1
|
Freitas ADAR, Faria AR, Mendes LT, Merquior VLC, Neves DM, Pires JR, Teixeira LM. The gut microbiota of wild birds undergoing rehabilitation as a reservoir of multidrug-resistant enterococci in a metropolitan area in Brazil. Braz J Microbiol 2024:10.1007/s42770-024-01527-3. [PMID: 39356407 DOI: 10.1007/s42770-024-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/14/2024] [Indexed: 10/03/2024] Open
Abstract
Enterococci are ubiquitous usually commensal bacteria that can act as opportunistic pathogens frequently associated with resistance to multiple antimicrobial classes. A variety of animals may carry potentially harmful enterococci. In the present work, the occurrence and characteristics of enterococci recovered from the fecal microbiota of wild birds belonging to four families (Accipitridae, Cathartidae, Falconidae and Strigidae) were investigated. Enterococci were recovered from 104 (92.0%) fecal samples obtained from 113 birds, and 260 strains were selected for additional characterization. Enterococcus faecalis was the predominant species (63.8%), followed by Enterococcus hirae (16.2%), Enterococcus faecium (11.5%), Enterococcus gallinarum (5.4%), Enterococcus avium (1.5%), Enterococcus casseliflavus (0.8%), and Enterococcus raffinosus and Enterococcus cecorum (0.4% each). Major percentages (11.9% 75.0%) of nonsusceptibility were observed to quinolones (particularly to enrofloxacin), erythromycin, rifampin, nitrofurantoin, tetracycline and streptomycin. Gentamicin and ampicillin resistances (13.3% each) were only detected among E. faecium. A total of 133 (51.2%) strains were MDR, showing a large variety of MDR profiles, composed by simultaneous resistance encompassing 3 to 12 antimicrobials. MDR strains were found in 68.2% of the birds. Antimicrobial resistance was associated with the presence of the aac(6')-aph(2″)-Ia, aph(2″)-Id, ant(6)-Ia, ant(9)-Ia, ant(9)-Ib, tet(M), tet(L), tet(S), erm(B), mef(A/E), msrC, and vat(D) genes. The most common virulence genes were efaA, gelE, ace, eeP, and asa1. PFGE analysis revealed a large genetic diversity among most of the strains. MLST performed for 35 E. faecalis strains revealed 23 different STs, whereas 14 STs were found among 18 E. faecium strains. Hospital-associated lineages ST22, ST25, ST56, ST1274 were identified. The results show that the wild birds investigated can carry a diversity of potentially hazardous enterococcal strains displaying multiple antimicrobial resistance and virulence genes, reinforcing the assumption that these animals provide an important target to monitor the circulation of microorganisms that deserve consideration under the One Health perspective.
Collapse
Affiliation(s)
| | - Adriana Rocha Faria
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Microbiologia, Imunologia E Parasitologia, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luiza Tomé Mendes
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vânia Lúcia Carreira Merquior
- Departamento de Microbiologia, Imunologia E Parasitologia, Universidade Do Estado Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Marchesi Neves
- Centro de Triagem de Animais, Silvestres Do Rio de Janeiro (CETAS-RJ), Seropédica, RJ, Brazil
| | - Jeferson Rocha Pires
- Centro de Reabilitação de Animais Selvagens da Universidade Estácio de Sá (CRAS-UNESA), Rio de Janeiro, RJ, Brazil
| | - Lúcia Martins Teixeira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Pieracci Y, Bozzini MF, Campanini C, Muscatello B, De Martino L, Nocera FP, Fulvio F, Montanari M, Flamini G, Fratini F. Cannabis sativa L. essential oil: chemical characterisation and antimicrobial activity against methicillin-resistant Staphylococcus pseudintermedius. Nat Prod Res 2024:1-11. [PMID: 39229937 DOI: 10.1080/14786419.2024.2398733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Cannabis sativa L. essential oil has attracted the interest of the scientific community thanks to its numerous biological activities. Several studies have evaluated EOs as alternative therapeutic approaches to limit the use of antibiotics; the present study aimed to evaluate the in vitro inhibitory and bactericidal activity of the essential oils obtained from the leaves and inflorescences of two hemp genotypes against twenty-one multidrug-resistant, methicillin-resistant Staphylococcus pseudintermedius strains isolated from canine clinical samples. Both EOs were mainly represented by sesquiterpene hydrocarbons, with a prevalence of β-caryophyllene and α-humulene. However, different relative amounts of phytocannabinoids were also detected. Microbiological results evidenced better outcomes for the EO characterised by the highest content of phytocannabinoids, which in turn showed no differences among the tested strains. Nevertheless, both the EOs showed better inhibitory and bactericidal activities than their main constituent, β-caryophyllene, tested individually, highlighting the presence of synergistic effects among the EO compounds.
Collapse
Affiliation(s)
| | | | | | - Beatrice Muscatello
- Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
- Centro per l'Integrazione della Strumentazione dell'Università di Pisa (CISUP), Pisa, Italy
| | - Luisa De Martino
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Francesca Paola Nocera
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Flavia Fulvio
- CREA-Centro di Ricerca per Cerealicoltura e Colture Industriali, Bologna, Italy
| | - Massimo Montanari
- CREA-Centro di Ricerca per Cerealicoltura e Colture Industriali, Bologna, Italy
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Pisa, Italy
| | - Filippo Fratini
- Dipartimento di Scienze Veterinarie, Università di Pisa, Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" (NUTRAFOOD), Università di Pisa, Pisa, Italy
| |
Collapse
|
3
|
Barros RR, Barros CC, Kegele FCO, Francisca da S N Soares M, de Paula GR. Macrolide resistance among Streptococcus agalactiae during COVID-19 public health emergency in Brazil. Braz J Microbiol 2024; 55:1445-1449. [PMID: 38687418 PMCID: PMC11153377 DOI: 10.1007/s42770-024-01356-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
During COVID-19 public health emergence, azithromycin was excessively used in Brazil, as part of a controversial "early treatment", recommended by former national health authorities. Excessive usage of macrolides may increase resistance rates among beta-hemolytic streptococci. Therefore, this study aimed to investigate the occurrence of resistance to erythromycin and clindamycin among Streptococcus agalactiae recovered from February 2020 to May 2023. Bacterial isolates (n = 116) were obtained from pregnant women and submitted to antimicrobial susceptibility testing, investigation of macrolide resistance phenotypes and genotypes, and identification of capsular type. The overall rate of erythromycin not susceptible (NS) isolates was 25.9%, while resistance to clindamycin was 5.2%. Drug efflux, associated with the M phenotype and mef(A) gene, was the prevalent mechanism of resistance (80%). Capsular type Ia was predominant (39.8%), followed by II, III, and V (17.7% each). A higher diversity of types was observed in the last years of the study. Type IV has had an increasing trend over time, being the fourth most common in 2023. The majority of the isolates that expressed the M phenotype presented capsular type Ia, while those with iMLS phenotype presented capsular type V. Despite no causal relationship can be established, azithromycin excessive usage may be a possible factor associated with this higher rate of erythromycin NS isolates, compared with most previous national studies. On the other hand, resistance to clindamycin has not changed significantly. Therefore, in the studied clinical setting, clindamycin remains a useful alternative to intrapartum prophylaxis among penicillin-allergic pregnant women.
Collapse
Affiliation(s)
- Rosana Rocha Barros
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rua Hernani de Melo 101 sala 304, 24210-130, Niterói, RJ, Brazil.
| | - Clarissa Campos Barros
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rua Hernani de Melo 101 sala 304, 24210-130, Niterói, RJ, Brazil
| | - Fabíola C Oliveira Kegele
- Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Av. Rui Barbosa 716, 22250-020, Rio de Janeiro, RJ, Brazil
| | | | - Geraldo Renato de Paula
- Faculdade de Farmácia, Universidade Federal Fluminense, Rua Dr. Mário Viana 523, 24241-000, Niterói, RJ, Brazil
| |
Collapse
|
4
|
Daw Elbait G, Daou M, Abuoudah M, Elmekawy A, Hasan SW, Everett DB, Alsafar H, Henschel A, Yousef AF. Comparison of qPCR and metagenomic sequencing methods for quantifying antibiotic resistance genes in wastewater. PLoS One 2024; 19:e0298325. [PMID: 38578803 PMCID: PMC10997137 DOI: 10.1371/journal.pone.0298325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/18/2024] [Indexed: 04/07/2024] Open
Abstract
Surveillance methods of circulating antibiotic resistance genes (ARGs) are of utmost importance in order to tackle what has been described as one of the greatest threats to humanity in the 21st century. In order to be effective, these methods have to be accurate, quickly deployable, and scalable. In this study, we compare metagenomic shotgun sequencing (TruSeq DNA sequencing) of wastewater samples with a state-of-the-art PCR-based method (Resistomap HT-qPCR) on four wastewater samples that were taken from hospital, industrial, urban and rural areas. ARGs that confer resistance to 11 antibiotic classes have been identified in these wastewater samples using both methods, with the most abundant observed classes of ARGs conferring resistance to aminoglycoside, multidrug-resistance (MDR), macrolide-lincosamide-streptogramin B (MLSB), tetracycline and beta-lactams. In comparing the methods, we observed a strong correlation of relative abundance of ARGs obtained by the two tested methods for the majority of antibiotic classes. Finally, we investigated the source of discrepancies in the results obtained by the two methods. This analysis revealed that false negatives were more likely to occur in qPCR due to mutated primer target sites, whereas ARGs with incomplete or low coverage were not detected by the sequencing method due to the parameters set in the bioinformatics pipeline. Indeed, despite the good correlation between the methods, each has its advantages and disadvantages which are also discussed here. By using both methods together, a more robust ARG surveillance program can be established. Overall, the work described here can aid wastewater treatment plants that plan on implementing an ARG surveillance program.
Collapse
Affiliation(s)
- Gihan Daw Elbait
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mariane Daou
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Miral Abuoudah
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed Elmekawy
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dean B. Everett
- Department of Pathology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Emirates Bio-research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Andreas Henschel
- Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed F. Yousef
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Furugaito M, Arai Y, Uzawa Y, Kamisako T, Ogura K, Okamoto S, Kikuchi K. Antimicrobial Susceptibility to 27 Drugs and the Molecular Mechanisms of Macrolide, Tetracycline, and Quinolone Resistance in Gemella sp. Antibiotics (Basel) 2023; 12:1538. [PMID: 37887239 PMCID: PMC10604004 DOI: 10.3390/antibiotics12101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Gemella is a catalase-negative, facultative anaerobic, Gram-positive coccus that is commensal in humans but can become opportunistic and cause severe infectious diseases, such as infective endocarditis. Few studies have tested the antimicrobial susceptibility of Gemella. We tested its antimicrobial susceptibility to 27 drugs and defined the resistant genes using PCR in 58 Gemella strains, including 52 clinical isolates and six type strains. The type strains and clinical isolates included 22 G. morbillorum, 18 G. haemolysans (GH) group (genetically indistinguishable from G. haemolysans and G. parahaemolysans), 13 G. taiwanensis, three G. sanguinis, and two G. bergeri. No strain was resistant to beta-lactams and vancomycin. In total, 6/22 (27.3%) G. morbillorum strains were erythromycin- and clindamycin-resistant ermB-positive, whereas 5/18 (27.8%) in the GH group, 6/13 (46.2%) G. taiwanensis, and 1/3 (33.3%) of the G. sanguinis strains were erythromycin-non-susceptible mefE- or mefA-positive and clindamycin-susceptible. The MIC90 of minocycline and the ratios of tetM-positive strains varied across the different species-G. morbillorum: 2 µg/mL and 27.3% (6/22); GH group: 8 µg/mL and 22.2% (4/18); G. taiwanensis: 8 µg/mL and 53.8% (7/13), respectively. Levofloxacin resistance was significantly higher in G. taiwanensis (8/13 61.5%) than in G. morbillorum (2/22 9.1%). Levofloxacin resistance was associated with a substitution at serine 83 for leucine, phenylalanine, or tyrosine in GyrA. The mechanisms of resistance to erythromycin and clindamycin differed across Gemella species. In addition, the rate of susceptibility to levofloxacin differed across Gemella sp., and the quinolone resistance mechanism was caused by mutations in GyrA alone.
Collapse
Affiliation(s)
- Michiko Furugaito
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (M.F.); (S.O.)
