fibroblasts and Epithelial Cells. J Virol 2017; 91:JVI.01650-16. [PMID: 28381568 DOI: 10.1128/jvi.01650-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/27/2017] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) entry into fibroblasts differs from entry into epithelial cells. CMV also spreads cell to cell and can induce syncytia. To gain insights into these processes, 27 antibodies targeting epitopes in CMV virion glycoprotein complexes, including glycoprotein B (gB), gH/gL, and the pentamer, were evaluated for their effects on viral entry and spread. No antibodies inhibited CMV spread in fibroblasts, including those with potent neutralizing activity against fibroblast entry, while all antibodies that neutralized epithelial cell entry also inhibited spread in epithelial cells and a correlation existed between the potencies of these two activities. This suggests that exposure of virions to the cell culture medium is obligatory during spread in epithelial cells but not in fibroblasts. In fibroblasts, the formation of syncytiumlike structures was impaired not only by antibodies to gB or gH/gL but also by antibodies to the pentamer, suggesting a potential role for the pentamer in promoting fibroblast fusion. Four antibodies reacted with linear epitopes near the N terminus of gH, exhibited strain specificity, and neutralized both epithelial cell and fibroblast entry. Five other antibodies recognized conformational epitopes in gH/gL and neutralized both fibroblast and epithelial cell entry. That these antibodies were strain specific for neutralizing fibroblast but not epithelial cell entry suggests that polymorphisms external to certain gH/gL epitopes may influence antibody neutralization during fibroblast but not epithelial cell entry. These findings may have implications for elucidating the mechanisms of CMV entry, spread, and antibody evasion and may assist in determining which antibodies may be most efficacious following active immunization or passive administration.IMPORTANCE Cytomegalovirus (CMV) is a significant cause of birth defects among newborns infected in utero and morbidity and mortality in transplant and AIDS patients. Monoclonal antibodies and vaccines targeting humoral responses are under development for prophylactic or therapeutic use. The findings reported here (i) confirm that cell-to-cell spread of CMV is sensitive to antibody inhibition in epithelial cells but not fibroblasts, (ii) demonstrate that antibodies can restrict the formation in vitro of syncytiumlike structures that resemble syncytial cytomegalic cells that are associated with CMV disease in vivo, and (iii) reveal that neutralization of CMV by antibodies to certain epitopes in gH or gH/gL is both strain and cell type dependent and can be governed by polymorphisms in sequences external to the epitopes. These findings serve to elucidate the mechanisms of CMV entry, spread, and antibody evasion and may have important implications for the development of CMV vaccines and immunotherapeutics.
Collapse
|
31
|
Cytomegalovirus Virions Shed in Urine Have a Reversible Block to Epithelial Cell Entry and Are Highly Resistant to Antibody Neutralization. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00024-17. [PMID: 28404573 DOI: 10.1128/cvi.00024-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/04/2017] [Indexed: 12/31/2022]
Abstract
Cytomegalovirus (CMV) causes sensorineural hearing loss and developmental disabilities in newborns when infections are acquired in utero Pregnant women may acquire CMV from oral exposure to CMV in urine or saliva from young children. Neutralizing antibodies in maternal saliva have the potential to prevent maternal infection and, in turn, fetal infection. As CMV uses different viral glycoprotein complexes to enter different cell types, the first cells to be infected in the oral cavity could determine the type of antibodies needed to disrupt oral transmission. Antibodies targeting the pentameric complex (PC) should block CMV entry into epithelial cells but not into fibroblasts or Langerhans cells (which do not require the PC for entry), while antibodies targeting glycoprotein complexes gB or gH/gL would be needed to block entry into fibroblasts, Langerhans cells, or other cell types. To assess the potential for antibodies to disrupt oral acquisition, CMV from culture-positive urine samples (uCMV) was used to study cell tropisms and sensitivity to antibody neutralization. uCMV entered epithelial cells poorly compared with the entry into fibroblasts. CMV-hyperimmune globulin or monoclonal antibodies targeting gB, gH/gL, or the PC were incapable of blocking the entry of uCMV into either fibroblasts or epithelial cells. Both phenotypes were lost after one passage in cultured fibroblasts, suggestive of a nongenetic mechanism. These results suggest that uCMV virions have a reversible block to epithelial cell entry. Antibodies may be ineffective in preventing maternal oral CMV acquisition but may limit viral spread in blood or tissues, thereby reducing or preventing fetal infection and disease.
