1
|
Bierge P, Sánchez-Osuna M, Duarte B, Gómez-Sánchez I, Espasa M, Freitas AR, Peixe L, Gasch O, Pich OQ, Novais C. Diverse genomic and epidemiological landscapes of redundant pbp5 genes in Enterococcus spp.: Insights into plasmid mobilization, ampicillin susceptibility, and environmental interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177562. [PMID: 39551215 DOI: 10.1016/j.scitotenv.2024.177562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Genetic redundancy in bacteria plays a crucial role in enhancing adaptability and accelerating evolution in response to selective pressures, particularly those associated with rapid environmental changes. Aminopenicillins like ampicillin are important therapeutic options for Enterococcus infections in both humans and animals, with resistance mostly associated with pbp5 gene mutations or overexpression. While the occurrence of redundant pbp5 genes has been occasionally reported, the advantages for the host bacteria have not been explored in detail. During a whole-genome sequencing project of Enterococcus faecium from bacteremic patients, we identified an ST592 strain (Efm57) with redundant pbp5 genes. This presented an opportunity to investigate the prevalence and implications of multiple pbp5 acquisitions in diverse Enterococcus species across various sources, geographical regions, and timeframes. The analysis of 618 complete Enterococcus genomes from public databases revealed that 3.2 % harbored redundant pbp5 genes, located on chromosomes or plasmids across different species from diverse epidemiological backgrounds. The proteins encoded by these genes showed homologies ranging from 51.1 % to 97.5 % compared to native copies. Phylogenetic analysis grouped redundant PBP5 amino acid sequences into three distinct clades, with insertion sequences (mostly IS6-like) facilitating their recent spread to diverse plasmids with varying genetic backbones. The presence of multiple antibiotic resistance genes on pbp5-plasmids, including those conferring resistance to linezolid, underscores their involvement in co-selection and recombination events with other clinically-relevant antibiotics. Conjugation experiments confirmed the transferability of a specific 24 kb pbp5-plasmid from the Efm57 strain. This plasmid was associated with higher minimum inhibitory concentrations of ampicillin and conferred bacteria growth advantages at 22 °C. In conclusion, the widespread distribution of redundant pbp5 genes among Enterococcus spp. highlights the complex interplay between genetic mobility, environmental factors, and multidrug resistance in overlapping ecosystems emphasizing the importance of understanding these dynamics to mitigate antibiotic resistance spread within the One Health framework.
Collapse
Affiliation(s)
- Paula Bierge
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Miquel Sánchez-Osuna
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bárbara Duarte
- UCIBIO- Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Inmaculada Gómez-Sánchez
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mateu Espasa
- Servei de Microbiologia, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Ana R Freitas
- UCIBIO- Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; UCIBIO-Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
| | - Luisa Peixe
- UCIBIO- Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Oriol Gasch
- Servei de Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Oscar Q Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain; Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carla Novais
- UCIBIO- Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB - Instituto para a Saúde e Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
2
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
3
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
4
|
Yu Y, Ye XQ, Liang HQ, Zhong ZX, Cheng K, Sun J, Liao XP, Liu YH. Lilium spp., as unnoticed environmental vector, spreading OptrA-carrying Enterococcus spp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151540. [PMID: 34767892 DOI: 10.1016/j.scitotenv.2021.151540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Flower is an essential element in the human lifestyle but its role in disseminating antimicrobial resistance (AMR) between the environment and humans is unclear. In this study, we screened fresh flowers (Lilium spp.) collected from planting bases, market and florists in Guangzhou China aiming to investigate the prevalence of AMR genes, particularly cfr, optrA and poxtA mediating resistance to linezolid, a first-line drug for the treatment of different Gram-positive bacterial infections. We found 223 Enterococcus isolates consisting of Enterococcus faecalis, Enterococcus faecium and Enterococcus mundtii, and >50% of these isolates exhibited multiple-drug resistance. Additionally, 31 optrA-positive Enterococcus including 22 E. faecalis and 9 E. mundtii strains were recovered, however cfr and poxtA were not detected. The 22 E. faecalis strains were belonged to 7 Multilocus sequence types in which ST202 and ST376 were predominant and 9 E. mundtii strains from the same plantation bases were divided into three PFGE groups. Genetically, the majority of optrA were located on the chromosome and shared similar insertion sites and transpositions mediated by Tn554 family members. Plasmid-bearing optrA were identified in 6 E. faecalis strains where IS1216 family played key roles in horizontal transfer of optrA. These findings emphasize that the prevalence of drug resistant Enterococcus in fresh flowers is a latent danger and increases the risk of AMR dissemination to humans from the environment.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Qing Ye
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Hua-Qing Liang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Xing Zhong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Ke Cheng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Das AK, Dudeja M, Kohli S, Ray P, Nandy S. High-level gentamicin resistance mediated by Aac(6')-Ie-aph(2")-Ia gene in Enterococcus species isolated from clinical samples in Northern India. Indian J Pharmacol 2022; 54:171-176. [PMID: 35848687 PMCID: PMC9396691 DOI: 10.4103/ijp.ijp_41_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CONTEXT Enterococci are known to cause life-threatening infections which are difficult to treat as the organism harbors innate resistance to many antibiotics and can amass resistance toward many others through plasmid-mediated genetic exchange. AIMS The study evaluates the drug susceptibility profile of various Enterococcus species isolated from various patient specimens submitted for bacteriological analysis and check the incidence of aac(6') Ie-aph(2") Ia gene. SETTING AND DESIGN This in vitro cross-sectional study was executed at bacteriology laboratory of a 470 bedded hospital in New Delhi. MATERIALS AND METHODS Drug susceptibility testing was carried out on enterococcal isolates. High-level gentamicin-resistant (HLGR) isolates detected by micro broth dilution assay were then subjected to molecular detection of aac(6') Ie-aph(2") Ia gene. STATISTICAL ANALYSIS USED The level of significance was established by Chi-square test. RESULTS Among the 182 enterococcal stains detected, 76.9% were Enterococcus faecalis and 20.3% were Enterococcus faecium. 12.08% strains were vancomycin resistant. 39% expressed resistance toward high-level gentamicin (HLG) and this finding was significantly higher in E. faecium than E. faecalis. HLGR strains expressed a higher degree of resistance to other drugs in contrast to non-HLGR isolates. In 67 out of 71 HLGR isolates the bifunctional gene was detected. CONCLUSION Considerable presence of HLG and vancomycin resistance in the clinical isolates is alarming and should be taken seriously. The study shows high dissemination of aac(6')-Ie-aph(2")-Ia gene among Enterococci isolated from the region.
