1
|
Paymal S, Barale SS, Supanekar SV, Sonawane KD, Pawar KD. Overexpression, Purification, and Biochemical Characterization of the vanC2 d-Ala-d-Ser Ligase from Enterococcus casseliflavus SSK and Its Inhibition by an Oxadiazole Derivative. ACS OMEGA 2025; 10:14390-14402. [PMID: 40256530 PMCID: PMC12004154 DOI: 10.1021/acsomega.5c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
The bacterial cell wall and enzymes involved in peptidoglycan biosynthesis are prime targets for the discovery of novel antibacterial agents. Among these enzymes, d-alanine-d-alanine ligases (Ddl) are particularly significant due to their utilization of specific substrates (d-amino acids) essential for bacterial viability. Isozymes of Ddl that utilize alternative substrates such as d-lactate or d-serine are found in vancomycin-resistant Gram-positive bacteria, initially identified in Enterococcus species, and now represent a growing concern in clinical settings. In this study, we isolated and identified vancomycin-resistant Enterococcus casseliflavus (E. casseliflavus) strain SSK and used it for amplification, cloning, and purification of the vanC2 type of d-alanine-d-serine ligase (EcfDdls). Investigations of substrate specificity and enzyme kinetics provided insights into the enzyme's mechanistic action. Evaluation of the inhibitory potential of the previously virtually screened oxadiazole derivative 1-[(5-methyl-1,2-oxazol-3-yl)methyl]-4-{[3-(propan-2-yl)-1,2,4-oxadiazol-5-yl]methyl}piperazine (CID 45805715) was carried out using an inorganic phosphate detection assay, which demonstrated complete enzymatic inhibition of purified EcfDdls. When tested, CID 45805715 significantly inhibited activity of Ddl, with an IC50 of 76.7 μM, compared to 313 μM for the reference compound DCS. Moreover, this compound also exhibited antimicrobial activity against vancomycin-resistant E. casseliflavus strain SSK. Thus, these findings provide valuable insights into the activity and inhibition of vanC2 EcfDdls, offering a promising avenue for addressing vancomycin resistance in enterococci, particularly in nosocomial infections affecting immunocompromised patients.
Collapse
Affiliation(s)
- Sneha
B. Paymal
- Department
of Microbiology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004, India
- Rayat
Institute
of Research and Development (RIRD), Satara, Maharashtra 415001, India
| | - Sagar S. Barale
- Department
of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | | | - Kailas D. Sonawane
- Department
of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004, India
| | - Kiran D. Pawar
- School
of
Nanoscience and Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004, India
| |
Collapse
|
2
|
Paritala ST, Gandhi G, Agrawal K, Sengupta P, Sharma N. Glycopeptides: Insights Towards Resistance, Clinical Pharmacokinetics and Pharmacodynamics. Indian J Microbiol 2025; 65:32-50. [PMID: 40371030 PMCID: PMC12069187 DOI: 10.1007/s12088-024-01273-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2025] Open
Abstract
Glycopeptides have emerged as life-saving therapeutics in treating various gram-positive bacterial infections. Vancomycin being the first therapeutically approved glycopeptide has turned out as a blockbuster drug in the mitigation of gram-positive infections. However, long-term misuse of these glycopeptides led to the development of resistance which became a bottleneck in tackling various infections. Antimicrobial resistance has become a global threat exposing their impact on the public health domain. Concomitant to this the second-generation glycopeptides were developed through structural alterations and were approved by the USFDA which are serving as a last resort for an effective treatment. However, resistance against these also might develop shortly when misused. In this aspect, strategic approaches concerning structural activity for enhancing the antimicrobial activity and overcoming resistance were conferred. The clinical use of glycopeptides were also limited due to associated toxicity concerns and unusual pharmacokinetics. Understanding the pharmacokinetics of glycopeptides in different clinical conditions are necessary in tackling drug-induced resistance due to overdosing. Hence, dose optimization and therapeutic drug monitoring in different clinical conditions is necessary for better safety profiles and toxicity reduction. So, this review provides insights into glycopeptide-induced resistances, aspects of structural modifications to overcome resistance and their implications on pharmacokinetics and pharmacodynamics in different clinical conditions.
Collapse
Affiliation(s)
- Sree Teja Paritala
- National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Gunjan Gandhi
- National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Karishma Agrawal
- National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Nitish Sharma
- National Institute of Pharmaceutical Education and Research-Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| |
Collapse
|
3
|
Berteina-Raboin S. Comprehensive Overview of Antibacterial Drugs and Natural Antibacterial Compounds Found in Food Plants. Antibiotics (Basel) 2025; 14:185. [PMID: 40001427 PMCID: PMC11851795 DOI: 10.3390/antibiotics14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this review is to list the various natural sources of antimicrobials that are readily available. Indeed, many plant sources are known to have antibiotic properties, although it is not always clear which molecule is responsible for this activity. Many food supplements also have this therapeutic indication. We propose here to take stock of the scientific knowledge attesting or not to these indications for some food sources. An overview of the various antibiotic drugs commercially available will be provided. A structural indication of the natural molecules present in various plants and reported to contribute to their antibiotic power will be given. The plants mentioned in this review, which does not claim to be exhaustive, are referenced for fighting Gram-positive and/or Gram-negative bacteria. It is difficult to attribute activity to just one of these natural molecules, as it is likely to result from synergy within the plant. Similarly, chitosan is mentioned for its fungistatic and bacteriostatic properties. In this case, this polymeric compound derived from the chitin of marine organisms is referenced for its antibiofilm activity. It seems that, in the face of growing antibiotic resistance, it makes sense to keep high-performance synthetic antibiotics on hand to treat the difficult pathologies that require them. On the other hand, for minor infections, the use of better-tolerated natural sources is certainly sufficient. To achieve this, we need to take stock of common plant sources, available as food products or dietary supplements, which are known to be active in this field.
Collapse
Affiliation(s)
- Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR-CNRS 7311, BP 6759, Rue de Chartres, CEDEX 2, 45067 Orleans, France
| |
Collapse
|
4
|
Martian PC, Tertis M, Leonte D, Hadade N, Cristea C, Crisan O. Cyclic peptides: A powerful instrument for advancing biomedical nanotechnologies and drug development. J Pharm Biomed Anal 2025; 252:116488. [PMID: 39388867 DOI: 10.1016/j.jpba.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Cyclic peptides have emerged as an essential tool in the advancement of biomedical nanotechnologies, offering unique structural and functional advantages over linear peptides. This review article aims to highlight the roles of cyclic peptides in the development of biomedical fields, with a particular focus on their application in drug discovery and delivery. Cyclic peptides exhibit exceptional stability, bioavailability, and binding specificity, making them ideal candidates for therapeutic and diagnostic applications. We explore the synthesis and design strategies that enable the precise control of cyclic peptide structures, leading to enhanced performance in targeting specific cellular pathways. The article also highlights recent breakthroughs in the use of cyclic peptides for creating innovative drug delivery systems, including nanoparticle conjugates and peptide-drug conjugates, which have shown promise in improving the efficacy and safety profiles of existing traditional treatments. The integration of cyclic peptides into nanotechnological frameworks holds significant promise for addressing unmet medical needs, providing a foundation for future advancements in personalized medicine and targeted drug delivery.
Collapse
Affiliation(s)
- Paul Cristian Martian
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania
| | - Denisa Leonte
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| | - Niculina Hadade
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes Bolyai University, 11 Arany Janos Street, Cluj-Napoca 400028, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 4 Pasteur Street, Cluj-Napoca 400021, Romania.
| | - Ovidiu Crisan
- Department of Organic Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 28 Victor Babes Street, Cluj-Napoca 400023, Romania
| |
Collapse
|
5
|
Jakaria SM, Budil DE, Murtagh J, Revilla G. Strategies to Stabilize Dalbavancin in Aqueous Solutions; Section-2: The Effects of 2 Hydroxypropyl-β-Cyclodextrin and Acetate Buffer with and Without Divalent Metal Ions. Pharmaceutics 2024; 16:1503. [PMID: 39771484 PMCID: PMC11728744 DOI: 10.3390/pharmaceutics16121503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
Objectives: The effect of 2-hydroxpropyl-β-cyclodextrin (2HPβCD) with or without divalent metal ions (Ca2+, Mg2+, and Zn2+) on the stability of dalbavancin in acetate buffer was investigated. Methods: Dalbavancin recovery from formulations with 2HPβCD and divalent metal ions after four weeks of storage at 5 °C and 55 °C was measured by RP-HPLC and HP-SEC; a longer-term study was carried out over six months at 5 °C, 25 °C, and 40 °C. Binding of 2HPβCD was characterized by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR). Results: The stability of the dalbavancin formulations after 4 weeks at 55 °C in 10 mM acetate buffer was significantly improved with 0.6 mM, 5.5 mM, and 55 mM 2HPβCD relative to without 2HPβCD. No further improvement was observed with the addition of any of the divalent cations. Dalbavancin in a 1:10 molar ratio with 2HPβCD was more stable at a concentration of 1 mg/mL than at 20 mg/mL under accelerated conditions at 40 °C for six months. ITC revealed two 2HPβCD binding sites to dalbavancin in 10 mM acetate: one with a 1:1 stoichiometry and thermodynamics consistent with known cyclodextrin-drug interactions, and a second with 0.1:1 stoichiometry, a positive binding enthalpy, and an unusually large entropy of binding. NMR spectroscopy indicates that dalbavancin exhibits aggregation in acetate buffer that is disrupted by 2HPβCD binding. Conclusions: 2HPβCD significantly improves the short- and long-term heat stability of dalbavancin in pH 4.5 acetate buffer at and above molar ratios of 1:1. The strong 1:1 binding of 2HPβCD to dalbavancin demonstrated by ITC confirms that this stability is conferred by the formation of a stable complex. This observation, combined with the NMR results, points to the aliphatic hydrocarbon chain of the glycone moiety as the most likely site of 2HPβCD-dalbavancin interaction.
