1
|
Jeon G, Kim S, Kim YJ, Kim S, Han K, Oh K, Lee HJ, Choi J. Identification of fluoroquinolone-resistant Mycobacterium tuberculosis through high-level data fusion of Raman and laser-induced breakdown spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6349-6355. [PMID: 39221494 DOI: 10.1039/d4ay01331j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Accurate and rapid diagnosis of drug susceptibility of Mycobacterium tuberculosis is crucial for the successful treatment of tuberculosis, a persistent global public health threat. To shorten diagnosis times and enhance accuracy, this study introduces a fusion model combining laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy. This model offers a rapid and accurate method for diagnosing drug-resistance. LIBS and Raman spectroscopy provide complementary information, enabling accurate identification of drug resistance in tuberculosis. Although individual use of LIBS or Raman spectroscopy achieved approximately 90% accuracy in identifying drug resistance, the fusion model significantly improved identification accuracy to 98.3%. Given the fast measurement capabilities of both techniques, this fusion approach is expected to markedly decrease the time required for diagnosis.
Collapse
Affiliation(s)
- Gookseon Jeon
- Industrial Transformation Technology Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology, 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-Si, Chungcheongnam-do 31056, Republic of Korea.
- Photonic Device Physics Laboratory, Institute of Physics and Applied Physics, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Soogeun Kim
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Young Jin Kim
- Department of Laboratory Medicine, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Seungmo Kim
- Laboratory Medicine Center, Korean National Tuberculosis Association, The Korean Institute of Tuberculosis, Cheongju, Republic of Korea
| | - Kyungmin Han
- Clinical Laboratory Medicine Center, Korean National Tuberculosis Association, Seoul, Republic of Korea.
| | - Kyunghwan Oh
- Photonic Device Physics Laboratory, Institute of Physics and Applied Physics, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hee Joo Lee
- Clinical Laboratory Medicine Center, Korean National Tuberculosis Association, Seoul, Republic of Korea.
| | - Janghee Choi
- Industrial Transformation Technology Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology, 89, Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-Si, Chungcheongnam-do 31056, Republic of Korea.
| |
Collapse
|
2
|
Collins J, Basarab GS, Chibale K, Osheroff N. Interactions between Zoliflodacin and Neisseria gonorrhoeae Gyrase and Topoisomerase IV: Enzymological Basis for Cellular Targeting. ACS Infect Dis 2024; 10:3071-3082. [PMID: 39082980 PMCID: PMC11320581 DOI: 10.1021/acsinfecdis.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Gyrase and topoisomerase IV are the cellular targets for fluoroquinolones, a critically important class of antibacterial agents used to treat a broad spectrum of human infections. Unfortunately, the clinical efficacy of the fluoroquinolones has been curtailed by the emergence of target-mediated resistance. This is especially true for Neisseria gonorrhoeae, the causative pathogen of the sexually transmitted infection gonorrhea. Spiropyrimidinetriones (SPTs), a new class of antibacterials, were developed to combat the growing antibacterial resistance crisis. Zoliflodacin is the most clinically advanced SPT and displays efficacy against uncomplicated urogenital gonorrhea in human trials. Like fluoroquinolones, the primary target of zoliflodacin in N. gonorrhoeae is gyrase, and topoisomerase IV is a secondary target. Because unbalanced gyrase/topoisomerase IV targeting has facilitated the evolution of fluoroquinolone-resistant bacteria, it is important to understand the underlying basis for the differential targeting of zoliflodacin in N. gonorrhoeae. Therefore, we assessed the effects of this SPT on the catalytic and DNA cleavage activities of N. gonorrhoeae gyrase and topoisomerase IV. In all reactions examined, zoliflodacin displayed higher potency against gyrase than topoisomerase IV. Moreover, zoliflodacin generated more DNA cleavage and formed more stable enzyme-cleaved DNA-SPT complexes with gyrase. The SPT also maintained higher activity against fluoroquinolone-resistant gyrase than topoisomerase IV. Finally, when compared to zoliflodacin, the novel SPT H3D-005722 induced more balanced double-stranded DNA cleavage with gyrase and topoisomerase IV from N. gonorrhoeae, Escherichia coli, and Bacillus anthracis. This finding suggests that further development of the SPT class could yield compounds with a more balanced targeting against clinically important bacterial infections.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Gregory S. Basarab
- Holistic
Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Holistic
Drug Discovery and Development (H3D) Centre, and South African Medical
Research Council Drug Discovery and Development Research Unit, Department
of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
3
|
Kherroubi L, Bacon J, Rahman KM. Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation. JAC Antimicrob Resist 2024; 6:dlae127. [PMID: 39144447 PMCID: PMC11323783 DOI: 10.1093/jacamr/dlae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Since the introduction of quinolone and fluoroquinolone antibiotics to treat bacterial infections in the 1960s, there has been a pronounced increase in the number of bacterial species that have developed resistance to fluoroquinolone treatment. In 2017, the World Health Organization established a priority list of the most critical Gram-negative resistant pathogens. These included Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. In the last three decades, investigations into the mechanisms of fluoroquinolone resistance have revealed that mutations in the target enzymes of fluoroquinolones, DNA gyrase or topoisomerase IV, are the most prevalent mechanism conferring high levels of resistance. Alterations to porins and efflux pumps that facilitate fluoroquinolone permeation and extrusion across the bacterial cell membrane also contribute to the development of resistance. However, there is a growing observation of novel mutants with newer generations of fluoroquinolones, highlighting the need for novel treatments. Currently, steady progress has been made in the development of novel antimicrobial agents that target DNA gyrase or topoisomerase IV through different avenues than current fluoroquinolones to prevent target-mediated resistance. Therefore, an updated review of the current understanding of fluoroquinolone resistance within the literature is imperative to aid in future investigations.
Collapse
Affiliation(s)
- Linda Kherroubi
- School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Joanna Bacon
- Discovery Group, Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | | |
Collapse
|
4
|
Collins J, Oviatt AA, Chan PF, Osheroff N. Target-Mediated Fluoroquinolone Resistance in Neisseria gonorrhoeae: Actions of Ciprofloxacin against Gyrase and Topoisomerase IV. ACS Infect Dis 2024; 10:1351-1360. [PMID: 38606464 PMCID: PMC11015056 DOI: 10.1021/acsinfecdis.4c00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 04/13/2024]
Abstract
Fluoroquinolones make up a critically important class of antibacterials administered worldwide to treat human infections. However, their clinical utility has been curtailed by target-mediated resistance, which is caused by mutations in the fluoroquinolone targets, gyrase and topoisomerase IV. An important pathogen that has been affected by this resistance is Neisseria gonorrhoeae, the causative agent of gonorrhea. Over 82 million new cases of this sexually transmitted infection were reported globally in 2020. Despite the impact of fluoroquinolone resistance on gonorrhea treatment, little is known about the interactions of this drug class with its targets in this bacterium. Therefore, we investigated the effects of the fluoroquinolone ciprofloxacin on the catalytic and DNA cleavage activities of wild-type gyrase and topoisomerase IV and the corresponding enzymes that harbor mutations associated with cellular and clinical resistance to fluoroquinolones. Results indicate that ciprofloxacin interacts with both gyrase (its primary target) and topoisomerase IV (its secondary target) through a water-metal ion bridge that has been described in other species. Moreover, mutations in amino acid residues that anchor this bridge diminish the susceptibility of the enzymes for the drug, leading to fluoroquinolone resistance. Results further suggest that ciprofloxacin primarily induces its cytotoxic effects by enhancing gyrase-mediated DNA cleavage as opposed to inhibiting the DNA supercoiling activity of the enzyme. In conclusion, this work links the effects of ciprofloxacin on wild-type and resistant gyrase to results reported for cellular and clinical studies and provides a mechanistic explanation for the targeting and resistance of fluoroquinolones in N. gonorrhoeae.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Alexandria A. Oviatt
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Pan F. Chan
- Infectious
Diseases Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
Collins J, Osheroff N. Gyrase and Topoisomerase IV: Recycling Old Targets for New Antibacterials to Combat Fluoroquinolone Resistance. ACS Infect Dis 2024; 10:1097-1115. [PMID: 38564341 PMCID: PMC11019561 DOI: 10.1021/acsinfecdis.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Beyond their requisite functions in many critical DNA processes, the bacterial type II topoisomerases, gyrase and topoisomerase IV, are the targets of fluoroquinolone antibacterials. These drugs act by stabilizing gyrase/topoisomerase IV-generated DNA strand breaks and by robbing the cell of the catalytic activities of these essential enzymes. Since their clinical approval in the mid-1980s, fluoroquinolones have been used to treat a broad spectrum of infectious diseases and are listed among the five "highest priority" critically important antimicrobial classes by the World Health Organization. Unfortunately, the widespread use of fluoroquinolones has been accompanied by a rise in target-mediated resistance caused by specific mutations in gyrase and topoisomerase IV, which has curtailed the medical efficacy of this drug class. As a result, efforts are underway to identify novel antibacterials that target the bacterial type II topoisomerases. Several new classes of gyrase/topoisomerase IV-targeted antibacterials have emerged, including novel bacterial topoisomerase inhibitors, Mycobacterium tuberculosis gyrase inhibitors, triazaacenaphthylenes, spiropyrimidinetriones, and thiophenes. Phase III clinical trials that utilized two members of these classes, gepotidacin (triazaacenaphthylene) and zoliflodacin (spiropyrimidinetrione), have been completed with positive outcomes, underscoring the potential of these compounds to become the first new classes of antibacterials introduced into the clinic in decades. Because gyrase and topoisomerase IV are validated targets for established and emerging antibacterials, this review will describe the catalytic mechanism and cellular activities of the bacterial type II topoisomerases, their interactions with fluoroquinolones, the mechanism of target-mediated fluoroquinolone resistance, and the actions of novel antibacterials against wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV.
Collapse
Affiliation(s)
- Jessica
A. Collins
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Department
of Medicine (Hematology/Oncology), Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
6
|
Zhai Y, Pribis JP, Dooling SW, Garcia-Villada L, Minnick P, Xia J, Liu J, Mei Q, Fitzgerald DM, Herman C, Hastings P, Costa-Mattioli M, Rosenberg SM. Drugging evolution of antibiotic resistance at a regulatory network hub. SCIENCE ADVANCES 2023; 9:eadg0188. [PMID: 37352342 PMCID: PMC10289659 DOI: 10.1126/sciadv.adg0188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
Evolution of antibiotic resistance is a world health crisis, fueled by new mutations. Drugs to slow mutagenesis could, as cotherapies, prolong the shelf-life of antibiotics, yet evolution-slowing drugs and drug targets have been underexplored and ineffective. Here, we used a network-based strategy to identify drugs that block hubs of fluoroquinolone antibiotic-induced mutagenesis. We identify a U.S. Food and Drug Administration- and European Medicines Agency-approved drug, dequalinium chloride (DEQ), that inhibits activation of the Escherichia coli general stress response, which promotes ciprofloxacin-induced (stress-induced) mutagenic DNA break repair. We uncover the step in the pathway inhibited: activation of the upstream "stringent" starvation stress response, and find that DEQ slows evolution without favoring proliferation of DEQ-resistant mutants. Furthermore, we demonstrate stress-induced mutagenesis during mouse infections and its inhibition by DEQ. Our work provides a proof-of-concept strategy for drugs to slow evolution in bacteria and generally.