Collapse
|
32
|
The pentameric complex drives immunologically covert cell-cell transmission of wild-type human cytomegalovirus. Proc Natl Acad Sci U S A 2017; 114:6104-6109. [PMID: 28533400 DOI: 10.1073/pnas.1704809114] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) strains that have been passaged in vitro rapidly acquire mutations that impact viral growth. These laboratory-adapted strains of HCMV generally exhibit restricted tropism, produce high levels of cell-free virus, and develop susceptibility to natural killer cells. To permit experimentation with a virus that retained a clinically relevant phenotype, we reconstructed a wild-type (WT) HCMV genome using bacterial artificial chromosome technology. Like clinical virus, this genome proved to be unstable in cell culture; however, propagation of intact virus was achieved by placing the RL13 and UL128 genes under conditional expression. In this study, we show that WT-HCMV produces extremely low titers of cell-free virus but can efficiently infect fibroblasts, epithelial, monocyte-derived dendritic, and Langerhans cells via direct cell-cell transmission. This process of cell-cell transfer required the UL128 locus, but not the RL13 gene, and was significantly less vulnerable to the disruptive effects of IFN, cellular restriction factors, and neutralizing antibodies compared with cell-free entry. Resistance to neutralizing antibodies was dependent on high-level expression of the pentameric gH/gL/gpUL128-131A complex, a feature of WT but not passaged strains of HCMV.
Collapse
|
33
|
Pereira L, Tabata T, Petitt M, Fang-Hoover J. Congenital cytomegalovirus infection undermines early development and functions of the human placenta. Placenta 2017; 59 Suppl 1:S8-S16. [PMID: 28477968 DOI: 10.1016/j.placenta.2017.04.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
Congenital human cytomegalovirus (HCMV) infection is a major viral cause of birth defects, including microcephaly, neurological deficits, loss of hearing and vision, and intrauterine growth restriction. Despite its public health significance, there is no approved treatment for congenital infection during pregnancy; existing antivirals have unacceptable toxicities. The mechanisms of HCMV-induced placental injury, reduced capacity for compensatory development and transmission to the fetus are poorly understood, limiting the development of alternative strategies for clinical management of the disease. Recently, self-renewing, multipotent trophoblast progenitor cells (TBPCs) were reported to reside in the chorion of the human placenta and differentiate into the mature trophoblast subtypes - transport syncytiotrophoblasts and invasive cytotrophoblasts - forming chorionic villi, the functional units of the placenta. HCMV infects TBPCs, reducing the population of progenitor cells and their functional capacity to self-renew, migrate and differentiate. Human TBPCs and chorionic villus explants from first trimester represent relevant models for evaluating efficacies of new antiviral agents in protecting and restoring growth of the developing placenta in response to adverse conditions. Correlating pathology from complications of congenital HCMV infection with impaired development in the tissue environment of anchoring villus explants and defects in TBPC differentiation may enable identification of molecular pathways that could serve as targets for intervention. Here we summarize studies that could open up novel avenues of research on potential therapeutics to sustain placental development, promote differentiation and improve function and pregnancy outcomes.
Collapse
Affiliation(s)
- Lenore Pereira
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, United States.
| | - Takako Tabata
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, United States
| | - Matthew Petitt
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, United States
| | - June Fang-Hoover
- Department of Cell and Tissue Biology, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, United States
| |
Collapse
|
34
|
Falk JJ, Winkelmann M, Schrezenmeier H, Stöhr D, Sinzger C, Lotfi R. A two-step screening approach for the identification of blood donors with highly and broadly neutralizing capacities against human cytomegalovirus. Transfusion 2016; 57:412-422. [PMID: 27861998 DOI: 10.1111/trf.13906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hyperimmunoglobulins are frequently applied for prophylaxis and treatment of human cytomegalovirus (HCMV) infections but were only marginally effective in meta-analyses of clinical studies. This might be partially due to selection of donors rather for total anti-HCMV titers than for neutralizing capacities. To improve efficacy against HCMV infection, we aimed at developing a high-throughput screening method for identification of blood donors with highly and broadly neutralizing capacities. STUDY DESIGN AND METHODS Using a Gaussia luciferase-expressing reporter virus, 1000 HCMV immunoglobulin (Ig)G-positive plasma samples with known anti-HCMV immunoglobulin titers were analyzed regarding their neutralization titers against fibroblast and endothelial cell infection. Based on these results, a high-throughput screening was designed. Highly neutralizing plasma samples were further tested 1) by an enzyme-linked immunosorbent assay-based neutralization assay regarding efficiency against different HCMV strains and 2) for their efficiency compared to commercially available hyperimmunoglobulins. RESULTS Total anti-HCMV immunoglobulin titers did not correlate with neutralization. Mean neutralization capacities were 15-fold higher in endothelial cells compared to fibroblasts. All plasma samples neutralizing fibroblast infection were at least equally effective against infection of endothelial cells, providing the possibility to simplify our screening method by testing only fibroblasts as target cells with a plasma dilution of 1 in 400. Of the nine tested top HCMV neutralizers, four were broadly effective against different HCMV strains. All nine were significantly superior to hyperimmunoglobulins. CONCLUSION Donors with highly and broadly neutralizing capacities can be identified by a two-step high-throughput screening approach. This may provide a basis for improved antibody-based treatment or prophylaxis of HCMV infections.
