1
|
Sallée L, Boutolleau D. Management of Refractory/Resistant Herpes Simplex Virus Infections in Haematopoietic Stem Cell Transplantation Recipients: A Literature Review. Rev Med Virol 2024; 34:e2574. [PMID: 39090526 DOI: 10.1002/rmv.2574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Herpes simplex virus (HSV) infections in allogeneic haematopoietic stem cell transplantation (HSCT) recipients pose significant challenges, with higher incidence, severity, and risk of emergence of resistance to antivirals due to impaired T-cell mediated immunity. This literature review focuses on acyclovir-refractory/resistant HSV infections in HSCT recipients. The review addresses the efficacy of antiviral prophylaxis, the incidence of acyclovir-refractory/resistant HSV infections, and the identification of risk factors and potential prognostic impact associated with those infections. Additionally, alternative therapeutic options are discussed. While acyclovir prophylaxis demonstrates a significant benefit in reducing HSV infections in HSCT recipients and, in some cases, overall mortality, concerns arise about the emergence of drug-resistant HSV strains. Our systematic review reports a median incidence of acyclovir-resistant HSV infections of 16.1%, with an increasing trend in recent years. Despite limitations in available studies, potential risk factors of emergence of HSV resistance to acyclovir include human leucocyte antigen (HLA) mismatches, myeloid neoplasms and acute leukaemias, and graft-versus-host disease (GVHD). Limited evidences suggest a potentially poorer prognosis for allogeneic HSCT recipients with acyclovir-refractory/resistant HSV infection. Alternative therapeutic approaches, such as foscarnet, cidofovir, topical cidofovir, optimised acyclovir dosing, and helicase-primase inhibitors offer promising options but require further investigations. Overall, larger studies are needed to refine preventive and therapeutic strategies for acyclovir-refractory/resistant HSV infections in allogeneic HSCT recipients and to identify those at higher risk.
Collapse
Affiliation(s)
- Léo Sallée
- Assistance Publique-Hôpitaux de Paris, Université Sorbonne Paris Nord, Paris, France
| | - David Boutolleau
- AP-HP, Centre National de Référence Herpèsvirus (Laboratoire Associé), Hôpital Pitié-Salpêtrière, Service de Virologie, and Sorbonne Université, INSERM, UMR-S 1136, Institut Pierre Louis d'Épidémiologie et de Santé Publique (iPLESP), Paris, France
| |
Collapse
|
2
|
Piperi E, Papadopoulou E, Georgaki M, Dovrat S, Bar Illan M, Nikitakis NG, Yarom N. Management of oral herpes simplex virus infections: The problem of resistance. A narrative review. Oral Dis 2024; 30:877-894. [PMID: 37279074 DOI: 10.1111/odi.14635] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/21/2023] [Indexed: 06/07/2023]
Abstract
Herpes Simplex Virus (HSV) type 1 (HSV-1) and type 2 (HSV-2) are among the most common human viral pathogens, affecting several billion people worldwide. Although in healthy patients clinical signs and symptoms of HSV infection are usually mild and self-limiting, HSV-infections in immunocompromised patients are frequently more aggressive, persistent, and even life-threatening. Acyclovir and its derivatives are the gold standard antiviral drugs for the prevention and treatment of HSV infections. Although the development of acyclovir resistance is a rather uncommon condition, it may be associated with serious complications, especially in immunocompromised patients. In this review, we aim to address the problem of drug resistant HSV infection and discuss the available alternative therapeutic interventions. All relative studies concerning alternative treatment modalities of acyclovir resistant HSV infection published in PubMed between 1989 to 2022 were reviewed. Long-term treatment and prophylaxis with antiviral agents predisposes to drug resistance, especially in immunocompromised patients. Cidofovir and foscarnet could serve as alternative treatments in these cases. Although rare, acyclovir resistance may be associated with severe complications. Hopefully, in the future, novel antiviral drugs and vaccines will be available in order to avoid the existing drug resistance.
Collapse
Affiliation(s)
- Evangelia Piperi
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Erofili Papadopoulou
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Maria Georgaki
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Sara Dovrat
- Central Virology Laboratory, Public Health Services, Ministry of Health, Sheba Medical Center, Tel-Hashomer, Israel
| | - Mor Bar Illan
- Oral Medicine Unit, Sheba Medical Center, Tel-Hashomer, Israel
| | - Nikolaos G Nikitakis
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Noam Yarom
- Oral Medicine Unit, Sheba Medical Center, Tel-Hashomer, Israel
- School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Putera I, Ridwan AS, Dewi M, Cifuentes-González C, Rojas-Carabali W, Sitompul R, Edwar L, Susiyanti M, Aziza Y, Pavesio C, Chee SP, Mahendradas P, Biswas J, Kempen JH, Gupta V, de-la-Torre A, La Distia Nora R, Agrawal R. Antiviral treatment for acute retinal necrosis: A systematic review and meta-analysis. Surv Ophthalmol 2024; 69:67-84. [PMID: 37774799 DOI: 10.1016/j.survophthal.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Acute retinal necrosis is a progressive intraocular inflammatory syndrome characterized by diffuse necrotizing retinitis that can lead to a poor visual outcome, mainly from retinal detachment. The antiviral treatment approach for acute retinal necrosis varies as there are no established guidelines. We summarize the outcomes of acute retinal necrosis with available antiviral treatments. Electronic searches were conducted in PubMed/MEDLINE, EMBASE, Scopus, and Google Scholar for interventional and observational studies. Meta-analysis was performed to evaluate the pooled proportion of the predefined selected outcomes. This study was registered in PROSPERO (CRD42022320987). Thirty-four studies with a total of 963 participants and 1,090 eyes were included in the final analysis. The estimated varicella-zoster virus and herpes simplex virus polymerase chain reaction-positive cases were 63% (95% CI: 55-71%) and 35% (95% CI: 28-42%), respectively. The 3 main antiviral treatment approaches identified were oral antivirals alone, intravenous antivirals alone, and a combination of systemic (oral or intravenous) and intravitreal antivirals. The overall pooled estimated proportions of visual acuity improvement, recurrence, and retinal detachment were 37% (95% CI: 27-47%), 14% (95% CI: 8-21%), and 43% (95% CI: 38-50%), respectively. Patients treated with systemic and intravitreal antivirals showed a trend towards better visual outcomes than those treated with systemic antivirals (oral or intravenous) alone, even though this analysis was not statistically significant (test for subgroup differences P = 0.83).
Collapse
Affiliation(s)
- Ikhwanuliman Putera
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia; Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Asri Salima Ridwan
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | - Metta Dewi
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | - Carlos Cifuentes-González
- Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT), Universidad Del Rosario Escuela de Medicina y Ciencias de la Salud, Bogotá, Colombia
| | - William Rojas-Carabali
- Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT), Universidad Del Rosario Escuela de Medicina y Ciencias de la Salud, Bogotá, Colombia; Department of Bioinformatics, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ratna Sitompul
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | - Lukman Edwar
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | - Made Susiyanti
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | - Yulia Aziza
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia
| | - Carlos Pavesio
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK; UCL-Institute of Ophthalmology, London, UK
| | - Soon-Phaik Chee
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore National Eye Centre, Singapore, Singapore
| | | | - Jyotirmay Biswas
- Department of Uvea and Ocular Pathology, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - John H Kempen
- Department of Ophthalmology, Massachusetts Eye and Ear/Harvard Medical School; and Schepens Eye Research Institute, Boston, Massachusetts, USA; Sight for Souls, Fort Myers, Florida, USA; Addis Ababa University Department of Ophthalmology, Addis Ababa, Ethiopia; MyungSung Christian Medical Center (MCM) Eye Unit, MCM General Hospital, and MyungSung Medical School, Addis Ababa, Ethiopia
| | - Vishali Gupta
- Advanced Eye Centre, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Alejandra de-la-Torre
- Neuroscience (NEUROS) Research Group, Neurovitae Research Center, Institute of Translational Medicine (IMT), Universidad Del Rosario Escuela de Medicina y Ciencias de la Salud, Bogotá, Colombia
| | - Rina La Distia Nora
- Department of Ophthalmology, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Kirana Eye Hospital, Jakarta, Indonesia; Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rupesh Agrawal
- Department of Bioinformatics, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London, UK; UCL-Institute of Ophthalmology, London, UK; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Singapore National Eye Centre, Singapore, Singapore; MyungSung Christian Medical Center (MCM) Eye Unit, MCM General Hospital, and MyungSung Medical School, Addis Ababa, Ethiopia; National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore; Duke NUS Medical School, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore
| |
Collapse
|
4
|
Lewin AC, Ineck NE, Mironovich MA, Marino ME, Liu CC, Emelogu U, Mills EP, Camacho-Luna P, Carter RT. Surveillance for feline herpesvirus type 1 mutation and development of resistance in cats treated with antiviral medications. Front Vet Sci 2023; 10:1197249. [PMID: 37275610 PMCID: PMC10232796 DOI: 10.3389/fvets.2023.1197249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Feline herpesvirus type 1 (FHV-1) commonly causes ocular surface disease in cats and is treated with antiviral medications targeting viral DNA polymerase (UL30/42). Herein, we describe a method to assess the FHV-1 genome for mutation development and to assess the functional impact of mutations, if present. Fourteen shelter-housed domestic cats with FHV-1 ocular surface disease were assigned to one of four treatment groups: placebo (n = 3), cidofovir 0.5% ophthalmic solution (n = 3), famciclovir oral solution (n = 5), or ganciclovir 0.15% ophthalmic solution (n = 3). Swabs were collected before (day 1) and after (day 8) 1 week of twice-daily treatments to isolate viable FHV-1. Viral DNA was extracted for sequencing using Illumina MiSeq with subsequent genomic variant detection between paired day 1 and day 8 isolates. Plaque reduction assay was performed on paired isolates demonstrating non-synonymous variants. A total of 171 synonymous and 3 non-synonymous variants were identified in day 8 isolates. No variants were detected in viral UL23, UL30, or UL42 genes. Variant totals were not statistically different in animals receiving antiviral or placebo (p = 0.4997). A day 8 isolate from each antiviral treatment group contained a single non-synonymous variant in ICP4 (transcriptional regulator). These 3 isolates demonstrated no evidence of functional antiviral resistance when IC50 was assessed. Most (10/14 pairs) day 1 and 8 viral isolate pairs from the same host animal were near-identical. While functional variants were not detected in this small sample, these techniques can be replicated to assess FHV-1 isolates suspected of having developed resistance to antiviral medications.
