1
|
Chen R, Zhang RF, Xing YR, Wang JR, Liu L, Yin L, Li YY, Jiao Z, Zhang LJ. Do Chinese HIV-infected adult patients with altered renal function need to adjust tenofovir disoproxil fumarate dosage? A population pharmacokinetics analysis. Eur J Pharm Sci 2024; 201:106851. [PMID: 39009286 DOI: 10.1016/j.ejps.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Tenofovir disoproxil fumarate (TDF), a prodrug of tenofovir (TFV), is an effective drug in treating patients infected with human immunodeficiency virus (HIV). Previous population pharmacokinetics (PPK) studies have showed the large variabilities in PK of TFV. Furthermore, limited information was known in Chinese populations. Therefore, the aim of this study was to characterize PPK of TDF in Chinese and identify factors that may affect its PK. TFV concentrations (n = 552) from 30 healthy subjects and 162 HIV-infected Chinese adult patients were pooled for PPK analysis by a nonlinear mixed-effects method. The PK of TFV was adequately described as a two-compartment model with first order absorption and elimination. The typical apparent clearance (CL/F) of TFV in 70-kg adults was 137 L/h, higher than that reported in Caucasians and Blacks (45.8-93 L/h). Estimated glomerular filtration rate was identified to be a significant factor influencing CL/F. Monte Carlo simulation showed that the exposure of standard dosing regimen of TDF 300 mg every 24 h in Chinese people with mild renal impairment (60 to 90 ml/min/1.73 m2) was close to that in individuals with normal renal function (90 mL/min). Dose adjustment is not required for patients with mild renal impairment. Our study might offer new clues for optimal dosing strategies in Chinese patients with HIV-infected.
Collapse
Affiliation(s)
- Rui Chen
- Department of Clinical Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, 201508, China; Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Shanghai, 200030, China
| | - Ren-Fang Zhang
- Department of Clinical Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Ya-Ru Xing
- Department of Clinical Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, 201508, China; School of Pharmacy, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Jiang-Rong Wang
- Department of Clinical Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Li Liu
- Department of Clinical Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Lin Yin
- Department of Clinical Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, 201508, China
| | - Ying-Ying Li
- School of Pharmacy, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China.
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Shanghai, 200030, China.
| | - Li-Jun Zhang
- Department of Clinical Research Center, Shanghai Public Health Clinical Center, Fudan University, Jinshan District, Shanghai, 201508, China.
| |
Collapse
|
2
|
Jia X, Kullik GA, Bufano M, Brancale A, Schols D, Meier C. Membrane-permeable tenofovir-di- and monophosphate analogues. Eur J Med Chem 2024; 264:116020. [PMID: 38086193 DOI: 10.1016/j.ejmech.2023.116020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
The development of new antiviral agents such as nucleoside analogues or acyclic nucleotide analogues (ANPs) and prodrugs thereof is an ongoing task. We report on the synthesis of three types of lipophilic triphosphate analogues of (R)-PMPA and dialkylated diphosphate analogues of (R)-PMPA. A highly selective release of the different nucleotide analogues ((R)-PMPA-DP, (R)-PMPA-MP, and (R)-PMPA) from these compounds was achieved. All dialkylated (R)-PMPA-prodrugs proved to be very stable in PBS as well as in CEM/0 cell extracts and human plasma. In primer extension assays, both the monoalkylated and the dialkylated (R)-PMPA-DP derivatives acted as (R)-PMPA-DP as a substrate for HIV-RT. In contrast, no incorporation events were observed using human polymerase γ. The dialkylated (R)-PMPA-compounds exhibited significant anti-HIV efficacy in HIV-1/2 infected cells (CEM/0 and CEM/TK-). Remarkably, the dialkylated (R)-PMPA-MP derivative 9a showed a 326-fold improved activity as compared to (R)-PMPA in HIV-2 infected CEM/TK- cells as well as a very high SI of 14,000. We are convinced that this study may significantly contribute to advancing antiviral agents developed based on nucleotide analogues in the future.
Collapse
Affiliation(s)
- Xiao Jia
- Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146, Hamburg, Germany
| | - Giuliano A Kullik
- Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146, Hamburg, Germany
| | - Marianna Bufano
- Dipartimento Chimica e Tecnologie del Farmaco, Facoltà di Farmacia e Medicina, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Brancale
- Department of Organic Chemistry, Vysoká Škola Chemicko-Technologická v Praze, Technická 5, 16628, Prague, Czech Republic
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Martin-Luther-King-Platz 6, D-20146, Hamburg, Germany; Centre for Structural Systems Biology (CSSB), Hamburg, DESY Campus, Notkestrasse 85, D-22607, Hamburg, Germany.