Collapse
Affiliation(s)
| | - Martina Winkelmann
- University Hospital Ulm.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm.,University Hospital Ulm.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Germany.,German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen, Germany
| | - Dagmar Stöhr
- Institute for Virology, University Hospital Ulm, Ulm
| | | | - Ramin Lotfi
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm.,University Hospital Ulm.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Ulm, Germany.,German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen, Germany
| |
Collapse
|
35
|
Prospects of a vaccine for the prevention of congenital cytomegalovirus disease. Med Microbiol Immunol 2016; 205:537-547. [PMID: 27519596 DOI: 10.1007/s00430-016-0472-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/03/2016] [Indexed: 02/07/2023]
Abstract
Congenital human cytomegalovirus (HCMV) infection is one leading cause of childhood disabilities. Prevention of congenital HCMV disease by vaccination has consequently been identified as a priority public healthcare goal. Several vaccine candidates have been introduced in the past that aimed at the prevention of primary HCMV infection in pregnancy. None of these has provided complete protection, and no licensed vaccine is thus far available. An additional level of complexity has been reached by recent studies indicating that the burden of HCMV transmission and disease following non-primary infections in pregnancy may be higher than previously anticipated. Substantial progress in our understanding of the immunobiology of HCMV infection in pregnancy has fostered studies to test revised or novel vaccine strategies. Preventing HCMV transmission has been identified a surrogate endpoint, rendering the conduction of vaccine studies feasible with reasonable effort. Identification of the glycoprotein complex gH/gL/UL128-131 as a mediator of HCMV host cell tropism and evaluation of that complex as a major target of the neutralizing antibody response made manufacturers consider vaccine candidates that include these proteins. Detailed structural analyses of the neutralizing determinants on HCMV glycoprotein B (gB) have revived interest in using this protein in its pre-fusion conformation for vaccine purposes. Studies in pregnant women and in animal models have provided evidence that addressing the T lymphocyte response by vaccination may be crucial to prevent HCMV transmission to the offspring. CD4 T lymphocytes may be of particular importance in this respect. A simultaneous targeting of both the humoral and cellular immune response against HCMV by vaccination thus appears warranted in order to prevent congenital HCMV infection. There is, however, still need for further research to be able to define an immunological correlate of protection against HCMV transmission during pregnancy. This brief review will highlight recent developments in our understanding of the natural history and immunobiology of HCMV infection in pregnancy and their possible impact on the strategies for the development of an HCMV vaccine.
Collapse
|
36
|
Finnefrock AC, Freed DC, Tang A, Li F, He X, Wu C, Nahas D, Wang D, Fu TM. Preclinical evaluations of peptide-conjugate vaccines targeting the antigenic domain-2 of glycoprotein B of human cytomegalovirus. Hum Vaccin Immunother 2016; 12:2106-2112. [PMID: 26986197 DOI: 10.1080/21645515.2016.1164376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The Antigenic Domain 2 (AD-2) is a short region near the N-terminus of glycoprotein B of human cytomegalovirus (HCMV). AD-2 has been shown to contain linear epitopes that are targets for neutralizing monoclonal antibodies from human subjects with natural HCMV infection. However, AD-2 appears to be masked by the adjacent immunodominant AD-1 region. We assessed a serum panel from HCMV-seropositive individuals and found a wide range of antibody titers to AD-2; these did not correlate to serum neutralization. To expose potential epitopes in AD-2, we constructed a series of AD-2 peptide-conjugate vaccines. Mice were immunized 3 times and produced high and sustained antibody titers to AD-2 peptides, but neutralization was weak even after a single boost with whole HCMV virions. Rabbits were likewise immunized with AD-2 peptide vaccines, and produced a robust antibody response, but neutralization was inferior to a recombinant gB vaccine with an oil-in-water adjuvant. These results highlight the challenges of developing a peptide-based vaccine specific to the HCMV gB AD-2 region.