Collapse
Affiliation(s)
- Sardar M. Jakaria
- Hikma Pharmaceuticals, Bedford, OH 44146, USA;
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| | - David E. Budil
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| | | | - Graham Revilla
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| |
Collapse
|
6
|
Brdová D, Ruml T, Viktorová J. Mechanism of staphylococcal resistance to clinically relevant antibiotics. Drug Resist Updat 2024; 77:101147. [PMID: 39236354 DOI: 10.1016/j.drup.2024.101147] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Staphylococcus aureus, a notorious pathogen with versatile virulence, poses a significant challenge to current antibiotic treatments due to its ability to develop resistance mechanisms against a variety of clinically relevant antibiotics. In this comprehensive review, we carefully dissect the resistance mechanisms employed by S. aureus against various antibiotics commonly used in clinical settings. The article navigates through intricate molecular pathways, elucidating the mechanisms by which S. aureus evades the therapeutic efficacy of antibiotics, such as β-lactams, vancomycin, daptomycin, linezolid, etc. Each antibiotic is scrutinised for its mechanism of action, impact on bacterial physiology, and the corresponding resistance strategies adopted by S. aureus. By synthesising the knowledge surrounding these resistance mechanisms, this review aims to serve as a comprehensive resource that provides a foundation for the development of innovative therapeutic strategies and alternative treatments for S. aureus infections. Understanding the evolving landscape of antibiotic resistance is imperative for devising effective countermeasures in the battle against this formidable pathogen.
Collapse
Affiliation(s)
- Daniela Brdová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, Prague 16628, Czech Republic.
| |
Collapse
|
7
|
van Groesen E, Mons E, Kotsogianni I, Arts M, Tehrani KHME, Wade N, Lysenko V, Stel FM, Zwerus JT, De Benedetti S, Bakker A, Chakraborty P, van der Stelt M, Scheffers DJ, Gooskens J, Smits WK, Holden K, Gilmour PS, Willemse J, Hitchcock CA, van Hasselt JGC, Schneider T, Martin NI. Semisynthetic guanidino lipoglycopeptides with potent in vitro and in vivo antibacterial activity. Sci Transl Med 2024; 16:eabo4736. [PMID: 39110780 DOI: 10.1126/scitranslmed.abo4736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024]
Abstract
Gram-positive bacterial infections present a major clinical challenge, with methicillin- and vancomycin-resistant strains continuing to be a cause for concern. In recent years, semisynthetic vancomycin derivatives have been developed to overcome this problem as exemplified by the clinically used telavancin, which exhibits increased antibacterial potency but has also raised toxicity concerns. Thus, glycopeptide antibiotics with enhanced antibacterial activities and improved safety profiles are still necessary. We describe the development of a class of highly potent semisynthetic glycopeptide antibiotics, the guanidino lipoglycopeptides, which contain a positively charged guanidino moiety bearing a variable lipid group. These glycopeptides exhibited enhanced in vitro activity against a panel of Gram-positive bacteria including clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant strains, showed minimal toxicity toward eukaryotic cells, and had a low propensity for resistance selection. Mechanistically, guanidino lipoglycopeptides engaged with bacterial cell wall precursor lipid II with a higher binding affinity than vancomycin. Binding to both wild-type d-Ala-d-Ala lipid II and the vancomycin-resistant d-Ala-d-Lac variant was confirmed, providing insight into the enhanced activity of guanidino lipoglycopeptides against vancomycin-resistant isolates. The in vivo efficacy of guanidino lipoglycopeptide EVG7 was evaluated in a S. aureus murine thigh infection model and a 7-day sepsis survival study, both of which demonstrated superiority to vancomycin. Moreover, the minimal to mild kidney effects at supratherapeutic doses of EVG7 indicate an improved therapeutic safety profile compared with vancomycin. These findings position guanidino lipoglycopeptides as candidates for further development as antibacterial agents for the treatment of clinically relevant multidrug-resistant Gram-positive infections.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Elma Mons
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Ioli Kotsogianni
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Kamaleddin H M E Tehrani
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Nicola Wade
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Vladyslav Lysenko
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Florence M Stel
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Jordy T Zwerus
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Alexander Bakker
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Parichita Chakraborty
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Jairo Gooskens
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Wiep Klaas Smits
- Experimental Bacteriology, Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center, 2333 ZA Leiden, Netherlands
| | - Kirsty Holden
- Evotec (U.K.) Ltd., Alderley Park, Macclesfield, Cheshire, SK10 4TG UK
| | | | - Joost Willemse
- Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| | | | - J G Coen van Hasselt
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, 2300 RA Leiden, Netherlands
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53113 Bonn, Germany
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, Netherlands
| |
Collapse
|
8
|
Fait A, Silva SF, Abrahamsson JÅH, Ingmer H. Staphylococcus aureus response and adaptation to vancomycin. Adv Microb Physiol 2024; 85:201-258. [PMID: 39059821 DOI: 10.1016/bs.ampbs.2024.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Antibiotic resistance is an increasing challenge for the human pathogen Staphylococcus aureus. Methicillin-resistant S. aureus (MRSA) clones have spread globally, and a growing number display decreased susceptibility to vancomycin, the favoured antibiotic for treatment of MRSA infections. These vancomycin-intermediate S. aureus (VISA) or heterogeneous vancomycin-intermediate S. aureus (hVISA) strains arise from accumulation of a variety of point mutations, leading to cell wall thickening and reduced vancomycin binding to the cell wall building block, Lipid II, at the septum. They display only minor changes in vancomycin susceptibility, with varying tolerance between cells in a population, and therefore, they can be difficult to detect. In this review, we summarize current knowledge of VISA and hVISA. We discuss the role of genetic strain background or epistasis for VISA development and the possibility of strains being 'transient' VISA with gene expression changes mediated by, for example, VraTSR, GraXSR, or WalRK signal transduction systems, leading to temporary vancomycin tolerance. Additionally, we address collateral susceptibility to other antibiotics than vancomycin. Specifically, we estimate how mutations in rpoB, encoding the β-subunit of the RNA polymerase, affect overall protein structure and compare changes with rifampicin resistance. Ultimately, such in-depth analysis of VISA and hVISA strains in terms of genetic and transcriptional changes, as well as changes in protein structures, may pave the way for improved detection and guide antibiotic therapy by revealing strains at risk of VISA development. Such tools will be valuable for keeping vancomycin an asset also in the future.
Collapse
Affiliation(s)
- Anaëlle Fait
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark; Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Stephanie Fulaz Silva
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
9
|
Luo Y, Su L, Yang H, Geng A, Bai S, Zhou J. A disulfide molecule-vancomycin nanodrug delivery system efficiently eradicates intracellular bacteria. J Mater Chem B 2024; 12:2334-2345. [PMID: 38327236 DOI: 10.1039/d3tb02430j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Intracellular bacteria often lead to chronic and recurrent infections; however, most of the known antibiotics have poor efficacy against intracellular bacteria due to their poor cell membrane penetration efficiency into the cytosol. Here, a thiol-mediated nanodrug delivery system, named Van-DM NPs, was developed to improve vancomycin's penetration efficiency and intracellular antibacterial activities. Van-DM NPs were prepared through self-assembly of vancomycin (Van) and the disulfide molecule (DM) in NaOH buffer solution. On the one hand, the disulfide exchange reaction between Van-DM NPs and the bacterial surface enhances vancomycin accumulation in bacteria, increasing the local concentration of vancomycin. On the other hand, the disulfide exchange reaction between Van-DM NPs and the mammalian cell membrane triggered the translocation of Van-DM NPs across the mammalian cell membrane into the cell cytosol. These dual mechanisms promote antibacterial activities of vancomycin against both extracellular and intracellular bacteria S. aureus. Furthermore, in an intravenous S. aureus infection mouse model, Van-DM NPs exhibited high antibacterial capability and efficiently reduced the bacterial load in liver and spleen, where intracellular bacteria tend to reside. Altogether, the reported Van-DM NPs would be highly promising against intracellular pathogenic infections.
Collapse
Affiliation(s)
- Yuting Luo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Liu Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Hui Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Aizhen Geng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Jie Zhou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- China Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
10
|
Douglas EJ, Laabei M. Staph wars: the antibiotic pipeline strikes back. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001387. [PMID: 37656158 PMCID: PMC10569064 DOI: 10.1099/mic.0.001387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Antibiotic chemotherapy is widely regarded as one of the most significant medical advancements in history. However, the continued misuse of antibiotics has contributed to the rapid rise of antimicrobial resistance (AMR) globally. Staphylococcus aureus, a major human pathogen, has become synonymous with multidrug resistance and is a leading antimicrobial-resistant pathogen causing significant morbidity and mortality worldwide. This review focuses on (1) the targets of current anti-staphylococcal antibiotics and the specific mechanisms that confirm resistance; (2) an in-depth analysis of recently licensed antibiotics approved for the treatment of S. aureus infections; and (3) an examination of the pre-clinical pipeline of anti-staphylococcal compounds. In addition, we examine the molecular mechanism of action of novel antimicrobials and derivatives of existing classes of antibiotics, collate data on the emergence of resistance to new compounds and provide an overview of key data from clinical trials evaluating anti-staphylococcal compounds. We present several successful cases in the development of alternative forms of existing antibiotics that have activity against multidrug-resistant S. aureus. Pre-clinical antimicrobials show promise, but more focus and funding are required to develop novel classes of compounds that can curtail the spread of and sustainably control antimicrobial-resistant S. aureus infections.
Collapse
Affiliation(s)
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
11
|
Jakaria SM, Budil DE, Murtagh J. Strategies To Stabilize Dalbavancin in Aqueous Solutions; Section 3: The Effects of 2 Hydroxypropyl-β-Cyclodextrin and Phosphate Buffer with and without Divalent Metal Ions. Pharm Res 2023; 40:2027-2037. [PMID: 37118348 DOI: 10.1007/s11095-023-03525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
PURPOSE New formulations of the glycopeptide drug dalbavancin containing 2-hydroxpropyl-β-cyclodextrin (2HPβCD) with or without divalent metal ions in phosphate buffer (pH 7.0) were tested to evaluate whether these excipients influence the aqueous solution stability of dalbavancin. METHOD Recovery of dalbavancin from phosphate buffered solutions at pH 7.0 with different concentrations of 2HPβCD and a divalent metal ion (Ca2+, Mg2+, or Zn2+) was evaluated by RP-HPLC and HP-SEC after four weeks of storage at 5°C and 55°C. A long-term study of formulations with 2HPβCD and Mg2+ was carried out over six months at 5°C, 25°C, and 40°C using RP-HPLC. RESULTS Dalbavancin solutions with either 5.5 mM or 55 mM 2HPβCD were significantly more stable with Mg2+ than with the other divalent metal ions, both at 55°C for four weeks and at 40°C for six months. Dalbavancin was found to be more stable in aqueous solutions at a concentration of 1 mg/mL than at 20 mg/mL with 2HPβCD and Mg2+ at 40°C for six months. CONCLUSION The results suggest that 2HPβCD forms an inclusion complex with dalbavancin that slows the formation of the major degradant, mannosyl aglycone (MAG). The effect of 2HPβCD is increased in the presence of Mg2+ and phosphate at pH 7.0, and the complex is more stable at a dalbavancin concentration of 1 mg/mL than at 20 mg/mL. These observations point towards the possibility of formulating a dalbavancin injection solution with a long shelf life at room temperature and physiological pH.