- Department of Clinical Laboratory, Kindai University Hospital, Osakasayama, Osaka 589-8511, Japan
| | - Yuko Arai
- Department of Infectious Diseases, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.A.); (Y.U.)
| | - Yutaka Uzawa
- Department of Infectious Diseases, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.A.); (Y.U.)
| | - Toshinori Kamisako
- Department of Clinical Laboratory Medicine, Faculty of Medicine, Kindai University, Osakasayama, Osaka 589-8511, Japan;
| | - Kohei Ogura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan;
| | - Shigefumi Okamoto
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; (M.F.); (S.O.)
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women’s Medical University, Shinjuku-ku, Tokyo 162-8666, Japan; (Y.A.); (Y.U.)
| |
Collapse
|
6
|
Omeershffudin UNM, Kumar S. Emerging threat of antimicrobial resistance in Neisseria gonorrhoeae: pathogenesis, treatment challenges, and potential for vaccine development. Arch Microbiol 2023; 205:330. [PMID: 37688619 DOI: 10.1007/s00203-023-03663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/11/2023]
Abstract
The continuous rise of antimicrobial resistance (AMR) is a serious concern as it endangers the effectiveness of healthcare interventions that rely on antibiotics in the long run. The increasing resistance of Neisseria gonorrhoeae, the bacteria responsible for causing gonorrhea, to commonly used antimicrobial drugs, is a major concern. This has now become a critical global health crisis. In the coming years, there is a risk of a hidden epidemic caused by the emergence of gonococcal AMR. This will worsen the global situation. Infections caused by N. gonorrhoeae were once considered easily treatable. However, over time, they have become increasingly resistant to commonly used therapeutic medications, such as penicillin, ciprofloxacin, and azithromycin. As a result, this pathogen is developing into a true "superbug," which means that ceftriaxone is now the only available option for initial empirical treatment. Effective management strategies are urgently needed to prevent severe consequences, such as infertility and pelvic inflammatory disease, which can result from delayed intervention. This review provides a thorough analysis of the escalating problem of N. gonorrhoeae, including its pathogenesis, current treatment options, the emergence of drug-resistant mechanisms, and the potential for vaccine development. We aim to provide valuable insights for healthcare practitioners, policymakers, and researchers in their efforts to combat N. gonorrhoeae antibiotic resistance by elucidating the multifaceted aspects of this global challenge.
Collapse
Affiliation(s)
- Umairah Natasya Mohd Omeershffudin
- Post Graduate Centre, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, 40100, Selangor, Malaysia
| | - Suresh Kumar
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia.
| |
Collapse
|
7
|
Endres CM, Moreira E, de Freitas AB, Castel APD, Graciano F, Mann MB, Frazzon APG, Mayer FQ, Frazzon J. Evaluation of Enterotoxins and Antimicrobial Resistance in Microorganisms Isolated from Raw Sheep Milk and Cheese: Ensuring the Microbiological Safety of These Products in Southern Brazil. Microorganisms 2023; 11:1618. [PMID: 37375120 DOI: 10.3390/microorganisms11061618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
This study emphasizes the importance of monitoring the microbiological quality of animal products, such as raw sheep's milk and cheese, to ensure food safety. In Brazil, there is currently no legislation governing the quality of sheep's milk and its derivatives. Therefore, this study aimed to evaluate: (i) the hygienic-sanitary quality of raw sheep's milk and cheese produced in southern Brazil; (ii) the presence of enterotoxins and Staphylococcus spp. in these products; and (iii) the susceptibility of the isolated Staphylococcus spp. to antimicrobial drugs and the presence of resistance genes. A total of 35 samples of sheep's milk and cheese were examined. The microbiological quality and presence of enterotoxins were accessed using Petrifilm and VIDAS SET2 methods, respectively. Antimicrobial susceptibility tests were conducted using VITEK 2 equipment and the disc diffusion method. The presence of resistance genes tet(L), sul1, sul2, ermB, tetM, AAC(6)', tetW, and strA were evaluated through PCR. In total, 39 Staphylococcus spp. were obtained. The resistance genes tetM, ermB, strA, tetL, sul1, AAC(6)', and sul2 were detected in 82%, 59%, 36%, 28%, 23%, 3%, and 3% of isolates, respectively. The findings revealed that both raw sheep's milk and cheese contained Staphylococcus spp. that exhibited resistance to antimicrobial drugs and harbored resistance genes. These results underscore the immediate need for specific legislation in Brazil to regulate the production and sale of these products.
Collapse
Affiliation(s)
- Creciana M Endres
- Department of Food Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
- SENAI/SC University Center, UniSENAI-Campus Blumenau, Blumenau 89036-256, SC, Brazil
| | - Eliana Moreira
- SENAI/SC University Center, UniSENAI-Campus Chapecó, Chapecó 89813-000, SC, Brazil
| | | | | | - Fábio Graciano
- Senior Field Application Specialist-Industry, BioMérieux Brasil SA, Indianópolis 04028-001, SP, Brazil
| | - Michele B Mann
- Department of Microbiology, Immunology and Parasitology, UFRGS, Porto Alegre 90010-150, RS, Brazil
| | - Ana Paula G Frazzon
- Department of Microbiology, Immunology and Parasitology, UFRGS, Porto Alegre 90010-150, RS, Brazil
| | - Fabiana Q Mayer
- Department of Molecular Biology and Biotechnology, UFRGS, Porto Alegre 90010-150, RS, Brazil
| | - Jeverson Frazzon
- Department of Food Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| |
Collapse
|
8
|
Alemu A, Girma S, Mariam SH. An Arsenal of Multiple Antimicrobial Resistance, Toxins, and Virulence Factors in Gram-Negative Bacterial Isolates from Food - A Formidable Combination! Infect Drug Resist 2023; 16:1029-1037. [PMID: 36845021 PMCID: PMC9948636 DOI: 10.2147/idr.s391072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/09/2023] [Indexed: 02/20/2023] Open
Abstract
Background Infectious diseases caused by pathogenic members of the family Enterobacteriaceae cause mortality and morbidity in humans. These are mediated mainly via toxins or virulence factors in combination with multiple antimicrobial resistance (MAR) against antimicrobials intended to treat infections. Resistance can be transferred to other bacteria, possibly also in association with other resistance determinants and/or virulence properties. Food-borne bacterial infections are one of the major causes of infections in humans. The level of scientific information about foodborne bacterial infections in Ethiopia is very limited at best. Methods Bacteria were isolated from commercial dairy foods. These were cultured in appropriate media for identification at the family level (Enterobacteriaceae) based on Gram-negative, catalase-positive, oxidase-negative, and urease-negative phenotypes, followed by testing for the presence of virulence factors and resistance determinants to various antimicrobial classes using phenotypic and molecular tests. Results Twenty Gram-negative bacteria isolated from the foods were found to be resistant to almost all antimicrobials belonging to the phenicol, aminoglycoside, fluoroquinolone, monobactam, and β-lactam classes. All of them were multiple-drug-resistant. The resistance to the β-lactams was due to the production of β-lactamases and were also mostly resistant to some of the β-lactam/β-lactamase inhibitor combinations. Some isolates also contained toxins. Conclusion This small-scale study demonstrated the presence, in the isolates, of high levels of virulence factors and resistance to major antimicrobials that are in clinical use. Most treatment being empirical, there can be not only a high degree of treatment failure but also the likelihood for further development and dissemination of antimicrobial resistance. Since dairy foods are animal products, there is an urgent need to control animal-food-human transmission mechanisms, restrict antimicrobial use in animal agriculture, and improve clinical treatment from the usual empirical treatment to more targeted and effective treatment.
Collapse
Affiliation(s)
- Ashenafi Alemu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Selfu Girma
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Solomon H Mariam
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia,Infectious Diseases Program, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia,Correspondence: Solomon H Mariam, Email
| |
Collapse
|
9
|
Li L, Ma J, Yu Z, Li M, Zhang W, Sun H. Epidemiological characteristics and antibiotic resistance mechanisms of Streptococcus pneumoniae: An updated review. Microbiol Res 2023; 266:127221. [DOI: 10.1016/j.micres.2022.127221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
|
10
|
Burns AL, Sleebs BE, Gancheva M, McLean KT, Siddiqui G, Venter H, Beeson JG, O’Handley R, Creek DJ, Ma S, Frölich S, Goodman CD, McFadden GI, Wilson DW. Targeting malaria parasites with novel derivatives of azithromycin. Front Cell Infect Microbiol 2022; 12:1063407. [PMID: 36530422 PMCID: PMC9748569 DOI: 10.3389/fcimb.2022.1063407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/09/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction The spread of artemisinin resistant Plasmodium falciparum parasites is of global concern and highlights the need to identify new antimalarials for future treatments. Azithromycin, a macrolide antibiotic used clinically against malaria, kills parasites via two mechanisms: 'delayed death' by inhibiting the bacterium-like ribosomes of the apicoplast, and 'quick-killing' that kills rapidly across the entire blood stage development. Methods Here, 22 azithromycin analogues were explored for delayed death and quick-killing activities against P. falciparum (the most virulent human malaria) and P. knowlesi (a monkey parasite that frequently infects humans). Results Seventeen analogues showed improved quick-killing against both Plasmodium species, with up to 38 to 20-fold higher potency over azithromycin after less than 48 or 28 hours of treatment for P. falciparum and P. knowlesi, respectively. Quick-killing analogues maintained activity throughout the blood stage lifecycle, including ring stages of P. falciparum parasites (<12 hrs treatment) and were >5-fold more selective against P. falciparum than human cells. Isopentenyl pyrophosphate supplemented parasites that lacked an apicoplast were equally sensitive to quick-killing analogues, confirming that the quick killing activity of these drugs was not directed at the apicoplast. Further, activity against the related apicoplast containing parasite Toxoplasma gondii and the gram-positive bacterium Streptococcus pneumoniae did not show improvement over azithromycin, highlighting the specific improvement in antimalarial quick-killing activity. Metabolomic profiling of parasites subjected to the most potent compound showed a build-up of non-haemoglobin derived peptides that was similar to chloroquine, while also exhibiting accumulation of haemoglobin-derived peptides that was absent for chloroquine treatment. Discussion The azithromycin analogues characterised in this study expand the structural diversity over previously reported quick-killing compounds and provide new starting points to develop azithromycin analogues with quick-killing antimalarial activity.
Collapse
Affiliation(s)
- Amy L. Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia,School of Science and Technology, the University of New England, Armidale, NSW, Australia
| | - Brad E. Sleebs
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Maria Gancheva
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia
| | - Kimberley T. McLean
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia
| | - Ghizal Siddiqui
- Drug Delivery Disposition and Dynamics, Monash University, Parkville, VIC, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - James G. Beeson
- Healthy Mothers, Healthy Babies Program, Burnet Institute, Melbourne, VIC, Australia,Department of Medicine, University of Melbourne, Parkville, VIC, Australia,Central Clinical School, Monash University, Melbourne, Vic, Australia,Department of Microbiology, Monash University, Melbourne, Vic, Australia
| | - Ryan O’Handley
- School of Animal and Veterinary Science, University of Adelaide, Adelaide, SA, Australia,Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA, Australia
| | - Darren J. Creek
- Drug Delivery Disposition and Dynamics, Monash University, Parkville, VIC, Australia
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Sonja Frölich
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia
| | | | | | - Danny W. Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, the University of Adelaide, Adelaide, SA, Australia,Healthy Mothers, Healthy Babies Program, Burnet Institute, Melbourne, VIC, Australia,Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA, Australia,*Correspondence: Danny W. Wilson,
| |
Collapse
|
11
|
Berbel D, González-Díaz A, López de Egea G, Càmara J, Ardanuy C. An Overview of Macrolide Resistance in Streptococci: Prevalence, Mobile Elements and Dynamics. Microorganisms 2022; 10:2316. [PMID: 36557569 PMCID: PMC9783990 DOI: 10.3390/microorganisms10122316] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Streptococcal infections are usually treated with beta-lactam antibiotics, but, in case of allergic patients or reduced antibiotic susceptibility, macrolides and fluoroquinolones are the main alternatives. This work focuses on studying macrolide resistance rates, genetic associated determinants and antibiotic consumption data in Spain, Europe and also on a global scale. Macrolide resistance (MR) determinants, such as ribosomal methylases (erm(B), erm(TR), erm(T)) or active antibiotic efflux pumps and ribosomal protectors (mef(A/E)-mrs(D)), are differently distributed worldwide and associated with different clonal lineages and mobile genetic elements. MR rates vary together depending on clonal dynamics and on antibiotic consumption applying selective pressure. Among Streptococcus, higher MR rates are found in the viridans group, Streptococcus pneumoniae and Streptococcus agalactiae, and lower MR rates are described in Streptococcus pyogenes. When considering different geographic areas, higher resistance rates are usually found in East-Asian countries and milder or lower in the US and Europe. Unfortunately, the availability of data varies also between countries; it is scarce in low- and middle- income countries from Africa and South America. Thus, surveillance studies of macrolide resistance rates and the resistance determinants involved should be promoted to complete global knowledge among macrolide resistance dynamics.