Collapse
Affiliation(s)
- Adam C Finnefrock
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Daniel C Freed
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Aimin Tang
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Fengsheng Li
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Xi He
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Chengwei Wu
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Debbie Nahas
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Dai Wang
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| | - Tong-Ming Fu
- a Merck Research Laboratories, Merck and Companies, Incorporated , Kenilworth , NJ , USA
| |
Collapse
|
37
|
Dauby N, Sartori D, Kummert C, Lecomte S, Haelterman E, Delforge ML, Donner C, Mach M, Marchant A. Limited Effector Memory B-Cell Response to Envelope Glycoprotein B During Primary Human Cytomegalovirus Infection. J Infect Dis 2015; 213:1642-50. [PMID: 26715677 DOI: 10.1093/infdis/jiv769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/21/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Following primary human cytomegalovirus (HCMV) infection, the production of antibodies against envelope glycoprotein B (gB) is delayed, compared with production of antibodies against tegument proteins, and this likely reduces the control of HCMV dissemination. METHODS The frequency and the phenotype of gB-specific and tegument protein-specific B cells were studied in a cohort of pregnant women with primary HCMV infection. Healthy adults who had chronic HCMV infection or were recently immunized with tetanus toxoid (TT) were included as controls. RESULTS Primary HCMV infection was associated with high and similar frequencies of gB-specific and tegument protein-specific B cells following primary HCMV infection. During primary infection, tegument protein-specific B cells expressed an activated (CD21(low)) memory B-cell (MBC) phenotype. Activated MBCs were also induced by TT booster immunization, indicating that the expansion of this subset is part of the physiological B-cell response to protein antigens. In contrast, gB-specific B cells had a predominant classical (CD21(+)) MBC phenotype during both primary and chronic infections. CONCLUSIONS The delayed production of gB-specific immunoglobulin G (IgG) during primary HCMV infection is associated with a limited induction of MBCs with effector potential. This novel mechanism by which HCMV may interfere with the production of neutralizing antibodies could represent a target for therapeutic immunization.
Collapse
Affiliation(s)
- Nicolas Dauby
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB)
| | - Delphine Sartori
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB)
| | | | - Sandra Lecomte
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB)
| | | | | | - Catherine Donner
- Department of Obstetrics and Gynecology, Erasme Hospital, ULB, Brussels, Belgium
| | - Michael Mach
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB) ImmuneHealth, Gosselies
| |
Collapse
|
38
|
Ohlin M, Söderberg-Nauclér C. Human antibody technology and the development of antibodies against cytomegalovirus. Mol Immunol 2015; 67:153-70. [DOI: 10.1016/j.molimm.2015.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
|
39
|
Vaccine-Derived Neutralizing Antibodies to the Human Cytomegalovirus gH/gL Pentamer Potently Block Primary Cytotrophoblast Infection. J Virol 2015; 89:11884-98. [PMID: 26378171 DOI: 10.1128/jvi.01701-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/08/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) elicits neutralizing antibodies (NAb) of various potencies and cell type specificities to prevent HCMV entry into fibroblasts (FB) and epithelial/endothelial cells (EpC/EnC). NAb targeting the major essential envelope glycoprotein complexes gB and gH/gL inhibit both FB and EpC/EnC entry. In contrast to FB infection, HCMV entry into EpC/EnC is additionally blocked by extremely potent NAb to conformational epitopes of the gH/gL/UL128/130/131A pentamer complex (PC). We recently developed a vaccine concept based on coexpression of all five PC subunits by a single modified vaccinia virus Ankara (MVA) vector, termed MVA-PC. Vaccination of mice and rhesus macaques with MVA-PC resulted in a high titer and sustained NAb that blocked EpC/EnC infection and lower-titer NAb that inhibited FB entry. However, antibody function responsible for the neutralizing activity induced by the MVA-PC vaccine is uncharacterized. Here, we demonstrate that MVA-PC elicits NAb with cell type-specific neutralization potency and antigen recognition pattern similar to human NAb targeting conformational and linear epitopes of the UL128/130/131A subunits or gH. In addition, we show that the vaccine-derived PC-specific NAb are significantly more potent than the anti-gH NAb to prevent HCMV spread in EpC and infection of human placental cytotrophoblasts, cell types thought to be of critical importance for HCMV transmission to the fetus. These findings further validate MVA-PC as a clinical vaccine candidate to elicit NAb that resembles