Collapse
Affiliation(s)
- Ayan Kumar Das
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard University, New Delhi, India,Address for correspondence: Dr. Ayan Kumar Das, Department of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard University, New Delhi - 110 062, India. E-mail:
| | - Mridu Dudeja
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard University, New Delhi, India
| | - Sunil Kohli
- Medicine, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard University, New Delhi, India
| | - Pratima Ray
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Shyamasree Nandy
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
6
|
Kim E, Shin SW, Kwak HS, Cha MH, Yang SM, Gwak YS, Woo GJ, Kim HY. Prevalence and Characteristics of Phenicol-Oxazolidinone Resistance Genes in Enterococcus Faecalis and Enterococcus Faecium Isolated from Food-Producing Animals and Meat in Korea. Int J Mol Sci 2021; 22:ijms222111335. [PMID: 34768762 PMCID: PMC8583520 DOI: 10.3390/ijms222111335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023] Open
Abstract
The use of phenicol antibiotics in animals has increased. In recent years, it has been reported that the transferable gene mediates phenicol-oxazolidinone resistance. This study analyzed the prevalence and characteristics of phenicol-oxazolidinone resistance genes in Enterococcus faecalis and Enterococcus faecium isolated from food-producing animals and meat in Korea in 2018. Furthermore, for the first time, we reported the genome sequence of E. faecalis strain, which possesses the phenicol-oxazolidinone resistance gene on both the chromosome and plasmid. Among the 327 isolates, optrA, poxtA, and fexA genes were found in 15 (4.6%), 8 (2.5%), and 17 isolates (5.2%), respectively. Twenty E. faecalis strains carrying resistance genes belonged to eight sequence types (STs), and transferability was found in 17 isolates. The genome sequences revealed that resistant genes were present in the chromosome or plasmid, or both. In strains EFS17 and EFS108, optrA was located downstream of the ermA and ant(9)-1 genes. The strains EFS36 and EFS108 harboring poxtA-encoding plasmid cocarried fexA and cfr(D). These islands also contained IS1216E or the transposon Tn554, enabling the horizontal transfer of the phenicol-oxazolidinone resistance with other antimicrobial-resistant genes. Our results suggest that it is necessary to promote the prudent use of antibiotics through continuous monitoring and reevaluation.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
| | - So-Won Shin
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
| | - Hyo-Sun Kwak
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
| | - Min-Hyeok Cha
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University Graduate School, Seoul 02841, Korea;
| | - Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
| | - Yoon-Soo Gwak
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
| | - Gun-Jo Woo
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University Graduate School, Seoul 02841, Korea;
- Correspondence: (G.-J.W.); (H.-Y.K.); Tel.: +82-2-3290-3021 (G.-J.W.); +82-31-201-2123 (H.-Y.K.); Fax: +82-2-3290-3581 (G.-J.W.); +82-31-204-8116 (H.-Y.K.)
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (E.K.); (S.-W.S.); (H.-S.K.); (S.-M.Y.); (Y.-S.G.)
- Correspondence: (G.-J.W.); (H.-Y.K.); Tel.: +82-2-3290-3021 (G.-J.W.); +82-31-201-2123 (H.-Y.K.); Fax: +82-2-3290-3581 (G.-J.W.); +82-31-204-8116 (H.-Y.K.)
| |
Collapse
|
7
|
Hao W, Shan X, Li D, Schwarz S, Zhang SM, Li XS, Du XD. Analysis of a poxtA- and optrA-co-carrying conjugative multiresistance plasmid from Enterococcus faecalis. J Antimicrob Chemother 2020; 74:1771-1775. [PMID: 30891598 DOI: 10.1093/jac/dkz109] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate the presence and transferability of the poxtA gene and identify the genetic context of poxtA in two enterococcal plasmids from swine. METHODS MICs were determined by broth microdilution. A total of 114 porcine enterococci with florfenicol MICs of ≥16 mg/L were screened for the presence of the poxtA gene by PCR. Transferability of poxtA was investigated by conjugation and transformation. The poxtA-carrying plasmids were completely sequenced using the Illumina Miseq and PacBio RSII platform. The presence of circular intermediates was examined by inverse PCR. RESULTS The poxtA gene was present in 57.9% (66/114) of the florfenicol-resistant porcine enterococci. Two poxtA-carrying plasmids, pE035 and pE076, were identified. The conjugative 121524 bp plasmid pE035 carried poxtA and optrA along with the resistance genes erm(A), erm(B), aac(A)-aph(D), lnu(G), fexB, dfrG and bcrABDR. Three mobile elements, comprising a mobile dfrG locus, a mobile bcrABDR locus and an unconventional circularizable structure containing aac(A)-aph(D), were located on this plasmid and all proved to be active by inverse PCR. The non-conjugative 19832 bp plasmid pE076 only carried poxtA and fexB. After transfer, both the transconjugant and the transformant displayed elevated MICs of the respective antimicrobial agents. CONCLUSIONS To the best of our knowledge, this is the first report of the co-location of the oxazolidinone resistance genes poxtA and optrA on a conjugative multiresistance plasmid from a porcine enterococcal strain. In addition, the presence of three mobile elements in such a plasmid will aid in the persistence and dissemination of poxtA and optrA among enterococci.