Collapse
Affiliation(s)
- Sardar M Jakaria
- Hikma Pharmaceuticals, Bedford, OH-44146, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA-02115, USA.
| | - David E Budil
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA-02115, USA
| | | |
Collapse
|
12
|
Chun T, Pattem J, Gillis RB, Dinu VT, Yakubov GE, Corfield AP, Harding SE. Comparative hydrodynamic and nanoscale imaging study on the interactions of teicoplanin-A2 and bovine submaxillary mucin as a model ocular mucin. Sci Rep 2023; 13:11367. [PMID: 37443326 PMCID: PMC10344913 DOI: 10.1038/s41598-023-38036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Glycopeptide antibiotics are regularly used in ophthalmology to treat infections of Gram-positive bacteria. Aggregative interactions of antibiotics with mucins however can lead to long exposure and increases the risk of resistant species. This study focuses on the evaluation of potential interactions of the last line of defence glycopeptide antibiotic teicoplanin with an ocular mucin model using precision matrix free hydrodynamic and microscopic techniques: sedimentation velocity in the analytical ultracentrifuge (SV-AUC), dynamic light scattering (DLS) and atomic force microscopy (AFM). For the mixtures of teicoplanin at higher doses (1.25 mg/mL and 12.5 mg/mL), it was shown to interact and aggregate with bovine submaxillary mucin (BSM) in the distributions of both sedimentation coefficients by SV-AUC and hydrodynamic radii by DLS. The presence of aggregates was confirmed by AFM for higher concentrations. We suggest that teicoplanin eye drop formulations should be delivered at concentrations of < 1.25 mg/mL to avoid potentially harmful aggregations.
Collapse
Affiliation(s)
- Taewoo Chun
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Jacob Pattem
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, LE12 5RD, UK
- Soft Matter Biomaterials and Biointerfaces, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Richard B Gillis
- College of Business, Technology and Engineering, Food and Nutrition Group, Sheffield Hallam University, Arundel Gate, Sheffield, S1 1WB, UK
| | - Vlad T Dinu
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Gleb E Yakubov
- Soft Matter Biomaterials and Biointerfaces, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Anthony P Corfield
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
13
|
Jakaria SM, Budil DE, Murtagh J. A Systematic Degradation Kinetics Study of Dalbavancin Hydrochloride Injection Solutions. J Pharm Sci 2023; 112:1872-1887. [PMID: 36780988 DOI: 10.1016/j.xphs.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
The degradation kinetics of the glycopeptide antibiotic dalbavancin in solution are systematically evaluated over the pH range 1-12 at 70°C. The decomposition rate of dalbavancin was measured as a function of pH, buffer composition, temperature, ionic strength, and drug concentration. A pH-rate profile was constructed using pseudo first-order kinetics at 70°C after correcting for buffer effects; the observed pH-rate profile could be fitted with standard pseudo first order rate laws. The degradation reactions of dalbavancin were found to be strongly dependent on pH and were catalyzed by protons or hydroxyl groups at extreme pH values. Dalbavancin shows maximum stability in the pH region 4-5. Based on the Arrhenius equation, dalbavancin solution at pH 4.5 is predicted to have a maximum stability of thirteen years under refrigerated conditions, eight months at room temperature and one month at 40°C. Mannosyl Aglycone (MAG), the major thermal and acid degradation product, and DB-R6, an additional acid degradation product, were formed in dalbavancin solutions at 70°C due to hydrolytic cleavage at the anomeric carbons of the sugars. Through deamination and hydrolytic cleavage of dalbavancin, a small amount of DB-Iso-DP2 (RRT-1.22) degradation product was also formed under thermal stress at 70°C. A greater amount of the base degradation product DB-R2 forms under basic conditions at 70°C due to epimerization of the alpha carbon of phenylglycine residue 3.
Collapse
Affiliation(s)
- Sardar M Jakaria
- Hikma Pharmaceuticals, Bedford, OH 44146, USA; Ph.D. Graduate, Dept. of Chemistry and Chemical Biology, Northeastern University, Boston MA 02115, USA.
| | - David E Budil
- Dept. of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Guan D, Chen F, Shi W, Lan L, Huang W. Single Modification at the N-Terminus of Norvancomycin to Combat Drug-Resistant Gram-Positive Bacteria. ChemMedChem 2023; 18:e202200708. [PMID: 36823383 DOI: 10.1002/cmdc.202200708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
In the arsenal of glycopeptide antibiotics, norvancomycin, which differs from vancomycin by a single methyl group, has received much less attention. Facing the risks of serious antibiotic resistance and even the collapse of last-line defenses, we designed and synthesized 40 novel norvancomycin derivatives to combat the threat. 32 compounds are single N-terminally modified derivatives generated through simple and efficient methods. Diversity at the N-terminus was greatly enriched, mainly by lipophilic attachment and strategies for the introduction of lipo-sulfonium moieties for extensive structure-activity relationship analysis. The first incorporation of a sulfonium moiety into the norvancomycin structure gave rise to compounds that exhibited 4- to 2048-fold higher activity against vancomycin-resistant bacteria VISA and VRE. This N-terminal modification for norvancomycin provides an alternatively useful and promising strategy to restore the antibacterial activity of glycopeptide antibiotics against resistant bacteria, highlighting the same importance of the N-terminal site as well as the vancosamine position, which is worth further study and development.
Collapse
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yanta, Shandong, 264117, P. R. China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| |
Collapse
|
15
|
Bereczki I, Vimberg V, Lőrincz E, Papp H, Nagy L, Kéki S, Batta G, Mitrović A, Kos J, Zsigmond Á, Hajdú I, Lőrincz Z, Bajusz D, Petri L, Hodek J, Jakab F, Keserű GM, Weber J, Naesens L, Herczegh P, Borbás A. Semisynthetic teicoplanin derivatives with dual antimicrobial activity against SARS-CoV-2 and multiresistant bacteria. Sci Rep 2022; 12:16001. [PMID: 36163239 PMCID: PMC9511441 DOI: 10.1038/s41598-022-20182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/08/2022] [Indexed: 11/09/2022] Open
Abstract
Patients infected with SARS-CoV-2 risk co-infection with Gram-positive bacteria, which severely affects their prognosis. Antimicrobial drugs with dual antiviral and antibacterial activity would be very useful in this setting. Although glycopeptide antibiotics are well-known as strong antibacterial drugs, some of them are also active against RNA viruses like SARS-CoV-2. It has been shown that the antiviral and antibacterial efficacy can be enhanced by synthetic modifications. We here report the synthesis and biological evaluation of seven derivatives of teicoplanin bearing hydrophobic or superbasic side chain. All but one teicoplanin derivatives were effective in inhibiting SARS-CoV-2 replication in VeroE6 cells. One lipophilic and three perfluoroalkyl conjugates showed activity against SARS-CoV-2 in human Calu-3 cells and against HCoV-229E, an endemic human coronavirus, in HEL cells. Pseudovirus entry and enzyme inhibition assays established that the teicoplanin derivatives efficiently prevent the cathepsin-mediated endosomal entry of SARS-CoV-2, with some compounds inhibiting also the TMPRSS2-mediated surface entry route. The teicoplanin derivatives showed good to excellent activity against Gram-positive bacteria resistant to all approved glycopeptide antibiotics, due to their ability to dually bind to the bacterial membrane and cell-wall. To conclude, we identified three perfluoralkyl and one monoguanidine analog of teicoplanin as dual inhibitors of Gram-positive bacteria and SARS-CoV-2.
Collapse
Affiliation(s)
- Ilona Bereczki
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary.,National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary
| | - Vladimir Vimberg
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology, Academy of Sciences of the Czech Republic, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Eszter Lőrincz
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary.,Institute of Healthcare Industry, University of Debrecen, Debrecen, Nagyerdei körút 98, 4032, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary
| | - Henrietta Papp
- National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.,Faculty of Sciences, Institute of Biology, University of Pécs, Pecs, Ifjúság útja 6, 7624, Hungary
| | - Lajos Nagy
- Department of Applied Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Sándor Kéki
- Department of Applied Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, Debrecen, 4032, Hungary
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Áron Zsigmond
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - István Hajdú
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - Zsolt Lőrincz
- TargetEx Ltd., Dunakeszi, Madách Imre utca 31/2, 2120, Hungary
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary
| | - László Petri
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic
| | - Ferenc Jakab
- National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.,Faculty of Sciences, Institute of Biology, University of Pécs, Pecs, Ifjúság útja 6, 7624, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Magyar tudósok krt. 2, 1117, Hungary.
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000, Prague 6, Czech Republic
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium.
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary. .,National Laboratory of Virology, University of Pécs, Pecs, Ifjúság útja 20, 7624, Hungary.
| |
Collapse
|
16
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
17
|
Revisiting the Role of VraTSR in
Staphylococcus aureus
Response to Cell Wall-Targeting Antibiotics. J Bacteriol 2022; 204:e0016222. [PMID: 35862765 PMCID: PMC9380581 DOI: 10.1128/jb.00162-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exposure of Staphylococcus aureus to cell wall inhibitors leads to the activation of the VraTSR three-component sensory regulatory system. This system is composed of VraS, a membrane histidine kinase; VraR, its cognate response regulator, and VraT, a protein required for the full activity of VraTSR. The exact function of VraT remains mostly uncharacterized, although it has been proposed to detect the unknown stimulus sensed by the VraTSR system. Here, we elucidate the topology of VraT, showing that its C-terminal domain is extracellular. We also demonstrate that the signal sensed by VraTSR is not an intermediate in the peptidoglycan synthesis pathway, as previously suggested. Instead, the specific inhibition of the penicillin-binding protein (PBP)2 leads to strong activation of the system. IMPORTANCE The Gram-positive bacterial pathogen Staphylococcus aureus is currently the second most frequent cause of global deaths associated with antibiotic resistance. Its response to cell wall-targeting antibiotics requires the VraTSR three-component system, which senses cell wall damage. Here, we show that the signal sensed by VraTSR is not an intermediate in the peptidoglycan synthesis pathway, as previously suggested. Instead, the specific inhibition of the penicillin-binding protein (PBP)2, the major peptidoglycan synthase in S. aureus, leads to strong activation of the system. Identifying the exact cell wall damage signal is key to fully understanding the response of S. aureus to cell wall-targeting antibiotics.