| |
Collapse
|
3
|
Chang SY, Huang W, Chapron A, Quiñones AJL, Wang J, Isoherranen N, Shen DD, Kelly EJ, Himmelfarb J, Yeung CK. Incorporating Uremic Solute-mediated Inhibition of OAT1/3 Improves PBPK Prediction of Tenofovir Renal and Systemic Disposition in Patients with Severe Kidney Disease. Pharm Res 2023; 40:2597-2606. [PMID: 37704895 DOI: 10.1007/s11095-023-03594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Dose modification of renally secreted drugs in patients with chronic kidney disease (CKD) has relied on serum creatinine concentration as a biomarker to estimate glomerular filtration (GFR) under the assumption that filtration and secretion decline in parallel. A discrepancy between actual renal clearance and predicted renal clearance based on GFR alone is observed in severe CKD patients with tenofovir, a compound secreted by renal OAT1/3. Uremic solutes that inhibit OAT1/3 may play a role in this divergence. METHODS To examine the impact of transporter inhibition by uremic solutes on tenofovir renal clearance, we determined the inhibitory potential of uremic solutes hippuric acid, indoxyl sulfate, and p-cresol sulfate. The inhibition parameters (IC50) were incorporated into a previously validated mechanistic kidney model; simulated renal clearance and plasma PK profile were compared to data from clinical studies. RESULTS Without the incorporation of uremic solute inhibition, the PBPK model failed to capture the observed data with an absolute average fold error (AAFE) > 2. However, when the inhibition of renal uptake transporters and uptake transporters in the slow distribution tissues were included, the AAFE value was within the pre-defined twofold model acceptance criterion, demonstrating successful model extrapolation to CKD patients. CONCLUSION A PBPK model that incorporates inhibition by uremic solutes has potential to better predict renal clearance and systemic disposition of secreted drugs in patients with CKD. Ongoing research is warranted to determine if the model can be expanded to include other OAT1/3 substrate drugs and to evaluate how these findings can be translated to clinical guidance for drug selection and dose optimization in patients with CKD.
Collapse
Affiliation(s)
- Shih-Yu Chang
- Department of Pharmacy, School of Pharmacy, University of Washington, 1959 NE Pacific St. H375, Box 357630, Seattle, WA, 98195, USA
- Janssen Research and Development, Raritan, NJ, USA
| | - Weize Huang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Genentech Inc, South San Francisco, CA, USA
| | - Alenka Chapron
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Antonio J López Quiñones
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Revolution Medicines, San Francisco, CA, USA
| | - Joanne Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Danny D Shen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
| | - Edward J Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, WA, 98195, USA
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, WA, 98195, USA
| | - Catherine K Yeung
- Department of Pharmacy, School of Pharmacy, University of Washington, 1959 NE Pacific St. H375, Box 357630, Seattle, WA, 98195, USA.
- Division of Nephrology, Department of Medicine, Kidney Research Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Brestovitsky A, Iwasaki M, Cho J, Adulyanukosol N, Paszkowski J, Catoni M. Specific suppression of long terminal repeat retrotransposon mobilization in plants. PLANT PHYSIOLOGY 2023; 191:2245-2255. [PMID: 36583226 PMCID: PMC10069891 DOI: 10.1093/plphys/kiac605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 05/19/2023]
Abstract
The tissue culture passage necessary for the generation of transgenic plants induces genome instability. This instability predominantly involves the uncontrolled mobilization of LTR retrotransposons (LTR-TEs), which are the most abundant class of mobile genetic elements in plant genomes. Here, we demonstrate that in conditions inductive for high LTR-TE mobilization, like abiotic stress in Arabidopsis (Arabidopsis thaliana) and callus culture in rice (Oryza sativa), application of the reverse transcriptase (RT) inhibitor known as Tenofovir substantially affects LTR-TE RT activity without interfering with plant development. We observed that Tenofovir reduces extrachromosomal DNA accumulation and prevents new genomic integrations of the active LTR-TE ONSEN in heat-stressed Arabidopsis seedlings, and transposons of O. sativa 17 and 19 (Tos17 and Tos19) in rice calli. In addition, Tenofovir allows the recovery of plants free from new LTR-TE insertions. We propose the use of Tenofovir as a tool for studies of LTR-TE transposition and for limiting genetic instabilities of plants derived from tissue culture.
Collapse
Affiliation(s)
- Anna Brestovitsky
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Mayumi Iwasaki
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
- Department of Plant Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Jungnam Cho
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | |
Collapse
|
5
|
Yan VC, Barekatain Y, Lin YH, Satani N, Hammoudi N, Arthur K, Georgiou DK, Jiang Y, Sun Y, Marszalek JR, Millward SW, Muller FL. Comparative Pharmacology of a Bis-Pivaloyloxymethyl Phosphonate Prodrug Inhibitor of Enolase after Oral and Parenteral Administration. ACS Pharmacol Transl Sci 2023; 6:245-252. [PMID: 36798479 PMCID: PMC9926520 DOI: 10.1021/acsptsci.2c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Indexed: 01/08/2023]
Abstract
Metabolically labile prodrugs can experience stark differences in catabolism incurred by the chosen route of administration. This is especially true for phosph(on)ate prodrugs, in which successive promoiety removal transforms a lipophilic molecule into increasingly polar compounds. We previously described a phosphonate inhibitor of enolase (HEX) and its bis-pivaloyloxymethyl ester prodrug (POMHEX) capable of eliciting strong tumor regression in a murine model of enolase 1 (ENO1)-deleted glioblastoma following parenteral administration. Here, we characterize the pharmacokinetics and pharmacodynamics of these enolase inhibitors in vitro and in vivo after oral and parenteral administration. In support of the historical function of lipophilic prodrugs, the bis-POM prodrug significantly improves cell permeability of and rapid hydrolysis to the parent phosphonate, resulting in rapid intracellular loading of peripheral blood mononuclear cells in vitro and in vivo. We observe the influence of intracellular trapping in vivo on divergent pharmacokinetic profiles of POMHEX and its metabolites after oral and parenteral administration. This is a clear demonstration of the tissue reservoir effect hypothesized to explain phosph(on)ate prodrug pharmacokinetics but has heretofore not been explicitly demonstrated.