Collapse
Affiliation(s)
- Wenbo Hao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xinxin Shan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Dexi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Su-Mei Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xin-Sheng Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| |
Collapse
|
8
|
Thilliez G, Kingsley RA. Salmonella intracellular adaptation is key to understand cephalosporin treatment relapse. EBioMedicine 2020; 56:102802. [PMID: 32454404 PMCID: PMC7248422 DOI: 10.1016/j.ebiom.2020.102802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich, United Kingdom; University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
9
|
Shang Y, Li D, Shan X, Schwarz S, Zhang SM, Chen YX, Ouyang W, Du XD. Analysis of two pheromone-responsive conjugative multiresistance plasmids carrying the novel mobile optrA locus from Enterococcus faecalis. Infect Drug Resist 2019; 12:2355-2362. [PMID: 31534352 PMCID: PMC6682170 DOI: 10.2147/idr.s206295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background: The acquired optrA gene, which encodes a ribosomal protection protein of the ABC-F family, can confer cross-resistance to linezolid and florfenicol, posing a serious therapeutic challenge to both human and veterinary medicine. Purpose: The objective of this study was to investigate the two Enterococcus faecalis (E. faecalis) plasmids for their fine structure, their transferability and the presence of mobile antimicrobial resistance loci. Methods: To elucidate their fine structure, the two plasmids were completely sequenced and the sequences analysed. Besides conjugation experiments, inverse PCR assays were conducted to see whether minicircles are produced from the mobile antimicrobial resistance loci. Results: Two pheromone-responsive conjugative optrA-carrying plasmids from E. faecalis, pE211 and pE508 were identified, which can transfer with frequencies of 2.6 ×10−2 and 3.7 ×10−2 (transconjugant per donor), respectively. In both plasmids, optrA was located on the novel mobile optrA locus with different sizes (12,834 bp in pE211 and 7,561 bp in pE508, respectively), flanked by two copies of IS1216 genes in the same orientation. Inverse PCR revealed that circular forms can be generated, consisting of optrA and one copy of IS1216, indicating they are all active. The 77,562 bp plasmid pE211 also carried Tn558 and a mobile bcrABDR locus, and the 84,468 bp plasmid pE508 also harbored the genes fexA, tet(L), tet(O/W/32/O) and a mobile aac(A)-aph(D) locus. Conclusion: The presence of mobile genetic elements in these plasmids renders them flexible and these elements will aid to the persistence and dissemination of these plasmids among enterococci and potentially also other gram-positive bacteria.
Collapse
Affiliation(s)
- Yanhong Shang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Shaanxi 712100, People's Republic of China.,Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Dexi Li
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Xinxin Shan
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Su-Mei Zhang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Yu-Xia Chen
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| | - Wuqing Ouyang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Shaanxi 712100, People's Republic of China
| | - Xiang-Dang Du
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, People's Republic of China
| |
Collapse
|
10
|
Chen H, Wang X, Yin Y, Li S, Zhang Y, Wang Q, Wang H. Molecular characteristics of oxazolidinone resistance in enterococci from a multicenter study in China. BMC Microbiol 2019; 19:162. [PMID: 31299904 PMCID: PMC6626368 DOI: 10.1186/s12866-019-1537-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 06/30/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Linezolid-resistant enterococci pose great challenges in clinical practice. The aim of this study is to study the mechanisms underlying the resistance and genetic environment of antimicrobial resistance gene of linezolid-resistant enterococci. RESULTS The linezolid MICs of 16 enterococci were 4 mg/L to 16 mg/L. Four strains belonged to multi-drug resistant (MDR) bacteria. The sequence types (STs) of 13 enterococci strains performed WGS were diverse: 3 ST476, 1 ST86, ST116, ST480, ST59, ST416, ST21, ST67, ST16, ST585 and ST18. None of them carried multi-drug resistance gene cfr. Only one strain had the G2658 T mutation of target 23S rRNA gene. Thirteen (13/16, 81.3%) strains harbored the novel oxazolidinone resistance gene optrA. WGS analysis showed that the optrA gene was flanked by sequence IS1216E insertion in 13 strains, and optrA was adjacent to transposons Tn558 in two strains and Tn554 in one strain. The optrA gene was identified to be co-localized with fexA, the resistance genes mediated florfenicol resistance in 13 strains, and ermA1, the resistance genes mediated erythromycin resistance in 9 strains, indicating that linezolid-resistant strains may be selected due to non-oxazolidinone antibiotics (i.e. macrolides and florfenicol) usage. CONCLUSION Our findings demonstrate the high diversity of optrA-carrying genetic platforms. The mobile genetic elements (MGEs) may play an important role in the dissemination of optrA into the enterococci isolates of human origin. The genetic evidence of transferable feature and co-selection of optrA should be gave more attention in clinical practice.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Shuguang Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| |
Collapse
|
11
|
Morroni G, Brenciani A, Litta-Mulondo A, Vignaroli C, Mangiaterra G, Fioriti S, Citterio B, Cirioni O, Giovanetti E, Biavasco F. Characterization of a new transferable MDR plasmid carrying thepbp5gene from a clade B commensalEnterococcus faecium. J Antimicrob Chemother 2019; 74:843-850. [DOI: 10.1093/jac/dky549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Gianluca Morroni
- Infectious Disease Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Alice Litta-Mulondo
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simona Fioriti
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Barbara Citterio
- Department of Biomolecular Science, Biotechnology Section, University of Urbino ‘Carlo Bo’, Urbino, Italy
| | - Oscar Cirioni
- Infectious Disease Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
12
|
Novais C, Tedim AP, Lanza VF, Freitas AR, Silveira E, Escada R, Roberts AP, Al-Haroni M, Baquero F, Peixe L, Coque TM. Co-diversification of Enterococcus faecium Core Genomes and PBP5: Evidences of pbp5 Horizontal Transfer. Front Microbiol 2016; 7:1581. [PMID: 27766095 PMCID: PMC5053079 DOI: 10.3389/fmicb.2016.01581] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022] Open
Abstract