Collapse
|
18
|
Olademehin OP, Shuford KL, Kim SJ. Molecular dynamics simulations of the secondary-binding site in disaccharide-modified glycopeptide antibiotics. Sci Rep 2022; 12:7087. [PMID: 35490171 PMCID: PMC9056522 DOI: 10.1038/s41598-022-10735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Oritavancin is a semisynthetic glycopeptide antibiotic used to treat severe infections by multidrug-resistant Gram-positive pathogens. Oritavancin is known to be a thousand times more potent than vancomycin against Gram-positive bacteria due to the additional interactions with bacterial peptidoglycan (PG) facilitated by a secondary-binding site. The presence of this secondary-binding site is evident in desleucyl-oritavancin, an Edman degradation product of oritavancin, still retaining its potency against Gram-positive bacteria, whereas desleucyl-vancomycin is devoid of any antimicrobial activities. Herein, using explicit solvent molecular dynamics (MD) simulations, steered MD simulations, and umbrella sampling, we show evidence of a secondary-binding site mediated by the disaccharide-modified hydrophobic sidechain of oritavancin interactions with the pentaglycyl-bridge segment of the PG. The interactions were characterized through comparison to the interaction of PG with chloroeremomycin, vancomycin, and the desleucyl analogs of the glycopeptides. Our results show that the enhanced binding of oritavancin to PG over the binding of the other complexes studied is due to an increase in the hydrophobic effect, electrostatic and van der Waals interactions, and not the average number of hydrogen bonds. Our ranking of the binding interactions of the biomolecular complexes directly correlates with the order based on their experimental minimum inhibitory concentrations. The results of our simulations provide insight into the modification of glycopeptides to increase their antimicrobial activities or the design of novel antibiotics against pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
| | - Kevin L Shuford
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA.
| | - Sung J Kim
- Department of Chemistry, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
19
|
Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Tony Zhou Q, Chan HK, Feng M, Li J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 2022; 183:114171. [PMID: 35189264 PMCID: PMC10019944 DOI: 10.1016/j.addr.2022.114171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia.
| |
Collapse
|
20
|
Yushchuk O, Zhukrovska K, Berini F, Fedorenko V, Marinelli F. Genetics Behind the Glycosylation Patterns in the Biosynthesis of Dalbaheptides. Front Chem 2022; 10:858708. [PMID: 35402387 PMCID: PMC8987122 DOI: 10.3389/fchem.2022.858708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Glycopeptide antibiotics are valuable natural metabolites endowed with different pharmacological properties, among them are dalbaheptides used to treat different infections caused by multidrug-resistant Gram-positive pathogens. Dalbaheptides are produced by soil-dwelling high G-C Gram-positive actinobacteria. Their biosynthetic pathways are encoded within large biosynthetic gene clusters. A non-ribosomally synthesized heptapeptide aglycone is the common scaffold for all dalbaheptides. Different enzymatic tailoring steps, including glycosylation, are further involved in decorating it. Glycosylation of dalbaheptides is a crucial step, conferring them specific biological activities. It is achieved by a plethora of glycosyltransferases, encoded within the corresponding biosynthetic gene clusters, able to install different sugar residues. These sugars might originate from the primary metabolism, or, alternatively, their biosynthesis might be encoded within the biosynthetic gene clusters. Already installed monosaccharides might be further enzymatically modified or work as substrates for additional glycosylation. In the current minireview, we cover recent updates concerning the genetics and enzymology behind the glycosylation of dalbaheptides, building a detailed and consecutive picture of this process and of its biological evolution. A thorough understanding of how glycosyltransferases function in dalbaheptide biosynthesis might open new ways to use them in chemo-enzymatic synthesis and/or in combinatorial biosynthesis for building novel glycosylated antibiotics.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Kseniia Zhukrovska
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- *Correspondence: Flavia Marinelli,
| |
Collapse
|
21
|
Modak B, Girkar S, Narayan R, Kapoor S. Mycobacterial Membranes as Actionable Targets for Lipid-Centric Therapy in Tuberculosis. J Med Chem 2022; 65:3046-3065. [PMID: 35133820 DOI: 10.1021/acs.jmedchem.1c01870] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infectious diseases remain significant health concerns worldwide, and resistance is particularly common in patients with tuberculosis caused by Mycobacterium tuberculosis. The development of anti-infectives with novel modes of action may help overcome resistance. In this regard, membrane-active agents, which modulate membrane components essential for the survival of pathogens, present attractive antimicrobial agents. Key advantages of membrane-active compounds include their ability to target slow-growing or dormant bacteria and their favorable pharmacokinetics. Here, we comprehensively review recent advances in the development of membrane-active chemotypes that target mycobacterial membranes and discuss clinically relevant membrane-active antibacterial agents that have shown promise in counteracting bacterial infections. We discuss the relationship between the membrane properties and the synthetic requirements within the chemical scaffold, as well as the limitations of current membrane-active chemotypes. This review will lay the chemical groundwork for the development of membrane-active antituberculosis agents and will foster the discovery of more effective antitubercular agents.
Collapse
Affiliation(s)
- Biswabrata Modak
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Siddhali Girkar
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa 403110, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa 403110, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.,Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
22
|
Jakaria SM, Budil DE, Murtagh J. Glycopeptide antibiotic drug stability in aqueous solution. AAPS OPEN 2022; 8:20. [PMCID: PMC9742044 DOI: 10.1186/s41120-022-00067-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Glycopeptide antimicrobials are a class of naturally occurring or semi-synthetic glycosylated products that have shown antibacterial activity against gram-positive organisms by inhibiting cell-wall synthesis. In most cases, these drugs are prepared in dry powder (lyophilized) form due to chemical and physical instability in aqueous solution; however, from an economic and practical point of view, liquid formulations are preferred. Researchers have recently found ways to formulate some glycopeptide antibiotic therapeutic drugs in aqueous solution at refrigerated or room temperature. Chemical degradation can be significantly slowed by formulating them at a defined pH with specific buffers, avoiding oxygen reactive species, and minimizing solvent exposure. Sugars, amino acids, polyols, and surfactants can reduce physical degradation by restricting glycopeptide mobility and reducing solvent interaction. This review focuses on recent studies on glycopeptide antibiotic drug stability in aqueous solution. It is organized into three sections: (i) glycopeptide antibiotic instability due to chemical and physical degradation, (ii) strategies to improve glycopeptide antibiotic stability in aqueous solution, and (iii) a survey of glycopeptide antibiotic drugs currently available in the market and their stability based on published literature and patents. Antimicrobial resistance deaths are expected to increase by 2050, making heat-stable glycopeptides in aqueous solution an important treatment option for multidrug-resistant and extensively drug-resistant pathogens. In conclusion, it should be possible to formulate heat stable glycopeptide drugs in aqueous solution by understanding the degradation mechanisms of this class of therapeutic drugs in greater detail, making them easily accessible to developing countries with a lack of cold chains.
Collapse
Affiliation(s)
- Sardar M. Jakaria
- Hikma Pharmaceuticals, Bedford, OH 44146 USA ,grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, MA 02115 Boston, USA
| | - David E. Budil
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, MA 02115 Boston, USA
| | | |
Collapse
|
23
|
Vimberg V, Buriánková K, Mazumdar A, Branny P, Novotná GB. Role of membrane proteins in bacterial resistance to antimicrobial peptides. Med Res Rev 2021; 42:1023-1036. [PMID: 34796517 DOI: 10.1002/med.21869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/19/2021] [Accepted: 10/21/2021] [Indexed: 11/07/2022]
Abstract
Several natural antimicrobial peptides (AMPs), including the novel semisynthetic lipoglycopeptide antibiotics telavancin, dalbavancin, and oritavancin, have been approved for clinical use to address the growing problem of multiple antibiotic-resistant Gram-positive bacterial infections. Nevertheless, the efficacy of these antibiotics has already been compromised. The SARS-CoV-2 pandemic led to the increased clinical use of all antibiotics, further promoting the development of bacterial resistance. Therefore, it is critical to gain a deeper understanding of the role of resistance mechanisms to minimize the consequential risks of long-term antibiotic use and misuse. Here, we summarize for the first time the current knowledge of resistance mechanisms that have been shown to cause resistance to clinically used AMPs, with particular focus on membrane proteins that have been reported to interfere with the activity of AMPs by affecting the binding of AMPs to bacteria.
Collapse
Affiliation(s)
- Vladimir Vimberg
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Karolína Buriánková
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Aninda Mazumdar
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pavel Branny
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Gabriela B Novotná
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
24
|
Two Novel Semisynthetic Lipoglycopeptides Active against Staphylococcus aureus Biofilms and Cells in Late Stationary Growth Phase. Pharmaceuticals (Basel) 2021; 14:ph14111182. [PMID: 34832964 PMCID: PMC8619453 DOI: 10.3390/ph14111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/06/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
The increase in antibiotic resistance among Gram-positive bacteria underscores the urgent need to develop new antibiotics. New antibiotics should target actively growing susceptible bacteria that are resistant to clinically accepted antibiotics including bacteria that are not growing or are protected in a biofilm environment. In this paper, we compare the in vitro activities of two new semisynthetic glycopeptide antibiotics, MA79 and ERJ390, with two clinically used glycopeptide antibiotics-vancomycin and teicoplanin. The new antibiotics effectively killed not only exponentially growing cells of Staphylococcus aureus, but also cells in the stationary growth phase and biofilm.