Collapse
|
5
|
Acyclovir resistance in herpes simplex viruses: Prevalence and therapeutic alternatives. Biochem Pharmacol 2022; 206:115322. [DOI: 10.1016/j.bcp.2022.115322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022]
|
6
|
Susceptibility Evaluation of Clinically Isolated HSV-1 Strains to Acyclovir: A Phenotypic and Genotypic Study. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.117928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Mutations in herpes simplex virus Thymidine kinase (TK, UL23) and DNA polymerase (pol, UL30) genes may confer resistance to acyclovir (ACV). Phenotypic resistance must be determined along with genotypic resistance to achieve complete acyclovir susceptibility. Objectives: The present study aimed to characterize HSV-1 clinical isolates from outpatients and organ transplant recipients in terms of phenotypic ACV resistance. Moreover, genotypic resistance to ACV was assessed through sequencing the viral TK and pol genes amplified from virus-infected cell DNA. Methods: Twenty-six HSV-1 clinical isolates collected between 2016 and 2019 were examined for drug susceptibility. The samples were collected from eyes, oropharyngeal, facial, and other skin parts of immunocompetent and immunocompromised individuals. Phenotypic susceptibility was determined by using three different concentrations of ACV. The results were expressed based on the ability of ACV in reducing viral plaques by 50%. Genotyping was carried out by polymerase chain reaction and sequencing of TK and pol genes. Results: All the strains were characterized as sensitive at 0.01 and 0.05 µg.ml-1 concentrations to ACV. Seventy percent inhibition was observed at ≥ 0.1 µg.mL-1 of ACV for three isolates (two from patients who received transplants and one from an outpatient). Nine natural polymorphisms were detected in the TK gene and 31 in the Pol gene. Furthermore, four susceptible-associated mutations in the DNA pol gene were analyzed. A substitution was encoded in the conserved region of the pol Exo III motif (M553L), and nine amino acid substitutions in TK were detected. The phylogenetic analysis of partial genome sequences revealed high diversity in the TK and pol genes of HSV-1. Conclusions: A higher number of mutations were observed in patients who received transplants and underwent long-term treatment compared with outpatients. The high genetic variability of HSV-1 TK and DNA pol was not associated with phenotypic resistance.
Collapse
|
7
|
Sammet S, Esser S. [Herpes simplex virus infections type 1 and 2 and their different clinical manifestations]. MMW Fortschr Med 2021; 163:46-55. [PMID: 34146287 DOI: 10.1007/s15006-021-9955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Stefanie Sammet
- Universitätsklinikum Essen, Klinik für Dermatologie und Venerologie, Hufelandstr. 55, 45157, Essen, Germany.
| | - Stefan Esser
- Universitätsklinikum Essen, Klinik für Dermatologie und Venerologie, Hufelandstr. 55, 45157, Essen, Germany
| |
Collapse
|
8
|
Kumar M, Mazumder P, Mohapatra S, Kumar Thakur A, Dhangar K, Taki K, Mukherjee S, Kumar Patel A, Bhattacharya P, Mohapatra P, Rinklebe J, Kitajima M, Hai FI, Khursheed A, Furumai H, Sonne C, Kuroda K. A chronicle of SARS-CoV-2: Seasonality, environmental fate, transport, inactivation, and antiviral drug resistance. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124043. [PMID: 33268203 PMCID: PMC7536132 DOI: 10.1016/j.jhazmat.2020.124043] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 05/08/2023]
Abstract
In this review, we present the environmental perspectives of the viruses and antiviral drugs related to SARS-CoV-2. The present review paper discusses occurrence, fate, transport, susceptibility, and inactivation mechanisms of viruses in the environment as well as environmental occurrence and fate of antiviral drugs, and prospects (prevalence and occurrence) of antiviral drug resistance (both antiviral drug resistant viruses and antiviral resistance in the human). During winter, the number of viral disease cases and environmental occurrence of antiviral drug surge due to various biotic and abiotic factors such as transmission pathways, human behaviour, susceptibility, and immunity as well as cold climatic conditions. Adsorption and persistence critically determine the fate and transport of viruses in the environment. Inactivation and disinfection of virus include UV, alcohol, and other chemical-base methods but the susceptibility of virus against these methods varies. Wastewater treatment plants (WWTPs) are major reserviors of antiviral drugs and their metabolites and transformation products. Ecotoxicity of antiviral drug residues against aquatic organisms have been reported, however more threatening is the development of antiviral resistance, both in humans and in wild animal reservoirs. In particular, emergence of antiviral drug-resistant viruses via exposure of wild animals to high loads of antiviral residues during the current pandemic needs further evaluation.
Collapse
Affiliation(s)
- Manish Kumar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India.
| | - Payal Mazumder
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sanjeeb Mohapatra
- Environmnetal Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Alok Kumar Thakur
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Kiran Dhangar
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Kaling Taki
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Santanu Mukherjee
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Arbind Kumar Patel
- Discipline of Earth Science, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Prosun Bhattacharya
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044 Stockholm, Sweden
| | - Pranab Mohapatra
- Discipline of Civil Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382 355, India
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, School of Architecture and Civil Engineering, University of Wuppertal, Wuppertal 42285, Germany; Department of Environment, Energy and Geoinformatics, University of Sejong, Seoul, South Korea
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Hokkaido 060-8628, Japan
| | - Faisal I Hai
- Wollongong, Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, NSW 2522, Australia
| | - Anwar Khursheed
- Department of Civil Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Hiroaki Furumai
- Research Centre for Water Environment Technology, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Christian Sonne
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Toyama 9390398, Japan
| |
Collapse
|
9
|
Koganti R, Yadavalli T, Naqvi RA, Shukla D, Naqvi AR. Pathobiology and treatment of viral keratitis. Exp Eye Res 2021; 205:108483. [PMID: 33556334 DOI: 10.1016/j.exer.2021.108483] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 12/17/2022]
Abstract
Keratitis is one of the most prevalent ocular diseases manifested by partial or total loss of vision. Amongst infectious (viz., microbes including bacteria, fungi, amebae, and viruses) and non-infectious (viz., eye trauma, chemical exposure, and ultraviolet exposure, contact lens) risk factors, viral keratitis has been demonstrated as one of the leading causes of corneal opacity. While many viruses have been shown to cause keratitis (such as rhabdoviruses, coxsackieviruses, etc.), herpesviruses are the predominant etiologic agent of viral keratitis. This chapter will summarize current knowledge on the prevalence, diagnosis, and pathobiology of viral keratitis. Virus-mediated immunomodulation of host innate and adaptive immune components is critical for viral persistence, and dysfunctional immune responses may cause destruction of ocular tissues leading to keratitis. Immunosuppressed or immunocompromised individuals may display recurring disease with pronounced severity. Early diagnosis of viral keratitis is beneficial for disease management and response to treatment. Finally, we have discussed current and emerging therapies to treat viral keratitis.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA
| | - Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, IL, 60612, USA.
| | - Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Viegas DJ, da Silva VD, Buarque CD, Bloom DC, Abreu PA. Antiviral activity of 1,4-disubstituted-1,2,3-triazoles against HSV-1 in vitro. Antivir Ther 2021; 25:399-410. [PMID: 33705354 DOI: 10.3851/imp3387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1) affects a large part of the adult population. Anti-HSV-1 drugs, such as acyclovir, target thymidine kinase and viral DNA polymerase. However, the emerging of resistance of HSV-1 alerts for the urgency in developing new antivirals with other therapeutic targets. Thus, this study evaluated a series of 1,4-disubstituted-1,2,3-triazole derivatives against HSV-1 acute infection and provided deeper insights into the possible mechanisms of action. METHODS Human fibroblast cells (HFL-1) were infected with HSV-1 17syn+ and treated with the triazole compounds at 50 μM for 24 h. The 50% effective drug concentration (EC50) was determined for the active compounds. Their cytotoxicity was also evaluated in HFL-1 with the 50% cytotoxic concentration (CC50) determined using CellTiter-Glo® solution. The most promising compounds were evaluated by virucidal activity and influence on virus egress, DNA replication and transcription, and effect on an acyclovir-resistant HSV-1 strain. RESULTS Compounds 3 ((E)-4-methyl-N'-(2-(4-(phenoxymethyl)-1H-1,2,3-triazol1yl)benzylidene)benzenesulfonohydrazide) and 4 (2,2'-(4,4'-((1,3-phenylenebis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1 diyl)) dibenzaldehyde) were the most promising, with an EC50 of 16 and 21 μM and CC50 of 285 and 2,593 μM, respectively. Compound 3 was able to inhibit acyclovir-resistant strain replication and to interfere with virus egress. Both compounds did not affect viral DNA replication, but inhibited significantly the expression of ICP0, ICP4 and gC. Compound 4 also affected the transcription of UL30 and ICP34.5. CONCLUSIONS Our findings demonstrated that these compounds are promising antiviral candidates with different mechanisms of action from acyclovir and further studies are merited.