Ampicillin resistance has greatly contributed to the recent dramatic increase of a cluster of human adapted Enterococcus faecium lineages (ST17, ST18, and ST78) in hospital-based infections. Changes in the chromosomal pbp5 gene have been associated with different levels of ampicillin susceptibility, leading to protein variants (designated as PBP5 C-types to keep the nomenclature used in previous works) with diverse degrees of reduction in penicillin affinity. Our goal was to use a comparative genomics approach to evaluate the relationship between the diversity of PBP5 among E. faecium isolates of different phylogenomic groups as well as to assess the pbp5 transferability among isolates of disparate clonal lineages. The analyses of 78 selected E. faecium strains as well as published E. faecium genomes, suggested that the diversity of pbp5 mirrors the phylogenomic diversification of E. faecium. The presence of identical PBP5 C-types as well as similar pbp5 genetic environments in different E. faecium lineages and clones from quite different geographical and environmental origin was also documented and would indicate their horizontal gene transfer among E. faecium populations. This was supported by experimental assays showing transfer of large (≈180–280 kb) chromosomal genetic platforms containing pbp5 alleles, ponA (transglycosilase) and other metabolic and adaptive features, from E. faecium donor isolates to suitable E. faecium recipient strains. Mutation profile analysis of PBP5 from available genomes and strains from this study suggests that the spread of PBP5 C-types might have occurred even in the absence of a significant ampicillin resistance phenotype. In summary, genetic platforms containing pbp5 sequences were stably maintained in particular E. faecium lineages, but were also able to be transferred among E. faecium clones of different origins, emphasizing the growing risk of further spread of ampicillin resistance in this nosocomial pathogen.
Collapse
Affiliation(s)
- Carla Novais
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do Porto Porto, Portugal
| | - Ana P Tedim
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain
| | - Val F Lanza
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do PortoPorto, Portugal; Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
| | - Eduarda Silveira
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do Porto Porto, Portugal
| | - Ricardo Escada
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do PortoPorto, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando PessoaPorto, Portugal
| | - Adam P Roberts
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London London, UK
| | - Mohammed Al-Haroni
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London London, UK
| | - Fernando Baquero
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC)Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade Farmácia, Universidade do Porto Porto, Portugal
| | - Teresa M Coque
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud PúblicaBarcelona, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC)Madrid, Spain
| |
Collapse
|
13
|
He T, Shen Y, Schwarz S, Cai J, Lv Y, Li J, Feßler AT, Zhang R, Wu C, Shen J, Wang Y. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. J Antimicrob Chemother 2016; 71:1466-73. [PMID: 26903276 DOI: 10.1093/jac/dkw016] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/11/2016] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Aim of this study was to analyse 17 non-related Enterococcus faecalis isolates of human and animal origin for the genetic environment of the novel oxazolidinone/phenicol resistance gene optrA. METHODS WGS and de novo assembly were conducted to analyse the flanking sequences of the optrA gene in the 17 E. faecalis isolates. When optrA was located on a plasmid, conjugation assays were performed to check whether the plasmids are conjugative and to confirm the resistance phenotype associated with these plasmids. RESULTS All nine optrA-carrying plasmids were conjugated into E. faecalis JH2-2 and the transconjugants exhibited the optrA-associated phenotype. In these plasmids, an IS1216E element was detected either upstream and/or downstream of the optrA gene. In eight plasmids, the phenicol exporter gene fexA was found upstream of optrA and in six plasmids, a novel erm(A)-related gene for macrolide-lincosamide-streptogramin B resistance was detected downstream of optrA. When located in the chromosomal DNA, the optrA gene was found downstream of the transcriptional regulator gene araC in four isolates, or downstream of the fexA gene in another four isolates. Integration of the optrA region into a Tn558-Tn554 hybrid, located in the chromosomal radC gene, was seen in two isolates. CONCLUSIONS The findings of the present study extend the current knowledge about the genetic environment of optrA and suggest that IS1216E elements play an important role in the dissemination of optrA among different types of enterococcal plasmids. The mechanism underlying the integration of optrA into the chromosomal DNA requires further investigation.
Collapse
Affiliation(s)
- Tao He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China Institute of Food Safety & Detection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yingbo Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Stefan Schwarz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Jiachang Cai
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Yuan Lv
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Jun Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Rong Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Congming Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob Agents Chemother 2010; 54:1469-75. [PMID: 20086147 DOI: 10.1128/aac.00575-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrococcus is a bacterial genus that is closely related to Staphylococcus, which typically is isolated from animal skin and products. The genome analysis of multidrug-resistant Macrococcus caseolyticus strain JCSC5402, isolated from chicken, previously led to the identification of plasmid pMCCL2, which carries a transposon containing an unusual form of the Macrococcus mec gene complex (mecA(m)-mecR1(m)-mecI(m)-blaZ(m)). In M. caseolyticus strain JCSC7096, this mec transposon containing the mec gene complex (designated Tn6045 in this study) was found integrated downstream of orfX on the chromosome. Tn6045 of JCSC7096 was bracketed by the direct repeat sequences (DR) specifically recognized by cassette chromosome recombinase (CCR). A non-mecA-containing staphylococcal cassette chromosome (SCC) element, designated SCC(7096), was integrated next to the mec transposon and separated from the latter by a DR. Nested PCR experiments showed that the mec transposon not only was excised singly but also coexcised with SCC(7096) from the chromosome at the DRs. The coexcised elements formed the extrachromosomal closed circular DNA of the SCCmec-like element. SCCmec is known to be the mobile element conveying methicillin (meticillin) resistance in staphylococci. However, its origin has been unknown. Our observation revealed a potential mechanism of the generation of a new SCCmec-like element in M. caseolyticus, a commensal bacterium of food animals.