Collapse
Affiliation(s)
- Dàmaris Berbel
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, 08907 Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, 28020 Madrid, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, 08907 Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, 28020 Madrid, Spain
| | - Guillem López de Egea
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, 08907 Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, 28020 Madrid, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, 08907 Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, 28020 Madrid, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, 08907 Barcelona, Spain
- Research Network for Respiratory Diseases (CIBERES), ISCIII, 28020 Madrid, Spain
- Department of Pathology and Experimental Therapeutics, School of Medicine, University of Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
12
|
Guo W, Gharbaoui T, Lizza JR, Meng F, Wang Y, Xin M, Chen Y, Li J, Chen CY. Practical Asymmetric Synthesis of a Bicyclic Pyrrolidinol. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenxing Guo
- Pharmablock USA, 777 Schwab Road, Unit D, Hatfield, Pennsylvania 19440, United States
| | - Tawfik Gharbaoui
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| | - Joseph R. Lizza
- Pharmablock USA, 777 Schwab Road, Unit D, Hatfield, Pennsylvania 19440, United States
| | - Fanfan Meng
- Pharmablock Nanjing, 10 Xuefu Rd., Jiangbei New Area, Nanjing, Jiangsu 210032, P. R. China
| | - Yuanxian Wang
- Pharmablock Nanjing, 10 Xuefu Rd., Jiangbei New Area, Nanjing, Jiangsu 210032, P. R. China
| | - Maoshu Xin
- Pharmablock Nanjing, 10 Xuefu Rd., Jiangbei New Area, Nanjing, Jiangsu 210032, P. R. China
| | - Yuanpeng Chen
- Pharmablock Nanjing, 10 Xuefu Rd., Jiangbei New Area, Nanjing, Jiangsu 210032, P. R. China
| | - Jing Li
- Pharmablock USA, 777 Schwab Road, Unit D, Hatfield, Pennsylvania 19440, United States
| | - Cheng-yi Chen
- Mirati Therapeutics, 3545 Cray Court, San Diego, California 92121, United States
| |
Collapse
|
13
|
Zelmer AR, Nelson R, Richter K, Atkins GJ. Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis. Bone Res 2022; 10:53. [PMID: 35961964 PMCID: PMC9374758 DOI: 10.1038/s41413-022-00227-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
Approximately 40% of treatments of chronic and recurrent osteomyelitis fail in part due to bacterial persistence. Staphylococcus aureus, the predominant pathogen in human osteomyelitis, is known to persist by phenotypic adaptation as small-colony variants (SCVs) and by formation of intracellular reservoirs, including those in major bone cell types, reducing susceptibility to antibiotics. Intracellular infections with S. aureus are difficult to treat; however, there are no evidence-based clinical guidelines addressing these infections in osteomyelitis. We conducted a systematic review of the literature to determine the demonstrated efficacy of all antibiotics against intracellular S. aureus relevant to osteomyelitis, including protein biosynthesis inhibitors (lincosamides, streptogramins, macrolides, oxazolidines, tetracyclines, fusidic acid, and aminoglycosides), enzyme inhibitors (fluoroquinolones and ansamycines), and cell wall inhibitors (beta-lactam inhibitors, glycopeptides, fosfomycin, and lipopeptides). The PubMed and Embase databases were screened for articles related to intracellular S. aureus infections that compared the effectiveness of multiple antibiotics or a single antibiotic together with another treatment, which resulted in 34 full-text articles fitting the inclusion criteria. The combined findings of these studies were largely inconclusive, most likely due to the plethora of methodologies utilized. Therefore, the reported findings in the context of the models employed and possible solutions for improved understanding are explored here. While rifampicin, oritavancin, linezolid, moxifloxacin and oxacillin were identified as the most effective potential intracellular treatments, the scientific evidence for these is still relatively weak. We advocate for more standardized research on determining the intracellular effectiveness of antibiotics in S. aureus osteomyelitis to improve treatments and patient outcomes.
Collapse
Affiliation(s)
- Anja R Zelmer
- Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Renjy Nelson
- Department of Infectious Diseases, Central Adelaide Local Health Network, Adelaide, SA, 5000, Australia.,Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Katharina Richter
- Richter Lab, Department of Surgery, Basil Hetzel Institute for Translational Health Research, University of Adelaide, Adelaide, SA, 5011, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
14
|
Cho YN, Park SE, Cho EY, Cho HK, Park JY, Kang HM, Yun KW, Choi EH, Lee H. Distribution of emm genotypes in group A streptococcus isolates of Korean children from 2012 to 2019. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:671-677. [PMID: 35624007 DOI: 10.1016/j.jmii.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Changes in the epidemiology of group A streptococcus (GAS) infection is related to emm genotype. We studied the distribution of emm genotypes and their antibiotic susceptibility among Korean children. METHODS Isolates from children with GAS infection between 2012 and 2019 were collected. emm typing and cluster analysis was performed according to the Centers for Disease Control emm cluster classification. Antimicrobial susceptibility was tested using the E-test and resistance genes were analyzed for macrolide resistant phenotypes. RESULTS Among 169 GAS isolates, 115 were from children with scarlet fever. Among invasive isolates, emm1 (6/22, 27.3%), emm12 (4/22, 18.2%), and emm4 (4/22, 18.2%) were most common. In scarlet fever, although emm4 (38/115, 33.0%) was the most prevalent throughout the study period, emm4 was replaced by emm3 (28/90, 31.1%) during an outbreak in 2017-2018. Among all isolates, only 2 (1.2%) exhibited erythromycin resistance and harbored both ermA and ermB genes. CONCLUSIONS In this analysis of GAS isolated from Korean children, emm1 was the most prevalent in invasive infection. In scarlet fever, emm4 was prevalent throughout the study period, with an increase in emm3 during 2017-2018. GAS isolates during 2012-2019 demonstrated low erythromycin resistance.
Collapse
Affiliation(s)
- You Na Cho
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su Eun Park
- Department of Pediatrics, Pusan National University Children's Hospital, Yangsan, Republic of Korea
| | - Eun Young Cho
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Hye Kyung Cho
- Department of Pediatrics, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Ji Young Park
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Hyun-Mi Kang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki Wook Yun
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Eun Hwa Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Hyunju Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
15
|
Antimicrobial Activity of the Iron-Chelator, DIBI, against Multidrug-Resistant Canine Methicillin-Susceptible Staphylococcus pseudintermedius: A Preliminary Study of Four Clinical Strains. Pathogens 2022; 11:pathogens11060656. [PMID: 35745511 PMCID: PMC9227175 DOI: 10.3390/pathogens11060656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/10/2022] Open
Abstract
Staphylococcus pseudintermedius is an important opportunistic pathogen causing various infections in dogs. Furthermore, it is an emerging zoonotic agent and both multidrug-resistant methicillin-resistant S. pseudintermedius (MRSP) as well as methicillin-susceptible (MSSP) strains represent an important therapeutic challenge to veterinary medicine and pose a potential threat to human health. We tested representative S. pseudintermedius clinical strains from dogs suffering from otitis externa for their susceptibilities to a panel of 17 antimicrobials compared to DIBI. DIBI, unlike antibiotics, is a novel water-soluble hydroxypyridinone-containing iron-chelating agent that deprives microbes of growth-essential iron and has been previously shown to inhibit methicillin-resistant Staphylococcus aureus (MRSA). We also characterised the strains according to whether they harbour key antibiotic resistance genes. The strains each displayed multiple antimicrobial resistance patterns; all were negative for the mecA gene and possessed the tetK and tetM genes, but they varied as to their possession of the ermB gene. However, all the isolates had similar susceptibility to DIBI with low MICs (2 µg/mL or 0.2 µM). Because the four MSSPs were equally susceptible to DIBI, subject to confirmation with additional strains, this could provide a potential non-antibiotic, anti-infective alternative approach for the treatment of antimicrobial-resistant canine S. pseudintermedius otitis.
Collapse
|
16
|
Human enterococcal isolates as reservoirs for macrolide-lincosamide-streptogramin and other resistance genes. J Antibiot (Tokyo) 2022; 75:396-402. [PMID: 35618783 DOI: 10.1038/s41429-022-00532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022]
Abstract
According to recent studies, the importance of MLS (macrolide-lincosamide-streptogramin) resistance phenotypes and genes in enterococci are reflected in the fact that they represent reservoirs of MLS resistance genes. The aim of this study was to investigate distribution of MLS resistance genes and phenotypes in community- and hospital-acquired enterococcal isolates and to determine their prevalence. The MLS resistance phenotypes (cMLSb, iMLSb, M/MSb, and L/LSa) were determined in 245 enterococcal isolates were characterized using the double-disc diffusion method. Specific primers were chosen from database sequences for detection of the MLS resistance genes (ermA, ermB, ermC, msrA/B, lnuA, lnuB, and lsaA) in 60 isolates of enterococci by end-point PCR. There was no linezolid-resistant enterococcal isolate. Only one vancomycin-resistant (0.6%) isolate was found and it occurred in a community-acquired enterococcal isolate. The most frequent MLS resistance phenotype among enterococcal isolates was cMLSb (79.7% community- and 67.9% hospital-acquired). The most common identified MLS resistance genes among enterococcal isolates were lsaA (52.9% community- and 33.3% hospital-acquired) and ermB (17.6% community- and 33.3% hospital-acquired). The most prevalent MLS gene combination was lnuA + lsaA (five enterococcal isolates). The ermB gene encoded cMLSb phenotype, and it was identified in only one isolate that displayed iMLSb resistance phenotype. Based on the results obtained, we can conclude that the most frequent MLS resistance phenotype among enterococcal isolates was cMLSb. Surprisingly, a vancomycin-resistant enterococcal isolate was identified in a community-acquired enterococcal isolate. This study shows that enterococci may represent a major reservoir of ermB, lsaA, and lnuA genes.
Collapse
|
17
|
Zhang J, Zhang D, Wang X, Wei X, Li H. Macrolide susceptibility and molecular characteristics of Bordetella pertussis. J Int Med Res 2022; 50:3000605221078782. [PMID: 35225710 PMCID: PMC8894965 DOI: 10.1177/03000605221078782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To analyse macrolide resistance and molecular characteristics of Bordetella pertussis clinical isolates from western China, and to explore the relationship between macrolide-resistance and genotypes. Methods Susceptibilities of B. pertussis clinical isolates to erythromycin, azithromycin and clarithromycin were determined by epsilometer test (E-test). Isolated strains were sequenced to ascertain the presence of the 23S rRNA gene A2047G mutation. Strains were typed using multilocus antigen sequence typing, multilocus variable-number tandem-repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE). Results Of 58 B. pertussis strains isolated in this study, 46 were macrolide-resistant and 12 were macrolide sensitive. All macrolide-resistant strains carried the A2047G mutation and were the prn1/ptxP1/ptxA1/fim3-1/fim2-1 genotype; the MLVA types were MT195 (19/58), MT55 (13/58) and MT104 (14/58), and the PFGE profiles were classified into BpSR23 (17/58) and BpFINR9 (29/58) types. None of the macrolide-sensitive strains carried the A2047G mutation; genotypes were (prn9 or prn2)/ptxP3/ptxA1/fim3-1/fim2-1, and all were MT27. PFGE profiles differed from the macrolide-resistant strains. Conclusions B. pertussis clinical isolates from western China were severely resistant to macrolides. Genotypes differed between macrolide-resistant and macrolide-sensitive strains, and there may be a correlation between acquisition of macrolide resistance and changes in specific molecular types.
Collapse
Affiliation(s)
- Juansheng Zhang
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| | - Diqiang Zhang
- Department of Obstetrics and Gynaecology, Pingchuan District People's Hospital, Baiyin, Gansu Province, China
| | - Xiaoqiang Wang
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| | - Xiaoguang Wei
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| | - Hao Li
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| |
Collapse
|
18
|
Li G, Lou M, Qi X. A brief overview of classical natural product drug synthesis and bioactivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01341f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript briefly overviewed the total synthesis and structure–activity relationship studies of eight classical natural products, which emphasizes the important role of total synthesis in natural product-based drug development.