Collapse
Affiliation(s)
- Victoria C. Yan
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Yasaman Barekatain
- Department
of Cancer Biology, University of Texas MD
Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Yu-Hsi Lin
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Nikunj Satani
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Naima Hammoudi
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Kenisha Arthur
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Dimitra K. Georgiou
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Yongying Jiang
- Institute
of Applied Cancer Science, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Yuting Sun
- Institute
of Applied Cancer Science, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Joseph R. Marszalek
- Center
for Co-Clinical Trials, University of Texas
MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Steven W. Millward
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| | - Florian L. Muller
- Department
of Cancer Systems Imaging, University of
Texas MD Anderson Cancer Center, Houston, Texas 77030-4000, United States
| |
Collapse
|
6
|
Hong X, Cai Z, Zhou F, Jin X, Wang G, Ouyang B, Zhang J. Improved pharmacokinetics of tenofovir ester prodrugs strengthened the inhibition of HBV replication and the rebalance of hepatocellular metabolism in preclinical models. Front Pharmacol 2022; 13:932934. [PMID: 36105197 PMCID: PMC9465247 DOI: 10.3389/fphar.2022.932934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Tenofovir (TFV) ester prodrugs, a class of nucleotide analogs (NAs), are the first-line clinical anti-hepatitis B virus (HBV) drugs with potent antiviral efficacy, low resistance rate and high safety. In this work, three marketed TFV ester drugs, tenofovir disoproxil fumarate (TDF), tenofovir alafenamide fumarate (TAF) and tenofovir amibufenamide fumarate (TMF), were used as probes to investigate the relationships among prodrug structures, pharmacokinetic characteristics, metabolic activations, pharmacological responses and to reveal the key factors of TFV ester prodrug design. The results indicated that TMF and TAF exhibited significantly stronger inhibition of HBV DNA replication than did TDF in HBV-positive HepG2.2.15 cells. The anti-HBV activity of TMF was slightly stronger than TAF after 9 days of treatment (EC50 7.29 ± 0.71 nM vs. 12.17 ± 0.56 nM). Similar results were observed in the HBV decline period post drug administration to the HBV transgenic mouse model, although these three TFV prodrugs finally achieved the same anti-HBV effect after 42 days treatments. Furthermore, TFV ester prodrugs showed a correcting effect on disordered host hepatic biochemical metabolism, including TCA cycle, glycolysis, pentose phosphate pathway, purine/pyrimidine metabolism, amino acid metabolism, ketone body metabolism and phospholipid metabolism. The callback effects of the three TFV ester prodrugs were ranked as TMF > TAF > TDF. These advantages of TMF were believed to be attributed to its greater bioavailability in preclinical animals (SD rats, C57BL/6 mice and beagle dogs) and better target loading, especially in terms of the higher hepatic level of the pharmacologically active metabolite TFV-DP, which was tightly related to anti-HBV efficacy. Further analysis indicated that stability in intestinal fluid determined the actual amount of TFV prodrug at the absorption site, and hepatic/intestinal stability determined the maintenance amount of prodrug in circulation, both of which influenced the oral bioavailability of TFV prodrugs. In conclusion, our research revealed that improved pharmacokinetics of TFV ester prodrugs (especially intestinal stability) strengthened the inhibition of HBV replication and the rebalance of hepatocellular metabolism, which provides new insights and a basis for the design, modification and evaluation of new TFV prodrugs in the future.