Collapse
Affiliation(s)
- Daiane J Viegas
- LAMCIFAR, Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Verônica D da Silva
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camilla D Buarque
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David C Bloom
- College of Medicine, Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, FL, USA
| | - Paula A Abreu
- LAMCIFAR, Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Management of Genital Herpes in Pregnancy: ACOG Practice Bulletinacog Practice Bulletin, Number 220. Obstet Gynecol 2020; 135:e193-e202. [PMID: 32332414 DOI: 10.1097/aog.0000000000003840] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Genital herpes simplex virus (HSV) infection during pregnancy poses a risk to the developing fetus and newborn. Genital herpes is common in the United States. Among 14- to 49-year-old females, the prevalence of HSV-2 infection is 15.9%. However, the prevalence of genital herpes infection is higher than that because genital herpes is also caused by HSV-1 (). Because many women of childbearing age are infected or will be infected with HSV, the risk of maternal transmission of this virus to the fetus or newborn is a major health concern. This document has been revised to include that for women with a primary or nonprimary first-episode genital HSV infection during the third trimester of pregnancy, cesarean delivery may be offered due to the possibility of prolonged viral shedding.
Collapse
|
12
|
Li F, Song X, Su G, Wang Y, Wang Z, Jia J, Qing S, Huang L, Wang Y, Zheng K, Wang Y. Amentoflavone Inhibits HSV-1 and ACV-Resistant Strain Infection by Suppressing Viral Early Infection. Viruses 2019; 11:E466. [PMID: 31121928 PMCID: PMC6563227 DOI: 10.3390/v11050466] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
Infection of Herpes simplex virus 1 (HSV-1) induces severe clinical disorders, such as herpes simplex encephalitis and keratitis. Acyclovir (ACV) is the current therapeutic drug against viral infection and ACV-resistant strains have gradually emerged, leading to the requirement for novel antiviral agents. In this study, we exhibited the antiviral activity of amentoflavone, a naturally occurring biflavonoid, toward HSV-1 and ACV-resistant strains. Amentoflavone significantly inhibited infection of HSV-1 (F strain), as well as several ACV-resistant strains including HSV-1/106, HSV-1/153 and HSV-1/Blue at high concentrations. Time-of-drug-addition assay further revealed that amentoflavone mainly impaired HSV-1 early infection. More detailed study demonstrated that amentoflavone affected cofilin-mediated F-actin reorganization and reduced the intracellular transportation of HSV-1 from the cell membrane to the nucleus. In addition, amentoflavone substantially decreased transcription of viral immediate early genes. Collectively, amentoflavone showed strong antiviral activity against HSV-1 and ACV-resistant strains, and amentoflavone could be a promising therapeutic candidate for HSV-1 pathogenesis.
Collapse
Affiliation(s)
- Feng Li
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Guifeng Su
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yiliang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Zhaoyang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Jiaoyan Jia
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Shurong Qing
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lianzhou Huang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yuan Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Differences in the Likelihood of Acyclovir Resistance-Associated Mutations in the Thymidine Kinase Genes of Herpes Simplex Virus 1 and Varicella-Zoster Virus. Antimicrob Agents Chemother 2019; 63:AAC.00017-19. [PMID: 30858222 DOI: 10.1128/aac.00017-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022] Open
Abstract
Acyclovir (ACV) resistance-associated mutations in two recombinant herpes simplex virus 1 (HSV-1) clones were compared. Recombinant HSV-1 lacking its thymidine kinase (TK) and expressing varicella-zoster virus (VZV) TK ectopically had no mutations in the VZV TK gene. In contrast, recombinant HSV-1 expressing HSV-1 TK ectopically harbored mutations in the HSV-1 TK gene. These results suggest that the relatively low frequency of ACV-resistant VZV is a consequence of the characteristics of the TK gene.
Collapse
|
14
|
Ikawa Y, Fujiki T, Nishimura R, Noguchi K, Koshino E, Fujiki A, Fukuda M, Kuroda R, Mase S, Araki R, Maeba H, Shiraki K, Yachie A. Improvement of refractory acyclovir-resistant herpes simplex virus type 1 infection by continuous acyclovir administration. J Infect Chemother 2019; 25:65-67. [DOI: 10.1016/j.jiac.2018.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022]
|
15
|
Abstract
Infection with herpes simplex virus (HSV) types 1 and 2 is ubiquitous in the human population. Most commonly, virus replication is limited to the epithelia and establishes latency in enervating sensory neurons, reactivating periodically to produce localized recurrent lesions. However, these viruses can also cause severe disease such as recurrent keratitis leading potentially to blindness, as well as encephalitis, and systemic disease in neonates and immunocompromised patients. Although antiviral therapy has allowed continual and substantial improvement in the management of both primary and recurrent infections, resistance to currently available drugs and long-term toxicity pose a current and future threat that should be addressed through the development of new antiviral compounds directed against new targets. The development of several promising HSV vaccines has been terminated recently because of modest or controversial therapeutic effects in humans. Nevertheless, several exciting vaccine candidates remain in the pipeline and are effective in animal models; these must also be tested in humans for sufficient therapeutic effects to warrant continued development. Approaches using compounds that modulate the chromatin state of the viral genome to suppress infection and reactivation or induce enhanced antiviral immunity have potential. In addition, technologies such as CRISPR/Cas9 have the potential to edit latent viral DNA in sensory neurons, potentially curing the neuron and patient of latent infection. It is hoped that development on all three fronts—antivirals, vaccines, and gene editing—will lead to substantially less HSV morbidity in the future.
Collapse
Affiliation(s)
- Richard Whitley
- Department of Pediatrics, Microbiology, and Medicine, University of Alabama at Birmingham Children's Hospital, Birmingham, AL, 35233, USA
| | - Joel Baines
- Department of Pathobiology, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
16
|
Casassa EA, Nicol P, Viraben R, Gaudin C, Bulai Livideanu C, Mengelle C, Lamant L, Fortenfant F, Paul C, Konstantinou MP. [Acyclovir-resistant perineal HSV infection revealing chronic lymphoid leukaemia]. Ann Dermatol Venereol 2017; 145:182-186. [PMID: 29221652 DOI: 10.1016/j.annder.2017.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/23/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Chronic HSV infection is a cause of chronic perineal ulcerations. We report a case of a chronic and refractory HSV infection revealing chronic lymphoid leukaemia. PATIENTS AND METHODS An 85-year-old woman with an 8-month history of chronic perineal ulcerations was referred to our dermatology department. She had no previous medical history of herpes infection. Skin biopsies ruled out carcinoma but were consistent with HSV infection. A local swab was positive for HSV2. Treatment with valaciclovir and intravenous acyclovir (ACV) at the recommended doses was ineffective. Laboratory tests revealed type-B chronic lymphoid leukaemia. Molecular biology studies confirmed the presence of ACV-resistant HSV via decreased thymidine kinase activity (stop codon: M183stop). Foscarnet was administered for a period of 3 weeks with almost complete healing of the ulcerations. Treatment was stopped prematurely due to acute renal insufficiency and the remaining lesions were treated using imiquimod cream. Valaciclovir was prescribed to prevent further episodes. The condition recurred a mere 11 months later. DISCUSSION The prevalence of ACV-resistant HSV is 0.32 % in immunocompetent patients and 3.5 % in immunocompromised patients. Insufficient dosing regimens or prolonged treatment with TK inhibitors result in the local selection of pre-existing mutant HSV viruses. Foscarnet, a DNA polymerase inhibitor, is the treatment of choice in HSV-resistant infections. ACV-resistant HSV is less virulent and replicates less, with reactivations being mainly due to wild-type HSV latent in the neural ganglia. Valaciclovir can be used as a preventive treatment. To our knowledge, this is the first case of ACV-resistant HSV infection revealing chronic lymphoid leukaemia. CONCLUSION Chronic perineal ulcerations can be the first manifestation of immunodeficiency seen for example with haematological diseases. In the event of clinical resistance of an HSV infection to recommended thymidine kinase inhibitor regimens, the use of foscarnet should be considered.