Collapse
Affiliation(s)
- Yin Zhai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P. Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean W. Dooling
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Libertad Garcia-Villada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - P.J. Minnick
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingjing Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Mei
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Devon M. Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P.J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mauro Costa-Mattioli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M. Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Villa L, Boga JA, Otero L, Vazquez F, Milagro A, Salmerón P, Vall-Mayans M, Maciá MD, Bernal S, Piñeiro L. Phenotypic and Genotypic Antimicrobial Susceptibility Testing of Chlamydia trachomatis Isolates from Patients with Persistent or Clinical Treatment Failure in Spain. Antibiotics (Basel) 2023; 12:975. [PMID: 37370294 DOI: 10.3390/antibiotics12060975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this multicentre project (seven hospitals across the Spanish National Health Service) was to study the phenotypic and genotypic susceptibility of C. trachomatis to the main antimicrobials used (macrolides, doxycycline, and quinolones) in isolates from patients with clinical treatment failure in whom reinfection had been ruled out. During 2018-2019, 73 clinical isolates were selected. Sixty-nine clinical specimens were inoculated onto confluent McCoy cell monolayers for phenotypic susceptibility testing. The minimum inhibitory concentration for azithromycin and doxycycline was defined as the lowest concentration associated with an at least 95% reduction in inclusion-forming units after one passage in the presence of the antibiotic compared to the initial inoculum for each strain (control). Sequencing analysis was performed for the genotypic detection of resistance to macrolides, analysing mutations in the 23S rRNA gene (at positions 2057, 2058, 2059, and 2611), and quinolones, analysing a fragment of the gyrA gene, and searching for the G248T mutation (Ser83->Ile). For tetracyclines, in-house RT-PCR was used to test for the tet(C) gene. The phenotypic susceptibility testing was successful for 10 isolates. All the isolates had minimum inhibitory concentrations for azithromycin ≤ 0.125 mg/L and for doxycycline ≤ 0.064 mg/L and were considered sensitive. Of the 73 strains studied, no mutations were found at positions T2611C or G248T of the gyrA gene. We successfully sequenced 66 isolates. No macrolide resistance-associated mutations were found at positions 2057, 2058, 2059, or T2611C. None of the isolates carried the tet(C) gene. We found no evidence for genomic resistance in this large, clinically relevant dataset.
Collapse
Affiliation(s)
- Laura Villa
- Microbiology Department, Central University Hospital of Asturias and Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
| | - José Antonio Boga
- Microbiology Department, Central University Hospital of Asturias and Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Luis Otero
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Microbiology Department, Cabueñes University Hospital, and Health Research Institute of Asturias (ISPA), 33394 Gijón, Spain
| | - Fernando Vazquez
- Microbiology Department, Central University Hospital of Asturias and Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Department of Functional Biology, Microbiology Area, Faculty of Medicine, University of Oviedo, 33003 Oviedo, Spain
| | - Ana Milagro
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Microbiology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Paula Salmerón
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Microbiology Department, Vall d'Hebrón University Hospital, 08035 Barcelona, Spain
| | - Martí Vall-Mayans
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Vall'Hebron-Drassanes STI Unit, Infectious Diseases, Vall d'Hebrón University Hospital, 08035 Barcelona, Spain
| | - María Dolores Maciá
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Microbiology Department, Son Espases University Hospital, 07120 Palma de Mallorca, Spain
| | - Samuel Bernal
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Infectious Diseases and Microbiology Unit, Valme University Hospital, 41014 Seville, Spain
| | - Luis Piñeiro
- Sexually Transmitted Infections Study Group of the Infectious Diseases and Clinical Microbiology Spanish Society (GEITS-SEIMC), 28003 Madrid, Spain
- Microbiology Department, Donostia University Hospital-Biodonostia Health Research Institute, 20014 San Sebastian, Spain
| |
Collapse
|
8
|
Zhai Y, Minnick PJ, Pribis JP, Garcia-Villada L, Hastings PJ, Herman C, Rosenberg SM. ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells. Mol Cell 2023; 83:1298-1310.e4. [PMID: 36965481 PMCID: PMC10317147 DOI: 10.1016/j.molcel.2023.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs.
Collapse
Affiliation(s)
- Yin Zhai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P J Minnick
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Libertad Garcia-Villada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Susan M Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Spencer AC, Panda SS. DNA Gyrase as a Target for Quinolones. Biomedicines 2023; 11:371. [PMID: 36830908 PMCID: PMC9953508 DOI: 10.3390/biomedicines11020371] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial DNA gyrase is a type II topoisomerase that can introduce negative supercoils to DNA substrates and is a clinically-relevant target for the development of new antibacterials. DNA gyrase is one of the primary targets of quinolones, broad-spectrum antibacterial agents and are used as a first-line drug for various types of infections. However, currently used quinolones are becoming less effective due to drug resistance. Common resistance comes in the form of mutation in enzyme targets, with this type being the most clinically relevant. Additional mechanisms, conducive to quinolone resistance, are arbitrated by chromosomal mutations and/or plasmid-gene uptake that can alter quinolone cellular concentration and interaction with the target, or affect drug metabolism. Significant synthetic strategies have been employed to modify the quinolone scaffold and/or develop novel quinolones to overcome the resistance problem. This review discusses the development of quinolone antibiotics targeting DNA gyrase to overcome bacterial resistance and reduce toxicity. Moreover, structural activity relationship (SAR) data included in this review could be useful for the development of future generations of quinolone antibiotics.
Collapse
Affiliation(s)
| | - Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
10
|
Lv Z, Chen Y, Zhou H, Chen Z, Yao Q, Ren J, Liu X, Liu S, Deng X, Pang Y, Chen W, Yang H, Xu P. Genomic characterization of two metagenome-assembled genomes of Tropheryma whipplei from China. Front Cell Infect Microbiol 2022; 12:947486. [PMID: 36189364 PMCID: PMC9523146 DOI: 10.3389/fcimb.2022.947486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Whipple’s disease is a rare chronic systemic disease that affects almost any organ system of the body caused by the intracellular bacterium Tropheryma whipplei, which is found ubiquitously in the environment. Sequencing of the T. whipplei genome has revealed that it has a reduced genome (0.93 Mbp), a characteristic shared with other intracellular bacteria. Until our research started, 19 T. whipplei strains had been sequenced from cultures originated in France, Canada, and Germany. The genome of T. whipplei bacterium has not been studied in Asia yet. Here, two metagenome-assembled genomes (MAGs) of T. whipplei from China were reconstructed through metagenomic next-generation sequencing (mNGS) and genome binning. We also provided genomic insights into the geographical role and genomic features by analyzing the whole genome. The whole-genome phylogenetic tree was constructed based on single-nucleotide polymorphism (SNP) distance calculations and then grouped by distance similarity. The phylogenetic tree shows inconsistencies with geographic origins, thus suggesting that the variations in geographical origins cannot explain the phylogenetic relationships among the 21 T. whipplei strains. The two Chinese strains were closely related to each other, and also found to be related to strains from Germany (T. whipplei TW08/27) and France (T. whipplei Bcu26 and T. whipplei Neuro1). Furthermore, the Average Nucleotide Identity (ANI) matrix also showed no association between geographic origins and genomic similarities. The pan-genome analysis revealed that T. whipplei has a closed pan-genome composed of big core-genomes and small accessory genomes, like other intracellular bacteria. By examining the genotypes of the sequenced strains, all 21 T. whipplei strains were found to be resistant to fluoroquinolones, due to the genetic mutations in genes gyrA, gyrB, parC, and parE. The 21 T. Whipplei strains shared the same virulence factors, except for the alpC gene, which existed in 7 out of the 21 T. whipplei strains. When comparing 21 entire T. whipplei pan-genomes from various nations, it was discovered that the bacterium also possessed a closed genome, which was a trait shared by intracellular pathogens.
Collapse
Affiliation(s)
- Zhongdong Lv
- Department of Respiration and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yong Chen
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
- BGI PathoGenesis Pharmaceutical Technology Co., Ltd, BGI-Shenzhen, Shenzhen, China
| | - Houqing Zhou
- Department of Laboratory Medicine, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Zhonglin Chen
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
- BGI PathoGenesis Pharmaceutical Technology Co., Ltd, BGI-Shenzhen, Shenzhen, China
| | - Qianru Yao
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
- BGI PathoGenesis Pharmaceutical Technology Co., Ltd, BGI-Shenzhen, Shenzhen, China
| | - Jiali Ren
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
- BGI PathoGenesis Pharmaceutical Technology Co., Ltd, BGI-Shenzhen, Shenzhen, China
| | - Xianglu Liu
- Department of Respiration and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuang Liu
- Department of Respiration and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaomei Deng
- Comprehensive Ward, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yingchen Pang
- Department of Respiration and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weijun Chen
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
- BGI PathoGenesis Pharmaceutical Technology Co., Ltd, BGI-Shenzhen, Shenzhen, China
| | - Huiling Yang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
- *Correspondence: Huiling Yang, ; Ping Xu,
| | - Ping Xu
- Department of Respiration and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Huiling Yang, ; Ping Xu,
| |
Collapse
|
11
|
Rakici E, Altunisik A, Sahin K, Ozgumus OB. Determination and molecular analysis of antibiotic resistance in Gram-negative enteric bacteria isolated from Pelophylax sp. in the Eastern Black Sea Region. Acta Vet Hung 2021; 69:223-233. [PMID: 34570716 DOI: 10.1556/004.2021.00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the prevalence and types of antimicrobial resistance among Gram-negative enteric bacteria isolated from Pelophylax sp. Fifty-four frogs were collected from six provinces in the Eastern Black Sea Region of Turkey. In the cloacal swab cultures, bacteria from 160 different colonies were identified by biochemical tests, automated systems, and matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The antimicrobial susceptibility tests were performed by the disk diffusion method. The observed drug resistance rate was the highest to ampicillin and cefazolin, while the lowest against ciprofloxacin and tetracycline. In the molecular assays, bla TEM (8 Citrobacter spp.), bla SHV (2 Escherichia coli, 1 Hafnia alvei, and a Serratia liquefaciens), tetA genes (E. coli and Klebsiella spp.) and a class 1 integron without any gene cassette (E. coli) were detected. Among the strains, no plasmid-mediated quinolone resistance [qnrA, qnrB, qnrS, qepA and aac (6 ')-Ib-cr] was found. However, two of three quinolone-resistant Klebsiella strains showed the novel amino acid substitution in the gyrA gene resulting in Ser83Asp and Asp87Glu.The clonality between E. coli isolates was also examined by pulsed-field gel electrophoresis. We consider that multidrug-resistant Gram-negative enteric bacteria in the intestinal microbiota of a cosmopolitan frog species might be a reservoir for antibiotic resistance genes.