Collapse
Affiliation(s)
- Gen Li
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Mingliang Lou
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Bioactivity of Essential Oils for Mitigation of Listeria monocytogenes Isolated from Fresh Retail Chicken Meat. Foods 2021; 10:foods10123006. [PMID: 34945555 PMCID: PMC8701900 DOI: 10.3390/foods10123006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes is one of the most severe foodborne pathogens found in several habitats. Therefore, this study aims to investigate the antilisterial activity of different essential oils (EOs) against multidrug-resistant (MDR) L. monocytogenes strains isolated from fresh chicken meat. Our results showed that the prevalence of L. monocytogenes in the examined samples was 48%. Seventy-eight isolates were identified as L. monocytogenes. Out of these, 64.1% were categorized as MDR and were categorized in 18 patterns with 50 MDR isolates. One isolate was selected randomly from each pattern to investigate their biofilm-forming ability, resistance, and virulence genes incidence. Out of 18 MDR isolates, 88.9% showed biofilm-forming ability. Moreover, the most prevalent resistance genes were ermB (72%), aadA (67%), penA (61%), and floR genes (61%). However, the most prevalent virulence genes were inlA (94.4%), prfA (88.9%), plcB (83.3%), and actaA (83.3%). The antilisterial activity of EOs showed that cinnamon bark oil (CBO) was the most effective antilisterial agent. CBO activity could be attributed to the bioactivity of cinnamaldehyde which effects cell viability by increasing the bacterial cell electrical conductivity, ion leakage, and salt tolerance capacity loss. Therefore, CBO could be an effective alternative natural agent for food safety applications.
Collapse
|
20
|
Johnson AF, LaRock CN. Antibiotic Treatment, Mechanisms for Failure, and Adjunctive Therapies for Infections by Group A Streptococcus. Front Microbiol 2021; 12:760255. [PMID: 34803985 PMCID: PMC8601407 DOI: 10.3389/fmicb.2021.760255] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus (GAS; Streptococcus pyogenes) is a nearly ubiquitous human pathogen responsible for a significant global disease burden. No vaccine exists, so antibiotics are essential for effective treatment. Despite a lower incidence of antimicrobial resistance than many pathogens, GAS is still a top 10 cause of death due to infections worldwide. The morbidity and mortality are primarily a consequence of the immune sequelae and invasive infections that are difficult to treat with antibiotics. GAS has remained susceptible to penicillin and other β-lactams, despite their widespread use for 80 years. However, the failure of treatment for invasive infections with penicillin has been consistently reported since the introduction of antibiotics, and strains with reduced susceptibility to β-lactams have emerged. Furthermore, isolates responsible for outbreaks of severe infections are increasingly resistant to other antibiotics of choice, such as clindamycin and macrolides. This review focuses on the challenges in the treatment of GAS infection, the mechanisms that contribute to antibiotic failure, and adjunctive therapeutics. Further understanding of these processes will be necessary for improving the treatment of high-risk GAS infections and surveillance for non-susceptible or resistant isolates. These insights will also help guide treatments against other leading pathogens for which conventional antibiotic strategies are increasingly failing.
Collapse
Affiliation(s)
- Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Christopher N LaRock
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center, Atlanta, GA, United States
| |
Collapse
|
21
|
Sahulka SQ, Bhattarai B, Bhattacharjee AS, Tanner W, Mahar RB, Goel R. Differences in chlorine and peracetic acid disinfection kinetics of Enterococcus faecalis and Escherichia fergusonii and their susceptible strains based on gene expressions and genomics. WATER RESEARCH 2021; 203:117480. [PMID: 34392043 DOI: 10.1016/j.watres.2021.117480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This study was conducted to investigate mechanisms of cross-resistance to chlorine and peracetic acid (PAA) disinfectants by antibiotic-resistant bacteria. Our study evaluated chlorine and PAA based disinfection kinetics of erythromycin-resistant Enterococcus faecalis, meropenem-resistant Escherichia fergusonii, and susceptible strains of these species. Using the integrated second-order disinfectant decay model and first-order Chick-Watson's Law, it was found that the meropenem-resistant Escherichia fergusonii strain showed significantly less log inactivation compared to the susceptible E. fergusonii strain in response to both chlorine and PAA disinfection (p-value = 0.059, 3.5 × 10-6). On the other hand, the susceptible Enterococcus faecalis strain showed similar log inactivation compared to the erythromycin-resistant strain in response to either treatment (p-value = 0.075, 0.28). Meropenem-resistant E. fergusonii showed an increase in gene expression of New Delhi metallo-β-lactamase (blaNDM-1) gene to chlorine, but there was no increase in expression to PAA. Whole genome sequencing (WGS) was then conducted to elucidate the differences in genes among both resistant and susceptible table E. fergusonii strains. The average nucleotide identity (ANI) analysis of the draft genomes (>97% similarity) suggests that meropenem-resistant E. fergusonii (S1) and meropenem-susceptible E. fergusonii (S2) are the same species but different strains. Both strains have the same genes for oxidative stress pathways, oxidative scavenger genes, and nearly 40 different antibiotic efflux pump genes. The chromosomal and plasmid draft genomes of meropenem-resistant and susceptible E. fergusonii strains each have 65 and 52 antibiotic resistance genes, respectively. Of these, the resistant E. fergusonii strain harbored the extended-spectrum beta-lactamases blaCTX-M-15 and blaTEM-1 genes located on the chromosome, and a blaTEM-1 gene on the plasmid. The overall findings of this study are significant, as they reveal that antibiotic-resistant and susceptible strains of E. fergusonii exhibit different responses towards chlorine and PAA disinfection.
Collapse
Affiliation(s)
| | - Bishav Bhattarai
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Ananda S Bhattacharjee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Windy Tanner
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Rasool Bux Mahar
- US.- Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, UT, USA.
| |
Collapse
|
22
|
Berbel D, Càmara J, González-Díaz A, Cubero M, López de Egea G, Martí S, Tubau F, Domínguez MA, Ardanuy C. Deciphering mobile genetic elements disseminating macrolide resistance in Streptococcus pyogenes over a 21 year period in Barcelona, Spain. J Antimicrob Chemother 2021; 76:1991-2003. [PMID: 34015100 DOI: 10.1093/jac/dkab130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To phenotypically and genetically characterize the antibiotic resistance determinants and associated mobile genetic elements (MGEs) among macrolide-resistant (MR) Streptococcus pyogenes [Group A streptococci (GAS)] clinical isolates collected in Barcelona, Spain. METHODS Antibiotic susceptibility testing was performed by microdilution. Isolates were emm and MLST typed and 55 were whole-genome sequenced to determine the nature of the macrolide resistance (MR) determinants and their larger MGE and chromosomal context. RESULTS Between 1998 and 2018, 142 of 1028 GAS (13.8%) were MR. Among 108 isolates available for molecular characterization, 41.7% had cMLSB, 30.5% iMLSB and 27.8% M phenotype. Eight erm(B)-containing strains were notable in having an MDR phenotype conferred by an MGE encoding several antibiotic resistance genes. MR isolates were comprised of several distinct genetic lineages as defined by the combination of emm and ST. Although most lineages were only transiently present, the emm11/ST403 clone persisted throughout the period. Two lineages, emm9/ST75 with erm(B) and emm77/ST63 with erm(TR), emerged in 2016-18. The erm(B) was predominantly encoded on the Tn916 family of transposons (21/31) with different genetic contexts, and in other MGEs (Tn6263, ICESpHKU372 and one harbouring an MDR cluster called ICESp1070HUB). The erm(TR) was found in ICESp2905 (8/17), ICESp1108-like (4/17), ICESpHKU165 (3/17) and two structures described in this study (IMESp316HUB and ICESp3729HUB). The M phenotype [mef(A)-msr(D)] was linked to phage φ1207.3. Eight integrative conjugative element/integrative mobilizable element (ICE/IME) cluster groups were classified on the basis of gene content within conjugation modules. These groups were found among MGEs, which corresponded with the MR-containing element or the site of integration. CONCLUSIONS We detected several different MGEs harbouring erm(B) or erm(TR). This is the first known description of Tn6263 in GAS and three MGEs [IMESp316HUB, ICESp3729HUB and ICESp1070HUB] associated with MR. Periods of high MR rates in our area were mainly associated with the expansion of certain predominant lineages, while in low MR periods different sporadic and low prevalence lineages were more frequent.
Collapse
Affiliation(s)
- Dàmaris Berbel
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Jordi Càmara
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Aida González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Meritxell Cubero
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Guillem López de Egea
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Martí
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Fe Tubau
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - M Angeles Domínguez
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Departament of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| | - Carmen Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, ISCIII, Madrid, Spain.,Departament of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Mbanga J, Amoako DG, Abia ALK, Allam M, Ismail A, Essack SY. Genomic Analysis of Enterococcus spp. Isolated From a Wastewater Treatment Plant and Its Associated Waters in Umgungundlovu District, South Africa. Front Microbiol 2021; 12:648454. [PMID: 34194401 PMCID: PMC8236953 DOI: 10.3389/fmicb.2021.648454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
We investigated the antibiotic resistome, mobilome, virulome, and phylogenomic lineages of Enterococcus spp. obtained from a wastewater treatment plant and its associated waters using whole-genome sequencing (WGS) and bioinformatics tools. The whole genomes of Enterococcus isolates including Enterococcus faecalis (n = 4), Enterococcus faecium (n = 5), Enterococcus hirae (n = 2), and Enterococcus durans (n = 1) with similar resistance patterns from different sampling sites and time points were sequenced on an Illumina MiSeq machine. Multilocus sequence typing (MLST) analysis revealed two E. faecalis isolates that had a common sequence type ST179; the rest had unique sequence types ST841, and ST300. The E. faecium genomes belonged to 3 sequence types, ST94 (n = 2), ST361 (n = 2), and ST1096 (n = 1). Detected resistance genes included those encoding tetracycline [tet(S), tet(M), and tet(L)], and macrolides [msr(C), msr(D), erm(B), and mef(A)] resistance. Antibiotic resistance genes were associated with insertion sequences (IS6, ISL3, and IS982), and transposons (Tn3 and Tn6000). The tet(M) resistance gene was consistently found associated with a conjugative transposon protein (TcpC). A total of 20 different virulence genes were identified in E. faecalis and E. faecium including those encoding for sex pheromones (cCF10, cOB1, cad, and came), adhesion (ace, SrtA, ebpA, ebpC, and efaAfs), and cell invasion (hylA and hylB). Several virulence genes were associated with the insertion sequence IS256. No virulence genes were detected in E. hirae and E. durans. Phylogenetic analysis revealed that all Enterococcus spp. isolates were more closely related to animal and environmental isolates than clinical isolates. Enterococcus spp. with a diverse range of resistance and virulence genes as well as associated mobile genetic elements (MGEs) exist in the wastewater environment in South Africa.
Collapse
Affiliation(s)
- Joshua Mbanga
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Daniel G. Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Akebe L. K. Abia
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Mushal Allam
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Sabiha Y. Essack
- Antimicrobial Research Unit, College of Health Sciences, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
24
|
Mahmud Z, Shabnam SA, Mishu ID, Johura FT, Mannan SB, Sadique A, Islam LN, Alam M. Virotyping, genotyping, and molecular characterization of multidrug resistant Escherichia coli isolated from diarrheal patients of Bangladesh. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Oliveira LMA, Souza ARV, Pinto TCA, Teixeira LM. Characterization of Streptococcus pneumoniae serotype 19F-variants occurring in Brazil uncovers a predominant lineage that can lead to misinterpretation in capsular typing. Int J Infect Dis 2021; 104:580-583. [PMID: 33476756 DOI: 10.1016/j.ijid.2021.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae (S. pneumoniae) of serogroup 19 are mainly represented by serotypes 19A and 19F, which are associated with antimicrobial resistance and disease. The wzy gene, a component of the pneumococcal capsular locus, is the target to differentiate serotypes 19A and 19F by PCR-based capsular typing. In the last decade, allelic variants of the wzy19F gene have been described, leading to misinterpretation of capsular typing results. METHODS A collection of 154 serotype 19F S. pneumoniae strains recovered from carriage and disease in Brazil was evaluated to identify and characterize wzy19F variant isolates. RESULTS Eleven (7%) wzy19F variant isolates were detected and identified as belonging to ST810 (n = 10) or ST13673 (n = 1; single-locus variant of ST810). They were mostly recovered from diseased patients, susceptible to the antimicrobial agents tested (except for one multidrug-resistant strain) and did not harbor pili genes. Sequences of the wzy19F gene of these variants were identical to each other and to those previously described in Brazil, but slightly different from wzy19F variants identified in other countries. CONCLUSION This study indicated that wzy19F variants present a geographically driven distribution and was the first to uncover phenotypic and genetic features of a wzy19F variant lineage occurring in Brazil since 1989.