Collapse
Affiliation(s)
- E A Casassa
- Dermatologie, université Paul-Sabatier, Hopital Larrey, CHU de Toulouse, 24 chemin de Pouvourville, 31300 Toulouse, France.
| | - P Nicol
- Dermatologie, université Paul-Sabatier, Hopital Larrey, CHU de Toulouse, 24 chemin de Pouvourville, 31300 Toulouse, France
| | - R Viraben
- Dermatologie, université Paul-Sabatier, Hopital Larrey, CHU de Toulouse, 24 chemin de Pouvourville, 31300 Toulouse, France
| | - C Gaudin
- Gériatrie, université Paul-Sabatier, CHU de Toulouse, 31300 Toulouse, France
| | - C Bulai Livideanu
- Dermatologie, université Paul-Sabatier, Hopital Larrey, CHU de Toulouse, 24 chemin de Pouvourville, 31300 Toulouse, France
| | - C Mengelle
- Virologie, Purpan, université Paul-Sabatier, CHU de Toulouse, 31300 Toulouse, France
| | - L Lamant
- Anatomopathologie, IUCT, université Paul-Sabatier, CHU de Toulouse, 31300 Toulouse, France
| | - F Fortenfant
- Immunologie, université Paul-Sabatier, CHU de Toulouse, 31300 Toulouse, France
| | - C Paul
- Dermatologie, université Paul-Sabatier, Hopital Larrey, CHU de Toulouse, 24 chemin de Pouvourville, 31300 Toulouse, France
| | - M P Konstantinou
- Dermatologie, université Paul-Sabatier, Hopital Larrey, CHU de Toulouse, 24 chemin de Pouvourville, 31300 Toulouse, France
| |
Collapse
|
17
|
Omura N, Fujii H, Yoshikawa T, Yamada S, Harada S, Inagaki T, Shibamura M, Takeyama H, Saijo M. Association between sensitivity of viral thymidine kinase-associated acyclovir-resistant herpes simplex virus type 1 and virulence. Virol J 2017; 14:59. [PMID: 28320407 PMCID: PMC5359899 DOI: 10.1186/s12985-017-0728-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/09/2017] [Indexed: 11/24/2022] Open
Abstract
Background Acyclovir (ACV)-resistant (ACVr) herpes simplex virus type 1 (HSV-1) infections are concern in immunocompromised patients. Most clinical ACVr HSV-1 isolates have mutations in the viral thymidine kinase (vTK) genes. The vTK-associated ACVr HSV-1 shows reduced virulence, but the association between the level of resistance and the virulence of the vTK-associated ACVr HSV-1 is still unclear. Methods The virulence in mice of 5 vTK-associated ACVr HSV-1 clones with a variety of ACV sensitivities, when inoculated through intracerebral and corneal routes, was evaluated in comparison with ACV-sensitive (ACVs) parent HSV-1 TAS. Results Although all the 5 ACVr HSV-1 clones and ACVs HSV-1 TAS showed a similar single-step growth capacity in vitro, the virulence of ACVr HSV-1 clones significantly decreased. A 50% lethal dose (LD50) of each clone was closely correlated with 50% inhibitory concentrations (IC50), demonstrating that the higher the ACV-sensitvity, the the higher the virulence among the ACVr clones. One of the ACVr HSV-1 clones with a relatively low IC50 value maintained similar virulence to that of the parent TAS. The infection in mice with ACVr HSV-1 due to a single amino acid substitution in vTK induced local diseases, keratitis and dermatitis, while vTK-deficient clone did not. Conclusions A statistically significant correlation between the virulence and susceptibility to ACV among ACVr HSV-1 clones was demonstrated.
Collapse
Affiliation(s)
- Natsumi Omura
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Hikaru Fujii
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tomoki Yoshikawa
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Souichi Yamada
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shizuko Harada
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Takuya Inagaki
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Miho Shibamura
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan. .,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
18
|
Thymidine Kinase-Negative Herpes Simplex Virus 1 Can Efficiently Establish Persistent Infection in Neural Tissues of Nude Mice. J Virol 2017; 91:JVI.01979-16. [PMID: 27974554 DOI: 10.1128/jvi.01979-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/05/2016] [Indexed: 01/28/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) establishes latency in neural tissues of immunocompetent mice but persists in both peripheral and neural tissues of lymphocyte-deficient mice. Thymidine kinase (TK) is believed to be essential for HSV-1 to persist in neural tissues of immunocompromised mice, because infectious virus of a mutant with defects in both TK and UL24 is detected only in peripheral tissues, but not in neural tissues, of severe combined immunodeficiency mice (T. Valyi-Nagy, R. M. Gesser, B. Raengsakulrach, S. L. Deshmane, B. P. Randazzo, A. J. Dillner, and N. W. Fraser, Virology 199:484-490, 1994, https://doi.org/10.1006/viro.1994.1150). Here we find infiltration of CD4 and CD8 T cells in peripheral and neural tissues of mice infected with a TK-negative mutant. We therefore investigated the significance of viral TK and host T cells for HSV-1 to persist in neural tissues using three genetically engineered mutants with defects in only TK or in both TK and UL24 and two strains of nude mice. Surprisingly, all three mutants establish persistent infection in up to 100% of brain stems and 93% of trigeminal ganglia of adult nude mice at 28 days postinfection, as measured by the recovery of infectious virus. Thus, in mouse neural tissues, host T cells block persistent HSV-1 infection, and viral TK is dispensable for the virus to establish persistent infection. Furthermore, we found 30- to 200-fold more virus in neural tissues than in the eye and detected glycoprotein C, a true late viral antigen, in brainstem neurons of nude mice persistently infected with the TK-negative mutant, suggesting that adult mouse neurons can support the replication of TK-negative HSV-1. IMPORTANCE Acyclovir is used to treat herpes simplex virus 1 (HSV-1)-infected immunocompromised patients, but treatment is hindered by the emergence of drug-resistant viruses, mostly those with mutations in viral thymidine kinase (TK), which activates acyclovir. TK mutants are detected in brains of immunocompromised patients with persistent infection. However, answers to the questions as to whether TK-negative (TK-) HSV-1 can establish persistent infection in brains of immunocompromised hosts and whether neurons in vivo are permissive for TK- HSV-1 remain elusive. Using three genetically engineered HSV-1 TK- mutants and two strains of nude mice deficient in T cells, we found that all three HSV-1 TK- mutants can efficiently establish persistent infection in the brain stem and trigeminal ganglion and detected glycoprotein C, a true late viral antigen, in brainstem neurons. Our study provides evidence that TK- HSV-1 can persist in neural tissues and replicate in brain neurons of immunocompromised hosts.
Collapse
|
19
|
Zarrouk K, Piret J, Boivin G. Herpesvirus DNA polymerases: Structures, functions and inhibitors. Virus Res 2017; 234:177-192. [PMID: 28153606 DOI: 10.1016/j.virusres.2017.01.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/10/2017] [Accepted: 01/22/2017] [Indexed: 11/25/2022]
Abstract
Human herpesviruses are large double-stranded DNA viruses belonging to the Herpesviridae family. These viruses have the ability to establish lifelong latency into the host and to periodically reactivate. Primary infections and reactivations of herpesviruses cause a large spectrum of diseases and may lead to severe complications in immunocompromised patients. The viral DNA polymerase is a key enzyme in the lytic phase of the infection by herpesviruses. This review focuses on the structures and functions of viral DNA polymerases of herpes simplex virus (HSV) and human cytomegalovirus (HCMV). DNA polymerases of HSV (UL30) and HCMV (UL54) belong to B family DNA polymerases with which they share seven regions of homology numbered I to VII as well as a δ-region C which is homologous to DNA polymerases δ. These DNA polymerases are multi-functional enzymes exhibiting polymerase, 3'-5' exonuclease proofreading and ribonuclease H activities. Furthermore, UL30 and UL54 DNA polymerases form a complex with UL42 and UL44 processivity factors, respectively. The mechanisms involved in their polymerisation activity have been elucidated based on structural analyses of the DNA polymerase of bacteriophage RB69 crystallized under different conformations, i.e. the enzyme alone or in complex with DNA and with both DNA and incoming nucleotide. All antiviral agents currently used for the prevention or treatment of HSV and HCMV infections target the viral DNA polymerases. However, long-term administration of these antivirals may lead to the emergence of drug-resistant isolates harboring mutations in genes encoding viral enzymes that phosphorylate drugs (i.e., nucleoside analogues) and/or DNA polymerases.
Collapse
Affiliation(s)
- Karima Zarrouk
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Jocelyne Piret
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases, CHU de Québec and Laval University, Quebec City, Quebec, Canada.
| |
Collapse
|
20
|
Bergmann M, Beer R, Kofler M, Helbok R, Pfausler B, Schmutzhard E. Acyclovir resistance in herpes simplex virus type I encephalitis: a case report. J Neurovirol 2016; 23:335-337. [PMID: 27787806 PMCID: PMC5477561 DOI: 10.1007/s13365-016-0489-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/30/2016] [Accepted: 10/02/2016] [Indexed: 11/09/2022]
Abstract
Acyclovir resistance is rarely seen in herpes simplex virus (HSV) type I
encephalitis. Prevalence rates vary between 0.5 % in immunocompetent
patients (Christophers et al. 1998; Fife et
al. 1994) and 3.5–10 % in
immunocompromised patients (Stranska et al. 2005). We report a 45-year-old, immunocompetent (negative HIV
antigen/antibody testing), female patient, without previous illness who
developed—after a febrile prodromal stage—aphasia and psychomotor
slowing. Cerebral magnetic resonance imaging (cMRI) showed right temporal and
insular T2-hyperintense lesions with spreading to the contralateral temporal lobe.