Collapse
|
25
|
Rashid M, Rabbi MA, Ara T, Hossain MM, Islam MS, Elaissari A, Ahmad H, Rahman MM. Vancomycin conjugated iron oxide nanoparticles for magnetic targeting and efficient capture of Gram-positive and Gram-negative bacteria. RSC Adv 2021; 11:36319-36328. [PMID: 35492746 PMCID: PMC9043335 DOI: 10.1039/d1ra04390k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
Drug conjugated iron oxide magnetite (Fe3O4) nanoparticles are of great interest in the field of biomedicine. In this study, vancomycin (Van) conjugated magnetite (Fe3O4) nanoparticles were envisioned to capture and inhibit the growth of bacteria. Hydrophobic Fe3O4 nanoparticles were synthesized by using co-precipitation of ferrous (Fe2+) and ferric (Fe3+) ions following a surface modification step with oleic acid as stabilizers. Thereafter, a ligand exchange technique was employed to displace oleic acid with hydrophilic dopamine (DOPA) molecules which have a catechol group for anchoring to the iron oxide surface to prepare water dispersible nanoparticles. The surface of the resulting Fe3O4/DOPA nanoparticles contains amino (-NH2) groups that are conjugated with vancomycin via a coupling reaction between the -NH2 group of dopamine and the -COOH group of vancomycin. The prepared vancomycin conjugated Fe3O4/DOPA nanoparticles were named Fe3O4/DOPA/Van and exhibited a magnetic response to an external magnetic field due to the presence of magnetite Fe3O4 in the core. The Fe3O4/DOPA/Van nanoparticles showed bactericidal activity against both Gram positive Bacillus subtilis (B. subtilis) and Streptococcus and Gram-negative bacteria Escherichia coli (E. coli). Maximum inhibition zones of 22 mm, 19 mm and 18 mm were found against B. subtilis, Streptococcus and E. coli respectively. Most importantly, the vancomycin conjugated nanoparticles were effectively bound to the cell wall of the bacteria, promoting bacterial separation and growth inhibition. Therefore, the prepared Fe3O4/DOPA/Van nanoparticles can be promising for effective bacterial separation and killing in the dispersion media.
Collapse
Affiliation(s)
- Mehnaz Rashid
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Md Ahasanur Rabbi
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Tabassum Ara
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Md Motahar Hossain
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Md Shahidul Islam
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Abdelhamid Elaissari
- Université Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280 Lyon F-69622 France
| | - Hasan Ahmad
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| | - Md Mahbubor Rahman
- Polymer Colloids & Nanomaterials (PCN) Group, Department of Chemistry, Faculty of Science, University of Rajshahi Rajshahi 6205 Bangladesh
| |
Collapse
|
26
|
van Groesen E, Slingerland CJ, Innocenti P, Mihajlovic M, Masereeuw R, Martin NI. Vancomyxins: Vancomycin-Polymyxin Nonapeptide Conjugates That Retain Anti-Gram-Positive Activity with Enhanced Potency against Gram-Negative Strains. ACS Infect Dis 2021; 7:2746-2754. [PMID: 34387988 PMCID: PMC8438664 DOI: 10.1021/acsinfecdis.1c00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Vancomycin functions
by binding to lipid II, the penultimate bacterial
cell wall building block used by both Gram-positive and Gram-negative
species. However, vancomycin is generally only able to exert its antimicrobial
effect against Gram-positive strains as it cannot pass the outer membrane
(OM) of Gram-negative bacteria. To address this challenge, we here
describe efforts to conjugate vancomycin to the OM disrupting polymyxin
E nonapeptide (PMEN) to yield the hybrid “vancomyxins”.
In designing these hybrid antibiotics, different spacers and conjugation
sites were explored for connecting vancomycin and PMEN. The vancomyxins
show improved activity against Gram-negative strains compared with
the activity of vancomycin or vancomycin supplemented with PMEN separately.
In addition, the vancomyxins maintain the antimicrobial effect of
vancomycin against Gram-positive strains and, in some cases, show
enhanced activity against vancomycin-resistant strains. The hybrid
antibiotics described here have reduced nephrotoxicity when compared
with clinically used polymyxin antibiotics. This study demonstrates
that covalent conjugation to an OM disruptor contributes to sensitizing
Gram-negative strains to vancomycin while retaining anti-Gram-positive
activity.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Cornelis J. Slingerland
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
27
|
Izsépi L, Erdei R, Tevyashova AN, Grammatikova NE, Shchekotikhin AE, Herczegh P, Batta G. Bacterial Cell Wall Analogue Peptides Control the Oligomeric States and Activity of the Glycopeptide Antibiotic Eremomycin: Solution NMR and Antimicrobial Studies. Pharmaceuticals (Basel) 2021; 14:ph14020083. [PMID: 33499349 PMCID: PMC7911593 DOI: 10.3390/ph14020083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
For some time, glycopeptide antibiotics have been considered the last line of defense against Methicillin-resistant Staphylococcus aureus (MRSA). However, vancomycin resistance of Gram-positive bacteria is an increasingly emerging worldwide health problem. The mode of action of glycopeptide antibiotics is essentially the binding of peptidoglycan cell-wall fragments terminating in the d-Ala-d-Ala sequence to the carboxylate anion binding pocket of the antibiotic. Dimerization of these antibiotics in aqueous solution was shown to persist and even to enhance the antibacterial effect in a co-operative manner. Some works based on solid state (ss) Nuclear Magnetic Resonance (NMR) studies questioned the presence of dimers under the conditions of ssNMR while in a few cases, higher-order oligomers associated with contiguous back-to-back and face-to-face dimers were observed in the crystal phase. However, it is not proved if such oligomers persist in aqueous solutions. With the aid of 15N-labelled eremomycin using 15N relaxation and diffusion NMR methods, we observed tetramers and octamers when the N-Ac-d-Ala-d-Ala dipeptide was added. To the contrary, the N-Ac-d-Ala or (N-Ac)2-l-Lys-d-Ala-d-Ala tripeptide did not induce higher-order oligomers. These observations are interesting examples of tailored supramolecular self-organization. New antimicrobial tests have also been carried out with these self-assemblies against MRSA and VRE (resistant) strains.
Collapse
Affiliation(s)
- László Izsépi
- Doctoral School of Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary;
- Department of Organic Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary;
| | - Réka Erdei
- Department of Organic Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary;
| | - Anna N. Tevyashova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, 119021 Moscow, Russia; (A.N.T.); (N.E.G.); (A.E.S.)
| | - Natalia E. Grammatikova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, 119021 Moscow, Russia; (A.N.T.); (N.E.G.); (A.E.S.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya, 119021 Moscow, Russia; (A.N.T.); (N.E.G.); (A.E.S.)
| | - Pál Herczegh
- Department of Pharmaceutical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary;
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary;
- Correspondence:
| |
Collapse
|
28
|
Potent in vitro and in vivo antimicrobial activity of semisynthetic amphiphilic γ-mangostin derivative LS02 against Gram-positive bacteria with destructive effect on bacterial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183353. [DOI: 10.1016/j.bbamem.2020.183353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/02/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
|
29
|
Vimberg V, Zieglerová L, Buriánková K, Branny P, Balíková Novotná G. VanZ Reduces the Binding of Lipoglycopeptide Antibiotics to Staphylococcus aureus and Streptococcus pneumoniae Cells. Front Microbiol 2020; 11:566. [PMID: 32318043 PMCID: PMC7146870 DOI: 10.3389/fmicb.2020.00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/16/2020] [Indexed: 11/30/2022] Open
Abstract
vanZ, a member of the VanA glycopeptide resistance gene cluster, confers resistance to lipoglycopeptide antibiotics independent of cell wall precursor modification by the vanHAX genes. Orthologs of vanZ are present in the genomes of many clinically relevant bacteria, including Enterococcus faecium and Streptococcus pneumoniae; however, vanZ genes are absent in Staphylococcus aureus. Here, we show that the expression of enterococcal vanZ paralogs in S. aureus increases the minimal inhibitory concentrations of lipoglycopeptide antibiotics teicoplanin, dalbavancin, oritavancin and new teicoplanin pseudoaglycone derivatives. The reduction in the binding of fluorescently labeled teicoplanin to the cells suggests the mechanism of VanZ-mediated resistance. In addition, using a genomic vanZ gene knockout mutant of S. pneumoniae, we have shown that the ability of VanZ proteins to compromise the activity of lipoglycopeptide antibiotics by reducing their binding is a more general feature of VanZ-superfamily proteins.
Collapse
Affiliation(s)
- Vladimir Vimberg
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Leona Zieglerová
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Karolína Buriánková
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pavel Branny
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Gabriela Balíková Novotná
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
30
|
Lockey C, Edwards RJ, Roper DI, Dixon AM. The Extracellular Domain of Two-component System Sensor Kinase VanS from Streptomyces coelicolor Binds Vancomycin at a Newly Identified Binding Site. Sci Rep 2020; 10:5727. [PMID: 32235931 PMCID: PMC7109055 DOI: 10.1038/s41598-020-62557-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/11/2020] [Indexed: 11/24/2022] Open
Abstract
The glycopeptide antibiotic vancomycin has been widely used to treat infections of Gram-positive bacteria including Clostridium difficile and methicillin-resistant Staphylococcus aureus. However, since its introduction, high level vancomycin resistance has emerged. The genes responsible require the action of the two-component regulatory system VanSR to induce expression of resistance genes. The mechanism of detection of vancomycin by this two-component system has yet to be elucidated. Diverging evidence in the literature supports activation models in which the VanS protein binds either vancomycin, or Lipid II, to induce resistance. Here we investigated the interaction between vancomycin and VanS from Streptomyces coelicolor (VanSSC), a model Actinomycete. We demonstrate a direct interaction between vancomycin and purified VanSSC, and traced these interactions to the extracellular region of the protein, which we reveal adopts a predominantly α-helical conformation. The VanSSC-binding epitope within vancomycin was mapped to the N-terminus of the peptide chain, distinct from the binding site for Lipid II. In targeting a separate site on vancomycin, the effective VanS ligand concentration includes both free and lipid-bound molecules, facilitating VanS activation. This is the first molecular description of the VanS binding site within vancomycin, and could direct engineering of future therapeutics.