Collapse
Affiliation(s)
- Laura M A Oliveira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline R V Souza
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana C A Pinto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia M Teixeira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Mack I, Sharland M, Berkley JA, Klein N, Malhotra-Kumar S, Bielicki J. Antimicrobial Resistance Following Azithromycin Mass Drug Administration: Potential Surveillance Strategies to Assess Public Health Impact. Clin Infect Dis 2021; 70:1501-1508. [PMID: 31633161 DOI: 10.1093/cid/ciz893] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022] Open
Abstract
The reduction in childhood mortality noted in trials investigating azithromycin mass drug administration (MDA) for trachoma control has been confirmed by a recent large randomized controlled trial. Population-level implementation of azithromycin MDA may lead to selection of multiresistant pathogens. Evidence suggests that repeated azithromycin MDA may result in a sustained increase in macrolide and other antibiotic resistance in gut and respiratory bacteria. Current evidence comes from standard microbiological techniques in studies focused on a time-limited intervention, while MDA implemented for mortality benefits would likely repeatedly expose the population over a prolonged period and may require a different surveillance approach. Targeted short-term and long-term surveillance of resistance emergence to key antibiotics, especially those from the World Health Organization Access group, is needed throughout any implementation of azithromycin MDA, focusing on a genotypic approach to overcome the limitations of resistance surveillance in indicator bacteria.
Collapse
Affiliation(s)
- Ines Mack
- Pediatric Infectious Diseases, University Children's Hospital Basel, Basel, Switzerland
| | - Mike Sharland
- Pediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| | - James A Berkley
- Center for Tropical Medicine and Global Health, University of Oxford, United Kingdom.,KEMRI/Wellcome Trust Research Program, Kilifi, Kenya
| | - Nigel Klein
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Universiteit Antwerpen, Antwerp, Belgium
| | - Julia Bielicki
- Pediatric Infectious Diseases, University Children's Hospital Basel, Basel, Switzerland.,Pediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| |
Collapse
|
27
|
Pereira JG, Soares VM, Tadielo LE, Ramires T, da Silva WP. Antimicrobial Resistance Profile of Salmonella and Listeria monocytogenes Isolated from Products Marketed on the Border of Brazil with Argentina and Uruguay. J Food Prot 2020; 83:1941-1946. [PMID: 32574360 DOI: 10.4315/jfp-20-176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/21/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT We aimed to perform serotyping and the antimicrobial resistance profile of Salmonella spp. and Listeria monocytogenes strains isolated from raw meats imported illegally into Brazil along the borders of Argentina and Uruguay. Distinct isolates of Salmonella spp. (n = 6) and L. monocytogenes (n = 25) obtained from 270 of these food products of earlier work were serotyped and tested for antimicrobial resistance by agar disk diffusion method. For strains that were considered phenotypically resistant, antimicrobial resistance genes were investigated: strA, strB, floR, tetA, tetB, blaZ, blaTEM, ermB, ermC, and ereB to Salmonella sp. and blaZ and mecA to L. monocytogenes. All Salmonella isolates were identified as Salmonella Infantis; they were multidrug resistant and harbored the genes blaTEM (n = 6), strA (n = 1), strB (n = 1), floR (n = 1), ermB (n = 1), tetA (n = 3), and tetB (n = 3). L. monocytogenes isolates belonged to serovars 1/2a (n = 1), 1/2b (n = 14), 1/2c (n = 2), and 4b (n = 8), showed resistance only to penicillin G (n = 12), and did not show the blaZ and mecA genes. The results demonstrated that illegal foods that are commercialized in the Brazilian international border with Argentina and Uruguay may harbor foodborne pathogens, and some of them have multidrug resistance characteristics, such as Salmonella, emphasizing the need for greater control of international food transit in Brazil, especially in the region evaluated. HIGHLIGHTS
Collapse
Affiliation(s)
- Juliano GonÇalves Pereira
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Campus Botucatu, Rua Prof. Walter Mauricio Correa, SN, Botucatu, São Paulo, Brazil, CEP 18618681.,(ORCID: https://orcid.org/0000-0002-8713-7506 [J.G.P.])
| | - Vanessa MendonÇa Soares
- Universidade Federal do Pampa, Campus Uruguaiana, BR 472, Km 585, Uruguaiana, Rio Grande do Sul, Brazil, CEP 97501970
| | - Leonardo Ereno Tadielo
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Campus Botucatu, Rua Prof. Walter Mauricio Correa, SN, Botucatu, São Paulo, Brazil, CEP 18618681
| | - Tassiana Ramires
- Universidade Federal de Pelotas, Campus Capão do Leão, Avenida Eliseu Maciel, s/n, Capão do Leão, Rio Grande do Sul, Brazil, CEP 96010900
| | - Wladimir Padilha da Silva
- Universidade Federal de Pelotas, Campus Capão do Leão, Avenida Eliseu Maciel, s/n, Capão do Leão, Rio Grande do Sul, Brazil, CEP 96010900
| |
Collapse
|
28
|
Tsai WC, Shen CF, Lin YL, Shen FC, Tsai PJ, Wang SY, Lin YS, Wu JJ, Chi CY, Liu CC. Emergence of macrolide-resistant Streptococcus pyogenes emm12 in southern Taiwan from 2000 to 2019. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:1086-1093. [PMID: 32994137 DOI: 10.1016/j.jmii.2020.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Group A Streptococcus (GAS) is an important pathogen causing morbidity and mortality worldwide. Surveillance of resistance and emm type has important implication to provide helpful information on the changing GAS epidemiology and empirical treatment. METHODS To study the emergence of resistant GAS in children with upper respiratory tract infection (URTI), a retrospective study was conducted from 2000 to 2019 in southern Taiwan. Microbiological studies, including antibiotic susceptibility, were performed. GAS emm types and sequences were determined by molecular methods. The population was divided into two separate decades to analyze potential changes over time. The 1st decade was 2000-2009; the 2nd decade was 2010-2019. Multivariate analyses were performed to identify independent risk factors associated with macrolide resistance between these periods. RESULTS A total of 320 GAS from 339 children were enrolled. Most of the children (75%) were under 9 years of age. The most common diagnosis was scarlet fever (225, 66.4%), and the frequency increased from 54.8% in the 1st to 77.9% in the 2nd decade (p < 0.0001). There was a significant increase in resistance to erythromycin and azithromycin from 18.1%, 19.3% in the 1st to 58.4%, 61.0% in the 2nd decade (p < 0.0001). This was associated with clonal expansion of the GAS emm12-ST36 which carrying erm(B) and tet(M) from 3.0% in the 1st to 53.2% in the 2nd decade (p < 0.0001). CONCLUSIONS Significant emergence of macrolide-resistant GAS emm12-ST36 in children supports the need for continuing surveillance and investigation for the clonal virulence.
Collapse
Affiliation(s)
- Wei-Chun Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ya-Lan Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Fan-Ching Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan
| | - Shu-Ying Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Chia-Yu Chi
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan; Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
29
|
Genovese C, D'Angeli F, Di Salvatore V, Tempera G, Nicolosi D. Streptococcus agalactiae in pregnant women: serotype and antimicrobial susceptibility patterns over five years in Eastern Sicily (Italy). Eur J Clin Microbiol Infect Dis 2020; 39:2387-2396. [PMID: 32700131 PMCID: PMC7669783 DOI: 10.1007/s10096-020-03992-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
Streptococcus agalactiae (also known Group B Streptococcus or GBS) represents the main pathogen responsible for early- and late-onset infections in newborns. The present study aimed to determine the antimicrobial susceptibility pattern and the capsular serotypes of GBS isolated in Eastern Sicily over 5 years, from January 2015 to December 2019. A total of 3494 GBS were isolated from vaginal swabs of pregnant women (37–39 weeks), as recommended by the Centers for Disease Control and Prevention. Capsular polysaccharide’s typing of GBS was determined by a commercial latex agglutination test containing reagents to serotypes I–IX. The antimicrobial resistance pattern of GBS was determined through the disk diffusion method (Kirby-Bauer) and the double-disk diffusion test on Mueller-Hinton agar plates supplemented with 5% defibrinated sheep blood, according to the guidelines of the Clinical and Laboratory Standards Institute. Serotypes III (1218, 34.9%) and V (1069, 30.6%) were the prevalent colonizers, followed by not typable (570, 16.3%) and serotypes Ia (548, 15.7%), Ib (47, 1.3%), II (40, 1.1%), and IV (2, 0.1%). All 3494 clinical isolates were susceptible to cefditoren and vancomycin. Resistance to penicillin, ampicillin, levofloxacin, clindamycin, and erythromycin was observed in 6 (0.2%), 5 (0.1%), 161 (4.6%), 1090 (31.2%), and 1402 (40.1%) of the strains, respectively. Most of erythromycin-resistant GBS (1090/1402) showed the cMLSB phenotype, 276 the M phenotype, and 36 the iMLSB phenotype. Our findings revealed a higher prevalence of serotype III and a relevant resistance rate, among GBS strains, to the most frequently used antibiotics in antenatal screening.
Collapse
Affiliation(s)
- Carlo Genovese
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Catania, 95123, Italy.,Nacture S.r.l, Spin-off University of Catania, Catania, 95123, Italy
| | - Floriana D'Angeli
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania, 95123, Italy. .,Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166, Rome, Italy.
| | - Valentina Di Salvatore
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of Catania, Catania, 95123, Italy
| | - Gianna Tempera
- Nacture S.r.l, Spin-off University of Catania, Catania, 95123, Italy
| | - Daria Nicolosi
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, Catania, 95123, Italy.,Nacture S.r.l, Spin-off University of Catania, Catania, 95123, Italy
| |
Collapse
|
30
|
González E, Zapata AC, Sánchez-Henao DF, Chávez-Vivas M. Resistencia a antibióticos β-lactámicos y eritromicina en bacterias de la cavidad oral. NOVA 2020. [DOI: 10.22490/24629448.3928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introducción. La microbiota humana como fuente de bacterias y genes de resistencia constituyen un problema de salud pública. En este estudio se investigó la prevalencia de bacilos entéricos Gram negativos resistentes a β-lactámicos y de los Streptococcus del grupo viridans (EGV) con resistencia a eritromicina en la cavidad oral. Métodos. Se realizó un estudio descriptivo de corte transversal con 193 aislamientos de la cavidad oral sana de 178 adultos que asistieron a una Clínica Odontológica de la ciudad de Cali durante el 2018. La evaluación de la sensibilidad antimicrobiana se realizó en 59 bacilos entéricos y 134 EGV y se identificó por PCR los genes que confieren resistencia a β-lactámicos y eritromicina. El análisis estadístico se realizó mediante el empleo del paquete SPSS vs 23. Resultados. El 84,7% de los bacilos entéricos fueron multirresistentes y presentaron genes bla, siendo blaTEM-1 (49,2%) y blaVIM-2 (30,5%,) los más prevalentes. Los EGV fueron resistentes a eritromicina (38,8%) y clindamicina (28,4%). El 18,7% presentaron el fenotipo cMLSβ, 4,5% el iMLSβ y el 14,9% fueron M. El gen ermB se detectó en los cMLSβ, (13,4%) y el gen mef en los M (9,7%). Conclusión. En este estudio se demostró la presencia de EGV y bacilos entéricos resistentes a los antibióticos y portadores de genes de resistencia a eritromicina y genes bla en la cavidad oral sana. La presencia de estas bacterias representa un riesgo para la salud de los individuos portadores y contribuyen a la creciente epidemia de resistencia bacteriana.