Cerebrospinal fluid (CSF) analysis yielded lymphocytic pleocytosis and elevated
protein level. Polymerase chain reaction testing for HSV type I showed a positive
result in repeat lumbar puncture. HSV type I encephalitis was diagnosed and
intravenous acyclovir treatment was initiated (750 mg t.i.d.).
Acyclovir treatment was intensified to 1000 mg t.i.d., due to
clinical deterioration, ongoing pleocytosis and progression on cMRI 5 days
after initiation of antiviral therapy. In parallel, acyclovir resistance testing
showed mutation of thymidine kinase gene at position A156V prompting foscarnet
therapy (60 mg t.i.d.). Patient’s condition improved
dramatically over 2 weeks. Acyclovir resistance is rare but should be
considered in case of clinical worsening of patient’s condition. To our
knowledge, this is the first report of acyclovir resistance in HSV type I
encephalitis of an immunocompetent and previously healthy patient in Austria.
Collapse
Affiliation(s)
- M Bergmann
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - R Beer
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - M Kofler
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - R Helbok
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - B Pfausler
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - E Schmutzhard
- Department of Neurology, Neurocritical Care Unit, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
21
|
Sanchez MD, Ochoa AC, Foster TP. Development and evaluation of a host-targeted antiviral that abrogates herpes simplex virus replication through modulation of arginine-associated metabolic pathways. Antiviral Res 2016; 132:13-25. [PMID: 27192555 DOI: 10.1016/j.antiviral.2016.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 11/16/2022]
Abstract
Since their inception five decades ago, most antivirals have been engineered to disrupt a single viral protein or process that is essential for viral replication. This approach has limited the overall therapeutic effectiveness and applicability of current antivirals due to restricted viral specificity, a propensity for development of drug resistance, and an inability to control deleterious host-mediated inflammation. As obligate intracellular parasites, viruses are reliant on host metabolism and macromolecular synthesis pathways. Of these biosynthetic processes, many viruses, including Herpes simplex viruses (HSV), are absolutely dependent on the bioavailability of arginine, a non-essential amino acid that is critical for many physiological and pathophysiological processes associated with either facilitating viral replication or progression of disease. To assess if targeting host arginine-associated metabolic pathways would inhibit HSV replication, a pegylated recombinant human Arginase I (peg-ArgI) was generated and its in vitro anti-herpetic activity was evaluated. Cells continuously treated with peg-ArgI for over 48 h exhibited no signs of cytotoxicity or loss of cell viability. The antiviral activity of peg-ArgI displayed a classical dose-response curve with IC50's in the sub-nanomolar range. peg-ArgI potently inhibited HSV-1 and HSV-2 viral replication, infectious virus production, cell-to-cell spread/transmission and virus-mediated cytopathic effects. Not unexpectedly given its host-targeted mechanism of action, peg-ArgI showed similar effectiveness at controlling replication of single and multidrug resistant HSV-1 mutants. These findings illustrate that targeting host arginine-associated metabolic pathways is an effective means of controlling viral replicative processes. Further exploration into the breadth of viruses inhibited by peg-ArgI, as well as the ability of peg-ArgI to suppress arginine-associated virus-mediated pathophysiological disease processes is warranted.
Collapse
Affiliation(s)
- Maria Dulfary Sanchez
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, USA; Department of Pediatrics, School of Medicine, Louisiana State University Health Sciences Center, USA; The Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, USA
| | - Augusto C Ochoa
- Department of Pediatrics, School of Medicine, Louisiana State University Health Sciences Center, USA; The Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, USA; The Louisiana Vaccine Center, New Orleans, LA, 70112, USA
| | - Timothy P Foster
- Department of Microbiology, Immunology, and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, USA; Department of Ophthalmology, School of Medicine, Louisiana State University Health Sciences Center, USA; The Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, USA; The Louisiana Vaccine Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
22
|
Sequence Analysis of Herpes Simplex Virus 1 Thymidine Kinase and DNA Polymerase Genes from over 300 Clinical Isolates from 1973 to 2014 Finds Novel Mutations That May Be Relevant for Development of Antiviral Resistance. Antimicrob Agents Chemother 2015; 59:4938-45. [PMID: 26055375 DOI: 10.1128/aac.00977-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/31/2015] [Indexed: 01/08/2023] Open
Abstract
A total of 302 clinical herpes simplex virus 1 (HSV-1) strains, collected over 4 decades from 1973 to 2014, were characterized retrospectively for drug resistance. All HSV-1 isolates were analyzed genotypically for nonsynonymous mutations in the thymidine kinase (TK) and DNA polymerase (Pol) genes. The resistance phenotype against acyclovir (ACV) and/or foscarnet (FOS) was examined in the case of novel, unclear, or resistance-related mutations. Twenty-six novel natural polymorphisms could be detected in the TK gene and 69 in the DNA Pol gene. Furthermore, three novel resistance-associated mutations (two in the TK gene and one in the DNA Pol gene) were analyzed, and eight known but hitherto unclear amino acid substitutions (two encoded in TK and six in the DNA Pol gene) could be clarified. Between 1973 and 2014, the distribution of amino acid changes related to the natural gene polymorphisms of TK and DNA Pol remained largely stable. Resistance to ACV was confirmed phenotypically for 16 isolates, and resistance to ACV plus FOS was confirmed for 1 isolate. Acyclovir-resistant strains were observed from the year 1995 onwards, predominantly in immunosuppressed patients, especially those with stem cell transplantation, and the number of ACV-resistant strains increased during the last 2 decades. The data confirm the strong genetic variability among HIV-1 isolates, which is more pronounced in the DNA Pol gene than in the TK gene, and will facilitate considerably the rapid genotypic diagnosis of HSV-1 resistance.
Collapse
|
23
|
Frobert E, Burrel S, Ducastelle-Lepretre S, Billaud G, Ader F, Casalegno JS, Nave V, Boutolleau D, Michallet M, Lina B, Morfin F. Resistance of herpes simplex viruses to acyclovir: An update from a ten-year survey in France. Antiviral Res 2014; 111:36-41. [DOI: 10.1016/j.antiviral.2014.08.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/30/2014] [Accepted: 08/25/2014] [Indexed: 11/25/2022]
|
24
|
Astani A, Navid MH, Schnitzler P. Attachment and penetration of acyclovir-resistant herpes simplex virus are inhibited by Melissa officinalis extract. Phytother Res 2014; 28:1547-52. [PMID: 24817544 DOI: 10.1002/ptr.5166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 11/06/2022]
Abstract
Medicinal plants are increasingly of interest as novel source of drugs for antiherpetic agents, because herpes simplex virus (HSV) might develop resistance to commonly used antiviral drugs. An aqueous extract of Melissa officinalis and the phenolic compounds caffeic acid, p-coumaric acid and rosmarinic acid were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) acyclovir-sensitive and clinical isolates of acyclovir-resistant strains in vitro. When drugs were added during the intracellular replication of HSV-1 infected cells, no antiviral effect was observed by plaque reduction assay. However, Melissa extract interacted directly with free viral particles of two acyclovir-resistant HSV strains at low IC50 values of 0.13 and 0.23 µg/mL and high selectivity indices of 2692 and 1522, respectively. The Melissa extract and rosmarinic acid inhibited HSV-1 attachment to host cells in a dose-dependent manner for acyclovir-sensitive and acyclovir-resistant strains. These results indicate that mainly rosmarinic acid contributed to the antiviral activity of Melissa extract. Penetration of herpes viruses into cells was inhibited by Melissa extract at 80% and 96% for drug-sensitive and drug-resistant viruses, respectively. Melissa extract exhibits low toxicity and affects attachment and penetration of acyclovir-sensitive and acyclovir-resistant HSVs in vitro.
Collapse
Affiliation(s)
- Akram Astani
- Department of Infectious Diseases, Virology, University of Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany; Shahid Sadoghi University of Medical Science, Yazd, Iran
| | | | | |
Collapse
|
25
|
Civitelli L, Panella S, Marcocci ME, De Petris A, Garzoli S, Pepi F, Vavala E, Ragno R, Nencioni L, Palamara AT, Angiolella L. In vitro inhibition of herpes simplex virus type 1 replication by Mentha suaveolens essential oil and its main component piperitenone oxide. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:857-65. [PMID: 24629600 DOI: 10.1016/j.phymed.2014.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/14/2013] [Accepted: 01/31/2014] [Indexed: 05/04/2023]
Abstract
Several essential oils exert in vitro activity against bacteria and viruses and, among these latter, herpes simplex virus type 1 (HSV-1) is known to develop resistance to commonly used antiviral agents. Thus, the effects of the essential oil derived from Mentha suaveolens (EOMS) and its active principle piperitenone oxide (PEO) were tested in in vitro experimental model of infection with HSV-1. The 50% inhibitory concentration (IC50) was determined at 5.1μg/ml and 1.4μg/ml for EOMS and PEO, respectively. Australian tea tree oil (TTO) was used as control, revealing an IC50 of 13.2μg/ml. Moreover, a synergistic action against HSV-1 was observed when each oil was added in combination with acyclovir. In order to find out the mechanism of action, EOMS, PEO and TTO were added to the cells at different times during the virus life-cycle. Results obtained by yield reduction assay indicated that the antiviral activity of both compounds was principally due to an effect after viral adsorption. Indeed, no reduction of virus yield was observed when cells were treated during viral adsorption or pre-treated before viral infection. In particular, PEO exerted a strong inhibitory effect by interfering with a late step of HSV-1 life-cycle. HSV-1 infection is known to induce a pro-oxidative state with depletion of the main intracellular antioxidant glutathione and this redox change in the cell is important for viral replication. Interestingly, the treatment with PEO corrected this deficit, thus suggesting that the compound could interfere with some redox-sensitive cellular pathways exploited for viral replication. Overall our data suggest that both EOMS and PEO could be considered good candidates for novel anti-HSV-1 strategies, and need further exploration to better characterize the targets underlying their inhibition.