Collapse
Affiliation(s)
- Erva Rakici
- 1 Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Abdullah Altunisik
- 2 Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kazim Sahin
- 1 Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| | - Osman Birol Ozgumus
- 1 Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Turkey
| |
Collapse
|
12
|
Vázquez-Chacón CA, Rodríguez-Gaxiola FDJ, López-Carrera CF, Cruz-Rivera M, Martínez-Guarneros A, Parra-Unda R, Arámbula-Meraz E, Fonseca-Coronado S, Vaughan G, López-Durán PA. Identification of drug resistance mutations among Mycobacterium bovis lineages in the Americas. PLoS Negl Trop Dis 2021; 15:e0009145. [PMID: 33591982 PMCID: PMC7886168 DOI: 10.1371/journal.pntd.0009145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/14/2021] [Indexed: 01/25/2023] Open
Abstract
Identifying the Mycobacterium tuberculosis resistance mutation patterns is of the utmost importance to assure proper patient's management and devising of control programs aimed to limit spread of disease. Zoonotic Mycobacterium bovis infection still represents a threat to human health, particularly in dairy production regions. Routinary, molecular characterization of M. bovis is performed primarily by spoligotyping and mycobacterial interspersed repetitive units (MIRU) while next generation sequencing (NGS) approaches are often performed by reference laboratories. However, spoligotyping and MIRU methodologies lack the resolution required for the fine characterization of tuberculosis isolates, particularly in outbreak settings. In conjunction with sophisticated bioinformatic algorithms, whole genome sequencing (WGS) analysis is becoming the method of choice for advanced genetic characterization of tuberculosis isolates. WGS provides valuable information on drug resistance and compensatory mutations that other technologies cannot assess. Here, we performed an analysis of the most frequently identified mutations associated with tuberculosis drug resistance and their genetic relationship among 2,074 Mycobacterium bovis WGS recovered primarily from non-human hosts. Full-length gene sequences harboring drug resistant associated mutations and their phylogenetic relationships were analyzed. The results showed that M. bovis isolates harbor mutations conferring resistance to both first- and second-line antibiotics. Mutations conferring resistance for isoniazid, fluoroquinolones, streptomycin, and aminoglycosides were identified among animal strains. Our findings highlight the importance of molecular surveillance to monitor the emergence of mutations associated with multi and extensive drug resistance in livestock and other non-human mammals.
Collapse
Affiliation(s)
- Carlos Arturo Vázquez-Chacón
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
- Laboratorio de Micobacterias, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México, México
| | | | | | - Mayra Cruz-Rivera
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Martínez-Guarneros
- Laboratorio de Micobacterias, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México, México
| | - Ricardo Parra-Unda
- Unidad de Investigaciones en Salud Pública, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Eliakym Arámbula-Meraz
- Laboratorio de Genética y Biología Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, México
| | - Salvador Fonseca-Coronado
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, México
| | - Gilberto Vaughan
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Campus Norte, Estado de México, México
| | - Paúl Alexis López-Durán
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México, México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- Facultad de Ciencias de la Salud, Universidad Anáhuac, Campus Norte, Estado de México, México
- * E-mail:
| |
Collapse
|
13
|
Exploitation of Pare Topoisomerase IV as Drug Target for the Treatment of Multidrug-Resistant Bacteria: A Review. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02223-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Medina-Pascual MJ, Monzón S, Villalón P, Cuesta I, González-Romo F, Valdezate S. Saezia sanguinis gen. nov., sp. nov., a Betaproteobacteria member of order Burkholderiales, isolated from human blood. Int J Syst Evol Microbiol 2020; 70:2016-2025. [PMID: 32003711 DOI: 10.1099/ijsem.0.004010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The taxonomic position of an unknown bacterial strain designated CNM695-12, isolated from the blood of an immunocompromised subject, was investigated via phenotypic, chemotaxonomic, genotypic and genomic analyses. Bacterial cells were determined to be Gram-stain-negative bacilli, aerobic, non-motile and non-spore-forming. The strain showed catalase activity but no oxidase activity. Optimal growth occurred at 37 °C, pH 7 and with 0-1 % NaCl. C16 : 0, summed feature 8 (comprising C18 : 1ω7c /C18:1 ω6c), and C18 : 1ω9c were the most abundant fatty acids, and ubiquinone 8 was the major respiratory quinone. The polar lipids present included phosphatidylglycerol, phosphatidylethanolamine and other aminophospholipids. The 16S rRNA gene sequence showed approximately 93.5 % similarity to those of different species with validly published names within the order Burkholderiales (e.g. Leptothrix mobilis Feox-1T, Aquabacterium commune B8T , Aquabacterium citratiphilum B4T and Schlegelella thermodepolymerans K14T). Phylogenetic analyses based on 16S rRNA gene sequences and concatenated alignments including the sequences for 107 essential proteins, revealed the strain to form a novel lineage close to members of the family Comamonadaceae. The highest average nucleotide identity and average amino acid identity values were obtained with Schlegelella thermodepolymerans K14T (69.6 and 55.7 % respectively). The genome, with a size of 3.35 Mb, had a DNA G+C content of 52.4 mol% and encoded 3056 predicted genes, 3 rRNA, 1 transfer-messengerRNA and 51 tRNA. Strain CNM695-12 thus represents a novel species belonging to a novel genus within the order Burkholderiales, for which the name Saezia sanguinis gen. nov., sp. nov. is proposed. The type strain is CNM695-12T (=DSM 104959T=CECT 9208T).
Collapse
Affiliation(s)
- María J Medina-Pascual
- Laboratorio de Referencia e Investigación en Taxonomía. Centro Nacional de Microbiología. Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Sara Monzón
- Unidad de Bioinformática (BU-ISCIII). Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pilar Villalón
- Laboratorio de Referencia e Investigación en Taxonomía. Centro Nacional de Microbiología. Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Isabel Cuesta
- Unidad de Bioinformática (BU-ISCIII). Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Sylvia Valdezate
- Laboratorio de Referencia e Investigación en Taxonomía. Centro Nacional de Microbiología. Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
15
|
van der Putten BCL, Remondini D, Pasquini G, Janes VA, Matamoros S, Schultsz C. Quantifying the contribution of four resistance mechanisms to ciprofloxacin MIC inEscherichia coli: a systematic review. J Antimicrob Chemother 2018; 74:298-310. [DOI: 10.1093/jac/dky417] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/16/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Boas C L van der Putten
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| | - Daniel Remondini
- Department of Physics and Astronomy (DIFA), University of Bologna, Viale Berti Pichat 6/2, Bologna, Bologna, Italy
| | - Giovanni Pasquini
- Department of Physics and Astronomy (DIFA), University of Bologna, Viale Berti Pichat 6/2, Bologna, Bologna, Italy
| | - Victoria A Janes
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| | - Sébastien Matamoros
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| | - Constance Schultsz
- Amsterdam UMC, University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, Netherlands
| |
Collapse
|
16
|
Urushibara N, Suzaki K, Kawaguchiya M, Aung MS, Shinagawa M, Takahashi S, Kobayashi N. Contribution of Type II Topoisomerase Mutations to Fluoroquinolone Resistance inEnterococcus faeciumfrom Japanese Clinical Setting. Microb Drug Resist 2018; 24:1-7. [DOI: 10.1089/mdr.2016.0328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keisuke Suzaki
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masaaki Shinagawa
- Division of Laboratory Medicine, Sapporo Medical University Hospital, Sapporo, Japan
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
17
|
Ashley RE, Lindsey RH, McPherson SA, Turnbough CL, Kerns RJ, Osheroff N. Interactions between Quinolones and Bacillus anthracis Gyrase and the Basis of Drug Resistance. Biochemistry 2017; 56:4191-4200. [PMID: 28708938 PMCID: PMC5560241 DOI: 10.1021/acs.biochem.7b00203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Gyrase appears to
be the primary cellular target for quinolone
antibacterials in multiple pathogenic bacteria, including Bacillus anthracis, the causative agent of anthrax. Given
the significance of this type II topoisomerase as a drug target, it
is critical to understand how quinolones interact with gyrase and
how specific mutations lead to resistance. However, these important
issues have yet to be addressed for a canonical gyrase. Therefore,
we utilized a mechanistic approach to characterize interactions of
quinolones with wild-type B. anthracis gyrase and
enzymes containing the most common quinolone resistance mutations.
Results indicate that clinically relevant quinolones interact with
the enzyme through a water–metal ion bridge in which a noncatalytic
divalent metal ion is chelated by the C3/C4 keto acid of the drug.
In contrast to other bacterial type II topoisomerases that have been
examined, the bridge is anchored to gyrase primarily through a single
residue (Ser85). Substitution of groups at the quinolone C7 and C8
positions generated drugs that were less dependent on the water–metal
ion bridge and overcame resistance. Thus, by analyzing the interactions
of drugs with type II topoisomerases from individual bacteria, it
may be possible to identify specific quinolone derivatives that can
overcome target-mediated resistance in important pathogenic species.
Collapse
Affiliation(s)
| | | | - Sylvia A McPherson
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Charles L Turnbough
- Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | - Robert J Kerns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa College of Pharmacy , Iowa City, Iowa 52242, United States
| | - Neil Osheroff
- VA Tennessee Valley Healthcare System , Nashville, Tennessee 37212, United States
| |
Collapse
|
18
|
Love WJ, Zawack KA, Booth JG, Grӧhn YT, Lanzas C. Markov Networks of Collateral Resistance: National Antimicrobial Resistance Monitoring System Surveillance Results from Escherichia coli Isolates, 2004-2012. PLoS Comput Biol 2016; 12:e1005160. [PMID: 27851767 PMCID: PMC5112851 DOI: 10.1371/journal.pcbi.1005160] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/21/2016] [Indexed: 12/19/2022] Open
Abstract
Surveillance of antimicrobial resistance (AMR) is an important component of public health. Antimicrobial drug use generates selective pressure that may lead to resistance against to the administered drug, and may also select for collateral resistances to other drugs. Analysis of AMR surveillance data has focused on resistance to individual drugs but joint distributions of resistance in bacterial populations are infrequently analyzed and reported. New methods are needed to characterize and communicate joint resistance distributions. Markov networks are a class of graphical models that define connections, or edges, between pairs of variables with non-zero partial correlations and are used here to describe AMR resistance relationships. The graphical least absolute shrinkage and selection operator is used to estimate sparse Markov networks from AMR surveillance data. The method is demonstrated using a subset of Escherichia coli isolates collected by the National Antimicrobial Resistance Monitoring System between 2004 and 2012 which included AMR results for 16 drugs from 14418 isolates. Of the 119 possible unique edges, 33 unique edges were identified at least once during the study period and graphical density ranged from 16.2% to 24.8%. Two frequent dense subgraphs were noted, one containing the five β-lactam drugs and the other containing both sulfonamides, three aminoglycosides, and tetracycline. Density did not appear to change over time (p = 0.71). Unweighted modularity did not appear to change over time (p = 0.18), but a significant decreasing trend was noted in the modularity of the weighted networks (p < 0.005) indicating relationships between drugs of different classes tended to increase in strength and frequency over time compared to relationships between drugs of the same class. The current method provides a novel method to study the joint resistance distribution, but additional work is required to unite the underlying biological and genetic characteristics of the isolates with the current results derived from phenotypic data.