Collapse
|
31
|
Grivea IN, Syrogiannopoulos GA, Michoula AN, Gazeti G, Malli E, Tsilipounidaki K, Fouzas S, Anthracopoulos MB, Petinaki E. emm Types and clusters and macrolide resistance of pediatric group A streptococcal isolates in Central Greece during 2011-2017. PLoS One 2020; 15:e0232777. [PMID: 32379802 PMCID: PMC7205280 DOI: 10.1371/journal.pone.0232777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/21/2020] [Indexed: 11/19/2022] Open
Abstract
Background The surveillance of emm types and macrolide susceptibility of group A streptococcus (GAS) in various areas and time periods enhances the understanding of the epidemiology of GAS infections and may guide treatment strategies and the formulation of type-specific vaccines. Greece has emerged as a country with high macrolide use. However, studies suggest a gradual reduction in macrolide consumption after 2007. Methods During a 7-year period (2011–2017), 604 GAS isolates were recovered from consecutive children presenting with pharyngeal or nonpharyngeal infections in Central Greece; 517 viable isolates underwent molecular analysis, including emm typing. Results Isolates belonged to 20 different emm types (in decreasing order of prevalence: 1, 89, 4, 12, 28, 3, 75 and 6, accounting for 88.2% of total isolates). The emm types comprised 10 emm clusters (five most common clusters: E4, A-C3, E1, A-C4 and A-C5). The emm89 isolates were acapsular (‘new clade‘). Overall macrolide resistance rate was 15.4%, and cMLSB emerged as the predominant resistance phenotype (56.4%). The lowest annual resistance rates occurred in 2014 (13.1%), 2016 (5.5%) and 2017(8.0%) (P for trend = 0.002). Consumption of macrolide/lincosamide/streptogramin B declined by 22.6% during 2011–2017. Macrolide resistance and emm28 and emm77 types were associated (both P<0.001). The most frequently identified genetic lineages of macrolide-resistant GAS included emm28/ST52, emm77/ST63, emm12/ST36, emm89/ST101 and emm4/ST39. We estimated that 98.8% of the isolates belonged to emm types incorporated into a novel 30-valent M protein vaccine. Conclusions In Central Greece during 2011–2017, the acapsular emm89 isolates comprised the second most prevalent type. Susceptibility testing and molecular analyses revealed decreasing GAS macrolide resistance rates, which may be attributed to the reduction in the consumption of macrolides and/or the reduced circulation of macrolide-resistant clones in recent years. Such data may provide valuable baseline information in targeting therapeutic intervention and the formulation of type-specific GAS vaccines.
Collapse
Affiliation(s)
- Ioanna N. Grivea
- Department of Pediatrics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - George A. Syrogiannopoulos
- Department of Pediatrics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
- * E-mail:
| | - Aspasia N. Michoula
- Department of Pediatrics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Georgia Gazeti
- Department of Pediatrics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Ergina Malli
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Katerina Tsilipounidaki
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| | - Sotirios Fouzas
- Department of Pediatrics, Faculty of Medicine, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Michael B. Anthracopoulos
- Department of Pediatrics, Faculty of Medicine, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Efthymia Petinaki
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece
| |
Collapse
|
32
|
The Novel Macrolide Resistance Genes mef(D), msr(F), and msr(H) Are Present on Resistance Islands in Macrococcus canis, Macrococcus caseolyticus, and Staphylococcus aureus. Antimicrob Agents Chemother 2020; 64:AAC.00160-20. [PMID: 32122903 DOI: 10.1128/aac.00160-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022] Open
Abstract
Chromosomal resistance islands containing the methicillin resistance gene mecD (McRI mecD ) have been reported in Macrococcus caseolyticus Here, we identified novel macrolide resistance genes in Macrococcus canis on similar elements, called McRI msr These elements were also integrated into the 3' end of the 30S ribosomal protein S9 gene (rpsI), delimited by characteristic attachment (att) sites, and carried a related site-specific integrase gene (int) at the 5' end. They carried novel macrolide resistance genes belonging to the msr family of ABC subfamily F (ABC-F)-type ribosomal protection protein [msr(F) and msr(H)] and the macrolide efflux mef family [mef(D)]. Highly related mef(D)-msr(F) fragments were found on diverse McRI msr elements in M. canis, M. caseolyticus, and Staphylococcus aureus Another McRI msr -like element identified in an M. canis strain lacked the classical att site at the 3' end and carried the msr(H) gene but no neighboring mef gene. The expression of the novel resistance genes in S. aureus resulted in a low-to-moderate increase in the MIC of erythromycin but not streptogramin B. In the mef(D)-msr(F) operon, the msr(F) gene was shown to be the crucial determinant for macrolide resistance. The detection of circular forms of McRI msr and the mef(D)-msr(F) fragment suggested mobility of both the island and the resistance gene subunit. The discovery of McRI msr in different Macrococcus species and S. aureus indicates that these islands have a potential for dissemination of antibiotic resistance within the Staphylococcaceae family.
Collapse
|
33
|
Li MM, Ray P, Knowlton KF, Pruden A, Xia K, Teets C, Du P. Fate of pirlimycin and antibiotic resistance genes in dairy manure slurries in response to temperature and pH adjustment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136310. [PMID: 32050366 DOI: 10.1016/j.scitotenv.2019.136310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Quantifying the fate of antibiotics and antibiotic resistance genes (ARGs) in response to physicochemical factors during storage of manure slurries will aid in efforts to reduce the spread of resistance when manure is land-applied. The objectives of this study were to determine the effects of temperature (10, 35, and 55 °C) and initial pH (5, 7, 9, and 12) on the removal of pirlimycin and prevalence of ARGs during storage of dairy manure slurries. We collected and homogenized feces and urine from five lactating dairy cows treated with pirlimycin and prepared slurries by mixing manure and sterile water. Aliquots (200 mL) of slurry were transferred and incubated in 400 mL glass beakers under different temperatures (10, 35, and 55 °C) or initial pH (5, 7, 9, and 12). Pirlimycin concentration and abundances of 16S rRNA, mefA, tet(W), and cfxA as indicators of total bacteria and ARGs corresponding to macrolide, tetracycline, and β-lactam resistance, respectively, were analyzed during manure incubation. The thermophilic environment (55 °C) increased the deconjugation and removal of pirlimycin, while the acidic shock at pH 5 increased deconjugation but inhibited removal of pirlimycin, suggesting that the chemical stability of pirlimycin could be affected by temperature and pH. The thermophilic environment decreased mefA relative abundance on day 7 and 28 (P = 0.02 and 0.04), which indicates that the bacteria that encoded mefA gene were not thermotolerant. Although mefA relative abundance was greater at the pH 9 shock than the rest of pH treatments on day 7 (P = 0.04), no significant pH effect was observed on day 28. The tet(W) abundance under initial pH 12 shock was less than other pH shocks on day 28 (P = 0.01), while no temperature effect was observed on day 28. There was no significant temperature and initial pH effect on cfxA abundance at any time point during incubation, implying that the bacteria that carrying cfxA gene are relatively insensitive to these environmental factors. Overall, directly raising temperature and pH can facilitate pirlimycin removal and decrease mefA and tet(W) relative abundances during storage of manure slurries.
Collapse
Affiliation(s)
- Meng M Li
- Department of Dairy Science, Virginia Tech, Blacksburg, VA, USA.
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, UK
| | | | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Kang Xia
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Christy Teets
- Department of Dairy Science, Virginia Tech, Blacksburg, VA, USA
| | - Pang Du
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
34
|
Huff R, Inhoque Pereira R, Pissetti C, Mellender de Araújo A, Alves d’Azevedo P, Frazzon J, GuedesFrazzon AP. Antimicrobial resistance and genetic relationships of enterococci from siblings and non-siblings Heliconius erato phyllis caterpillars. PeerJ 2020; 8:e8647. [PMID: 32149028 PMCID: PMC7049460 DOI: 10.7717/peerj.8647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/27/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Studies evaluating bacteria in insects can provide information about host-microorganism-environment interactions. The gut microbial community has a profound effect on different physiological functions of insects. Enterococcus spp. are part of the gut community in humans and other animals, as well as in insects. The presence and antimicrobial resistance profile of enterococci are well studied in different animals; however, data for Heliconius erato phyllis (Lepidoptera: Nymphalidae) do not yet exist. Therefore, the aims of this study were to evaluate the distribution of enterococcal species, their antimicrobial resistance profile and virulence genes, and the genetic relationships between enterococci isolated from fecal samples from sibling and non-sibling H. erato phyllis caterpillars collected from different sites in South Brazil. METHODS Three H. erato phyllis females were captured (two from a forest fragment and one from an urban area), and kept individually in open-air insectaries. Eggs were collected and caterpillars (siblings and non-siblings) were fed daily with Passiflora suberosa leaves. Fecal samples (n = 12) were collected from fifth-instar caterpillars, inoculated in selective medium, and 15 bacterial colonies were randomly selected from each sample. Enterococci were identified by PCR and MALDI-TOF, analyzed by disk diffusion antimicrobial susceptibility tests, and screened for resistance and virulence genes by PCR. The genetic relationships between the strains were determined using pulsed-field gel electrophoresis (PFGE). RESULTS A total of 178 enterococci strains were identified: E. casseliflavus (74.15%; n = 132), E. mundtii (21.34%; n = 38), E. faecalis (1.12%; n = 2) and Enterococcus sp. (3.37%; n = 6). High rates of resistance to rifampicin (56%) and erythromycin (31%) were observed; 120 (67.41%) of the isolates showed resistance to at least one antibiotic and six (3.37%) were multidrug-resistant.None of the erythromycin-resistant strains was positive for the erm(B) and msrC genes. The virulence genes esp, ace, and gelE were observed in 35%, 7%, and 1% of the strains, respectively. PFGE separated the enterococci into 22 patterns, four being composed of strains from sibling caterpillars. CONCLUSION Enterococcus casseliflavus was the dominant species in fecal samples of fifth-instar caterpillars. Resistant enterococci strains may be related to environmental pollution or the resistome. The PFGE analysis showed genetic relationships between some strains, suggesting that the enterococci isolated from fecal samples of the sibling caterpillars might have come from common sources, e.g., via diet (herbivory) and/or vertical transmission (through the egg surface). Further studies will be conducted to better understand the role of Enterococcus in the microbial community of the gastrointestinal tract of these insects, and the mechanisms involved in acquisition and maintenance of enterococci.
Collapse
Affiliation(s)
- Rosana Huff
- Institute of Basic Health Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rebeca Inhoque Pereira
- Basic Health Sciences, Department of Microbiology, Health Sciences Federal University, Porto Alegre, Rio Grande do Sul, Brazil
| | - Caroline Pissetti
- Department of Veterinary Preventive Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Aldo Mellender de Araújo
- Institute of Biosciences, Genetic Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Alves d’Azevedo
- Basic Health Sciences, Department of Microbiology, Health Sciences Federal University, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeverson Frazzon
- Food Science Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Paula GuedesFrazzon
- Institute of Basic Health Sciences, Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
35
|
Archambault M, Rubin JE. Antimicrobial Resistance in Clostridium and Brachyspira spp. and Other Anaerobes. Microbiol Spectr 2020; 8:10.1128/microbiolspec.arba-0020-2017. [PMID: 31971162 PMCID: PMC10773235 DOI: 10.1128/microbiolspec.arba-0020-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 01/26/2023] Open
Abstract
This article describes the antimicrobial resistance to date of the most frequently encountered anaerobic bacterial pathogens of animals. The different sections show that antimicrobial resistance can vary depending on the antimicrobial, the anaerobe, and the resistance mechanism. The variability in antimicrobial resistance patterns is also associated with other factors such as geographic region and local antimicrobial usage. On occasion, the same resistance gene was observed in many anaerobes, whereas some were limited to certain anaerobes. This article focuses on antimicrobial resistance data of veterinary origin.
Collapse
Affiliation(s)
- Marie Archambault
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Joseph E Rubin
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
36
|
Fernandes P, Pereira D, Watkins PB, Bertrand D. Differentiating the Pharmacodynamics and Toxicology of Macrolide and Ketolide Antibiotics. J Med Chem 2019; 63:6462-6473. [PMID: 31644280 DOI: 10.1021/acs.jmedchem.9b01159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This is a review of the macrolide and ketolide field focusing on differentiating the pharmacodynamics and especially the toxicology of the macrolides and ketolides. We emphasize the diversity in pharmacodynamics and toxicity of the macrolides and ketolides, resulting from even small structural changes, which makes it important to consider the various different compounds separately, not necessarily as a class. The ketolide, telithromycin, was developed because of rising bacterial macrolide resistance but was withdrawn postapproval after visual disturbances, syncope, myasthenia gravis, and hepatotoxicity were noted. These diverse adverse effects could be attributed to inhibition of nicotinic acetylcholine receptors. Solithromycin, a later generation ketolide, was effective in treating bacterial pneumonia, but it was not approved by the U.S. Food and Drug Administration owing, in part, to its structural similarity to telithromycin. This Miniperspective describes that structurally similar macrolides/ketolides have clearly mechanistically distinct effects. Understanding these effects could help in developing and securing regulatory approval of a new macrolide/ketolide that is active against macrolide-resistant pathogenic bacteria.