Collapse
Affiliation(s)
- Xiaodan Hong
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zuhuan Cai
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaoliang Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| | - Bingchen Ouyang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| | - Jingwei Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Guangji Wang, ; Bingchen Ouyang, ; Jingwei Zhang,
| |
Collapse
|
7
|
Li G, Wang Y, De Clercq E. Approved HIV reverse transcriptase inhibitors in the past decade. Acta Pharm Sin B 2022; 12:1567-1590. [PMID: 35847492 PMCID: PMC9279714 DOI: 10.1016/j.apsb.2021.11.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
HIV reverse transcriptase (RT) inhibitors are the important components of highly active antiretroviral therapies (HAARTs) for anti-HIV treatment and pre-exposure prophylaxis in clinical practice. Many RT inhibitors and their combination regimens have been approved in the past ten years, but a review on their drug discovery, pharmacology, and clinical efficacy is lacking. Here, we provide a comprehensive review of RT inhibitors (tenofovir alafenamide, rilpivirine, doravirine, dapivirine, azvudine and elsulfavirine) approved in the past decade, regarding their drug discovery, pharmacology, and clinical efficacy in randomized controlled trials. Novel RT inhibitors such as islatravir, MK-8504, MK-8507, MK8583, IQP-0528, and MIV-150 will be also highlighted. Future development may focus on the new generation of novel antiretroviral inhibitors with higher bioavailability, longer elimination half-life, more favorable side-effect profiles, fewer drug-drug interactions, and higher activities against circulating drug-resistant strains.
Collapse
Key Words
- 3TC, (−)-2′,3′-dideoxy-3′-thiacytidine (common name, lamivudine)
- ABC, abacavir
- ATV, atazanavir
- AZT, 3′-azido-3′-deoxy-thymidine (common name, zidovudine)
- BIC, bictegravir
- CAB, cabotegravir
- CC50, the 50% cytotoxic concentration
- COBI, cobicistat
- Clinical efficacy
- DOR, doravirine
- DPV, dapivirine
- DRV, darunavir
- DTG, dolutegravir
- EACS, European AIDS Clinical Society
- EC50, half maximal effective concentration
- EFV, efavirenz
- ESV, elsulfavirine
- EVG, elvitegravir
- F, bioavailability
- FDA, US Food and Drug Administration
- FTC, (−)-2′,3′-dideoxy-5-fluoro-3′-thiacytidine (common name, emtricitabine)
- HAART
- HAART, highly active antiretroviral therapy
- HIV treatment
- HIV, human immunodeficiency virus
- IAS-USA, International Antiviral Society-USA
- IC50, half maximal inhibitory concentration
- MSM, men who have sex with men
- NNRTI
- NNRTI, non-nucleoside reverse transcriptase inhibitor
- NRTI
- NRTI, nucleoside/nucleotide reverse transcriptase inhibitor
- RPV, rilpivirine
- TAF, tenofovir alafenamide
- TDF, tenofovir disoproxil fumarate
- t1/2, elimination half-life
Collapse
Affiliation(s)
- Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Yali Wang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven B-3000, Belgium
| |
Collapse
|
8
|
Abstract
Tenofovir alafenamide fumarate is a lipophilic prodrug of tenofovir which is preferentially metabolized in lymphatic tissue resulting in high concentrations of tenofovir (TFV) and its active diphosphate metabolite inside the cells that replicate HIV. Due to its selectivity for these tissues, lower total doses of TAF can be administered relative to tenofovir disoproxil fumarate (TDF) which results in improved bone and renal biomarkers. Tenofovir alafenamide fumarate has become the “backbone” of multiple combination products for the treatment of HIV, combined with emtricitabine for PreP and as a monotherapy for the treatment or HBV.
Collapse
|
9
|
Abstract
Phosphoryl prodrugs are key compounds in drug development. Biologically active phosphoryl compounds often have negative charges on the phosphoryl group, and as a result, frequently have poor pharmacokinetic (PK) profiles. The use of lipophilic moieties bonded to the phosphorus (or attached oxygen atoms) masks the negative charge of the phosphoryl group, cleavage releasing the active molecule. The use of prodrugs to improve the PK of active parent molecules is an essential step in drug development. This review highlights promising trends in terminal elimination half-life, Cmax, clearance, oral bioavailability, and cLogP in phosphoryl prodrugs. We focus on specific prodrug families: esters, amidates, and ProTides. We conclude that moderating lipophilicity is a key part of prodrug success. This type of evaluation is important for drug development, regardless of clinical application. It is our hope that this analysis, and future ones like it, will play a significant role in prodrug evolution.
Collapse
Affiliation(s)
- Samuel A Kirby
- Department of Chemistry, George Washington University, Washington DC 20052
| | - Cynthia S Dowd
- Department of Chemistry, George Washington University, Washington DC 20052
| |
Collapse
|
10
|
Perazzolo S, Shireman LM, Shen DD, Ho RJY. Physiologically Based Pharmacokinetic Modeling of 3 HIV Drugs in Combination and the Role of Lymphatic System after Subcutaneous Dosing. Part 1: Model for the Free-Drug Mixture. J Pharm Sci 2022; 111:529-541. [PMID: 34673093 PMCID: PMC9272351 DOI: 10.1016/j.xphs.2021.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 02/03/2023]
Abstract
Drug-combination nanoparticles (DcNP) allow the formulation of multiple HIV drugs in one injectable. In nonhuman primates (NHP), all drugs in DcNP have demonstrated long-acting pharmacokinetics (PK) in the blood and lymph nodes, rendering it suitable for a Targeted Long-acting Antiretroviral Therapy (TLC-ART). To support the translation of TLC-ART into the clinic, the objective is to present a physiologically based PK (PBPK) model tool to control mechanisms affecting the rather complex DcNP-drug PK. Two species contribute simultaneously to the drug PK: drugs that dissociate from DcNP (Part 1) and drugs retained in DcNP (Part 2, presented separately). Here, we describe the PBPK modeling of the nanoparticle-free drugs. The free-drug model was built on subcutaneous injections of suspended lopinavir, ritonavir, and tenofovir in NHP, and validated by external experiments. A novelty was the design of a lymphatic network as part of a whole-body PBPK system which included major lymphatic regions: the cervical, axillary, hilar, mesenteric, and inguinal nodes. This detailed/regionalized description of the lymphatic system and mononuclear cells represents an unprecedented level of prediction that renders the free-drug model extendible to other small-drug molecules targeting the lymphatic system at both the regional and cellular levels.