Collapse
Affiliation(s)
- Livia Civitelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Simona Panella
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Elena Marcocci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Alberto De Petris
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Stefania Garzoli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Federico Pepi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Vavala
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rino Ragno
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Institute Pasteur Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy; San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, Rome, Italy
| | - Letizia Angiolella
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
26
|
Quenelle DC, Hartman TL, Buckheit RW, Prichard MN, Lynn RG. Anti-HSV activity of serpin antithrombin III. INTERNATIONAL TRENDS IN IMMUNITY 2014; 2:87-92. [PMID: 25215309 PMCID: PMC4158439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Natural serine protease inhibitors (serpins) elicit sensing of a microbial cell intruder and activate an intrinsic cellular immune response in HIV and HCV infected cells. Here, we demonstrate in vitro inhibition of HSV with serpin antithrombin III (ATIII) early during infection pointing towards inhibition of an entry event. We also found reduction of mortality from 90% to 40% in an abrasion mice model demonstrating a strong reduction of infection in vivo. Our data also indicated that this treatment might be suitable for drug-resistant viruses since high inhibition of an acyclovir-resistant HSV-1 strain was found. Thus, an ATIII tropical treatment might be used for immunocompromised patients where prolonged treatment leads to drug resistant HSV-1 strains. Understanding how ATIII regulates HSV-1 infections may reveal new avenues for therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mark N. Prichard
- Department of Pediatrics, University of Alabama at Birmingham, USA
| | | |
Collapse
|
27
|
Tranylcypromine reduces herpes simplex virus 1 infection in mice. Antimicrob Agents Chemother 2014; 58:2807-15. [PMID: 24590478 DOI: 10.1128/aac.02617-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infects the majority of the human population and establishes latency by maintaining viral genomes in neurons of sensory ganglia. Latent virus can undergo reactivation to cause recurrent infection. Both primary and recurrent infections can cause devastating diseases, including encephalitis and corneal blindness. Acyclovir is used to treat patients, but virus resistance to acyclovir is frequently reported. Recent in vitro findings reveal that pretreatment of cells with tranylcypromine (TCP), a drug widely used in the clinic to treat neurological disorders, restrains HSV-1 gene transcription by inhibiting the histone-modifying enzyme lysine-specific demethylase 1. The present study was designed to examine the anti-HSV-1 efficacy of TCP in vivo because of the paucity of reports on this issue. Using the murine model, we found that TCP decreased the severity of wild-type-virus-induced encephalitis and corneal blindness, infection with the acyclovir-resistant (thymidine kinase-negative) HSV-1 mutant, and tissue viral loads. Additionally, TCP blocked in vivo viral reactivation in trigeminal ganglia. These results support the therapeutic potential of TCP for controlling HSV-1 infection.
Collapse
|
28
|
Ishioka K, Ikuta K, Sato Y, Kaneko H, Sorimachi K, Fukushima E, Saijo M, Suzutani T. Herpes simplex virus type 1 virion-derived US11 inhibits type 1 interferon-induced protein kinase R phosphorylation. Microbiol Immunol 2014; 57:426-36. [PMID: 23773021 DOI: 10.1111/1348-0421.12048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/01/2013] [Accepted: 03/22/2013] [Indexed: 11/29/2022]
Abstract
The herpes simplex virus type 1 (HSV-1) VRTK(-) strain that was previously isolated in our laboratory as an acyclovir-resistant thymidine kinase (TK)-deficient mutant, is more sensitive to type 1 interferon than is the parent strain VR3. The properties of this mutant were investigated to clarify the mechanism for its hyper-sensitivity to interferon (IFN). It was found that: (i) IFN-pretreated cells, but not those treated with IFN after adsorption, are hyper-sensitive to IFN; (ii) the mutant cannot inhibit protein kinase R phosphorylation efficiently during the early stage of replication (2 hrs post-infection); (iii) expression of US11 in infected cells and its incorporation into the virion is reduced in the mutant compared to the wild type, despite the fact that a similar degree of DNA synthesis occurs during replication of both strains and; (iv) over-expression of wild-type viral TK has no effect on the phenotype of the VRTK(-) strain, indicating that the phenotype is induced by a mutation(s) that does not involve the TK gene. These results suggested that the presence of US11 in the virion, but not that expressed after infection, plays an important role in the escape function of HSV-1 from the antiviral activity of type 1 IFN.
Collapse
Affiliation(s)
- Ken Ishioka
- Department of Microbiology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Minami M, Kita M, Nakaya T, Yamamoto T, Kuriyama H, Imanishi J. The Inhibitory Effect of Essential Oils on Herpes Simplex Virus Type-1 ReplicationIn Vitro. Microbiol Immunol 2013; 47:681-4. [PMID: 14584615 DOI: 10.1111/j.1348-0421.2003.tb03431.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antiviral effect of 12 essential oils on herpes simplex virus type-1 (HSV-1) replication was examined in vitro. The replication ability of HSV-1 was suppressed by incubation of HSV-1 with 1% essential oils at 4 C for 24 hr. Especially, lemongrass completely inhibited the viral replication even at a concentration of 0.1%, and its antiviral activity was dependent on the concentrations of the essential oil. When Vero cells were treated with the essential oil before or after viral adsorption, no antiviral activity was found, which suggests that the antiviral activity of essential oils including lemongrass may be due to the direct interaction with virions.
Collapse
Affiliation(s)
- Masato Minami
- Department of Microbiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Phenotypic and genotypic characterization of induced acyclovir-resistant clinical isolates of herpes simplex virus type 1. Antiviral Res 2013; 100:306-13. [DOI: 10.1016/j.antiviral.2013.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 11/24/2022]
|
31
|
Sbidian E, Battistella M, Legoff J, Lafaurie M, Bézier M, Agbalika F, Simon F, Bouscarat F, Cayuela JM, Carcelain G, Houhou N, Bagot M, Molina JM, Janier M, Bachelez H. Recalcitrant pseudotumoral anogenital herpes simplex virus type 2 in HIV-infected patients: evidence for predominant B-lymphoplasmocytic infiltration and immunomodulators as effective therapeutic strategy. Clin Infect Dis 2013; 57:1648-55. [PMID: 24065320 DOI: 10.1093/cid/cit592] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In patients with human immunodeficiency virus (HIV) infection, genital herpetic lesions may be extensive and tend to persist for longer periods; in addition, atypical hypertrophic, ulcerative, or pseudotumor forms have been reported, frequently showing resistance to acyclovir (ACV) treatment. METHODS Between 2003 and 2011, 10 HIV-1-infected patients presenting with chronic pseudotumoral anogenital herpes simplex type 2 (HSV-2) infections were studied. RESULTS All patients developed chronic, hypertrophic HSV-2 anogenital lesions with multilesional presentation in 7 cases and involvement of 2 anatomical sites in 6 of them. At the time of diagnosis, the median CD3(+)CD4(+) absolute blood count was 480.5 cells/µL (range, 165-632 cells/µL), whereas the plasma HIV load was undetectable in all cases. Histopathologic analysis of lesion biopsies showed a moderately dense dermal polytypic plasma cell infiltrate. Detection of HSV-2 by culture and/or polymerase chain reaction was positive for all patients, with evidence for ACV-resistant strains in 6 of 8 cases. In addition, viral resistance to ACV was found only in HSV-2 isolated from ulcerative lesions, whereas purely pseudotumoral ones harbored sensitive strains. Durable control was observed with HSV DNA polymerase inhibitors in only 2 cases, and the immunomodulators imiquimod and thalidomide allowed 5 patients to reach sustained complete response. CONCLUSIONS HSV-2-related pseudolymphoma in HIV-infected patients is characterized by a predominant polyclonal lymphoplasmacytic infiltration, and is frequently refractory to antiherpetic drugs. Immunomodulatory therapeutic strategies using thalidomide showed consistent efficacy, and should be considered early during the course of disease.