Collapse
Affiliation(s)
- Christine Lockey
- MOAC Doctoral Training Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard J Edwards
- Medical Research Council Doctoral Training Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
31
|
Minimal exposure of lipid II cycle intermediates triggers cell wall antibiotic resistance. Nat Commun 2019; 10:2733. [PMID: 31227716 PMCID: PMC6588590 DOI: 10.1038/s41467-019-10673-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023] Open
Abstract
Cell wall antibiotics are crucial for combatting the emerging wave of resistant bacteria. Yet, our understanding of antibiotic action is limited, as many strains devoid of all resistance determinants display far higher antibiotic tolerance in vivo than suggested by the antibiotic-target binding affinity in vitro. To resolve this conflict, here we develop a comprehensive theory for the bacterial cell wall biosynthetic pathway and study its perturbation by antibiotics. We find that the closed-loop architecture of the lipid II cycle of wall biosynthesis features a highly asymmetric distribution of pathway intermediates, and show that antibiotic tolerance scales inversely with the abundance of the targeted pathway intermediate. We formalize this principle of minimal target exposure as intrinsic resistance mechanism and predict how cooperative drug-target interactions can mitigate resistance. The theory accurately predicts the in vivo efficacy for various cell wall antibiotics in different Gram-positive bacteria and contributes to a systems-level understanding of antibiotic action.
Collapse
|
32
|
Alt S, Bernasconi A, Sosio M, Brunati C, Donadio S, Maffioli SI. Toward Single-Peak Dalbavancin Analogs through Biology and Chemistry. ACS Chem Biol 2019; 14:356-360. [PMID: 30830742 DOI: 10.1021/acschembio.9b00050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycopeptide antibiotics are used to treat severe multidrug resistant infections caused by Gram-positive bacteria. Dalbavancin is a second generation glycopeptide approved for human use, which is obtained from A40926, a lipoglycopeptide produced by Nonomuraea sp. ATCC39727 as a mixture of biologically active congeners mainly differing in the fatty acid chains present on the glucuronic moiety. In this study, we constructed a double mutant of the A40926 producer strain lacking dbv23, and thus defective in mannose acetylation, a feature that increases A40926 production, and lacking the acyltransferases Dbv8, and thus incapable of installing the fatty acid chains. The double mutant afforded the desired deacyl, deacetyl A40926 intermediates, which could be converted by chemical reacylation yielding A40926 analogs with a greatly reduced number of congeners. The newly acylated analogs could then be transformed into dalbavancin analogs possessing the same in vitro properties as the approved drug.
Collapse
Affiliation(s)
- Silke Alt
- Naicons Srl, Viale Ortles 22/4, 20139 Milano, Italy
| | | | - Margherita Sosio
- Naicons Srl, Viale Ortles 22/4, 20139 Milano, Italy
- KtedoGen Srl, Viale Ortles 22/4, 20139 Milano, Italy
| | | | - Stefano Donadio
- Naicons Srl, Viale Ortles 22/4, 20139 Milano, Italy
- KtedoGen Srl, Viale Ortles 22/4, 20139 Milano, Italy
| | - Sonia I. Maffioli
- Naicons Srl, Viale Ortles 22/4, 20139 Milano, Italy
- KtedoGen Srl, Viale Ortles 22/4, 20139 Milano, Italy
| |
Collapse
|
33
|
Katsuyama A, Ichikawa S. Synthesis and Medicinal Chemistry of Muraymycins, Nucleoside Antibiotics. Chem Pharm Bull (Tokyo) 2018; 66:123-131. [PMID: 29386462 DOI: 10.1248/cpb.c17-00684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muraymycins, isolated from a culture broth of Streptomyces sp., are members of a class of naturally occurring nucleoside antibiotics. They are strong inhibitors of the phospho-MurNAc-pentapeptide translocase (MraY), which is responsible for the peptidoglycan biosynthesis. Since MraY is an essential enzyme among bacteria, muraymycins are expected to be a novel antibacterial agent. In this review, our efforts to synthesize muraymycin D2, simplify the chemical structure, improve antibacterial spectrum, and solve the X-ray crystal structure of the muraymycin D2/MraY complex are described.
Collapse
Affiliation(s)
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Science, Hokkaido University.,Center for Research and Education on Drug Discovery, Hokkaido University
| |
Collapse
|
34
|
Koppen BC, Mulder PPG, de Boer L, Riool M, Drijfhout JW, Zaat SAJ. Synergistic microbicidal effect of cationic antimicrobial peptides and teicoplanin against planktonic and biofilm-encased Staphylococcus aureus. Int J Antimicrob Agents 2018; 53:143-151. [PMID: 30315918 DOI: 10.1016/j.ijantimicag.2018.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/07/2018] [Accepted: 10/06/2018] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance and biofilm formation are the main reasons for failure in treatment of bacterial infections. This study aimed to identify synergistic combinations of conventional antibiotics and novel synthetic antimicrobial and antibiofilm peptides (SAAPs) inspired by the structures of the natural human cationic peptides LL-37 and thrombocidin-1 (TC-1). The LL-37-inspired lead peptide SAAP-148 was combined with antibiotics of different classes against Staphylococcus aureus, and showed synergy with teicoplanin. Synergy with teicoplanin was also observed with LL-37, the LL-37-inspired SAAP-276 and the TC-1-inspired TC84. Interestingly, no synergy was observed against Staphylococcus epidermidis. Furthermore, teicoplanin combined with SAAP-148 or SAAP-276 showed strong interaction against S. aureus biofilms. The dltABCD operon and the mprF gene in S. aureus conferred resistance to LL-37, but SAAP-148 proved to be indifferently potent against wild-type, ΔdltA and ΔmprF S. aureus strains. When used alone, relatively high concentrations of both LL-37 and teicoplanin (30-120 µM and 4-32 mg/L, respectively) were required to kill S. aureus. Resistance to LL-37 in S. aureus was overcome by combined use of teicoplanin and LL-37. Thus, teicoplanin potentiates peptide LL-37, enhancing the efficacy of the innate defence, and combining the novel peptides with teicoplanin offers potential for enhanced efficacy of treatment of S. aureus infections, including biofilms.
Collapse
Affiliation(s)
- Bruce C Koppen
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick P G Mulder
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Leonie de Boer
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijn Riool
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sebastian A J Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Hickey SM, Ashton TD, Boer G, Bader CA, Thomas M, Elliott AG, Schmuck C, Yu HY, Li J, Nation RL, Cooper MA, Plush SE, Brooks DA, Pfeffer FM. Norbornane-based cationic antimicrobial peptidomimetics targeting the bacterial membrane. Eur J Med Chem 2018; 160:9-22. [PMID: 30316060 DOI: 10.1016/j.ejmech.2018.09.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/14/2018] [Accepted: 09/29/2018] [Indexed: 11/27/2022]
Abstract
The design, synthesis and evaluation of a small series of potent amphiphilic norbornane antibacterial agents has been performed (compound 10 MIC = 0.25 μg/mL against MRSA). Molecular modelling indicates rapid aggregation of this class of antibacterial agent prior to membrane association and insertion. Two fluorescent analogues (compound 29 with 4-amino-naphthalimide and 34 with 4-nitrobenz-2-oxa-1,3-diazole fluorophores) with good activity (MIC = 0.5 μg/mL against MRSA) were also constructed and confocal microscopy studies indicate that the primary site of interaction for this family of compounds is the bacterial membrane.
Collapse
Affiliation(s)
- Shane M Hickey
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Trent D Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Gareth Boer
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Christie A Bader
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Michael Thomas
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, 45117, Essen, Germany
| | - Heidi Y Yu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Royal Parade, Parkville, Victoria, 3052, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sally E Plush
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Douglas A Brooks
- Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Frederick M Pfeffer
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|
36
|
Abstract
![]()
Glycopeptide
antibiotics (GPAs) are a key weapon in the fight against drug resistant
bacteria, with vancomycin still a mainstream therapy against serious
Gram-positive infections more than 50 years after it was first introduced.
New, more potent semisynthetic derivatives that have entered the clinic,
such as dalbavancin and oritavancin, have superior pharmacokinetic
and target engagement profiles that enable successful treatment of
vancomycin-resistant infections. In the face of resistance development,
with multidrug resistant (MDR) S. pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) together causing 20-fold more infections than all MDR Gram-negative
infections combined, further improvements are desirable to ensure
the Gram-positive armamentarium is adequately maintained for future
generations. A range of modified glycopeptides has been generated
in the past decade via total syntheses, semisynthetic modifications
of natural products, or biological engineering. Several of these
have undergone extensive characterization with demonstrated in vivo efficacy, good PK/PD profiles, and no reported preclinical
toxicity; some may be suitable for formal preclinical development.
The natural product monobactam, cephalosporin, and β-lactam
antibiotics all spawned multiple generations of commercially and clinically
successful semisynthetic derivatives. Similarly, next-generation glycopeptides
are now technically well positioned to advance to the clinic, if sufficient
funding and market support returns to antibiotic development.
Collapse
Affiliation(s)
- Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Karl A. Hansford
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Mark S. Butler
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - ZhiGuang Jia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Alan E. Mark
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Building 68, Cooper Road, Brisbane, Queensland 4072, Australia
| |
Collapse
|
37
|
Phillips-Jones MK, Harding SE. Antimicrobial resistance (AMR) nanomachines-mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation. Biophys Rev 2018; 10:347-362. [PMID: 29525835 PMCID: PMC5899746 DOI: 10.1007/s12551-018-0404-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci towards two priority classes of antibiotics-the fluoroquinolones and the glycopeptides. Members of both classes interact with a number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS) (S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E, VanG), the VanA resistance type is considered in this review, including its regulation by the VanSR TCS. We describe the recent application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichroism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be considered complex 'nanomachines' that drive survival of bacterial cells in antibiotic environments.
Collapse
Affiliation(s)
- Mary K Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, Loughborough, Leicestershire, UK.
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, Loughborough, Leicestershire, UK
| |
Collapse
|
38
|
Old and new glycopeptide antibiotics: From product to gene and back in the post-genomic era. Biotechnol Adv 2018; 36:534-554. [PMID: 29454983 DOI: 10.1016/j.biotechadv.2018.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/22/2018] [Accepted: 02/14/2018] [Indexed: 02/05/2023]
Abstract
Glycopeptide antibiotics are drugs of last resort for treating severe infections caused by multi-drug resistant Gram-positive pathogens. First-generation glycopeptides (vancomycin and teicoplanin) are produced by soil-dwelling actinomycetes. Second-generation glycopeptides (dalbavancin, oritavancin, and telavancin) are semi-synthetic derivatives of the progenitor natural products. Herein, we cover past and present biotechnological approaches for searching for and producing old and new glycopeptide antibiotics. We review the strategies adopted to increase microbial production (from classical strain improvement to rational genetic engineering), and the recent progress in genome mining, chemoenzymatic derivatization, and combinatorial biosynthesis for expanding glycopeptide chemical diversity and tackling the never-ceasing evolution of antibiotic resistance.