Collapse
Affiliation(s)
- Simone Perazzolo
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA.
| | - Laura M Shireman
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA, 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
11
|
Chen KJ, Plaunt AJ, Leifer FG, Kang JY, Cipolla D. Recent advances in prodrug-based nanoparticle therapeutics. Eur J Pharm Biopharm 2021; 165:219-243. [PMID: 33979661 DOI: 10.1016/j.ejpb.2021.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Extensive research into prodrug modification of active pharmaceutical ingredients and nanoparticle drug delivery systems has led to unprecedented levels of control over the pharmacological properties of drugs and resulted in the approval of many prodrug or nanoparticle-based therapies. In recent years, the combination of these two strategies into prodrug-based nanoparticle drug delivery systems (PNDDS) has been explored as a way to further advance nanomedicine and identify novel therapies for difficult-to-treat indications. Many of the PNDDS currently in the clinical development pipeline are expected to enter the market in the coming years, making the rapidly evolving field of PNDDS highly relevant to pharmaceutical scientists. This review paper is intended to introduce PNDDS to the novice reader while also updating those working in the field with a comprehensive summary of recent efforts. To that end, first, an overview of FDA-approved prodrugs is provided to familiarize the reader with their advantages over traditional small molecule drugs and to describe the chemistries that can be used to create them. Because this article is part of a themed issue on nanoparticles, only a brief introduction to nanoparticle-based drug delivery systems is provided summarizing their successful application and unfulfilled opportunities. Finally, the review's centerpiece is a detailed discussion of rationally designed PNDDS formulations in development that successfully leverage the strengths of prodrug and nanoparticle approaches to yield highly effective therapeutic options for the treatment of many diseases.
Collapse
|
12
|
Lin YH, Satani N, Hammoudi N, Yan VC, Barekatain Y, Khadka S, Ackroyd JJ, Georgiou DK, Pham CD, Arthur K, Maxwell D, Peng Z, Leonard PG, Czako B, Pisaneschi F, Mandal P, Sun Y, Zielinski R, Pando SC, Wang X, Tran T, Xu Q, Wu Q, Jiang Y, Kang Z, Asara JM, Priebe W, Bornmann W, Marszalek JR, DePinho RA, Muller FL. An enolase inhibitor for the targeted treatment of ENO1-deleted cancers. Nat Metab 2020; 2:1413-1426. [PMID: 33230295 PMCID: PMC7744354 DOI: 10.1038/s42255-020-00313-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Inhibiting glycolysis remains an aspirational approach for the treatment of cancer. We have previously identified a subset of cancers harbouring homozygous deletion of the glycolytic enzyme enolase (ENO1) that have exceptional sensitivity to inhibition of its redundant paralogue, ENO2, through a therapeutic strategy known as collateral lethality. Here, we show that a small-molecule enolase inhibitor, POMHEX, can selectively kill ENO1-deleted glioma cells at low-nanomolar concentrations and eradicate intracranial orthotopic ENO1-deleted tumours in mice at doses well-tolerated in non-human primates. Our data provide an in vivo proof of principle of the power of collateral lethality in precision oncology and demonstrate the utility of POMHEX for glycolysis inhibition with potential use across a range of therapeutic settings.