Collapse
|
15
|
A novel integrative conjugative element mediates genetic transfer from group G Streptococcus to other {beta}-hemolytic Streptococci. J Bacteriol 2009; 191:2257-65. [PMID: 19168609 DOI: 10.1128/jb.01624-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lateral gene transfer is a significant contributor to the ongoing evolution of many bacterial pathogens, including beta-hemolytic streptococci. Here we provide the first characterization of a novel integrative conjugative element (ICE), ICESde3396, from Streptococcus dysgalactiae subsp. equisimilis (group G streptococcus [GGS]), a bacterium commonly found in the throat and skin of humans. ICESde3396 is 64 kb in size and encodes 66 putative open reading frames. ICESde3396 shares 38 open reading frames with a putative ICE from Streptococcus agalactiae (group B streptococcus [GBS]), ICESa2603. In addition to genes involves in conjugal processes, ICESde3396 also carries genes predicted to be involved in virulence and resistance to various metals. A major feature of ICESde3396 differentiating it from ICESa2603 is the presence of an 18-kb internal recombinogenic region containing four unique gene clusters, which appear to have been acquired from streptococcal and nonstreptococcal bacterial species. The four clusters include two cadmium resistance operons, an arsenic resistance operon, and genes with orthologues in a group A streptococcus (GAS) prophage. Streptococci that naturally harbor ICESde3396 have increased resistance to cadmium and arsenate, indicating the functionality of genes present in the 18-kb recombinogenic region. By marking ICESde3396 with a kanamycin resistance gene, we demonstrate that the ICE is transferable to other GGS isolates as well as GBS and GAS. To investigate the presence of the ICE in clinical streptococcal isolates, we screened 69 isolates (30 GGS, 19 GBS, and 20 GAS isolates) for the presence of three separate regions of ICESde3396. Eleven isolates possessed all three regions, suggesting they harbored ICESde3396-like elements. Another four isolates possessed ICESa2603-like elements. We propose that ICESde3396 is a mobile genetic element that is capable of acquiring DNA from multiple bacterial sources and is a vehicle for dissemination of this DNA through the wider beta-hemolytic streptococcal population.
Collapse
|
16
|
Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 2008; 32:361-85. [PMID: 18248419 DOI: 10.1111/j.1574-6976.2007.00095.x] [Citation(s) in RCA: 428] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A number of ways and means have evolved to provide resistance to eubacteria challenged by beta-lactams. This review is focused on pathogens that resist by expressing low-affinity targets for these antibiotics, the penicillin-binding proteins (PBPs). Even within this narrow focus, a great variety of strategies have been uncovered such as the acquisition of an additional low-affinity PBP, the overexpression of an endogenous low-affinity PBP, the alteration of endogenous PBPs by point mutations or homologous recombination or a combination of the above.
Collapse
Affiliation(s)
- André Zapun
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075-CNRS, CEA, Université Joseph Fourier, Grenoble, France
| | | | | |
Collapse
|
17
|
Tsai JC, Hsueh PR, Chen HJ, Tseng SP, Chen PY, Teng LJ. The erm(T) gene is flanked by IS1216V in inducible erythromycin-resistant Streptococcus gallolyticus subsp. pasteurianus. Antimicrob Agents Chemother 2006; 49:4347-50. [PMID: 16189118 PMCID: PMC1251499 DOI: 10.1128/aac.49.10.4347-4350.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the sequence and the genetic context of the erm(T) gene in six inducible erythromycin-resistant Streptococcus gallolyticus subsp. pasteurianus (formerly S. bovis biotype II.2) isolates. In all isolates, the erm(T) genes were flanked by two IS1216V-like elements with the same polarity and were found to be inserted in the chromosome.
Collapse
Affiliation(s)
- Jui-Chang Tsai
- Division of Neurosurgery, Department of Surgery, National Taiwan University College of Medicine, Taipei
| | | | | | | | | | | |
Collapse
|
18
|
Ono S, Muratani T, Matsumoto T. Mechanisms of resistance to imipenem and ampicillin in Enterococcus faecalis. Antimicrob Agents Chemother 2005; 49:2954-8. [PMID: 15980374 PMCID: PMC1168717 DOI: 10.1128/aac.49.7.2954-2958.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found ampicillin- and imipenem-resistant isolates of vanA-possessing Enterococcus faecalis with MICs of 8 to 16 microg/ml and 4 to 32 microg/ml, respectively. There have been few reports about penicillin- and imipenem-resistant E. faecalis. Two mechanisms of beta-lactam resistance in E. faecalis, the production of beta-lactamase and the overproduction of penicillin-binding proteins (PBPs), have been reported. The resistant isolates in the current study did not produce any beta-lactamases and analysis of the PBPs showed no overproduction. However, the affinities of PBP4 for beta-lactams in the resistant strains were lower than those of susceptible strains but the affinities of other PBPs for beta-lactams did not change. Accordingly, whole pbp4 fragments from these resistant isolates were sequenced. Two amino acid substitutions at positions 520 and 605 were observed in the highly resistant strains compared to the susceptible ones, Pro520Ser and Tyr605His, and a single Tyr605His amino acid substitution was found in the low-resistance strains. These two point mutations exist in the region between the active-site-defining motifs SDN and KTG of the penicillin-binding domain, the main target of beta-lactams. A strong correlation was seen between these substitutions and decreasing affinities of PBP4 to beta-lactams. In E. faecalis, resistance due to mutations in PBPs has not been reported, though it has in Enterococcus faecium. Our results suggest that development of high-level resistance to penicillins and imipenem depends on point mutations of PBP4 at positions 520 and 605.