Collapse
Affiliation(s)
- Emilie Sbidian
- UPEC, LIC EA 4393 and Department of Dermatology, AP-HP Hôpital Henri Mondor, Créteil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wilck MB, Zuckerman RA. Herpes simplex virus in solid organ transplantation. Am J Transplant 2013; 13 Suppl 4:121-7. [PMID: 23465005 DOI: 10.1111/ajt.12105] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M B Wilck
- Division of Infectious Diseases, Hospital of University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
33
|
Zuckerman RA, Limaye AP. Varicella zoster virus (VZV) and herpes simplex virus (HSV) in solid organ transplant patients. Am J Transplant 2013; 13 Suppl 3:55-66; quiz 66. [PMID: 23347214 DOI: 10.1111/ajt.12003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 01/25/2023]
Abstract
Varicella zoster virus (VZV) and the two herpes simplex viruses (HSV) are human α-herpesviruses that establish life-long latency in neural ganglia after initial primary infection. In the solid organ transplant (SOT) population, manifestations of VZV or HSV may be seen in up to 70% of recipients if no prophylaxis is used, some of them life and organ threatening. While there are effective vaccines to prevent VZV primary infection and reactivation in immunocompetent adults, these vaccines are contraindicated after SOT because they are live-virus vaccines. For HSV, prevention has focused primarily on antiviral strategies because the immunologic correlates of protection and control are different from VZV, making vaccine development more challenging. Current antiviral therapy remains effective for the majority of clinical VZV and HSV infections.
Collapse
Affiliation(s)
- R A Zuckerman
- Department of Medicine, Section of Infectious Disease and International Health, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | |
Collapse
|
34
|
Turner LD, Beckingsale P. Acyclovir-resistant herpetic keratitis in a solid-organ transplant recipient on systemic immunosuppression. Clin Ophthalmol 2013; 7:229-32. [PMID: 23386782 PMCID: PMC3563344 DOI: 10.2147/opth.s39113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose To report a case of acyclovir-resistant herpetic keratitis in a solid-organ lung transplant recipient that was effectively treated with topical trifluridine. Methods A case of a 35-year-old female with herpetic epithelial keratitis resistant to acyclovir is described. The patient presented following treatment for 4 weeks with topical acyclovir ointment five times per day and oral valacyclovir 1 g three times per day for herpetic keratitis with no resolution of the epithelial defect or symptoms. Corneal scrapes and swabs were taken for confirmation of the diagnosis and resistance testing. The results were positive for herpes simplex virus 1 and showed acyclovir resistance (inhibitor concentration 90 = 200 μg/mL) and foscarnet sensitivity (inhibitor concentration 90 = 200 μg/mL). The patient was treated with topical trifluridine 2-hourly for 3 weeks and weaned off the drops over the following week. Results The patient showed resolution of the epithelial defect, but did have significant corneal toxicity associated with the use of the trifluridine. At 8 weeks, the patient had some stromal shadowing associated with the recent active infection, but symptoms had settled. Conclusion This case documents the effective use of topical trifluridine in proven acyclovir-resistant herpetic keratitis. It highlights three things: (1) the importance of considering topical trifluridine as an alternative to topical acyclovir in unresponsive disease; (2) the need to consider solid-organ transplant recipients in the immunocompromised population with resistant herpetic disease, and (3) the need to look for alternatives to treatment of resistant herpetic disease.
Collapse
|
35
|
Vere Hodge RA, Field HJ. Antiviral agents for herpes simplex virus. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:1-38. [PMID: 23885997 DOI: 10.1016/b978-0-12-405880-4.00001-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review starts with a brief description of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), the clinical diseases they cause, and the continuing clinical need for antiviral chemotherapy. A historical overview describes the progress from the early, rather toxic antivirals to acyclovir (ACV) which led the way for its prodrug, valacyclovir, to penciclovir and its prodrug, famciclovir (FCV). These compounds have been the mainstay of HSV therapy for two decades and have established a remarkable safety record. This review focuses on these compounds, the preclinical studies which reveal potentially important differences, the clinical trials, and the clinical experience through two decades. Some possible areas for further investigation are suggested. The focus shifts to new approaches and novel compounds, in particular, the combination of ACV with hydrocortisone, known as ME609 or zovirax duo, an HSV helicase-primase inhibitor, pritelivir (AIC316), and CMX001, the cidofovir prodrug for treating resistant HSV infection in immunocompromised patients. Letermovir has established that the human cytomegalovirus terminase enzyme is a valid target and that similar compounds could be sought for HSV. We discuss the difficulties facing the progression of new compounds. In our concluding remarks, we summarize the present situation including a discussion on the reclassification of FCV from prescription-only to pharmacist-controlled for herpes labialis in New Zealand in 2010; should this be repeated more widely? We conclude that HSV research is emerging from a quiescent phase.
Collapse
|
36
|
Field HJ, Mickleburgh I. The helicase-primase complex as a target for effective herpesvirus antivirals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:145-59. [PMID: 23161010 DOI: 10.1007/978-1-4614-5037-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herpes simplex virus and varicella-zoster virus have been treated for more that half a century using nucleoside analogues. However, there is still an unmet clinical need for improved herpes antivirals. The successful compounds, acyclovir; penciclovir and their orally bioavailable prodrugs valaciclovir and famciclovir, ultimately block virus replication by inhibiting virus-specific DNA-polymerase. The helicase-primase (HP) complex offers a distinctly different target for specific inhibition of virus DNA synthesis. This review describes the synthetic programmes that have already led to two HP-inhibitors (HPI) that have commenced clinical trials in man. One of these (known as AIC 316) continues in clinical development to date. The specificity of HPI is reflected by the ability to select drug-resistant mutants. The role of HP-antiviral resistance will be considered and how the study of cross--resistance among mutants already shows subtle differences between compounds in this respect. The impact of resistance on the drug development in the clinic will also be considered. Finally, herpesvirus latency remains as the most important barrier to a therapeutic cure. Whether or not helicase primase inhibitors alone or in combination with nucleoside analogues can impact on this elusive goal remains to be seen.
Collapse
|
37
|
Meyding-Lamadé U, Strank C. Herpesvirus infections of the central nervous system in immunocompromised patients. Ther Adv Neurol Disord 2012; 5:279-96. [PMID: 22973424 DOI: 10.1177/1756285612456234] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human herpesviruses may cause infections of the central nervous system during primary infection or following reactivation from a latent state. Especially in immunosuppressed patients the infection can take a life-threatening course, and therefore early diagnosis of herpesvirus-associated neurological diseases should have high priority. Clinical presentation in these patients is usually without typical features, making diagnosis even more challenging. Therefore general broad testing for different herpesviruses in cerebrospinal fluid samples is highly recommended. In addition, determination of the virus DNA level in the cerebrospinal fluid by quantitative assays seems to be of high importance to determine prognosis. Moreover, it might help to differentiate between specific virus-associated disease and unspecific presence of virus in the cerebrospinal fluid, especially in immunocompromised patients. Polymerase chain reaction analysis of cerebrospinal fluid has revolutionized the diagnosis of nervous system viral infections, particularly those caused by human herpesviruses. This review summarizes the role human herpesviruses play in central nervous system infections in immunocompromised patients, with a focus on the clinical manifestation of encephalitis.
Collapse
Affiliation(s)
- Uta Meyding-Lamadé
- Head, Department of Neurology Krankenhaus Nordwest, Frankfurt/M. Germany
| | | |
Collapse
|
38
|
Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol 2012; 57:448-62. [PMID: 22542912 PMCID: PMC3652623 DOI: 10.1016/j.survophthal.2012.01.005] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 12/29/2011] [Accepted: 01/19/2012] [Indexed: 11/21/2022]
Abstract
Herpes simplex virus (HSV) is associated with a variety of ocular diseases, including epithelial and stromal keratitis. HSV can cause stromal opacification and is believed to be the leading cause of infectious blindness in the developed world. An improved understanding of the global burden of HSV keratitis, including the incidence of severe vision loss, could have a significant effect on prevention and treatment and place it in perspective among causes of corneal ulceration. We found that the global incidence of HSV keratitis is roughly 1.5 million, including 40,000 new cases of severe monocular visual impairment or blindness each year. We also discuss relevant epidemiologic issues regarding HSV epithelial and stromal disease.
Collapse
Affiliation(s)
- Asim V. Farooq
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
39
|
2-[4,5-Difluoro-2-(2-fluorobenzoylamino)-benzoylamino]benzoic acid, an antiviral compound with activity against acyclovir-resistant isolates of herpes simplex virus types 1 and 2. Antimicrob Agents Chemother 2012; 56:5735-43. [PMID: 22908173 DOI: 10.1128/aac.01072-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are responsible for lifelong latent infections in humans, with periods of viral reactivation associated with recurring ulcerations in the orofacial and genital tracts. In immunosuppressed patients and neonates, HSV infections are associated with severe morbidity and, in some cases, even mortality. Today, acyclovir is the standard therapy for the management of HSV infections. However, the need for novel antiviral agents is apparent, since HSV isolates resistant to acyclovir therapy are frequently isolated in immunosuppressed patients. In this study, we assessed the anti-HSV activity of the antiadenoviral compounds 2-[2-(2-benzoylamino)-benzoylamino]benzoic acid (benzavir-1) and 2-[4,5-difluoro-2-(2-fluorobenzoylamino)-benzoylamino]benzoic acid (benzavir-2) on HSV-1 and HSV-2. Both compounds were active against both viruses. Importantly, benzavir-2 had potency similar to that of acyclovir against both HSV types, and it was active against clinical acyclovir-resistant HSV isolates.