Collapse
Affiliation(s)
- Yu-Hsi Lin
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nikunj Satani
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Stroke and Cerebrovascular Disease, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Naima Hammoudi
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Victoria C Yan
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yasaman Barekatain
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunada Khadka
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey J Ackroyd
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cong-Dat Pham
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenisha Arthur
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Maxwell
- Institutional Analytics & Informatics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Paul G Leonard
- Core for Biomolecular Structure and Function, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Czako
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pijus Mandal
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuting Sun
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafal Zielinski
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susana Castro Pando
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobo Wang
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Theresa Tran
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quanyu Xu
- Pharmaceutical Science Facility, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wu
- Pharmaceutical Science Facility, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongying Jiang
- Pharmaceutical Science Facility, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhijun Kang
- Institute for Applied Cancer Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Waldemar Priebe
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Bornmann
- Director of Drug Discovery and Development, Advanced Organic Synthesis LLC, Houston, Texas, USA
| | - Joseph R Marszalek
- Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian L Muller
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
De Sousa Mendes M, Chetty M. Are Standard Doses of Renally-Excreted Antiretrovirals in Older Patients Appropriate: A PBPK Study Comparing Exposures in the Elderly Population With Those in Renal Impairment. Drugs R D 2020; 19:339-350. [PMID: 31602556 PMCID: PMC6890626 DOI: 10.1007/s40268-019-00285-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The elderly population receives the majority of prescription drugs but are usually excluded from Phase 1 clinical trials. Alternative approaches to estimate increases in toxicity risk or decreases in efficacy are therefore needed. This study predicted the pharmacokinetics (PK) of three renally excreted antiretroviral drugs in the elderly population and compared them with known exposures in renal impairment, to evaluate the need for dosing adjustments. METHODS The performance of the physiologically based pharmacokinetic (PBPK) models for tenofovir, lamivudine and emtricitabine were verified using clinical data in young and older subjects. Models were then used to predict PK profiles in a virtual population aged 20 to 49 years (young) and a geriatric population aged 65 to 74 years (elderly). Predicted exposure in the elderly was then compared with exposure reported for different degrees of renal impairment, where doses have been defined. RESULTS An increase in exposure (AUC) with advancing age was predicted for all drugs. The mean ratio of the increase in exposure were 1.40 for emtricitabine, 1.42 for lamivudine and 1.48 for tenofovir. The majority of virtual patients had exposures that did not require dosage adjustments. About 22% of patients on tenofovir showed exposures similar to that in moderate renal impairment, where dosage reduction may be required. CONCLUSION Comparison of the exposure in the elderly with exposure observed in patients with different levels of renal impairment, indicated that a dosage adjustment may not be required in elderly patients on lamivudine, emtricitabine and the majority of the patients on tenofovir. Clinical trials to verify these predictions are essential.
Collapse
|
14
|
Co-crystals, Salts or Mixtures of Both? The Case of Tenofovir Alafenamide Fumarates. Pharmaceutics 2020; 12:pharmaceutics12040342. [PMID: 32290280 PMCID: PMC7238255 DOI: 10.3390/pharmaceutics12040342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/18/2023] Open
Abstract
Tenofovir alafenamide fumarate (TAF) is the newest prodrug of tenofovir that constitutes several drug products used for the treatment of HIV/AIDS. Although the solid-state properties of its predecessor tenofovir disoproxil fumarate have been investigated and described in the literature, there are no data in the scientific literature on the solid state properties of TAF. In our report, we describe the preparation of two novel polymorphs II and III of tenofovir alafenamide monofumarate (TA MF2 and TA MF3). The solid-state structure of these compounds was investigated in parallel to the previously known tenofovir alafenamide monofumarate form I (TA MF1) and tenofovir alafenamide hemifumarate (TA HF). Interestingly, the single-crystal X-ray diffraction of TA HF revealed that this derivative exists as a co-crystal form. In addition, we prepared a crystalline tenofovir alafenamide free base (TA) and its hydrochloride salt (TA HCl), which enabled us to determine the structure of TA MF derivatives using 15N-ssNMR (15N-solid state nuclear magnetic resonance). Surprisingly, we observed that TA MF1 exists as a mixed ionization state complex or pure salt, while TA MF2 and TA MF3 can be obtained as pure co-crystal forms.
Collapse
|
15
|
Extended cell and plasma drug levels after one dose of a three-in-one nanosuspension containing lopinavir, efavirenz, and tenofovir in nonhuman primates. AIDS 2018; 32:2463-2467. [PMID: 30102655 DOI: 10.1097/qad.0000000000001969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To characterize a drug-combination nanoparticle (DcNP) containing water-insoluble lopinavir (LPV) and efavirenz (EFV), and water-soluble tenofovir (TFV), for its potential as a long-acting combination HIV treatment. DESIGN Three HIV drugs (LPV, EFV, TFV) with well established efficacy and safety were coformulated into a single DcNP suspension. Two macaques were administered one subcutaneous injection and drug concentrations in plasma and mononuclear cells (in peripheral blood and lymph nodes) were analyzed over 2 weeks. Pharmacokinetic parameters and cell-to-plasma relationships of LPV, EFV, and TFV were determined. RESULTS This three-in-one nanoformulation provided extended concentrations of all drugs in lymph node cells that were 57- to 228-fold higher than those in plasma. Levels of all three drugs in peripheral blood mononuclear cells persisted for 2 weeks at levels equal to or higher than those in plasma. CONCLUSION With long-acting characteristics and higher drug penetration/persistence in cells, this three-in-one DcNP may enhance therapeutic efficacy of these well studied HIV drugs due to colocalization and targeting of this three-drug combination to HIV host cells.