Collapse
Affiliation(s)
- William J. Love
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kelson A. Zawack
- Department of Biological Statistics & Computational Biology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
- Tri-Institutional Program in Computational Biology & Medicine, New York City, New York, United States of America
| | - James G. Booth
- Department of Biological Statistics & Computational Biology, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Yrjo T. Grӧhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Cristina Lanzas
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
19
|
Chambers HF. Treatment of Infection and Colonization Caused by Methicillin-Resistant Staphylococcus aureus. Infect Control Hosp Epidemiol 2016. [DOI: 10.2307/30147086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractThe mechanism of methicillin resistance confers resistance to all available B-lactam antibiotics; consequently, B-lactam antibiotics have no role in therapy of methicillin-resistant Staphylococcus aureus (MRSA) infections. Vancomycin remains the drug of choice. Teicoplanin and daptomycin are two investigational antibiotics related to vancomycin in structure and in spectrum of activity. In clinical trials employing relatively low doses, neither was as effective as vancomycin. Trials at higher doses are on-going. Quinolones, ciprofloxacin in particular, have been used successfully to treat infections caused by MRSA; however, the usefulness of quinolones may be limited by the tendency of resistance to emerge during therapy. Quinolones probably should be used only in combination with another active agent, such as rifampin, when treating serious infections caused by MRSA. Other agents may be active in vitro against MRSA, but clinical data showing their effectiveness are lacking. Rifampin combination regimens appear most effectively to eradicate colonization with MRSA.
Collapse
|
20
|
A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A 2016; 113:2502-7. [PMID: 26884157 DOI: 10.1073/pnas.1520040113] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Currently available tools for multiplex bacterial genome engineering are optimized for a few laboratory model strains, demand extensive prior modification of the host strain, and lead to the accumulation of numerous off-target modifications. Building on prior development of multiplex automated genome engineering (MAGE), our work addresses these problems in a single framework. Using a dominant-negative mutant protein of the methyl-directed mismatch repair (MMR) system, we achieved a transient suppression of DNA repair in Escherichia coli, which is necessary for efficient oligonucleotide integration. By integrating all necessary components into a broad-host vector, we developed a new workflow we term pORTMAGE. It allows efficient modification of multiple loci, without any observable off-target mutagenesis and prior modification of the host genome. Because of the conserved nature of the bacterial MMR system, pORTMAGE simultaneously allows genome editing and mutant library generation in other biotechnologically and clinically relevant bacterial species. Finally, we applied pORTMAGE to study a set of antibiotic resistance-conferring mutations in Salmonella enterica and E. coli. Despite over 100 million y of divergence between the two species, mutational effects remained generally conserved. In sum, a single transformation of a pORTMAGE plasmid allows bacterial species of interest to become an efficient host for genome engineering. These advances pave the way toward biotechnological and therapeutic applications. Finally, pORTMAGE allows systematic comparison of mutational effects and epistasis across a wide range of bacterial species.
Collapse
|
21
|
Mariani A, Bartoli A, Atwal M, Lee KC, Austin CA, Rodriguez R. Differential Targeting of Human Topoisomerase II Isoforms with Small Molecules. J Med Chem 2015; 58:4851-6. [PMID: 25945730 DOI: 10.1021/acs.jmedchem.5b00473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The TOP2 poison etoposide has been implicated in the generation of secondary malignancies during cancer treatment. Structural similarities between TOP2 isoforms challenge the rational design of isoform-specific poisons to further delineate these processes. Herein, we describe the synthesis and biological evaluation of a focused library of etoposide analogues, with the identification of two novel small molecules exhibiting TOP2B-dependent toxicity. Our findings pave the way toward studying isoform-specific cellular processes by means of small molecule intervention.
Collapse
Affiliation(s)
- Angelica Mariani
- †Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Alexandra Bartoli
- †Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Mandeep Atwal
- ‡Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ka C Lee
- ‡Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Caroline A Austin
- ‡Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Raphaël Rodriguez
- †Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.,§Organic Synthesis and Cell Biology Group, Institut Curie Research Center, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
22
|
In vitro activity of five quinolones and analysis of the quinolone resistance-determining regions of gyrA, gyrB, parC, and parE in Ureaplasma parvum and Ureaplasma urealyticum clinical isolates from perinatal patients in Japan. Antimicrob Agents Chemother 2015; 59:2358-64. [PMID: 25645833 DOI: 10.1128/aac.04262-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ureaplasma spp. cause several disorders, such as nongonococcal urethritis, miscarriage, and preterm delivery with lung infections in neonates, characterized by pathological chorioamnionitis in the placenta. Although reports on antibiotic resistance in Ureaplasma are on the rise, reports on quinolone-resistant Ureaplasma infections in Japan are limited. The purpose of this study was to determine susceptibilities to five quinolones of Ureaplasma urealyticum and Ureaplasma parvum isolated from perinatal samples in Japan and to characterize the quinolone resistance-determining regions in the gyrA, gyrB, parC, and parE genes. Out of 28 clinical Ureaplasma strains, we isolated 9 with high MICs of quinolones and found a single parC gene mutation, resulting in the change S83L. Among 158 samples, the ParC S83L mutation was found in 37 samples (23.4%), including 1 sample harboring a ParC S83L-GyrB P462S double mutant. Novel mutations of ureaplasmal ParC (S83W and S84P) were independently found in one of the samples. Homology modeling of the ParC S83W mutant suggested steric hindrance of the quinolone-binding pocket (QBP), and de novo prediction of peptide structures revealed that the ParC S84P may break/kink the formation of the α4 helix in the QBP. Further investigations are required to unravel the extent and mechanism of antibiotic resistance of Ureaplasma spp. in Japan.
Collapse
|
23
|
Bacillus anthracis GrlAV96A topoisomerase IV, a quinolone resistance mutation that does not affect the water-metal ion bridge. Antimicrob Agents Chemother 2014; 58:7182-7. [PMID: 25246407 DOI: 10.1128/aac.03734-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rise in quinolone resistance is threatening the clinical use of this important class of broad-spectrum antibacterials. Quinolones kill bacteria by increasing the level of DNA strand breaks generated by the type II topoisomerases gyrase and topoisomerase IV. Most commonly, resistance is caused by mutations in the serine and acidic amino acid residues that anchor a water-metal ion bridge that facilitates quinolone-enzyme interactions. Although other mutations in gyrase and topoisomerase IV have been reported in quinolone-resistant strains, little is known regarding their contributions to cellular quinolone resistance. To address this issue, we characterized the effects of the V96A mutation in the A subunit of Bacillus anthracis topoisomerase IV on quinolone activity. The results indicate that this mutation causes an ∼ 3-fold decrease in quinolone potency and reduces the stability of covalent topoisomerase IV-cleaved DNA complexes. However, based on metal ion usage, the V96A mutation does not disrupt the function of the water-metal ion bridge. A similar level of resistance to quinazolinediones (which do not use the bridge) was seen. V96A is the first topoisomerase IV mutation distal to the water-metal ion bridge demonstrated to decrease quinolone activity. It also represents the first A subunit mutation reported to cause resistance to quinazolinediones. This cross-resistance suggests that the V96A change has a global effect on the structure of the drug-binding pocket of topoisomerase IV.
Collapse
|
24
|
Aldred KJ, Breland EJ, Vlčková V, Strub MP, Neuman KC, Kerns RJ, Osheroff N. Role of the water-metal ion bridge in mediating interactions between quinolones and Escherichia coli topoisomerase IV. Biochemistry 2014; 53:5558-67. [PMID: 25115926 PMCID: PMC4151693 DOI: 10.1021/bi500682e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Although
quinolones have been in clinical use for decades, the
mechanism underlying drug activity and resistance has remained elusive.
However, recent studies indicate that clinically relevant quinolones
interact with Bacillus anthracis (Gram-positive)
topoisomerase IV through a critical water–metal ion bridge
and that the most common quinolone resistance mutations decrease drug
activity by disrupting this bridge. As a first step toward determining
whether the water–metal ion bridge is a general mechanism of
quinolone–topoisomerase interaction, we characterized drug
interactions with wild-type Escherichia coli (Gram-negative)
topoisomerase IV and a series of ParC enzymes with mutations (S80L,
S80I, S80F, and E84K) in the predicted bridge-anchoring residues.
Results strongly suggest that the water–metal ion bridge is
essential for quinolone activity against E. coli topoisomerase
IV. Although the bridge represents a common and critical mechanism
that underlies broad-spectrum quinolone function, it appears to play
different roles in B. anthracis and E. coli topoisomerase IV. The water–metal ion bridge is the most
important binding contact of clinically relevant quinolones with the
Gram-positive enzyme. However, it primarily acts to properly align
clinically relevant quinolones with E. coli topoisomerase
IV. Finally, even though ciprofloxacin is unable to increase levels
of DNA cleavage mediated by several of the Ser80 and Glu84 mutant E. coli enzymes, the drug still retains the ability to inhibit
the overall catalytic activity of these topoisomerase IV proteins.
Inhibition parallels drug binding, suggesting that the presence of
the drug in the active site is sufficient to diminish DNA relaxation
rates.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry and ‡Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Aldred KJ, Schwanz HA, Li G, McPherson SA, Turnbough CL, Kerns RJ, Osheroff N. Overcoming target-mediated quinolone resistance in topoisomerase IV by introducing metal-ion-independent drug-enzyme interactions. ACS Chem Biol 2013; 8:2660-8. [PMID: 24047414 DOI: 10.1021/cb400592n] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quinolones, which target gyrase and topoisomerase IV, are the most widely prescribed antibacterials worldwide. Unfortunately, their use is threatened by the increasing prevalence of target-mediated drug resistance. Greater than 90% of mutations that confer quinolone resistance act by disrupting enzyme-drug interactions coordinated by a critical water-metal ion bridge. Quinazolinediones are quinolone-like drugs but lack the skeletal features necessary to support the bridge interaction. These compounds are of clinical interest, however, because they retain activity against the most common quinolone resistance mutations. We utilized a chemical biology approach to determine how quinazolinediones overcome quinolone resistance in Bacillus anthracis topoisomerase IV. Quinazolinediones that retain activity against quinolone-resistant topoisomerase IV do so primarily by establishing novel interactions through the C7 substituent, rather than the drug skeleton. Because some quinolones are highly active against human topoisomerase IIα, we also determined how clinically relevant quinolones discriminate between the bacterial and human enzymes. Clinically relevant quinolones display poor activity against topoisomerase IIα because the human enzyme cannot support drug interactions mediated by the water-metal ion bridge. However, the inclusion of substituents that allow quinazolinediones to overcome topoisomerase IV-mediated quinolone resistance can cause cross-reactivity against topoisomerase IIα. Therefore, a major challenge in designing drugs that overcome quinolone resistance lies in the ability to identify substituents that mediate strong interactions with the bacterial, but not the human, enzymes. On the basis of our understanding of quinolone-enzyme interactions, we have identified three compounds that display high activity against quinolone-resistant B. anthracis topoisomerase IV but low activity against human topoisomerase IIα.