Collapse
|
39
|
Blaskovich MAT, Hansford KA, Gong Y, Butler MS, Muldoon C, Huang JX, Ramu S, Silva AB, Cheng M, Kavanagh AM, Ziora Z, Premraj R, Lindahl F, Bradford TA, Lee JC, Karoli T, Pelingon R, Edwards DJ, Amado M, Elliott AG, Phetsang W, Daud NH, Deecke JE, Sidjabat HE, Ramaologa S, Zuegg J, Betley JR, Beevers APG, Smith RAG, Roberts JA, Paterson DL, Cooper MA. Protein-inspired antibiotics active against vancomycin- and daptomycin-resistant bacteria. Nat Commun 2018; 9:22. [PMID: 29295973 PMCID: PMC5750218 DOI: 10.1038/s41467-017-02123-w] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
The public health threat posed by a looming ‘post-antibiotic’ era necessitates new approaches to antibiotic discovery. Drug development has typically avoided exploitation of membrane-binding properties, in contrast to nature’s control of biological pathways via modulation of membrane-associated proteins and membrane lipid composition. Here, we describe the rejuvenation of the glycopeptide antibiotic vancomycin via selective targeting of bacterial membranes. Peptide libraries based on positively charged electrostatic effector sequences are ligated to N-terminal lipophilic membrane-insertive elements and then conjugated to vancomycin. These modified lipoglycopeptides, the ‘vancapticins’, possess enhanced membrane affinity and activity against methicillin-resistant Staphylococcus aureus (MRSA) and other Gram-positive bacteria, and retain activity against glycopeptide-resistant strains. Optimised antibiotics show in vivo efficacy in multiple models of bacterial infection. This membrane-targeting strategy has potential to ‘revitalise’ antibiotics that have lost effectiveness against recalcitrant bacteria, or enhance the activity of other intravenous-administered drugs that target membrane-associated receptors. The antibiotic vancomycin inhibits bacterial cell wall synthesis by binding to a membrane-associated precursor. Here, Blaskovich et al. synthesize vancomycin derivatives containing lipophilic peptide moieties that enhance membrane affinity and in vivo activities against glycopeptide-resistant strains.
Collapse
Affiliation(s)
- Mark A T Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Karl A Hansford
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yujing Gong
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Craig Muldoon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Johnny X Huang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Soumya Ramu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alberto B Silva
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.,AC Immune SA, EPFL Innovation Park, CH-1015, Lausanne, Switzerland
| | - Mu Cheng
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Angela M Kavanagh
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zyta Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Rajaratnam Premraj
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Fredrik Lindahl
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Tanya A Bradford
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - June C Lee
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Tomislav Karoli
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Novasep (Dynamit Nobel Explosivstoff und Systemtechnik), Kalkstrasse 218, 51377, Leverkusen, Germany
| | - Ruby Pelingon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - David J Edwards
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Maite Amado
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Alysha G Elliott
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Wanida Phetsang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Noor Huda Daud
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Johan E Deecke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Hanna E Sidjabat
- UQ Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, QLD, 4029, Australia
| | - Sefetogi Ramaologa
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Johannes Zuegg
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jason R Betley
- AdProTech Ltd, Chesterford Research Park, Saffron Walden, Essex, CB10 1XL, UK.,Illumina Cambridge Ltd, Capital Park, Fulbourn, Cambridge, CB21 5XE, UK
| | - Andrew P G Beevers
- AdProTech Ltd, Chesterford Research Park, Saffron Walden, Essex, CB10 1XL, UK.,Sterling Pharma Solutions, Sterling Place, Dudley, Cramlington, Northumberland, NE23 7QG, UK
| | - Richard A G Smith
- AdProTech Ltd, Chesterford Research Park, Saffron Walden, Essex, CB10 1XL, UK.,School of Immunology and Microbial Science, Kings College London, Guy's Hospital, London, SE1 9RT, UK
| | - Jason A Roberts
- UQ Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, QLD, 4029, Australia.,School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - David L Paterson
- UQ Centre for Clinical Research, The University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, QLD, 4029, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
40
|
Vimberg V, Cavanagh JP, Benada O, Kofroňová O, Hjerde E, Zieglerová L, Balíková Novotná G. Teicoplanin resistance in Staphylococcus haemolyticus is associated with mutations in histidine kinases VraS and WalK. Diagn Microbiol Infect Dis 2017; 90:233-240. [PMID: 29246777 DOI: 10.1016/j.diagmicrobio.2017.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 10/18/2022]
Abstract
We investigated the genetic basis of glycopeptide resistance in laboratory-derived strains of S. haemolyticus with emphasis on differences between vancomycin and teicoplanin. The genomes of two stable teicoplanin-resistant laboratory mutants selected on vancomycin or teicoplanin were sequenced and compared to parental S. haemolyticus strain W2/124. Only the two non-synonymous mutations, VraS Q289K and WalK V550L were identified. No other mutations or genome rearrangements were detected. Increased cell wall thickness, resistance to lysostaphin-induced lysis and adaptation of cell growth rates specifically to teicoplanin were phenotypes observed in a sequenced strain with the VraS Q289K mutation. Neither of the VraS Q289K and WalK V550L mutations was present in the genomes of 121S. haemolyticus clinical isolates. However, all but two of the teicoplanin resistant strains carried non-synonymous SNPs in vraSRTU and walKR-YycHIJ operons pointing to their importance for the glycopeptide resistance.
Collapse
Affiliation(s)
- Vladimir Vimberg
- Institute of Microbiology v. v. i., The Czech Academy of Sciences, Průmyslová 595, Vestec 252 50, Czech Republic
| | - Jorunn Pauline Cavanagh
- Department of Pediatrics, University Hospital of North Norway, Sykehusvegen 38, Tromsø 9019, Norway; Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Oldřich Benada
- Institute of Microbiology v. v. i., The Czech Academy of Sciences, Vídeňská 1083, Prague 142 20, Czech Republic
| | - Olga Kofroňová
- Institute of Microbiology v. v. i., The Czech Academy of Sciences, Vídeňská 1083, Prague 142 20, Czech Republic
| | - Erik Hjerde
- Department of Chemistry, Norstruct, UiT The Arctic University of Norway, Sykhusvegen 23, Tromsø 9019, Norway
| | - Leona Zieglerová
- Institute of Microbiology v. v. i., The Czech Academy of Sciences, Průmyslová 595, Vestec 252 50, Czech Republic
| | - Gabriela Balíková Novotná
- Institute of Microbiology v. v. i., The Czech Academy of Sciences, Průmyslová 595, Vestec 252 50, Czech Republic.
| |
Collapse
|
41
|
Müller A, Klöckner A, Schneider T. Targeting a cell wall biosynthesis hot spot. Nat Prod Rep 2017; 34:909-932. [PMID: 28675405 DOI: 10.1039/c7np00012j] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: up to 2017History points to the bacterial cell wall biosynthetic network as a very effective target for antibiotic intervention, and numerous natural product inhibitors have been discovered. In addition to the inhibition of enzymes involved in the multistep synthesis of the macromolecular layer, in particular, interference with membrane-bound substrates and intermediates essential for the biosynthetic reactions has proven a valuable antibacterial strategy. A prominent target within the peptidoglycan biosynthetic pathway is lipid II, which represents a particular "Achilles' heel" for antibiotic attack, as it is readily accessible on the outside of the cytoplasmic membrane. Lipid II is a unique non-protein target that is one of the structurally most conserved molecules in bacterial cells. Notably, lipid II is more than just a target molecule, since sequestration of the cell wall precursor may be combined with additional antibiotic activities, such as the disruption of membrane integrity or disintegration of membrane-bound multi-enzyme machineries. Within the membrane bilayer lipid II is likely organized in specific anionic phospholipid patches that form a particular "landing platform" for antibiotics. Nature has invented a variety of different "lipid II binders" of at least 5 chemical classes, and their antibiotic activities can vary substantially depending on the compounds' physicochemical properties, such as amphiphilicity and charge, and thus trigger diverse cellular effects that are decisive for antibiotic activity.
Collapse
Affiliation(s)
- Anna Müller
- Institute of Pharmaceutical Microbiology, University of Bonn, Bonn, Germany.
| | | | | |
Collapse
|
42
|
Hughes CS, Longo E, Phillips-Jones MK, Hussain R. Characterisation of the selective binding of antibiotics vancomycin and teicoplanin by the VanS receptor regulating type A vancomycin resistance in the enterococci. Biochim Biophys Acta Gen Subj 2017; 1861:1951-1959. [PMID: 28511809 PMCID: PMC5482315 DOI: 10.1016/j.bbagen.2017.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 02/04/2023]
Abstract
A-type resistance towards "last-line" glycopeptide antibiotic vancomycin in the leading hospital acquired infectious agent, the enterococci, is the most common in the UK. Resistance is regulated by the VanRASA two-component system, comprising the histidine sensor kinase VanSA and the partner response regulator VanRA. The nature of the activating ligand for VanSA has not been identified, therefore this work sought to identify and characterise ligand(s) for VanSA. In vitro approaches were used to screen the structural and activity effects of a range of potential ligands with purified VanSA protein. Of the screened ligands (glycopeptide antibiotics vancomycin and teicoplanin, and peptidoglycan components N-acetylmuramic acid, D-Ala-D-Ala and Ala-D-y-Glu-Lys-D-Ala-D-Ala) only glycopeptide antibiotics vancomycin and teicoplanin were found to bind VanSA with different affinities (vancomycin 70μM; teicoplanin 30 and 170μM), and were proposed to bind via exposed aromatic residues tryptophan and tyrosine. Furthermore, binding of the antibiotics induced quicker, longer-lived phosphorylation states for VanSA, proposing them as activators of type A vancomycin resistance in the enterococci.