Collapse
|
16
|
Tackling HIV and AIDS: contributions by non-human primate models. Lab Anim (NY) 2018; 46:259-270. [PMID: 28530684 DOI: 10.1038/laban.1279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
During the past three decades, non-human primate (NHP) models have gained an increasing importance in HIV basic and translational research. In contrast to natural host models, infection of macaques with virulent simian or simian-human immunodeficiency viruses (SIV, SHIV) results in a disease that closely resembles HIV infection and AIDS. Although there is no perfect animal model, and each of the available models has its benefits and limitations, carefully designed NHP studies with selection of experimental variables have unraveled important questions of basic pathogenesis and have provided the tools to explore and screen intervention strategies. For example, NHP studies have advanced our understanding of the crucial events during early infection, and have provided proof-of-concept of antiretroviral drug treatment and prevention strategies such as pre-exposure prophylaxis (PrEP) regimes that are increasingly used worldwide, and upon overcoming further barriers of implementation, have the potential to make the next generation AIDS-free. Remaining goals include the pursuit of an effective HIV vaccine, and HIV cure strategies that would allow HIV-infected people to ultimately stop taking antiretroviral drugs. Through a reiterative process with feed-back from results of human studies, NHP models can be further validated and strengthened to advance our scientific knowledge and guide clinical trials.
Collapse
|
17
|
Gao Y, Kraft JC, Yu D, Ho RJY. Recent developments of nanotherapeutics for targeted and long-acting, combination HIV chemotherapy. Eur J Pharm Biopharm 2018; 138:75-91. [PMID: 29678735 DOI: 10.1016/j.ejpb.2018.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 01/20/2023]
Abstract
Combination antiretroviral therapy (cART) given orally has transformed HIV from a terminal illness to a manageable chronic disease. Yet despite the recent development of newer and more potent drugs for cART and suppression of virus in blood to undetectable levels, residual virus remains in tissues. Upon stopping cART, virus rebounds and progresses to AIDS. Current oral cART regimens have several drawbacks including (1) challenges in patient adherence due to pill fatigue or side-effects, (2) the requirement of life-long daily drug intake, and (3) limited penetration and retention in cells within lymph nodes. Appropriately designed injectable nano-drug combinations that are long-acting and retained in HIV susceptible cells within lymph nodes may address these challenges. While a number of nanomaterials have been investigated for delivery of HIV drugs and drug combinations, key challenges involve developing and scaling delivery systems that provide a drug combination targeted to HIV host cells and tissues where residual virus persists. With validation of the drug-insufficiency hypothesis in lymph nodes, progress has been made in the development of drug combination nanoparticles that are long-acting and targeted to lymph nodes and cells. Unique drug combination nanoparticles (DcNPs) composed of three HIV drugs-lopinavir, ritonavir, and tenofovir-have been shown to provide enhanced drug levels in lymph nodes; and elevated drug-combination levels in HIV-host cells in the blood and plasma for two weeks. This review summarizes the progress in the development of nanoparticle-based drug delivery systems for HIV therapy. It discusses how injectable nanocarriers may be designed to enable delivery of drug combinations that are long-lasting and target-selective in physiological contexts (in vivo) to provide safe and effective use. Consistent drug combination exposure in the sites of residual HIV in tissues and cells may overcome drug insufficiency observed in patients on oral cART.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Center, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - John C Kraft
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Danni Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States
| | - Rodney J Y Ho
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, United States; Department of Bioengineering, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
18
|
Murphy RA, Valentovic MA. Factors Contributing to the Antiviral Effectiveness of Tenofovir. J Pharmacol Exp Ther 2017; 363:156-163. [DOI: 10.1124/jpet.117.243139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022] Open
|
19
|
Simulating Intestinal Transporter and Enzyme Activity in a Physiologically Based Pharmacokinetic Model for Tenofovir Disoproxil Fumarate. Antimicrob Agents Chemother 2017; 61:AAC.00105-17. [PMID: 28416547 DOI: 10.1128/aac.00105-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/09/2017] [Indexed: 01/16/2023] Open
Abstract
Tenofovir disoproxil fumarate (TDF), a prodrug of tenofovir, has oral bioavailability (25%) limited by intestinal transport (P-glycoprotein), and intestinal degradation (carboxylesterase). However, the influence of luminal pancreatic enzymes is not fully understood. Physiologically based pharmacokinetic (PBPK) modeling has utility for estimating drug exposure from in vitro data. This study aimed to develop a PBPK model that included luminal enzyme activity to inform dose reduction strategies. TDF and tenofovir stability in porcine pancrelipase concentrations was assessed (0, 0.48, 4.8, 48, and 480 U/ml of lipase; 1 mM TDF; 37°C; 0 to 30 min). Samples were analyzed using mass spectrometry. TDF stability and permeation data allowed calculation of absorption rates within a human PBPK model to predict plasma exposure following 6 days of once-daily dosing with 300 mg of TDF. Regional absorption of drug was simulated across gut segments. TDF was degraded by pancrelipase (half-lives of 0.07 and 0.62 h using 480 and 48 U/ml, respectively). Previously reported maximum concentration (Cmax; 335 ng/ml), time to Cmax (Tmax; 2.4 h), area under the concentration-time curve from 0 to 24 h (AUC0-24; 3,045 ng · h/ml), and concentration at 24 h (C24; 48.3 ng/ml) were all within a 0.5-fold difference from the simulated Cmax (238 ng/ml), Tmax (3 h), AUC0-24 (3,036 ng · h/ml), and C24 (42.7 ng/ml). Simulated TDF absorption was higher in duodenum and jejunum than in ileum (p<0.05). These data support that TDF absorption is limited by the action of intestinal lipases. Our results suggest that bioavailability may be improved by protection of drug from intestinal transporters and enzymes, for example, by coadministration of enzyme-inhibiting agents or nanoformulation strategies.