Collapse
Affiliation(s)
| | - Heidi A. Schwanz
- Division
of Medicinal and Natural Products Chemistry, University of Iowa College of Pharmacy, Iowa City, Iowa 52242, United States
| | - Gangqin Li
- Division
of Medicinal and Natural Products Chemistry, University of Iowa College of Pharmacy, Iowa City, Iowa 52242, United States
| | - Sylvia A. McPherson
- Department
of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Charles L. Turnbough
- Department
of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Robert J. Kerns
- Division
of Medicinal and Natural Products Chemistry, University of Iowa College of Pharmacy, Iowa City, Iowa 52242, United States
| | | |
Collapse
|
26
|
Aldred KJ, McPherson SA, Turnbough CL, Kerns RJ, Osheroff N. Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Res 2013; 41:4628-39. [PMID: 23460203 PMCID: PMC3632122 DOI: 10.1093/nar/gkt124] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although quinolones are the most commonly prescribed antibacterials, their use is threatened by an increasing prevalence of resistance. The most common causes of quinolone resistance are mutations of a specific serine or acidic residue in the A subunit of gyrase or topoisomerase IV. These amino acids are proposed to serve as a critical enzyme-quinolone interaction site by anchoring a water-metal ion bridge that coordinates drug binding. To probe the role of the proposed water-metal ion bridge, we characterized wild-type, GrlAE85K, GrlAS81F/E85K, GrlAE85A, GrlAS81F/E85A and GrlAS81FBacillus anthracis topoisomerase IV, their sensitivity to quinolones and related drugs and their use of metal ions. Mutations increased the Mg2+ concentration required to produce maximal quinolone-induced DNA cleavage and restricted the divalent metal ions that could support quinolone activity. Individual mutation of Ser81 or Glu85 partially disrupted bridge function, whereas simultaneous mutation of both residues abrogated protein–quinolone interactions. Results provide functional evidence for the existence of the water-metal ion bridge, confirm that the serine and glutamic acid residues anchor the bridge, demonstrate that the bridge is the primary conduit for interactions between clinically relevant quinolones and topoisomerase IV and provide a likely mechanism for the most common causes of quinolone resistance.
Collapse
Affiliation(s)
- Katie J Aldred
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | |
Collapse
|
27
|
Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 2011; 35:247-74. [PMID: 20738404 PMCID: PMC3053476 DOI: 10.1111/j.1574-6976.2010.00247.x] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 06/25/2010] [Accepted: 07/16/2010] [Indexed: 01/28/2023] Open
Abstract
Since quinine was first isolated, animals, plants and microorganisms producing a wide variety of quinolone compounds have been discovered, several of which possess medicinally interesting properties ranging from antiallergenic and anticancer to antimicrobial activities. Over the years, these have served in the development of many synthetic drugs, including the successful fluoroquinolone antibiotics. Pseudomonas aeruginosa and related bacteria produce a number of 2-alkyl-4(1H)-quinolones, some of which exhibit antimicrobial activity. However, quinolones such as the Pseudomonas quinolone signal and 2-heptyl-4-hydroxyquinoline act as quorum-sensing signal molecules, controlling the expression of many virulence genes as a function of cell population density. Here, we review selectively this extensive family of bicyclic compounds, from natural and synthetic antimicrobials to signalling molecules, with a special emphasis on the biology of P. aeruginosa. In particular, we review their nomenclature and biochemistry, their multiple properties as membrane-interacting compounds, inhibitors of the cytochrome bc(1) complex and iron chelators, as well as the regulation of their biosynthesis and their integration into the intricate quorum-sensing regulatory networks governing virulence and secondary metabolite gene expression.
Collapse
Affiliation(s)
- Stephan Heeb
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
28
|
Loveless BM, Yermakova A, Christensen DR, Kondig JP, Heine HS, Wasieloski LP, Kulesh DA. Identification of ciprofloxacin resistance by SimpleProbe™, High Resolution Melt and Pyrosequencing™ nucleic acid analysis in biothreat agents: Bacillus anthracis, Yersinia pestis and Francisella tularensis. Mol Cell Probes 2010; 24:154-60. [DOI: 10.1016/j.mcp.2010.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
29
|
Probing the differential interactions of quinazolinedione PD 0305970 and quinolones with gyrase and topoisomerase IV. Antimicrob Agents Chemother 2009; 53:3822-31. [PMID: 19564360 DOI: 10.1128/aac.00113-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quinazoline-2,4-diones, such as PD 0305970, are new DNA gyrase and topoisomerase IV (topo IV) inhibitors with potent activity against gram-positive pathogens, including quinolone-resistant isolates. The mechanistic basis of dione activity vis-à-vis quinolones is not understood. We present evidence for Streptococcus pneumoniae gyrase and topo IV that PD 0305970 and quinolones interact differently with the enzyme breakage-reunion and Toprim domains, DNA, and Mg2+-four components that are juxtaposed in the topoisomerase cleavage complex to effect DNA scission. First, PD 0305970 targets primarily gyrase in Streptococcus pneumoniae. However, unlike quinolones, which select predominantly for gyrA (or topo IV parC) mutations in the breakage-reunion domain, unusually the dione selected for novel mutants with alterations that map to a region of the Toprim domain of GyrB (R456H and E474A or E474D) or ParE (D435H and E475A). This "dione resistance-determining region" overlaps the GyrB quinolone resistance-determining region and the region that binds essential Mg2+ ions, each function involving conserved EGDSA and PLRGK motifs. Second, dione-resistant gyrase and topo IV were inhibited by ciprofloxacin, whereas quinolone-resistant enzymes (GyrA S81F and ParC S79F) remained susceptible to PD 0305970. Third, dione-promoted DNA cleavage by gyrase occurred at a distinct repertoire of sites, implying that structural differences with quinolones are sensed at the DNA level. Fourth, unlike the situation with quinolones, the Mg2+ chelator EDTA did not reverse dione-induced gyrase cleavage nor did the dione promote Mg2+-dependent DNA unwinding. It appears that PD 0305970 interacts uniquely to stabilize the cleavage complex of gyrase/topo IV perhaps via an altered orientation directed by the bidentate 3-amino-2,4-dione moiety.
Collapse
|
30
|
Jones KR, Cha JH, Merrell DS. Who's Winning the War? Molecular Mechanisms of Antibiotic Resistance in Helicobacter pylori. CURRENT DRUG THERAPY 2008; 3:190-203. [PMID: 21765819 DOI: 10.2174/157488508785747899] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability of clinicians to wage an effective war against many bacterial infections is increasingly being hampered by skyrocketing rates of antibiotic resistance. Indeed, antibiotic resistance is a significant problem for treatment of diseases caused by virtually all known infectious bacteria. The gastric pathogen Helicobacter pylori is no exception to this rule. With more than 50% of the world's population infected, H. pylori exacts a tremendous medical burden and represents an interesting paradigm for cancer development; it is the only bacterium that is currently recognized as a carcinogen. It is now firmly established that H. pylori infection is associated with diseases such as gastritis, peptic and duodenal ulceration and two forms of gastric cancer, gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. With such a large percentage of the population infected, increasing rates of antibiotic resistance are particularly vexing for a treatment regime that is already fairly complicated; treatment consists of two antibiotics and a proton pump inhibitor. To date, resistance has been found to all primary and secondary lines of antibiotic treatment as well as to drugs used for rescue therapy.
Collapse
Affiliation(s)
- Kathleen R Jones
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | | | | |
Collapse
|
31
|
Biswas S, Raoult D, Rolain JM. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int J Antimicrob Agents 2008; 32:207-20. [PMID: 18619818 DOI: 10.1016/j.ijantimicag.2008.03.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 12/17/2022]
Abstract
Intracellular bacteria survive within eukaryotic host cells and are difficult to kill with certain antibiotics. As a result, antibiotic resistance in intracellular bacteria is becoming commonplace in healthcare institutions. Owing to the lack of methods available for transforming these bacteria, we evaluated the mechanisms of resistance using molecular methods and in silico genome analysis. The objective of this review was to understand the molecular mechanisms of antibiotic resistance through in silico comparisons of the genomes of obligate and facultative intracellular bacteria. The available data on in vitro mutants reported for intracellular bacteria were also reviewed. These genomic data were analysed to find natural mutations in known target genes involved in antibiotic resistance and to look for the presence or absence of different resistance determinants. Our analysis revealed the presence of tetracycline resistance protein (Tet) in Bartonella quintana, Francisella tularensis and Brucella ovis; moreover, most of the Francisella strains possessed the blaA gene, AmpG protein and metallo-beta-lactamase family protein. The presence or absence of folP (dihydropteroate synthase) and folA (dihydrofolate reductase) genes in the genome could explain natural resistance to co-trimoxazole. Finally, multiple genes encoding different efflux pumps were studied. This in silico approach was an effective method for understanding the mechanisms of antibiotic resistance in intracellular bacteria. The whole genome sequence analysis will help to predict several important phenotypic characteristics, in particular resistance to different antibiotics. In the future, stable mutants should be obtained through transformation methods in order to demonstrate experimentally the determinants of resistance in intracellular bacteria.
Collapse
Affiliation(s)
- Silpak Biswas
- URMITE UMR 6236, CNRS IRD, Faculté de Médecine et de Pharmacie, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France
| | | | | |
Collapse
|
32
|
Yu X, Susa M, Weile J, Knabbe C, Schmid RD, Bachmann TT. Rapid and sensitive detection of fluoroquinolone-resistant Escherichia coli from urine samples using a genotyping DNA microarray. Int J Med Microbiol 2007; 297:417-29. [PMID: 17482874 DOI: 10.1016/j.ijmm.2007.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 02/26/2007] [Accepted: 03/13/2007] [Indexed: 11/28/2022] Open
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections in humans, with Escherichia coli being the major cause of infection. Fluoroquinolone resistance of uropathogenic E. coli has increased significantly over the last decade. In this study a microarray-based assay was developed and applied, which provides a rapid, sensitive and specific detection of fluoroquinolone-resistant E. coli in urine. The capture probes were designed against previously identified and described hotspots for quinolone resistance (codons 83 and 87 of gyrA). The key goals of this development were to reduce assay time while increasing the sensitivity and specificity as compared with a pilot version of a gyrA genotyping DNA microarray. The performance of the assay was demonstrated with pure cultures of 30 E. coli isolates as well as with urine samples spiked with 6 E. coli isolates. The microarray results were confirmed by standard DNA sequencing and were in full agreement with the phenotypic antimicrobial susceptibility testing using standard methods. The DNA microarray test displayed an assay time of 3.5h, a sensitivity of 100CFU/ml, and the ability to detect fluoroquinolone-resistant E. coli in the presence of a 10-fold excess of fluoroquinolone-susceptible E. coli cells. As a consequence, we believe that this microarray-based determination of antibiotics resistance has a true potential for the application in clinical routine laboratories in the future.