Collapse
Affiliation(s)
- Seiji Ono
- Department of Urology, School of Medicine, University of Occupational and Environmental Health (UOEH), 1-1 Iseigaoka, Yahatanisi-Ku, Kitakyusyu 807-8555, Japan.
| | | | | |
Collapse
|
19
|
Duez C, Hallut S, Rhazi N, Hubert S, Amoroso A, Bouillenne F, Piette A, Coyette J. The ponA gene of Enterococcus faecalis JH2-2 codes for a low-affinity class A penicillin-binding protein. J Bacteriol 2004; 186:4412-6. [PMID: 15205448 PMCID: PMC421628 DOI: 10.1128/jb.186.13.4412-4416.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2003] [Accepted: 03/29/2004] [Indexed: 11/20/2022] Open
Abstract
A soluble derivative of the Enterococcus faecalis JH2-2 class A PBP1 (*PBP1) was overproduced and purified. It exhibited a glycosyltransferase activity on the Escherichia coli 14C-labeled lipid II precursor. As a DD- peptidase, it could hydrolyze thiolester substrates with efficiencies similar to those of other class A penicillin-binding proteins (PBPs) and bind beta-lactams, but with k2/K (a parameter accounting for the acylation step efficiency) values characteristic of penicillin-resistant PBPs.
Collapse
Affiliation(s)
- Colette Duez
- Centre d'Ingénierie des Protéines, Institut de Chimie, B6, Université de Liege, B-4000 Sart Tilman, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sapunaric F, Franssen C, Stefanic P, Amoroso A, Dardenne O, Coyette J. Redefining the role of psr in beta-lactam resistance and cell autolysis of Enterococcus hirae. J Bacteriol 2003; 185:5925-35. [PMID: 14526002 PMCID: PMC225013 DOI: 10.1128/jb.185.20.5925-5935.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 07/28/2003] [Indexed: 11/20/2022] Open
Abstract
The contribution of penicillin-binding protein 5 (PBP5) and the PBP5 synthesis repressor (Psr) to the beta-lactam resistance, growth, and cell autolysis of wild-type strain ATCC 9790 and resistant strain R40 of Enterococcus hirae was investigated by disruption or substitution of the corresponding pbp5 and psr genes by Campbell-type recombination. The resulting modifications were confirmed by hybridization and PCR. The low susceptibility of E. hirae to beta-lactams was confirmed to be largely dependent on the presence of PBP5. However, against all expectations, inactivation of psr in ATCC 9790 or complementation of R40 cells with psr did not modify the susceptibility to benzylpenicillin or the growth and cell autolysis rates. These results indicated that the psr gene does not seem to be involved in the regulation of PBP5 synthesis and consequently in beta-lactam resistance or in the regulation of cell autolysis in E. hirae.
Collapse
Affiliation(s)
- Frédéric Sapunaric
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
21
|
Borgen K, Sørum M, Wasteson Y, Kruse H, Oppegaard H. Genetic linkage between erm(B) and vanA in Enterococcus hirae of poultry origin. Microb Drug Resist 2003; 8:363-8. [PMID: 12523634 DOI: 10.1089/10766290260469633] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vancomycin-resistant enterococci (VRE) have frequently been isolated from Norwegian poultry production following the prohibition of the glycopeptide growth promoter avoparcin since 1995. In the present study, a close genetic linkage between the vanA and erm(B) determinants in an Enterococcus hirae isolate of poultry origin is demonstrated, a result that indicates a mechanism for co-selection and maintenance of vancomycin resistance in absence of selective pressure from avoparcin. A total of 36 vanA-positive enterococci of poultry origin, also phenotypically resistant to erythromycin and/or tetracycline, were analyzed by PCR for identification of erm and tet resistance determinants. An E. hirae isolate harbored erm(B) and tet(K), and in this isolate vanA and erm(B) were located on a BamHI fragment of an approximately 50-kb plasmid. Approximately 3 kb of this fragment was amplified by PCR with vanA and erm(B) primers. Sequence analysis of the region between erm(B) and vanZ of Tn1546 showed a truncated IS1216V inserted downstream of the erm(B) stop codon, aligned with a conserved copy of the 3'-inverted terminal repeat of Tn1546. Mating experiments with the E. hirae isolate as donor and E. faecalis JH2-2 as recipient did not result in any transconjugants, indicating that the vanA/erm(B)-carrying plasmid was nonconjugative under the given experimental conditions.