Collapse
Affiliation(s)
- C S Hughes
- Diamond Light Source, Harwell Research & Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom; Membranes, Membrane Proteins & Peptides Research Group, School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - E Longo
- Diamond Light Source, Harwell Research & Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom
| | - M K Phillips-Jones
- Membranes, Membrane Proteins & Peptides Research Group, School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom.
| | - R Hussain
- Diamond Light Source, Harwell Research & Innovation Campus, Chilton, Didcot OX11 0DE, United Kingdom.
| |
Collapse
|
43
|
Sivaranjani M, Prakash M, Gowrishankar S, Rathna J, Pandian SK, Ravi AV. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl Microbiol Biotechnol 2017; 101:3349-3359. [DOI: 10.1007/s00253-017-8231-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/14/2017] [Accepted: 03/07/2017] [Indexed: 11/24/2022]
|
44
|
Kim SJ, Singh M, Sharif S, Schaefer J. Desleucyl-Oritavancin with a Damaged d-Ala-d-Ala Binding Site Inhibits the Transpeptidation Step of Cell-Wall Biosynthesis in Whole Cells of Staphylococcus aureus. Biochemistry 2017; 56:1529-1535. [PMID: 28221772 PMCID: PMC5508972 DOI: 10.1021/acs.biochem.6b01125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have used solid-state nuclear magnetic resonance to characterize the exact nature of the dual mode of action of oritavancin in preventing cell-wall assembly in Staphylococcus aureus. Measurements performed on whole cells labeled selectively in vivo have established that des-N-methylleucyl-N-4-(4-fluorophenyl)benzyl-chloroeremomycin, an Edman degradation product of [19F]oritavancin, which has a damaged d-Ala-d-Ala binding aglycon, is a potent inhibitor of the transpeptidase activity of cell-wall biosynthesis. The desleucyl drug binds to partially cross-linked peptidoglycan by a cleft formed between the drug aglycon and its biphenyl hydrophobic side chain. This type of binding site is present in other oritavancin-like glycopeptides, which suggests that for these drugs a similar transpeptidase inhibition occurs.
Collapse
Affiliation(s)
- Sung Joon Kim
- Department of Chemistry and Biochemistry, Baylor University, 101 Bagby Ave., Waco, TX 76798
| | - Manmilan Singh
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| | - Shasad Sharif
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| | - Jacob Schaefer
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| |
Collapse
|
45
|
Dash RP, Babu RJ, Srinivas NR. Review of the pharmacokinetics of dalbavancin, a recently approved lipoglycopeptide antibiotic. Infect Dis (Lond) 2017; 49:483-492. [DOI: 10.1080/23744235.2017.1296968] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Ranjeet Prasad Dash
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | | |
Collapse
|
46
|
Hassan MM, Ranzoni A, Phetsang W, Blaskovich MAT, Cooper MA. Surface Ligand Density of Antibiotic-Nanoparticle Conjugates Enhances Target Avidity and Membrane Permeabilization of Vancomycin-Resistant Bacteria. Bioconjug Chem 2016; 28:353-361. [DOI: 10.1021/acs.bioconjchem.6b00494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marwa M. Hassan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrea Ranzoni
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Wanida Phetsang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
47
|
Lin SW, Carver PL, DePestel DD. Dalbavancin: A New Option for the Treatment of Gram-Positive Infections. Ann Pharmacother 2016; 40:449-60. [PMID: 16507624 DOI: 10.1345/aph.1g158] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To review the pharmacology, microbiology, chemistry, in vitro susceptibility, pharmacokinetics, clinical efficacy, safety, tolerability, dosage, and administration of dalbavancin, a new semisynthetic lipoglycopeptide. Data Sources: A MEDLINE search, restricted to the English language, was conducted from 1966 through January 2006. Supplementary sources included program abstracts from the Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society of Microbiology, and the Infectious Diseases Society of America from 2000 to 2005 and information available from the manufacturer's Web site. Study Selection and Data Extraction: In vitro and preclinical studies, as well as Phase I, II, and III clinical trials, were evaluated to summarize the microbiology, pharmacology, clinical efficacy, and safety of dalbavancin. All published trials and abstracts citing dalbavancin were selected. Data Synthesis: Dalbavancin, a novel lipoglycopeptide, has a mechanism of action similar to that of other glycopeptides. It has in vitro activity against a variety of gram-positive organisms, but no activity against gram-negative or vancomycin-resistant enterococci that possess VanA gene. Due to its prolonged half-life (6–10 days), dalbavancin can be administered intravenously once weekly. In Phase II and III clinical trials, dalbavancin was effective and well tolerated for the treatment of skin and soft-tissue infections, catheter-related bloodstream infections, and skin and skin-structure infections. To date, adverse events are mild and limited; the most common include pyrexia, headache, nausea, oral candidiasis, diarrhea, and constipation. Conclusions: Dalbavancin appears to be a promising antimicrobial agent for the treatment of gram-positive infections. A new drug application was filed with the Food and Drug Administration (FDA) in December 2004. The FDA issued an approvable letter in 2005 for dalbavancin. If approved, dalbavancin is expected to be launched in the first quarter of 2006.
Collapse
Affiliation(s)
- Shu-Wen Lin
- Department of Pharmacy Services, University of Michigan Health System, Ann Arbor, 48109, USA
| | | | | |
Collapse
|
48
|
Zeng D, Debabov D, Hartsell TL, Cano RJ, Adams S, Schuyler JA, McMillan R, Pace JL. Approved Glycopeptide Antibacterial Drugs: Mechanism of Action and Resistance. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026989. [PMID: 27663982 DOI: 10.1101/cshperspect.a026989] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The glycopeptide antimicrobials are a group of natural product and semisynthetic glycosylated peptides that show antibacterial activity against Gram-positive organisms through inhibition of cell-wall synthesis. This is achieved primarily through binding to the d-alanyl-d-alanine terminus of the lipid II bacterial cell-wall precursor, preventing cross-linking of the peptidoglycan layer. Vancomycin is the foundational member of the class, showing both clinical longevity and a still preferential role in the therapy of methicillin-resistant Staphylococcus aureus and of susceptible Enterococcus spp. Newer lipoglycopeptide derivatives (telavancin, dalbavancin, and oritavancin) were designed in a targeted fashion to increase antibacterial activity, in some cases through secondary mechanisms of action. Resistance to the glycopeptides emerged in delayed fashion and occurs via a spectrum of chromosome- and plasmid-associated elements that lead to structural alteration of the bacterial cell-wall precursor substrates.
Collapse
Affiliation(s)
- Daina Zeng
- Agile Sciences, Raleigh, North Carolina 27606
| | | | - Theresa L Hartsell
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins School of Medicine and Nursing, Baltimore, Maryland 21287
| | - Raul J Cano
- ATCC Center for Translational Microbiology, Union, New Jersey 07083.,Biological Sciences Department, California Polytechnic State University, San Luis Obispo, California 93407
| | - Stacy Adams
- Center for Skin Biology, GlaxoSmithKline, Durham, North Carolina 27703
| | | | - Ronald McMillan
- ATCC Center for Translational Microbiology, Union, New Jersey 07083
| | - John L Pace
- ATCC Center for Translational Microbiology, Union, New Jersey 07083.,STEM Program, Kean University, Union, New Jersey 07083.,Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina 27707
| |
Collapse
|
49
|
Santos-Beneit F, Ordóñez-Robles M, Martín JF. Glycopeptide resistance: Links with inorganic phosphate metabolism and cell envelope stress. Biochem Pharmacol 2016; 133:74-85. [PMID: 27894856 DOI: 10.1016/j.bcp.2016.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
Abstract
Antimicrobial resistance is a critical health issue today. Many pathogens have become resistant to many or all available antibiotics and limited new antibiotics are in the pipeline. Glycopeptides are used as a 'last resort' antibiotic treatment for many bacterial infections, but worryingly, glycopeptide resistance has spread to very important pathogens such as Enterococcus faecium and Staphylococcus aureus. Bacteria confront multiple stresses in their natural environments, including nutritional starvation and the action of cell-wall stressing agents. These stresses impact bacterial susceptibility to different antimicrobials. This article aims to review the links between glycopeptide resistance and different stresses, especially those related with cell-wall biosynthesis and inorganic phosphate metabolism, and to discuss promising alternatives to classical antibiotics to avoid the problem of antimicrobial resistance.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, NE2 4AX Newcastle upon Tyne, UK
| | - María Ordóñez-Robles
- Department of Biotechnology, Faculty of Natural Sciences and Technology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Juan F Martín
- Microbiology Area, Department of Molecular Biology, University of León, 24071 León, Spain.
| |
Collapse
|
50
|
Chang J, Zhou H, Preobrazhenskaya M, Tao P, Kim SJ. The Carboxyl Terminus of Eremomycin Facilitates Binding to the Non-d-Ala-d-Ala Segment of the Peptidoglycan Pentapeptide Stem. Biochemistry 2016; 55:3383-91. [PMID: 27243469 PMCID: PMC6020039 DOI: 10.1021/acs.biochem.6b00188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycopeptide antibiotics inhibit cell wall biosynthesis in Gram-positive bacteria by targeting the peptidoglycan (PG) pentapeptide stem structure (l-Ala-d-iso-Gln-l-Lys-d-Ala-d-Ala). Structures of the glycopeptide complexed with a PG stem mimic have shown that the d-Ala-d-Ala segment is the primary drug binding site; however, biochemical evidence suggests that the glycopeptide-PG interaction involves more than d-Ala-d-Ala binding. Interactions of the glycopeptide with the non-d-Ala-d-Ala segment of the PG stem were investigated using solid-state nuclear magnetic resonance (NMR). LCTA-1421, a double (15)N-enriched eremomycin derivative with a C-terminal [(15)N]amide and [(15)N]Asn amide, was complexed with whole cells of Staphylococcus aureus grown in a defined medium containing l-[3-(13)C]Ala and d-[1-(13)C]Ala in the presence of alanine racemase inhibitor alaphosphin. (13)C{(15)N} and (15)N{(13)C} rotational-echo double-resonance (REDOR) NMR measurements determined the (13)C-(15)N internuclear distances between the [(15)N]Asn amide of LCTA-1421 and the (13)C atoms of the bound d-[1-(13)C]Ala-d-[1-(13)C]Ala to be 5.1 and 4.8 Å, respectively. These measurements also determined the distance from the C-terminal [(15)N]amide of LCTA-1421 to the l-[3-(13)C]Ala of PG to be 3.5 Å. The measured REDOR distance constraints position the C-terminus of the glycopeptide in the proximity of the l-Ala of the PG, suggesting that the C-terminus of the glycopeptide interacts near the l-Ala segment of the PG stem. In vivo REDOR measurements provided structural insight into how C-terminally modified glycopeptide antibiotics operate.
Collapse
Affiliation(s)
- James Chang
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706
| | - Hongyu Zhou
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX 7 5275, USA
| | | | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX 7 5275, USA
| | - Sung Joon Kim
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76706
| |
Collapse
|