Collapse
Affiliation(s)
- Xiaolei Yu
- Institute of Technical Biochemistry, University of Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Rao SS, Savithri HS, Raghunathan M. Down regulation of gyrase A gene expression in E. coli by antisense ribozymes using RT-PCR. Mol Biol Rep 2007; 35:575-8. [PMID: 17701288 DOI: 10.1007/s11033-007-9126-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 07/26/2007] [Indexed: 11/28/2022]
Abstract
Nucleic acid-based gene interference technologies represent promising strategies for specific inhibition of mRNA sequences of choice. Recently, small interfering RNAs have been implicated in inducing endogenous RNase of the RNA-induced silencing complex in the RNA interference pathway to inhibit gene expression and growth of several human viruses. We report down regulation of gene expression of E. coli gyrase A, an essential gene for DNA supercoiling and antibiotic susceptibility in BL21 (DE3) strain of E. coli, using Ribonuclease P based external guide sequence (EGS) technique. EGS directed against gyrase A gene that was cloned into pUC vector, which contains the ampicillin (Amp) resistance gene. The recombinant plasmid pT7EGyrA was transformed into BL21 (DE3) and inductions were performed using IPTG. RT-PCR experiment was done to investigate the down regulation of gyrase A gene. RT-PCR results demonstrated a significant decrease of gyrase A gene after 18 h of induction of the transformants. These experiments showed that the down regulation of the gene was seen after 18 h of induction than earlier hours of induction with IPTG suggesting inhibition of gyrase A gene with profound effect on cell viability. These results demonstrate the utility of EGS RNAs in gene therapy applications, by inhibiting the expression of essential proteins.
Collapse
Affiliation(s)
- Shilpakala Sainath Rao
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, 600 113, India
| | | | | |
Collapse
|
34
|
Ostrov DA, Hernández Prada JA, Corsino PE, Finton KA, Le N, Rowe TC. Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening. Antimicrob Agents Chemother 2007; 51:3688-98. [PMID: 17682095 PMCID: PMC2043263 DOI: 10.1128/aac.00392-07] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial type II topoisomerases DNA gyrase and topoisomerase IV are validated targets for clinically useful quinolone antimicrobial drugs. A significant limitation to widely utilized quinolone inhibitors is the emergence of drug-resistant bacteria due to an altered DNA gyrase. To address this problem, we have used structure-based molecular docking to identify novel drug-like small molecules that target sites distinct from those targeted by quinolone inhibitors. A chemical ligand database containing approximately 140,000 small molecules (molecular weight, <500) was molecularly docked onto two sites of Escherichia coli DNA gyrase targeting (i) a previously unexplored structural pocket formed at the dimer interface of subunit A and (ii) a small region of the ATP binding pocket on subunit B overlapping the site targeted by coumarin and cyclothialidine drugs. This approach identified several small-molecule compounds that inhibited the DNA supercoiling activity of purified E. coli DNA gyrase. These compounds are structurally unrelated to previously identified gyrase inhibitors and represent potential scaffolds for the optimization of novel antibacterial agents that act on fluoroquinolone-resistant strains.
Collapse
Affiliation(s)
- David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Grossman TH, Bartels DJ, Mullin S, Gross CH, Parsons JD, Liao Y, Grillot AL, Stamos D, Olson ER, Charifson PS, Mani N. Dual targeting of GyrB and ParE by a novel aminobenzimidazole class of antibacterial compounds. Antimicrob Agents Chemother 2007; 51:657-66. [PMID: 17116675 PMCID: PMC1797739 DOI: 10.1128/aac.00596-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/21/2006] [Accepted: 11/07/2006] [Indexed: 11/20/2022] Open
Abstract
A structure-guided drug design approach was used to optimize a novel series of aminobenzimidazoles that inhibit the essential ATPase activities of bacterial DNA gyrase and topoisomerase IV and that show potent activities against a variety of bacterial pathogens. Two such compounds, VRT-125853 and VRT-752586, were characterized for their target specificities and preferences in bacteria. In metabolite incorporation assays, VRT-125853 inhibited both DNA and RNA synthesis but had little effect on protein synthesis. Both compounds inhibited the maintenance of negative supercoils in plasmid DNA in Escherichia coli at the MIC. Sequencing of DNA corresponding to the GyrB and ParE ATP-binding regions in VRT-125853- and VRT-752586-resistant mutants revealed that their primary target in Staphylococcus aureus and Haemophilus influenzae was GyrB, whereas in Streptococcus pneumoniae it was ParE. In Enterococcus faecalis, the primary target of VRT-125853 was ParE, whereas for VRT-752586 it was GyrB. DNA transformation experiments with H. influenzae and S. aureus proved that the mutations observed in gyrB resulted in decreased susceptibilities to both compounds. Novobiocin resistance-conferring mutations in S. aureus, H. influenzae, and S. pneumoniae were found in gyrB, and these mutants showed little or no cross-resistance to VRT-125853 or VRT-752586 and vice versa. Furthermore, gyrB and parE double mutations increased the MICs of VRT-125853 and VRT-752586 significantly, providing evidence of dual targeting. Spontaneous frequencies of resistance to VRT-752586 were below detectable levels (<5.2x10(-10)) for wild-type E. faecalis but were significantly elevated for strains containing single and double target-based mutations, demonstrating that dual targeting confers low levels of resistance emergence and the maintenance of susceptibility in vitro.
Collapse
Affiliation(s)
- Trudy H Grossman
- Vertex Pharmaceuticals Incorporated, 130 Waverly Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aubry A, Veziris N, Cambau E, Truffot-Pernot C, Jarlier V, Fisher LM. Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob Agents Chemother 2006; 50:104-12. [PMID: 16377674 PMCID: PMC1346799 DOI: 10.1128/aac.50.1.104-112.2006] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the DNA gyrase GyrA2GyrB2 complex are associated with resistance to quinolones in Mycobacterium tuberculosis. As fluoroquinolones are being used increasingly in the treatment of tuberculosis, we characterized several multidrug-resistant clinical isolates of M. tuberculosis carrying mutations in the genes encoding the GyrA or GyrB subunits associated with quinolone resistance or hypersusceptibility. In addition to the reported putative quinolone resistance mutations in GyrA, i.e., A90V, D94G, and D94H, we found that the GyrB N510D mutation was also associated with ofloxacin resistance. Surprisingly, several isolates bearing a novel combination of gyrA T80A and A90G changes were hypersusceptible to ofloxacin. M. tuberculosis GyrA and GyrB subunits (wild type [WT] and mutants) were overexpressed in Escherichia coli, purified to homogeneity, and used to reconstitute highly active gyrase complexes. Mutant proteins were produced similarly from engineered gyrA and gyrB alleles by mutagenesis. MICs, enzyme inhibition, and drug-induced DNA cleavage were determined for moxifloxacin, gatifloxacin, ofloxacin, levofloxacin, and enoxacin. Mutant gyrase complexes bearing GyrA A90V, D94G, and D94H and GyrB N510D were resistant to quinolone inhibition (MICs and 50% inhibitory concentrations [IC50s] at least 3.5-fold higher than the concentrations for the WT), and all, except the GyrB mutant, were less efficiently trapped as a quinolone cleavage complex. In marked contrast, gyrase complexes bearing GyrA T80A or A90G were hypersusceptible to the action of many quinolones, an effect that was reinforced for complexes bearing both mutations (MICs and IC50s up to 14-fold lower than the values for the WT). This is the first detailed enzymatic analysis of hypersusceptibility and resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Alexandra Aubry
- Molecular Genetics Group, Molecular and Metabolic Signaling Centre, Division of Basic Medical Scinces, St. George's, University of London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Galbraith KM, Ng AC, Eggers BJ, Kuchel CR, Eggers CH, Samuels DS. parC mutations in fluoroquinolone-resistant Borrelia burgdorferi. Antimicrob Agents Chemother 2006; 49:4354-7. [PMID: 16189120 PMCID: PMC1251557 DOI: 10.1128/aac.49.10.4354-4357.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated in vitro fluoroquinolone-resistant mutants of the Lyme disease agent, Borrelia burgdorferi. Mutations in parC, which encodes a subunit of topoisomerase IV, were associated with loss of susceptibility to sparfloxacin, moxifloxacin, and Bay-Y3118, but not ciprofloxacin. This is the first description of fluoroquinolone resistance in the spirochete phylum.
Collapse
Affiliation(s)
- Kendal M Galbraith
- Division of Biological Sciences, The University of Montana, Missoula, 59812-4824, USA
| | | | | | | | | | | |
Collapse
|
38
|
Bhavnani SM, Andes DR. Gemifloxacin for the treatment of respiratory tract infections: in vitro susceptibility, pharmacokinetics and pharmacodynamics, clinical efficacy, and safety. Pharmacotherapy 2005; 25:717-40. [PMID: 15899734 DOI: 10.1592/phco.25.5.717.63583] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gemifloxacin is a synthetic fluoroquinolone antimicrobial agent exhibiting potent activity against most gram-negative and gram-positive organisms, such as the important community-acquired respiratory pathogens Streptococcus pneumoniae (including multidrug-resistant S. pneumoniae), Haemophilus influenzae , and Moraxella catarrhalis . The agent's mechanism of action involves dual targeting of two essential bacterial enzymes: DNA gyrase and topoisomerase IV. Gemifloxacin was approved by the Food and Drug Administration in April 2003 for treatment of community-acquired pneumonia and acute bacterial exacerbation of chronic bronchitis. The drug has an oral bioavailability of approximately 71%. Approximately 20-35% of gemifloxacin is excreted unchanged in the urine after 24 hours. The elimination half-life of gemifloxacin is 6-8 hours in patients with normal renal function, supporting once-daily dosing. The 24-hour free-drug area under the plasma concentration-time curve:minimum inhibitory concentration ratio (fAUC(0-24):MIC) associated with efficacy, based on results from in vitro and animal models of infection, is approximately 30. With a mean fAUC(0-24) of approximately 3 microg*hour/ml (35% of total AUC(0-24) of 8.4) and a median S. pneumoniae MIC for 90% of tested strains of 0.03, a fAUC(0-24):MIC ratio of 100 would be expected after standard dosing (320 mg once/day). In clinical studies involving both hospitalized and outpatient populations, gemifloxacin has been highly effective in the treatment of community-acquired pneumonia and acute exacerbation of chronic bronchitis. Clinical success rates ranged from 93.9-95.9% in patients with community-acquired pneumonia and 96.1-97.5% in those with acute exacerbation of chronic bronchitis. Gemifloxacin is well tolerated; the frequency of adverse events with this agent is low. Most adverse events are mild-to-moderate in severity, with diarrhea (< 4%), nausea and rash (< 3%), and headache (< 2%) most commonly reported. Drug interactions with gemifloxacin are not common, although absorption is greatly reduced when given with divalent and trivalent cation-containing compounds, such as antacids. Due to its potent activity against many common gram-positive and gram-negative respiratory pathogens, its proven clinical efficacy, and its favorable safety profile, gemifloxacin is a highly effective empiric treatment for community-acquired lower respiratory tract infections.