Collapse
Affiliation(s)
- Katrine Borgen
- Department of Pharmacology, Microbiology and Food Hygiene, The Norwegian School of Veterinary Science. N-0033 Oslo, Norway
| | | | | | | | | |
Collapse
|
22
|
Sánchez-Hidalgo M, Maqueda M, Gálvez A, Abriouel H, Valdivia E, Martínez-Bueno M. The genes coding for enterocin EJ97 production by Enterococcus faecalis EJ97 are located on a conjugative plasmid. Appl Environ Microbiol 2003; 69:1633-41. [PMID: 12620853 PMCID: PMC150074 DOI: 10.1128/aem.69.3.1633-1641.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis EJ97 produces a cationic bacteriocin (enterocin EJ97) of low molecular mass (5,327.7 Da). The complete amino acid sequence of enterocin EJ97 was elucidated after automated microsequencing of oligopeptides generated by endoproteinase GluC digestion and cyanogen bromide treatment. Transfer of the 60-kb conjugative plasmid pEJ97 from the bacteriocinogenic strain E. faecalis EJ97 to E. faecalis OG1X conferred bacteriocin production and resistance on the recipient. The genetic determinants of enterocin EJ97 were located in an 11.3-kb EcoRI-BglII DNA fragment of pEJ97. This region was cloned and sequenced. It contains the ej97A structural gene plus three open reading frames (ORFs) (ej97B, ej97C, and ej97D) and three putative ORFs transcribed in the opposite direction (orfA, orfB, and orfC). The gene ej97A translated as a 44-amino-acid residue mature protein lacking a leader peptide with no homology to other bacteriocins described so far. The product of ej97B (Ej97B) shows strong homology in its C-terminal domain to the superfamily of bacterial ATP-binding cassette transporters. The products of ej97C (Ej97C) and ej97D (Ej97D) could be proteins with 71 and 64 residues, respectively, of unknown functions and with no significant similarity to known proteins. There are two additional ORFs (ORF1 and ORF6) flanking the ej97 module, which have been identified as a transposon-like structure (tnp). ORF1 shows similarities to transposase of the Lactococcus lactis element ISS1 and is up to 50% identical to IS1216. This is flanked by two 18-bp inverted repeats (IRs) that are almost identical to those of ISS1 and IS1216. ORF6 (resEJ97) shows strong homology to the resolvase of plasmid pAM373 and up to 40 to 50% homology with the recombinase of several multiresistant plasmids and transposons from Staphylococcus aureus and E. faecalis. These data suggest that EJ97 could represent a new class of bacteriocins with a novel secretion mechanism and that the whole structure could be a composite transposon. Furthermore, two additional gene clusters were found: one cluster is probably related to the region responsible for the replication of plasmid pEJ97, and the second cluster is related to the sex pheromone response. These regions showed a high homology to the corresponding regions of the conjugative plasmids pAM373, pPD1, and pAD1 of E. faecalis, suggesting that they have a common origin.
Collapse
Affiliation(s)
- Marina Sánchez-Hidalgo
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071-Granada, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Rohrer S, Berger-Bächi B. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in gram-positive cocci. Antimicrob Agents Chemother 2003; 47:837-46. [PMID: 12604510 PMCID: PMC149326 DOI: 10.1128/aac.47.3.837-846.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- S Rohrer
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | | |
Collapse
|
24
|
Takamatsu D, Osaki M, Sekizaki T. Chloramphenicol resistance transposable element TnSs1 of Streptococcus suis, a transposon flanked by IS6-family elements. Plasmid 2003; 49:143-51. [PMID: 12726767 DOI: 10.1016/s0147-619x(02)00149-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A new transposon, designated TnSs1, which contains a chloramphenicol acetyltransferase gene flanked by direct repeats of an IS6-family element was found in a field isolate of Streptococcus suis. Polymerase chain reaction and hybridization analyses indicated that another field isolate carried the same transposon in a different location on the chromosome. A transposition assay done with a thermosensitive suicide vector showed that, among the seven TnSs1 mutants tested in this study, six formed a cointegrate between the S. suis genome and the vector with the generation of the third copy of the insertion sequence element, and one harbored one copy of TnSs1 on the chromosome as a result of a subsequent resolution step. On transposition, TnSs1 duplicated an 8-bp sequence at the target site.
Collapse
Affiliation(s)
- Daisuke Takamatsu
- Molecular Bacteriology Section, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | |
Collapse
|
25
|
Papaparaskevas J, Tassios PT, Kalapothaki V, Avlami A, Legakis NJ, Vatopoulos AC. Epidemiology of multiresistant Enterococcus avium isolates in a Greek tertiary care hospital. Int J Antimicrob Agents 2002; 20:432-7. [PMID: 12458137 DOI: 10.1016/s0924-8579(02)00238-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A retrospective survey of the isolation rate of Enterococcus avium during the period March 1994-February 2000 conducted in Laikon General Hospital using the WHONET software, revealed a peak in the isolation rates of this species during March 1995-February 1996. The ten strains isolated during this time were studied further. No glycopeptide resistance was detected but resistance to ampicillin, ciprofloxacin, erythromycin, gentamicin (high-level) and streptomycin (high-level) was present in nine, ten, nine, three and seven of the isolates, respectively. The genes aac(6')-Ie+aph(2")-Ia and ant(6)-I, encoding for high-level gentamicin and streptomycin resistance, respectively, were detected only in the isolates with the corresponding phenotypes. Beta-lactamase production and haemolysis were not detected. There was evidence of ward-, floor- and building-specific distribution among the different aminoglycoside resistance phenotypes. DNA fingerprinting by PFGE grouped six of the ten isolates in a single cluster with 83% similarity, even though they expressed various resistance phenotypes. These results suggest dissemination of resistance genes among both genetically related and unrelated strains.
Collapse
|
26
|
Abstract
The introduction and increasing use of antibiotics for antibacterial therapy has initiated a rapid development and expansion of antibiotic resistance in microorganisms, particularly in human pathogens. Additionally, a shift to an increase in number and severity of Gram-positive infections has been observed the last decades. Common to these pathogens is their tendency to accumulate multiple resistances under antibiotic pressure and selection. Methicillin-resistant Staphylococcus aureus (MRSA), that have acquired multiresistance to all classes of antibiotics, have become a serious nosocomial problem. Recently, the emergence of the first MRSA with reduced vancomycin susceptibility evoked the specter of a totally resistant S. aureus. Problems with multiresistance expand also to penicillin-resistant Streptococcus pneumoniae that are partially or totally resistant to multiple antibiotics, and to vancomycin-resistant Enterococcus ssp., completely resistant to all commonly used antibiotics. The rapid development of resistance is due to mutational events and/or gene transfer and acquisition of resistance determinants, allowing strains to survive antibiotic treatment.