Collapse
Affiliation(s)
| | - David Pereira
- Ponce De Leon Health, Fernandina Beach, Florida 32034, United States
| | - Paul B Watkins
- Schools of Pharmacy, Medicine and Public Health, Institute for Drug Safety Sciences, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Daniel Bertrand
- HiQScreen SÃrl, 6, Route de Compois, Vesenaz, 1222 Geneva, Switzerland
| |
Collapse
|
37
|
Ezernitchi AV, Sirotkin E, Danino D, Agmon V, Valinsky L, Rokney A. Azithromycin non-susceptible Shigella circulating in Israel, 2014-2016. PLoS One 2019; 14:e0221458. [PMID: 31626667 PMCID: PMC6799884 DOI: 10.1371/journal.pone.0221458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/07/2019] [Indexed: 11/19/2022] Open
Abstract
Shigella species remains a major diarrhoeagenic agent, affecting mostly children, with global high incidence and high mortality rate specially in developing areas. Although azithromycin is recommended for treatment of shigellosis, there are currently no CLSI susceptibility breakpoints, accordingly no routine antimicrobial susceptibility test is performed in the clinical laboratory. The purpose of this study was to estimate the prevalence, resistance profile and molecular epidemiology of azithromycin non-susceptible Shigella strains in Israel during a three year period. Shigella isolates (n = 1,170) referred to the National Reference Center during 2014-2016, were included in this study. Serotyping was performed by slide agglutination. Resistance genes, mph(A) and erm(B), were identified by PCR and the phenotype profile was determined by broth microdilution (BMD). Genetic relatedness was assessed by wgMLST. Decreased susceptibility to azithromycin (DSA) phenotype and genotype were detected in various Shigella species and serotypes related to diverse genetic backgrounds and antimicrobial profiles: 6% (26/423) of Shigella flexneri and 2% (16/747) of Shigella sonnei displayed DSA (MIC16 mg/L). Correlation of this phenotype with the presence of mph(A) and erm(B) genes was confirmed. All DSA-strains displayed resistance to ≥3 different antimicrobial classes. Among DSA-strains, 14% were resistant to quinolones and 5% displayed resistance to ceftriaxone. Most of these strains (32/42) were isolated from children in the southern and central regions of Israel. Clonality and significant relatedness was confirmed by PFGE and wgMLST. The presence of macrolide resistance genes among the different species and lineages reflects the transmissible nature of these genes. The emergence of DSA-Shigella reinforces the necessity to establish clinical breakpoints that would warrant routine testing, reporting and surveillance for this drug of choice.
Collapse
Affiliation(s)
| | | | - Dana Danino
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Beer Sheva, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Vered Agmon
- Government Central Laboratories, Ministry of Health, Jerusalem, Israel
| | - Lea Valinsky
- Government Central Laboratories, Ministry of Health, Jerusalem, Israel
| | - Assaf Rokney
- Government Central Laboratories, Ministry of Health, Jerusalem, Israel
| |
Collapse
|
38
|
Stephany-Brassesco I, Bereswill S, Heimesaat MM, Melzig MF. Synergistic Antimicrobial Effects of Cefabronchin ®. Eur J Microbiol Immunol (Bp) 2019; 9:100-104. [PMID: 31662890 PMCID: PMC6798579 DOI: 10.1556/1886.2019.00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 12/01/2022] Open
Abstract
Antibiotic resistance of Streptococcus pneumoniae has risen to worrying levels in the past few decades worldwide, and subsequently, effective treatment of respiratory tract infections has become even more challenging. While the need to develop new strategies to combat bacterial infections is urgent, novel antibiotic compounds are no longer a priority of the pharmaceutical industry. However, resistance-modifying agents can alleviate the spread of antibiotic resistance and render existing antibiotics effective again. In the present study, we aimed to determine the combinatory antimicrobial effects of the commercial herbal product Cefabronchin® and antibiotic compounds, such as amoxicillin and clarithromycin, on 6 clinical isolates of S. pneumoniae. Therefore, the minimal inhibitory concentration (MIC) of each agent before and after adding Cefabronchin® at different concentrations was determined by applying the checkerboard method. Sub-inhibitory concentrations of the added Cefabronchin® were found to reduce the MIC down to between 3.4% and 29.2% of the amoxicillin MIC and down to between 10.4% and 45.8% of the clarithromycin MIC in all 6 strains. In conclusion, this study provides evidence for the improved antimicrobial effects of commonly used antibiotics in combination with Cefabronchin® in order to combat infections with antibiotic-resistant S. pneumoniae strains.
Collapse
Affiliation(s)
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | |
Collapse
|
39
|
Akdoğan Kittana FN, Mustak IB, Hascelik G, Saricam S, Gurler N, Diker KS. Erythromycin-resistant Streptococcus pneumoniae: phenotypes, genotypes, transposons and pneumococcal vaccine coverage rates. J Med Microbiol 2019; 68:874-881. [PMID: 31116101 DOI: 10.1099/jmm.0.000995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE To assess the antibiotic resistance, transposon profiles, serotype distribution and vaccine coverage rates in 110 erythromycin-resistant S. pneumoniae clinical isolates. METHODOLOGY Erythromycin, clindamycin, tetracycline, chloramphenicol and kanamycin susceptibilities were assessed using the E-test/disc diffusion method. Inducible macrolide resistance was tested using the erythromycin-clindamycin double disc diffusion test. Serogrouping and serotyping were performed using latex particle agglutination and the Quellung reaction, respectively. Drug resistance genes and transposon-specific genes were investigated by PCR. RESULTS Of the isolates, 93 % were resistant to clindamycin; 81 % were resistant to tetracycline; 76 % were multi-drug-resistant, having resistance to both clindamycin and tetracycline; and 12 % had extended-drug resistance, being resistant to clindamycin, tetracycline, chloramphenicol and kanamycin. The majority of isolates (88.2 %) exhibited the cMLSB phenotype. The association between the cMLSB phenotype and tetracycline resistance was related to transposons Tn2010 (38.2 %), Tn6002 (21.8 %) and Tn3872 (18.2 %). M and iMLSB phenotypes were observed in 7 and 5 % of the isolates, respectively. The most frequent serotype was 19 F (40 %). Among the erythromycin-resistant pneumococci, vaccine coverage rates for the 13-valent pneumococcal conjugate vaccine (PCV-13) and the 23-valent pneumococcal polysaccharide vaccine (PPSV-23) were 76.4 and 79.1 %, respectively, compared to 82.2 and 85.1 % transposon-carrying isolates. CONCLUSIONS Multi-drug resistance among erythromycin-resistant S. pneumoniae isolates mainly occurs due to the horizontal spread of the Tn916 family of transposons. The majority of the transposon-carrying isolates are covered by 13- and 23-valent pneumococcal vaccines. Since serotype distribution and transposons in S. pneumoniae isolates may change over time, close monitoring is essential.
Collapse
Affiliation(s)
| | - Inci Basak Mustak
- 2 Ankara University, Faculty of Veterinary Science, Department of Microbiology, Ankara Turkey
| | - Gulsen Hascelik
- 1 Hacettepe University, Faculty of Medicine, Department of Medical Microbiology, Ankara, Turkey
| | - Seyyide Saricam
- 2 Ankara University, Faculty of Veterinary Science, Department of Microbiology, Ankara Turkey
| | - Nezahat Gurler
- 3 Istanbul University, Faculty of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| | - Kadir Serdar Diker
- 2 Ankara University, Faculty of Veterinary Science, Department of Microbiology, Ankara Turkey
| |
Collapse
|
40
|
Nelson MM, Waldron CL, Bracht JR. Rapid molecular detection of macrolide resistance. BMC Infect Dis 2019; 19:144. [PMID: 30755177 PMCID: PMC6373131 DOI: 10.1186/s12879-019-3762-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Emerging antimicrobial resistance is a significant threat to human health. However, methods for rapidly diagnosing antimicrobial resistance generally require multi-day culture-based assays. Macrolide efflux gene A, mef(A), provides resistance against erythromycin and azithromycin and is known to be laterally transferred among a wide range of bacterial species. METHODS We use Recombinase Polymerase Assay (RPA) to detect the antimicrobial resistance gene mef(A) from raw lysates without nucleic acid purification. To validate these results we performed broth dilution assays to assess antimicrobial resistance to erythromycin and ampicillin (a negative control). RESULTS We validate the detection of mef(A) in raw lysates of Streptococcus pyogenes, S. pneumoniae, S. salivarius, and Enterococcus faecium bacterial lysates within 7-10 min of assay time. We show that detection of mef(A) accurately predicts real antimicrobial resistance assessed by traditional culture methods, and that the assay is robust to high levels of spiked-in non-specific nucleic acid contaminant. The assay was unaffected by single-nucleotide polymorphisms within divergent mef(A) gene sequences, strengthening its utility as a robust diagnostic tool. CONCLUSIONS This finding opens the door to implementation of rapid genomic diagnostics in a clinical setting, while providing researchers a rapid, cost-effective tool to track antibiotic resistance in both pathogens and commensal strains.
Collapse
Affiliation(s)
- Megan M. Nelson
- Department of Biology, American University, Washington, DC 20016 USA
| | | | - John R. Bracht
- Department of Biology, American University, Washington, DC 20016 USA
| |
Collapse
|
41
|
Heine AC, García S, Barberis C, Vay C, E. Mollerach M, Bonofiglio L, Famiglietti Á. Identificación y sensibilidad a los antimicrobianos de aislados de estreptococos del grupo viridans provenientes de pacientes internados en un hospital universitario de la ciudad de Buenos Aires. Rev Argent Microbiol 2019; 51:26-31. [DOI: 10.1016/j.ram.2018.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/25/2018] [Accepted: 03/20/2018] [Indexed: 11/27/2022] Open
|
42
|
Iannelli F, Santoro F, Santagati M, Docquier JD, Lazzeri E, Pastore G, Cassone M, Oggioni MR, Rossolini GM, Stefani S, Pozzi G. Type M Resistance to Macrolides Is Due to a Two-Gene Efflux Transport System of the ATP-Binding Cassette (ABC) Superfamily. Front Microbiol 2018; 9:1670. [PMID: 30108557 PMCID: PMC6079230 DOI: 10.3389/fmicb.2018.01670] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/04/2018] [Indexed: 11/19/2022] Open
Abstract
The mef(A) gene was originally identified as the resistance determinant responsible for type M resistance to macrolides, a phenotype frequently found in clinical isolates of Streptococcus pneumoniae and Streptococcus pyogenes. MefA was defined as a secondary transporter of the major facilitator superfamily driven by proton-motive force. However, when characterizing the mef(A)-carrying elements Tn1207.1 and Φ1207.3, another macrolide resistance gene, msr(D), was found adjacent to mef(A). To define the respective contribution of mef(A) and msr(D) to macrolide resistance, three isogenic deletion mutants were constructed by transformation of a S. pneumoniae strain carrying Φ1207.3: (i) Δmef(A)–Δmsr(D); (ii) Δmef(A)–msr(D); and (iii) mef(A)–Δmsr(D). Susceptibility testing of mutants clearly showed that msr(D) is required for macrolide resistance, while deletion of mef(A) produced only a twofold reduction in the minimal inhibitory concentration (MIC) for erythromycin. The contribution of msr(D) to macrolide resistance was also studied in S. pyogenes, which is the original host of Φ1207.3. Two isogenic strains of S. pyogenes were constructed: (i) FR156, carrying Φ1207.3, and (ii) FR155, carrying Φ1207.3/Δmsr(D). FR155 was susceptible to erythromycin, whereas FR156 was resistant, with an MIC value of 8 μg/ml. Complementation experiments showed that reintroduction of the msr(D) gene could restore macrolide resistance in Δmsr(D) mutants. Radiolabeled erythromycin was retained by strains lacking msr(D), while msr(D)-carrying strains showed erythromycin efflux. Deletion of mef(A) did not affect erythromycin efflux. This data suggest that type M resistance to macrolides in streptococci is due to an efflux transport system of the ATP-binding cassette (ABC) superfamily, in which mef(A) encodes the transmembrane channel, and msr(D) the two ATP-binding domains.