Collapse
|
40
|
Susceptibility of herpes simplex virus isolated from genital herpes lesions to ASP2151, a novel helicase-primase inhibitor. Antimicrob Agents Chemother 2012; 56:3587-91. [PMID: 22526302 DOI: 10.1128/aac.00133-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ASP2151 (amenamevir) is a helicase-primase inhibitor against herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus. To evaluate the anti-HSV activity of ASP2151, susceptibility testing was performed on viruses isolated from patients participating in a placebo- and valacyclovir-controlled proof-of-concept phase II study for recurrent genital herpes. A total of 156 HSV strains were isolated prior to the dosing of patients, and no preexisting variants with less susceptibility to ASP2151 or acyclovir (ACV) were detected. ASP2151 inhibited HSV-1 and HSV-2 replication with mean 50% effective concentrations (EC(50)s) of 0.043 and 0.069 μM, whereas ACV exhibited mean EC(50)s of 2.1 and 3.2 μM, respectively. Notably, the susceptibilities of HSV isolates to ASP2151 and ACV were not altered after dosing with the antiviral agents. Taken together, these results demonstrate that ASP2151 inhibits the replication of HSV clinical isolates more potently than ACV, and HSV resistant to this novel helicase-primase inhibitor as well as ACV may not easily emerge in short-term treatment for recurrent genital herpes patients.
Collapse
|
41
|
Sahin A, Hamrah P. Acute Herpetic Keratitis: What is the Role for Ganciclovir Ophthalmic Gel? OPHTHALMOLOGY AND EYE DISEASES 2012; 4:23-34. [PMID: 23650455 PMCID: PMC3619435 DOI: 10.4137/oed.s7267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Herpes simplex keratitis (HSK) is a major cause of corneal blindness in the world. Following the primary infection, the virus enters into a latent phase. Recurrent infectious or immune keratitis cause structural damage to the cornea, scarring, and may lead to blindness. Several commercially available topical and oral antiviral drugs for HSK are currently available. However, toxicity and low patient compliance hamper their use in HSK. Further, oral antiviral drugs alone are not always effective in HSK. Thus, there had been a need for safe and effective topical antiviral agents against HSK. Systemic ganciclovir has been in use for the treatment of cytomegalovirus infections. Recently, topical ganciclovir has become available for use in patients with HSK. Ganciclovir 0.15% ophthalmic gel has been shown to be both safe and effective against viruses of the herpes family. Topical ganciclovir ophthalmic gel is well tolerated and does not cause significant toxic effects on the ocular surface. Several multicenter studies have revealed the potential role of ganciclovir ophthalmic gel in the treatment and prophylaxis of epithelial HSK. In this paper, we have reviewed the pharmacology, efficacy, side effects, and the role of ganciclovir ophthalmic gel 0.15% in the treatment of acute herpetic keratitis.
Collapse
Affiliation(s)
- Afsun Sahin
- Ocular Surface Imaging Center, Cornea and Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, and Department of Ophthalmology, Harvard Medical School, Boston, MA. ; Eskisehir Osmangazi University Medical School, Department of Ophthalmology, Eskisehir, Turkey
| | | |
Collapse
|
42
|
Griffiths A. Slipping and sliding: frameshift mutations in herpes simplex virus thymidine kinase and drug-resistance. Drug Resist Updat 2011; 14:251-9. [PMID: 21940196 PMCID: PMC3195865 DOI: 10.1016/j.drup.2011.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 08/14/2011] [Accepted: 08/18/2011] [Indexed: 11/22/2022]
Abstract
Some of the most successful antiviral agents currently available are effective against herpes simplex virus. However, resistance to these drugs is frequently associated with significant morbidity, particularly in immunocompromised patients. In addition to the clinical implications of drug resistance, the range of biological processes exploited by the virus to attain resistance while maintaining pathogenicity is proving to be surprising. These mechanisms, which include ribosomal frameshifting, induced infidelity of the DNA polymerase, and internal ribosome entry, are discussed.
Collapse
Affiliation(s)
- Anthony Griffiths
- Department of Virology and Immunology, Texas Biomedical Research Institute and Southwest National Primate Research Center, 7620 N.W. Loop 410, San Antonio, TX 78227, USA.
| |
Collapse
|
43
|
Palmason S, Marty FM, Treister NS. How Do We Manage Oral Infections in Allogeneic Stem Cell Transplantation and Other Severely Immunocompromised Patients? Oral Maxillofac Surg Clin North Am 2011; 23:579-99, vii. [DOI: 10.1016/j.coms.2011.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Wang Y, Wang Q, Zhu Q, Zhou R, Liu J, Peng T. Identification and characterization of acyclovir-resistant clinical HSV-1 isolates from children. J Clin Virol 2011; 52:107-12. [DOI: 10.1016/j.jcv.2011.06.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/17/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
|
45
|
Moses SE, Osborne W, Valappil M, Collin M, Lee D, Waugh S, Jackson G, Parry CM, Crowley B. Extensive oral herpes simplex virus type 1 infection in a haematopoietic stem cell transplant recipient not responding to aciclovir. J Clin Virol 2011; 52:67-9. [PMID: 21665532 DOI: 10.1016/j.jcv.2011.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Affiliation(s)
- S E Moses
- Department of Virology, Health Protection Agency Microbiology Services, Newcastle, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Emergence of Herpes Simplex Virus-1 Syncytial Variants With Altered Virulence for Mice After Selection With a Natural Carrageenan. Sex Transm Dis 2011. [DOI: 10.1097/olq.0b013e3182084d99] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Astani A, Reichling J, Schnitzler P. Screening for antiviral activities of isolated compounds from essential oils. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:253643. [PMID: 20008902 PMCID: PMC3096453 DOI: 10.1093/ecam/nep187] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 10/15/2009] [Indexed: 02/04/2023]
Abstract
Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60-80% and sesquiterpenes suppressed herpes virus infection by 40-98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV.
Collapse
Affiliation(s)
- Akram Astani
- Department of Infectious Diseases, Virology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
48
|
Field HJ, Biswas S. Antiviral drug resistance and helicase-primase inhibitors of herpes simplex virus. Drug Resist Updat 2010; 14:45-51. [PMID: 21183396 DOI: 10.1016/j.drup.2010.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/17/2022]
Abstract
A new class of chemical inhibitors has been discovered that interferes with the process of herpesvirus DNA replication. To date, the majority of useful herpesvirus antivirals are nucleoside analogues that block herpesvirus DNA replication by targeting the DNA polymerase. The new helicase-primase inhibitors (HPI) target a different enzyme complex that is also essential for herpesvirus DNA replication. This review will place the HPI in the context of previous work on the nucleoside analogues. Several promising highly potent HPI will be described with a particular focus on the identification of drug-resistance mutations. Several HPI have good pharmacological profiles and are now at the outset of phase II clinical trials. Provided there are no safety issues to stop their progress, this new class of compound will be a major advance in the herpesvirus antiviral field. Furthermore, HPI are likely to have a major impact on the therapy and prevention of herpes simplex virus and varicella zoster in both immunocompetent and immunocompromised patients alone or in combination with current nucleoside analogues. The possibility of acquired drug-resistance to HPI will then become an issue of great practical importance.
Collapse
Affiliation(s)
- Hugh J Field
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB30ES, United Kingdom.
| | | |
Collapse
|
49
|
Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 2010; 55:459-72. [PMID: 21078929 DOI: 10.1128/aac.00615-10] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex viruses (HSV) type 1 and type 2 are responsible for recurrent orolabial and genital infections. The standard therapy for the management of HSV infections includes acyclovir (ACV) and penciclovir (PCV) with their respective prodrugs valacyclovir and famciclovir. These compounds are phosphorylated by the viral thymidine kinase (TK) and then by cellular kinases. The triphosphate forms selectively inhibit the viral DNA polymerase (DNA pol) activity. Drug-resistant HSV isolates are frequently recovered from immunocompromised patients but rarely found in immunocompetent subjects. The gold standard phenotypic method for evaluating the susceptibility of HSV isolates to antiviral drugs is the plaque reduction assay. Plaque autoradiography allows the associated phenotype to be distinguished (TK-wild-type, TK-negative, TK-low-producer, or TK-altered viruses or mixtures of wild-type and mutant viruses). Genotypic characterization of drug-resistant isolates can reveal mutations located in the viral TK and/or in the DNA pol genes. Recombinant HSV mutants can be generated to analyze the contribution of each specific mutation with regard to the drug resistance phenotype. Most ACV-resistant mutants exhibit some reduction in their capacity to establish latency and to reactivate, as well as in their degree of neurovirulence in animal models of HSV infection. For instance, TK-negative HSV mutants establish latency with a lower efficiency than wild-type strains and reactivate poorly. DNA pol HSV mutants exhibit different degrees of attenuation of neurovirulence. The management of ACV- or PCV-resistant HSV infections includes the use of the pyrophosphate analogue foscarnet and the nucleotide analogue cidofovir. There is a need to develop new antiherpetic compounds with different mechanisms of action.
Collapse
|
50
|
Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin North Am 2010; 24:809-33. [PMID: 20674805 DOI: 10.1016/j.idc.2010.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of mechanisms of resistance, and the development of new antivirals. This article discusses drug resistance in herpesviruses and hepatitis B.
Collapse
Affiliation(s)
- Lynne Strasfeld
- Division of Infectious Diseases, Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|