Collapse
|
27
|
Hanrahan J, Hoyen C, Rice LB. Geographic distribution of a large mobile element that transfers ampicillin and vancomycin resistance between Enterococcus faecium strains. Antimicrob Agents Chemother 2000; 44:1349-51. [PMID: 10770775 PMCID: PMC89868 DOI: 10.1128/aac.44.5.1349-1351.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In several clonally unrelated VanB-type vancomycin-resistant Enterococcus faecium strains, we demonstrated a common physical relationship between pbp5 and Tn5382 as well as common mutations within pbp5. The majority of these strains transferred vancomycin and ampicillin resistance to E. faecium in vitro, suggesting the dissemination of similar transferable pbp5-vanB-containing mobile elements throughout the United States.
Collapse
Affiliation(s)
- J Hanrahan
- Adult, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
28
|
Healy FG, Bukhalid RA, Loria R. Characterization of an insertion sequence element associated with genetically diverse plant pathogenic Streptomyces spp. J Bacteriol 1999; 181:1562-8. [PMID: 10049389 PMCID: PMC93547 DOI: 10.1128/jb.181.5.1562-1568.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1998] [Accepted: 12/11/1998] [Indexed: 11/20/2022] Open
Abstract
Streptomycetes are common soil inhabitants, yet few described species are plant pathogens. While the pathogenicity mechanisms remain unclear, previous work identified a gene, nec1, which encodes a putative pathogenicity or virulence factor. nec1 and a neighboring transposase pseudogene, ORFtnp, are conserved among unrelated plant pathogens and absent from nonpathogens. The atypical GC content of nec1 suggests that it was acquired through horizontal transfer events. Our investigation of the genetic organization of regions adjacent to the 3' end of nec1 in Streptomyces scabies 84.34 identified a new insertion sequence (IS) element, IS1629, with homology to other IS elements from prokaryotic animal pathogens. IS1629 is 1,462 bp with 26-bp terminal inverted repeats and encodes a putative 431-amino-acid (aa) transposase. Transposition of IS1629 generates a 10-bp target site duplication. A 77-nucleotide (nt) sequence encompassing the start codon and upstream region of the transposase was identified which could function in the posttranscritpional regulation of transposase synthesis. A functional copy of IS1629 from S. turgidiscabies 94.09 (Hi-C-13) was selected in the transposon trap pCZA126, through its insertion into the lambda cI857 repressor. IS1629 is present in multiple copies in some S. scabies strains and is present in all S. acidiscabies and S. turgidiscabies strains examined. A second copy of IS1629 was identified between ORFtnp and nec1 in S. acidiscabies strains. The diversity of IS1629 hybridization profiles was greatest within S. scabies. IS1629 was absent from the 27 nonpathogenic Streptomyces strains tested. The genetic organization and nucleotide sequence of the nec1-IS1629 region was conserved and identical among representatives of S. acidiscabies and S. turgidiscabies. These findings support our current model for the unidirectional transfer of the ORFtnp-nec1-IS1629 locus from IS1629-containing S. scabies (type II) to S. acidiscabies and S. turgidiscabies.
Collapse
Affiliation(s)
- F G Healy
- Department of Plant Pathology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
29
|
Goffin C, Ghuysen JM. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 1998; 62:1079-93. [PMID: 9841666 PMCID: PMC98940 DOI: 10.1128/mmbr.62.4.1079-1093.1998] [Citation(s) in RCA: 443] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The monofunctional penicillin-binding DD-peptidases and penicillin-hydrolyzing serine beta-lactamases diverged from a common ancestor by the acquisition of structural changes in the polypeptide chain while retaining the same folding, three-motif amino acid sequence signature, serine-assisted catalytic mechanism, and active-site topology. Fusion events gave rise to multimodular penicillin-binding proteins (PBPs). The acyl serine transferase penicillin-binding (PB) module possesses the three active-site defining motifs of the superfamily; it is linked to the carboxy end of a non-penicillin-binding (n-PB) module through a conserved fusion site; the two modules form a single polypeptide chain which folds on the exterior of the plasma membrane and is anchored by a transmembrane spanner; and the full-size PBPs cluster into two classes, A and B. In the class A PBPs, the n-PB modules are a continuum of diverging sequences; they possess a five-motif amino acid sequence signature, and conserved dicarboxylic amino acid residues are probably elements of the glycosyl transferase catalytic center. The PB modules fall into five subclasses: A1 and A2 in gram-negative bacteria and A3, A4, and A5 in gram-positive bacteria. The full-size class A PBPs combine the required enzymatic activities for peptidoglycan assembly from lipid-transported disaccharide-peptide units and almost certainly prescribe different, PB-module specific traits in peptidoglycan cross-linking. In the class B PBPs, the PB and n-PB modules cluster in a concerted manner. A PB module of subclass B2 or B3 is linked to an n-PB module of subclass B2 or B3 in gram-negative bacteria, and a PB module of subclass B1, B4, or B5 is linked to an n-PB module of subclass B1, B4, or B5 in gram-positive bacteria. Class B PBPs are involved in cell morphogenesis. The three motifs borne by the n-PB modules are probably sites for module-module interaction and the polypeptide stretches which extend between motifs 1 and 2 are sites for protein-protein interaction. The full-size class B PBPs are an assortment of orthologs and paralogs, which prescribe traits as complex as wall expansion and septum formation. PBPs of subclass B1 are unique to gram-positive bacteria. They are not essential, but they represent an important mechanism of resistance to penicillin among the enterococci and staphylococci. Natural evolution and PBP- and beta-lactamase-mediated resistance show that the ability of the catalytic centers to adapt their properties to new situations is limitless. Studies of the reaction pathways by using the methods of quantum chemistry suggest that resistance to penicillin is a road of no return.
Collapse
Affiliation(s)
- C Goffin
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie, B-4000 Sart Tilman (Liège), Belgium
| | | |
Collapse
|