those induced during HCMV infection and provide valuable insights into the potency of PC-specific NAb to interfere with HCMV cell-associated spread and infection of key placental cells. IMPORTANCE As a consequence of the leading role of human cytomegalovirus (HCMV) in causing permanent birth defects, developing a vaccine against HCMV has been assigned a major public health priority. We have recently introduced a vaccine strategy based on a widely used, safe, and well-characterized poxvirus vector platform to elicit potent and durable neutralizing antibody (NAb) responses targeting the HCMV envelope pentamer complex (PC), which has been suggested as a critical component for a vaccine to prevent congenital HCMV infection. With this work, we confirm that the NAb elicited by the vaccine vector have properties that are similar to those of human NAb isolated from individuals chronically infected with HCMV. In addition, we show that PC-specific NAb have potent ability to prevent infection of key placental cells that HCMV utilizes to cross the fetal-maternal interface, suggesting that NAb targeting the PC may be essential to prevent HCMV vertical transmission.
Collapse
|
40
|
Tabata T, Petitt M, Zydek M, Fang-Hoover J, Larocque N, Tsuge M, Gormley M, Kauvar LM, Pereira L. Human cytomegalovirus infection interferes with the maintenance and differentiation of trophoblast progenitor cells of the human placenta. J Virol 2015; 89:5134-47. [PMID: 25741001 PMCID: PMC4403461 DOI: 10.1128/jvi.03674-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/19/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is a major cause of birth defects that include severe neurological deficits, hearing and vision loss, and intrauterine growth restriction. Viral infection of the placenta leads to development of avascular villi, edema, and hypoxia associated with symptomatic congenital infection. Studies of primary cytotrophoblasts (CTBs) revealed that HCMV infection impedes terminal stages of differentiation and invasion by various molecular mechanisms. We recently discovered that HCMV arrests earlier stages involving development of human trophoblast progenitor cells (TBPCs), which give rise to the mature cell types of chorionic villi-syncytiotrophoblasts on the surfaces of floating villi and invasive CTBs that remodel the uterine vasculature. Here, we show that viral proteins are present in TBPCs of the chorion in cases of symptomatic congenital infection. In vitro studies revealed that HCMV replicates in continuously self-renewing TBPC lines derived from the chorion and alters expression and subcellular localization of proteins required for cell cycle progression, pluripotency, and early differentiation. In addition, treatment with a human monoclonal antibody to HCMV glycoprotein B rescues differentiation capacity, and thus, TBPCs have potential utility for evaluation of the efficacies of novel antiviral antibodies in protecting and restoring placental development. Our results suggest that HCMV replicates in TBPCs in the chorion in vivo, interfering with the earliest steps in the growth of new villi, contributing to virus transmission and impairing compensatory development. In cases of congenital infection, reduced responsiveness of the placenta to hypoxia limits the transport of substances from maternal blood and contributes to fetal growth restriction. IMPORTANCE Human cytomegalovirus (HCMV) is a leading cause of birth defects in the United States. Congenital infection can result in permanent neurological defects, mental retardation, hearing loss, visual impairment, and pregnancy complications, including intrauterine growth restriction, preterm delivery, and stillbirth. Currently, there is neither a vaccine nor any approved treatment for congenital HCMV infection during gestation. The molecular mechanisms underlying structural deficiencies in the placenta that undermine fetal development are poorly understood. Here we report that HCMV replicates in trophoblast progenitor cells (TBPCs)-precursors of the mature placental cells, syncytiotrophoblasts and cytotrophoblasts, in chorionic villi-in clinical cases of congenital infection. Virus replication in TBPCs in vitro dysregulates key proteins required for self-renewal and differentiation and inhibits normal division and development into mature placental cells. Our findings provide insights into the underlying molecular mechanisms by which HCMV replication interferes with placental maturation and transport functions.
Collapse
Affiliation(s)
- Takako Tabata
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Matthew Petitt
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Martin Zydek
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - June Fang-Hoover
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas Larocque
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Mitsuru Tsuge
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Matthew Gormley
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | | | - Lenore Pereira
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|