Collapse
Affiliation(s)
- Sujata M Bhavnani
- Institute for Clinical Pharmacodynamics, Ordway Research Institute, Albany, NY 12208, USA.
| | | |
Collapse
|
39
|
Hopkins KL, Davies RH, Threlfall EJ. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: Recent developments. Int J Antimicrob Agents 2005; 25:358-73. [PMID: 15848289 DOI: 10.1016/j.ijantimicag.2005.02.006] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Fluoroquinolones are broad-spectrum antimicrobials highly effective for treatment of a variety of clinical and veterinary infections. Their antibacterial activity is due to inhibition of DNA replication. Usually resistance arises spontaneously due to point mutations that result in amino acid substitutions within the topoisomerase subunits GyrA, GyrB, ParC or ParE, decreased expression of outer membrane porins, or overexpression of multidrug efflux pumps. In addition, the recent discovery of plasmid-mediated quinolone resistance could result in horizontal transfer of fluoroquinolone resistance between strains. Acquisition of high-level resistance appears to be a multifactorial process. Care needs to taken to avoid overuse of this important class of antimicrobial in both human and veterinary medicine to prevent an increase in the occurrence of resistant zoonotic and non-zoonotic bacterial pathogens that could subsequently cause human or animal infections.
Collapse
Affiliation(s)
- Katie L Hopkins
- Antimicrobial Resistance and Molecular Epidemiology Unit, Laboratory of Enteric Pathogens, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5HT, UK.
| | | | | |
Collapse
|
40
|
Mitscher LA. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev 2005; 105:559-92. [PMID: 15700957 DOI: 10.1021/cr030101q] [Citation(s) in RCA: 605] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lester A Mitscher
- Department of Medicinal Chemistry and Molecular Biosciences and The Chemical Methodologies and Library Development Center of Excellence, The University of Kansas, Lawrence, Kansas 66045-7582, USA.
| |
Collapse
|
41
|
Leo E, Gould KA, Pan XS, Capranico G, Sanderson MR, Palumbo M, Fisher LM. Novel symmetric and asymmetric DNA scission determinants for Streptococcus pneumoniae topoisomerase IV and gyrase are clustered at the DNA breakage site. J Biol Chem 2005; 280:14252-63. [PMID: 15659402 DOI: 10.1074/jbc.m500156200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerase (topo) IV and gyrase are bacterial type IIA DNA topoisomerases essential for DNA replication and chromosome segregation that act via a transient double-stranded DNA break involving a covalent enzyme-DNA "cleavage complex." Despite their mechanistic importance, the DNA breakage determinants are not understood for any bacterial type II enzyme. We investigated DNA cleavage by Streptococcus pneumoniae topo IV and gyrase stabilized by gemifloxacin and other antipneumococcal fluoroquinolones. Topo IV and gyrase induce distinct but overlapping repertoires of double-strand DNA breakage sites that were essentially identical for seven different quinolones and were augmented (in intensity) by positive or negative supercoiling. Sequence analysis of 180 topo IV and 126 gyrase sites promoted by gemifloxacin on pneumococcal DNA revealed the respective consensus sequences: G(G/c)(A/t)A*GNNCt(T/a)N(C/a) and GN4G(G/c)(A/c)G*GNNCtTN(C/a) (preferred bases are underlined; disfavored bases are in small capitals; N indicates no preference; and asterisk indicates DNA scission between -1 and +1 positions). Both enzymes show strong preferences for bases clustered symmetrically around the DNA scission site, i.e. +1G/+4C, -4G/+8C, and particularly the novel -2A/+6T, but with no preference at +2/+3 within the staggered 4-bp overhang. Asymmetric elements include -3G and several unfavored bases. These cleavage preferences, the first for Gram-positive type IIA topoisomerases, differ markedly from those reported for Escherichia coli topo IV (consensus (A/G)*T/A) and gyrase, which are based on fewer sites. However, both pneumococcal enzymes cleaved an E. coli gyrase site suggesting overlap in gyrase determinants. We propose a model for the cleavage complex of topo IV/gyrase that accommodates the unique -2A/+6T and other preferences.
Collapse
Affiliation(s)
- Elisabetta Leo
- Molecular Genetics Group, Department of Basic Medical Sciences-Biochemistry and Immunology, St. George's Hospital Medical School, University of London, London SW17 0RE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Yu X, Susa M, Knabbe C, Schmid RD, Bachmann TT. Development and validation of a diagnostic DNA microarray to detect quinolone-resistant Escherichia coli among clinical isolates. J Clin Microbiol 2004; 42:4083-91. [PMID: 15364994 PMCID: PMC516282 DOI: 10.1128/jcm.42.9.4083-4091.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incidence of resistance against fluoroquinolones among pathogenic bacteria has been increasing in accordance with the worldwide use of this drug. Escherichia coli is one of the most relevant species for quinolone resistance. In this study, a diagnostic microarray for single-base-mutation detection was developed, which can readily identify the most prevalent E. coli genotypes leading to quinolone resistance. Based on genomic sequence analysis using public databases and our own DNA sequencing results, two amino acid positions (83 and 87) on the A subunit of the DNA gyrase, encoded by the gyrA gene, have been identified as mutation hot spots and were selected for DNA microarray detection. Oligonucleotide probes directed against these two positions were designed so that they could cover the most important resistance-causing and silent mutations. The performance of the array was validated with 30 clinical isolates of E. coli from four different hospitals in Germany. The microarray results were confirmed by standard DNA sequencing and were in full agreement with phenotypic antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Xiaolei Yu
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
43
|
Maeda Y, Kiba A, Ohnishi K, Hikichi Y. Implications of amino acid substitutions in GyrA at position 83 in terms of oxolinic acid resistance in field isolates of Burkholderia glumae, a causal agent of bacterial seedling rot and grain rot of rice. Appl Environ Microbiol 2004; 70:5613-20. [PMID: 15345450 PMCID: PMC520877 DOI: 10.1128/aem.70.9.5613-5620.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 04/08/2004] [Indexed: 11/20/2022] Open
Abstract
Oxolinic acid (OA), a quinolone, inhibits the activity of DNA gyrase composed of GyrA and GyrB and shows antibacterial activity against Burkholderia glumae. Since B. glumae causes bacterial seedling rot and grain rot of rice, both of which are devastating diseases, the emergence of OA-resistant bacteria has important implications on rice cultivation in Japan. Based on the MIC of OA, 35 B. glumae field isolates isolated from rice seedlings grown from OA-treated seeds in Japan were divided into sensitive isolates (OSs; 0.5 microg/ml), moderately resistant isolates (MRs; 50 microg/ml), and highly resistant isolates (HRs; > or =100 microg/ml). Recombination with gyrA of an OS, Pg-10, led MRs and HRs to become OA susceptible, suggesting that gyrA mutations are involved in the OA resistance of field isolates. The amino acid at position 83 in the GyrA of all OSs was Ser, but in all MRs and HRs it was Arg and Ile, respectively. Ser83Arg and Ser83Ile substitutions in the GyrA of an OS, Pg-10, resulted in moderate and high OA resistance, respectively. Moreover, Arg83Ser and Ile83Ser substitutions in the GyrA of MRs and HRs, respectively, resulted in susceptibility to OA. These results suggest that Ser83Arg and Ser83Ile substitutions in GyrA are commonly responsible for resistance to OA in B. glumae field isolates.
Collapse
Affiliation(s)
- Yukiko Maeda
- Laboratory of Plant Pathology and Biotechnology, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502, Japan
| | | | | | | |
Collapse
|
44
|
Gould KA, Pan XS, Kerns RJ, Fisher LM. Ciprofloxacin dimers target gyrase in Streptococcus pneumoniae. Antimicrob Agents Chemother 2004; 48:2108-15. [PMID: 15155208 PMCID: PMC415600 DOI: 10.1128/aac.48.6.2108-2115.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the antipneumococcal activities of novel quinolone dimers in which ciprofloxacin was tethered to itself or to pipemidic acid by linkage of C-7 piperazinyl rings. Symmetric 2,6-lutidinyl- and trans-butenyl-linked ciprofloxacin dimers (dimers 1 and 2, respectively) and a pipemidic acid-ciprofloxacin dimer (dimer 3) had activities against Streptococcus pneumoniae strain 7785 that were comparable to that of ciprofloxacin, i.e., MICs of 2, 1, and 4 to 8 microg/ml versus an MIC of 1 to 2 microg/ml, respectively. Surprisingly, unlike ciprofloxacin (which targets topoisomerase IV), several lines of evidence revealed that the dimers act through gyrase in S. pneumoniae. First, ciprofloxacin-resistant parC mutants of strain 7785 remained susceptible to dimers 1 to 3, whereas a gyrA mutation conferred a four- to eightfold increase in the dimer MIC but had little effect on ciprofloxacin activity. Second, dimer 1 selected first-step gyrA (S81Y or S81F) mutants (MICs, 8 to 16 microg/ml) that carried wild-type topoisomerase IV parE-parC genes. Third, dimers 1 and 2 promoted comparable DNA cleavage by S. pneumoniae gyrase and topoisomerase IV, whereas ciprofloxacin-mediated cleavage was 10-fold more efficient with topoisomerase IV than with gyrase. Fourth, the GyrA S81F and ParC S79F enzymes were resistant to dimers, confirming that the resistance phenotype is largely silent in parC mutants. Although a dimer molecule could bind very tightly by bridging quinolone binding sites in the enzyme-DNA complex, the greater potency of ciprofloxacin against gyrase and topoisomerase IV suggests that dimers 1 to 3 bind in a monomeric fashion. The bulky C-7 side chain may explain dimer targeting of gyrase and activity against efflux mutants. Tethered quinolones have potential as mechanistic tools and as novel antimicrobial agents.