Collapse
Affiliation(s)
- Francesco Iannelli
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Santoro
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Santagati
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Elisa Lazzeri
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gabiria Pastore
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Cassone
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco R Oggioni
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gian M Rossolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Stefania Stefani
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gianni Pozzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
43
|
Epidemiology of an upsurge of invasive group A streptococcal infections in Ireland, 2012-2015. J Infect 2018; 77:183-190. [PMID: 29935196 DOI: 10.1016/j.jinf.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Group A streptococcus (GAS) is responsible for mild to very severe disease. The epidemiology of an upsurge in invasive GAS (iGAS) infections in Ireland, 2012-2015 was investigated. METHODS Epidemiological typing of iGAS (n = 473) isolates was performed and compared to non-invasive (n = 517) isolates. Clinical data of notified iGAS was obtained from the national infectious disease information system. RESULTS Annual incidences of iGAS cases (n = 561) were 2.33-3.66 per 100,000 population. Bacteraemia was the most common clinical presentation (75%) followed by focus without bacteraemia (19%) and necrotizing faciitis (7%). Streptococcal toxic shock syndrome occurred in 19% of presentations. The main invasive emm types in rank order were emm1, emm3, emm28, emm12 and emm89 whereas emm4, emm28, emm3, emm12, emm89 and emm1 predominated in non-invasive infections. Invasive emm1 and emm3 showed annual fluctuations (15-48% and 4-37%, respectively) and predominated in most clinical presentations of iGAS. Superantigens speA, speG, speJ was associated with iGAS disease and, speC, speI and ssa with non-invasive infections. There was 4.3% erythromycin and 5.6% tetracycline resistance. The main resistant types were emm11, emm28 and emm77. CONCLUSIONS Cyclic increases in emm1 and emm3 occurred during the iGAS upsurge. Continued surveillance of GAS is therefore essential given the epidemiological changes that occur in a short time period.
Collapse
|
44
|
Freitas ADARD, Faria AR, Pinto TDCA, Merquior VLC, Neves DM, Costa RDCD, Teixeira LM. Distribution of species and antimicrobial resistance among enterococci isolated from the fecal microbiota of captive blue-fronted parrot (Amazona aestiva) in Rio de Janeiro, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:1428-1437. [PMID: 29055593 DOI: 10.1016/j.scitotenv.2017.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Enterococcal strains recovered from fecal samples of captive blue-fronted parrots (Amazona aestiva) assisted at two wild animal screening centers in Rio de Janeiro, Brazil, were identified as Enterococcus hirae (the predominant species; 75.3%), followed by Enterococcus faecalis (17.3%), Enterococcus casseliflavus (4.8%), Enterococcus gallinarum (1.7%), and Enterococcus hermanniensis (0.9%). All strains were susceptible to linezolid and teicoplanin. Rates of nonsusceptibility (including resistant and intermediate categories) to other 16 antimicrobials tested varied from 69.3% to 0.4%, A considerable proportion (48.0%) of the strains was multidrug-resistant and diverse genetic determinants associated with antimicrobial resistance were identified. Tetracycline-resistant strains carried the tet(M) and/or tet(L) genes. Macrolides resistance was associated with the erm(B), erm(A) and mefA genes, while 43.2% of the isolates were negative for the investigated genes. High-level resistance to gentamicin associated with the aac(6')-le-aph(2″)-la gene was detected in one E. faecalis strain. The two strains presenting high-level resistance to streptomycin were negative for the ant(6')-Ia, ant(3')-Ia, ant(9')-Ia and ant(9')-Ib genes. The vat(D) gene was found in all the 47 quinupristin/dalfopristin resistant strains identified as non-E. faecalis. Analysis of PFGE profiles of E. hirae strains after restriction with SmaI demonstrated the occurrence of five clonal groups. The predominant E. hirae clone was distributed among birds in the two institutions, suggesting that this clone was well adapted to the host and environments investigated. The four clonal groups identified among E. faecalis were composed by small numbers of strains and, generally, restricted to birds in the same sector. The occurrence of enterococcal strains exhibiting antimicrobial resistance traits and carrying genetic determinants that represent potential threats to the health of both humans and animals, in the intestinal microbiota of A. aestiva, highlights the need for additional monitoring studies to elucidate the population structure and the dynamics of transmission of these microorganisms among animals, humans and the environment.
Collapse
Affiliation(s)
| | - Adriana Rocha Faria
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Vânia Lúcia Carreira Merquior
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Marchesi Neves
- Centro de Triagem de Animais Silvestres do Rio de Janeiro (CETAS-RJ), Seropédica, RJ, Brazil
| | | | - Lúcia Martins Teixeira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
45
|
Abstract
Natural products have served as powerful therapeutics against pathogenic bacteria since the golden age of antibiotics of the mid-20th century. However, the increasing frequency of antibiotic-resistant infections clearly demonstrates that new antibiotics are critical for modern medicine. Because combinatorial approaches have not yielded effective drugs, we propose that the development of new antibiotics around proven natural scaffolds is the best short-term solution to the rising crisis of antibiotic resistance. We analyze herein synthetic approaches aiming to reengineer natural products into potent antibiotics. Furthermore, we discuss approaches in modulating quorum sensing and biofilm formation as a nonlethal method, as well as narrow-spectrum pathogen-specific antibiotics, which are of interest given new insights into the implications of disrupting the microbiome.
Collapse
Affiliation(s)
- Sean E. Rossiter
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Madison H. Fletcher
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
46
|
Muhtarova AA, Gergova RT, Mitov IG. Distribution of macrolide resistance mechanisms in Bulgarian clinical isolates of Streptococcus pyogenes during the years of 2013-2016. J Glob Antimicrob Resist 2017; 10:238-242. [PMID: 28735056 DOI: 10.1016/j.jgar.2017.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/11/2017] [Accepted: 05/27/2017] [Indexed: 10/19/2022] Open
Abstract
Streptococcus pyogenes, or group A streptococcus (GAS), is the main etiological agent of bacterial tonsillopharyngitis and a common cause of a wide variety of other mild to severe infections. OBJECTIVES Objectives of the present study was to determine and evaluate the distribution of genetic mechanisms associated with certain phenotypes of macrolide resistance in Bulgarian GAS isolated during the years of 2013-2016. METHODS All GAS strains were screened for the macrolide resistance genes erm(A), erm(B) and mef(A), using multiplex polymerase chain reaction (PCR). The minimal inhibitory concentrations (MICs) of erythromycin, azithromycin, clarithromycin, clindamycin were determined by E-tests. RESULTS Almost 23% of GAS isolates obtained in 2013-2014 and near 40% of them in 2015-2016 contained various elements of resistance. The predominant gene was mef(A), which encodes an efflux pump (M-phenotype), identified in 57.84% of the macrolide-resistant strains. The next frequently prevalent mechanism was a combination of mef(A) and erm(B) in 22.55%, which determined high-level inducible or constitutive resistance to macrolides, lincosamides and streptogramins (iMLSB or cMLSB). The highest MIC value (>256mg/L) was detected in association with erm(B) (p<0.05). The MIC range was observed to be much higher in the isolates with combinations of resistance genes vs. those with mef genes alone (p<0.05). CONCLUSION The data about the distribution and prevalence of macrolide resistance mechanisms obtained in this study can help in the treatment of persistent and recurrent GAS infections and in the correct choice of empiric therapy.
Collapse
Affiliation(s)
- Adile A Muhtarova
- Department of Medical Microbiology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Raina T Gergova
- Department of Medical Microbiology, Faculty of Medicine, Medical University, Sofia, Bulgaria.
| | - Ivan G Mitov
- Department of Medical Microbiology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| |
Collapse
|
47
|
El Moujaber G, Osman M, Rafei R, Dabboussi F, Hamze M. Molecular mechanisms and epidemiology of resistance in Streptococcus pneumoniae in the Middle East region. J Med Microbiol 2017. [DOI: 10.1099/jmm.0.000503] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Grace El Moujaber
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Lebanon
| |
Collapse
|
48
|
Mayers DL, Sobel JD, Ouellette M, Kaye KS, Marchaim D. Antibiotic Resistance of Non-pneumococcal Streptococci and Its Clinical Impact. ANTIMICROBIAL DRUG RESISTANCE 2017. [PMCID: PMC7123568 DOI: 10.1007/978-3-319-47266-9_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The taxonomy of streptococci has undergone major changes during the last two decades. The present classification is based on both phenotypic and genotypic data. Phylogenetic classification of streptococci is based on 16S rRNA sequences [1], and it forms the backbone of the overall classification system of streptococci. Phenotypic properties are also important, especially for clinical microbiologists. The type of hemolysis on blood agar, reaction with Lancefield grouping antisera, resistance to optochin, and bile solubility remain important for grouping of clinical Streptococcus isolates and therefore treatment options [2]. In the following chapter, two phenotypic classification groups, viridans group streptococci (VGS) and beta-hemolytic streptococci, will be discussed.
Collapse
Affiliation(s)
| | - Jack D. Sobel
- Wayne State University School of Medicine, Detroit Medical Center, Detroit, Michigan USA
| | - Marc Ouellette
- Canada Research Chair in Antimicrobial Resistance, Centre de recherche en Infectiologie, University of Laval, Quebec City, Canada
| | - Keith S. Kaye
- Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan USA
| | - Dror Marchaim
- Infection Control and Prevention Unit of Infectious Diseases, Assaf Harofeh Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
49
|
Streptococcus pneumoniae Serotypes 9 and 14 Circulating in Brazil over a 23-Year Period Prior to Introduction of the 10-Valent Pneumococcal Conjugate Vaccine: Role of International Clones in the Evolution of Antimicrobial Resistance and Description of a Novel Genotype. Antimicrob Agents Chemother 2016; 60:6664-6672. [PMID: 27572394 DOI: 10.1128/aac.00673-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023] Open
Abstract
Antimicrobial-resistant pneumococcal strains have been detected worldwide since the 1960s. In Brazil, the first penicillin-nonsusceptible pneumococci (PNSP) were reported in the 1980s, and their emergence and dissemination have been mainly attributed to serogroup 9 and serotype 14 strains, especially those highly related to recognized international clones. In the present study, antimicrobial susceptibility testing and multilocus sequence typing were performed on 315 pneumococcal isolates belonging to serogroup 9 (n = 99) or serotype 14 (n = 216), recovered from patients or asymptomatic carriers between 1988 and 2011 in Brazil, in order to trace changes in antimicrobial resistance and genotypes prior to the full introduction of the pneumococcal conjugate vaccine in the country. Over the 23-year study period, the PNSP levels increased, and four clonal complexes (CC156, CC66, CC15, and CC5401) have played important roles in the evolution and dissemination of pneumococcal isolates belonging to serogroup 9 and serotype 14, as well as in the emergence of antimicrobial resistance, in the pre-pneumococcal-vaccination era. The earliest PNSP strains detected in this study belonged to serotype 9N/ST66 and were single locus variants of the international clone Tennessee14-18 ST67 (CC66). The first serotype 14 PNSP isolates were identified in 1990 and were related to the England14-9 ST9 (CC15) clone. Serotype 14 PNSP variants of the Spain9V-3 ST156 clone with elevated penicillin MICs and nonsusceptibility to other beta-lactams were detected in 1995 and showed an increasing trend over the years. The results also indicated that introduction of ST156 in our region was preceded by the emergence of trimethoprim-sulfamethoxazole resistance and by the dissemination of ST162. In addition to the presence of successful international clones, a novel regional serotype 14 genotype (CC5401) has emerged in 1996.
Collapse
|
50
|
Shibl AM. Patterns of Macrolide Resistance Determinants among S. pyogenes and S. pneumoniae Isolates in Saudi Arabia. J Int Med Res 2016; 33:349-55. [PMID: 15938596 DOI: 10.1177/147323000503300310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the study we characterized the macrolide sensitivity of recent clinical isolates of Streptococcus pyogenes and S. pneumoniae collected from major Saudi Arabian hospitals. Susceptibility testing was performed using standard National Committee for Clinical Laboratory Standards methodology on 335 S. pyogenes and 350 S. pneumoniae isolates. Macrolide resistance mechanism phenotypes were identified using double-disk diffusion. All S. pyogenes were penicillin sensitive, while 6.3% were macrolide resistant, the main mechanism of which was of M phenotype (96%). Approximately 51% of S. pneumoniae were penicillin non-susceptible. Macrolide resistance in S. pneumoniae accounted for 18.8%, the majority of which were M phenotype (91%). Low-level resistance mediated by mef-bearing strains predominated. Newer macrolides, including azithromycin, are still considered drugs of choice for empirical treatment of respiratory infection in such circumstances.
Collapse
Affiliation(s)
- A M Shibl
- King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|