Collapse
Affiliation(s)
- Katherine A Gould
- Molecular Genetics Group, Department of Basic Medical Sciences-Biochemistry and Immunology, St. George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, United Kingdom
| | | | | | | |
Collapse
|
45
|
Masselot F, Boulos A, Maurin M, Rolain JM, Raoult D. Molecular evaluation of antibiotic susceptibility: Tropheryma whipplei paradigm. Antimicrob Agents Chemother 2003; 47:1658-64. [PMID: 12709337 PMCID: PMC153328 DOI: 10.1128/aac.47.5.1658-1664.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 11/19/2002] [Accepted: 02/10/2003] [Indexed: 11/20/2022] Open
Abstract
Tropheryma whipplei, the agent of Whipple's disease, grows fastidiously only in cell cultures without plaque production, and only three strains have been passaged. The formation of bacterial clumps in the supernatant precludes enumeration of viable bacteria and MIC determination. We evaluated the bacteriostatic effects of fluoroquinolones against two T. whipplei isolates by measuring the inhibition of the DNA copy number increase by real-time quantitative PCR. The analysis of the T. whipplei genome database allowed the identification not only of the gyrA gene but also the parC gene encoding the alpha subunit of the natural fluoroquinolone targets DNA gyrase (GyrA) and topoisomerase IV (ParC), respectively. The parC gene was detected in actinobacteria for the first time. High ciprofloxacin MICs (4 and 8 micro g/ml) were correlated with the presence in T. whipplei GyrA and ParC sequences with an alanine residue at positions 83 and 80 (Escherichia coli numbering), respectively. Alanines at these positions have previously been associated with increased fluoroquinolone resistance in E. coli and mycobacteria. However, the MIC of levofloxacin was low (0.25 micro g/ml). The same T. whipplei GyrA and ParC sequences were found in two other cultured strains and in nine uncultured tissue samples from Whipple's disease patients, allowing one to speculate that T. whipplei is naturally relatively resistant to fluoroquinolones.
Collapse
Affiliation(s)
- F Masselot
- Unité des Rickettsies, CNRS UMR 6020, Faculté de Médecine, Université de la Méditerranée, 13385 Marseille Cedex 05, France
| | | | | | | | | |
Collapse
|
46
|
Strumberg D, Nitiss JL, Dong J, Walker J, Nicklaus MC, Kohn KW, Heddle JG, Maxwell A, Seeber S, Pommier Y. Importance of the fourth alpha-helix within the CAP homology domain of type II topoisomerase for DNA cleavage site recognition and quinolone action. Antimicrob Agents Chemother 2002; 46:2735-46. [PMID: 12183223 PMCID: PMC127396 DOI: 10.1128/aac.46.9.2735-2746.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Revised: 04/12/2002] [Accepted: 05/22/2002] [Indexed: 11/20/2022] Open
Abstract
We report that point mutations causing alteration of the fourth alpha-helix (alpha4-helix) of the CAP homology domain of eukaryotic (Saccharomyces cerevisiae) type II topoisomerases (Ser(740)Trp, Gln(743)Pro, and Thr(744)Pro) change the selection of type II topoisomerase-mediated DNA cleavage sites promoted by Ca(2+) or produced by etoposide, the fluoroquinolone CP-115,953, or mitoxantrone. By contrast, Thr(744)Ala substitution had minimal effect on Ca(2+)- and drug-stimulated DNA cleavage sites, indicating the selectivity of single amino acid substitutions within the alpha4-helix on type II topoisomerase-mediated DNA cleavage. The equivalent mutation in the gene for Escherichia coli gyrase causing Ser(83)Trp also changed the DNA cleavage pattern generated by Ca(2+) or quinolones. Finally, Thr(744)Pro substitution in the yeast type II topoisomerase rendered the enzyme sensitive to antibacterial quinolones. This study shows that the alpha4-helix within the conserved CAP homology domain of type II topoisomerases is critical for selecting the sites of DNA cleavage. It also demonstrates that selective amino acid residues in the alpha4-helix are important in determining the activity and possibly the binding of quinolones to the topoisomerase II-DNA complexes.
Collapse
Affiliation(s)
- Dirk Strumberg
- Department of Internal Medicine and Medical Oncology, West German Cancer Center, University Medical School of Essen, 45122 Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pan XS, Hamlyn PJ, Talens-Visconti R, Alovero FL, Manzo RH, Fisher LM. Small-colony mutants of Staphylococcus aureus allow selection of gyrase-mediated resistance to dual-target fluoroquinolones. Antimicrob Agents Chemother 2002; 46:2498-506. [PMID: 12121924 PMCID: PMC127329 DOI: 10.1128/aac.46.8.2498-2506.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolones acting equally through DNA gyrase and topoisomerase IV in vivo are considered desirable in requiring two target mutations for emergence of resistant bacteria. To investigate this idea, we have studied the response of Staphylococcus aureus RN4220 to stepwise challenge with sparfloxacin, a known dual-target agent, and with NSFQ-105, a more potent sulfanilyl fluoroquinolone that behaves similarly. First-step mutants were obtained with both drugs but only at the MIC. These mutants exhibited distinctive small-colony phenotypes and two- to fourfold increases in MICs of NSFQ-105, sparfloxacin, and ciprofloxacin. No changes were detected in the quinolone resistance-determining regions of the gyrA, gyrB, grlA, or grlB gene. Quinolone-induced small-colony mutants shared the delayed coagulase response but not the requirement for menadione, hemin, or thymidine characteristic of small-colony variants, a subpopulation of S. aureus that is often defective in electron transport. Second-step mutants selected with NSFQ-105 had gyrA(S84L) alterations; those obtained with sparfloxacin carried a gyrA(D83A) mutation or a novel gyrB deletion (DeltaRKSAL, residues 405 to 409) affecting a trypsin-sensitive region linking functional domains of S. aureus GyrB. Each mutation was associated with four- to eightfold increases in MICs of NSFQ-105 and sparfloxacin, but not of ciprofloxacin, which we confirm targets topoisomerase IV. The presence of wild-type grlB-grlA gene sequences in second-step mutants excluded involvement of topoisomerase IV in the small-colony phenotype. Growth revertants retaining mutant gyrA or gyrB alleles were quinolone susceptible, indicating that resistance to NSFQ-105 and sparfloxacin was contingent on the small-colony mutation. We propose that small-colony mutations unbalance target sensitivities, perhaps through altered ATP or topoisomerase levels, such that gyrase becomes the primary drug target. Breaking of target parity by genetic or physiological means eliminates the need for two target mutations and provides a novel mechanism for stepwise selection of quinolone resistance.
Collapse
Affiliation(s)
- Xiao-Su Pan
- Molecular Genetics Group, Department of Biochemistry and Immunology, St. George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, UK
| | | | | | | | | | | |
Collapse
|
48
|
Heddle J, Maxwell A. Quinolone-binding pocket of DNA gyrase: role of GyrB. Antimicrob Agents Chemother 2002; 46:1805-15. [PMID: 12019094 PMCID: PMC127264 DOI: 10.1128/aac.46.6.1805-1815.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2001] [Revised: 01/28/2002] [Accepted: 03/07/2002] [Indexed: 11/20/2022] Open
Abstract
DNA gyrase is a prokaryotic type II topoisomerase and a major target of quinolone antibacterials. The majority of mutations conferring resistance to quinolones arise within the quinolone resistance-determining region of GyrA close to the active site (Tyr(122)) where DNA is bound and cleaved. However, some quinolone resistance mutations are known to exist in GyrB. Present structural data suggest that these residues lie a considerable distance from the quinolone resistance-determining region, and it is not obvious how they affect quinolone action. We have made and purified two such mutant proteins, GyrB(Asp(426)-->Asn) and GyrB(Lys(447)-->Glu), and characterized them in vitro. We found that the two proteins behave similarly to GyrA quinolone-resistant proteins. We showed that the mutations exert their effect by decreasing the amount of quinolone bound to a gyrase-DNA complex. We suggest that the GyrB residues form part of a quinolone-binding pocket that includes DNA and the quinolone resistance-determining region in GyrA and that large conformational changes during the catalytic cycle of the enzyme allow these regions to come into close proximity.
Collapse
Affiliation(s)
- Jonathan Heddle
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | |
Collapse
|
49
|
Valdezate S, Vindel A, Echeita A, Baquero F, Cantó R. Topoisomerase II and IV quinolone resistance-determining regions in Stenotrophomonas maltophilia clinical isolates with different levels of quinolone susceptibility. Antimicrob Agents Chemother 2002; 46:665-71. [PMID: 11850246 PMCID: PMC127482 DOI: 10.1128/aac.46.3.665-671.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The quinolone resistance-determining regions (QRDRs) of topoisomerase II and IV genes from Stenotrophomonas maltophilia ATCC 13637 were sequenced and compared with the corresponding regions of 32 unrelated S. maltophilia clinical strains for which ciprofloxacin MICs ranged from 0.1 to 64 microg/ml. GyrA (Leu-55 to Gln-155, Escherichia coli numbering), GyrB (Met-391 to Phe-513), ParC (Ile-34 to Arg-124), and ParE (Leu-396 to Leu-567) fragments from strain ATCC 13637 showed high degrees of identity to the corresponding regions from the phytopathogen Xylella fastidiosa, with the degrees of identity ranging from 85.0 to 93.5%. Lower degrees of identity to the corresponding regions from Pseudomonas aeruginosa (70.9 to 88.6%) and E. coli (73.0 to 88.6%) were observed. Amino acid changes were present in GyrA fragments from 9 of the 32 strains at positions 70, 85, 90, 103, 112, 113, 119, and 124; but there was no consistent relation to higher ciprofloxacin MICs. The absence of changes at positions 83 and 87, commonly involved in quinolone resistance in gram-negative bacteria, was unexpected. The GyrB sequences were identical in all strains, and only one strain (ciprofloxacin MIC, 16 microg/ml) showed a ParC amino acid change (Ser-80-->Arg). In contrast, a high frequency (16 of 32 strains) of amino acid replacements was present in ParE. The frequencies of alterations at positions 437, 465, 477, and 485 were higher (P < 0.05) in strains from cystic fibrosis patients, but these changes were not linked with high ciprofloxacin MICs. An efflux phenotype, screened by the detection of decreases of at least twofold doubling dilutions of the ciprofloxacin MIC in the presence of carbonyl cyanide m-chlorophenylhydrazone (0.5 microg/ml) or reserpine (10 microg/ml), was suspected in seven strains. These results suggest that topoisomerases II and IV may not be the primary targets involved in quinolone resistance in S. maltophilia.
Collapse
Affiliation(s)
- Sylvia Valdezate
- Servicio de Microbiología, Hospital Ramón y Cajal, Madrid-28034, Spain
| | | | | | | | | |
Collapse
|
50
|
Piddock LJV. Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiol Rev 2002; 26:3-16. [PMID: 12007640 DOI: 10.1111/j.1574-6976.2002.tb00596.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Quinolone-resistant Salmonella enterica usually contain a mutation in gyrA within the region encoding the quinolone resistance determining region of the A subunit of DNA gyrase. These mutations confer substitutions analogous to Escherichia coli Ser83-->Phe and Asp87-->Gly or Tyr, or a novel mutation resulting in Ala119-->Glu or Val. Mutations in gyrB are rare, and no mutations in parC or parE have been described. Quinolone-resistant Salmonella can also be cross-resistant to other agents including chloramphenicol and tetracycline. Increased efflux has been demonstrated and for some strains this has been associated with increased expression of acrB. Mutation in soxR has also been shown for one isolate. Detection of low level resistance (minimum inhibitory concentrations <0.5 microg ml(-1)) to fluoroquinolones is proving an increasing problem in the treatment of invasive Salmonella infections.
Collapse
Affiliation(s)
- Laura J V Piddock
- Antimicrobial Agents Research Group, Division of Infection and Immunity, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|