Collapse
|
20
|
Ball K, Jamier T, Parmentier Y, Denizot C, Mallier A, Chenel M. Prediction of renal transporter-mediated drug-drug interactions for a drug which is an OAT substrate and inhibitor using PBPK modelling. Eur J Pharm Sci 2017; 106:122-132. [PMID: 28552429 DOI: 10.1016/j.ejps.2017.05.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 01/06/2023]
Abstract
A PBPK modelling approach was used to predict organic anion transporter (OAT) mediated drug-drug interactions involving S44121, a substrate and an inhibitor of OAT1 and OAT3. Model predictions were then compared to the results of a clinical DDI study which was carried out to investigate the interaction of S44121 with probenecid, tenofovir and ciprofloxacin. PBPK models were developed and qualified using existing clinical data, and inhibition constants were determined in vitro. The model predictions for S44121 as an OAT inhibitor were similar to the results obtained from the clinical DDI study, with no interaction observed for tenofovir or ciprofloxacin in the presence of S44121. An observed AUC ratio of 2.2 was obtained for S44121 in the presence of probenecid, which was slightly higher than the model predicted AUC ratio of 1.6. A DDI study in the monkey was also carried out for the interaction between S44121 and probenecid, since the monkey has previously been reported to be a good preclinical model for OAT-mediated DDI. However, this study highlighted a species difference in the major route of S44121 elimination between monkey (mainly hepatic metabolism) and human (mainly renal excretion of unchanged drug), rendering a comparison between the two DDI studies difficult. Overall, for S44121 the PBPK modelling approach gave a better prediction of the extent of DDI than the static predictions based on inhibitor Cmax and IC50, therefore this can be considered a potentially valuable tool within drug development.
Collapse
Affiliation(s)
- Kathryn Ball
- Clinical Pharmacokinetics and Pharmacometrics Department, Institut de Recherches Internationales Servier, Suresnes, France.
| | - Tanguy Jamier
- Clinical Pharmacokinetics and Pharmacometrics Department, Institut de Recherches Internationales Servier, Suresnes, France
| | - Yannick Parmentier
- Nonclinical Pharmacokinetics and Biopharmaceutical Research Department, Technologie Servier, Orleans, France
| | - Claire Denizot
- Nonclinical Pharmacokinetics and Biopharmaceutical Research Department, Technologie Servier, Orleans, France
| | - Agnes Mallier
- Nonclinical Pharmacokinetics and Biopharmaceutical Research Department, Technologie Servier, Orleans, France
| | - Marylore Chenel
- Clinical Pharmacokinetics and Pharmacometrics Department, Institut de Recherches Internationales Servier, Suresnes, France
| |
Collapse
|
21
|
Chen X, Seifert SM, Castillo-Mancilla JR, Bushman LR, Zheng JH, Kiser JJ, MaWhinney S, Anderson PL. Model Linking Plasma and Intracellular Tenofovir/Emtricitabine with Deoxynucleoside Triphosphates. PLoS One 2016; 11:e0165505. [PMID: 27832147 PMCID: PMC5104339 DOI: 10.1371/journal.pone.0165505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
The coformulation of the nucleos(t)ide analogs (NA) tenofovir (TFV) disoproxil fumarate (TDF) and emtricitabine (FTC) is approved for HIV-infection treatment and prevention. Plasma TFV and FTC undergo complicated hybrid processes to form, accumulate, and retain as their active intracellular anabolites: TFV-diphosphate (TFV-DP) and FTC-triphosphate (FTC-TP). Such complexities manifest in nonlinear intracellular pharmacokinetics (PK). In target cells, TFV-DP/FTC-TP compete with endogenous deoxynucleoside triphosphates (dNTP) at the active site of HIV reverse transcriptase, underscoring the importance of analog:dNTP ratios for antiviral efficacy. However, NA such as TFV and FTC have the potential to disturb the dNTP pool, which could augment or reduce their efficacies. We conducted a pharmacokinetics-pharmacodynamics (PKPD) study among forty subjects receiving daily TDF/FTC (300 mg/200 mg) from the first-dose to pharmacological intracellular steady-state (30 days). TFV/FTC in plasma, TFV-DP/FTC-TP and dNTPs in peripheral blood mononuclear cells (PBMC) were quantified using validated LC/MS/MS methodologies. Concentration-time data were analyzed using nonlinear mixed effects modeling (NONMEM). Formations and the accumulation of intracellular TFV-DP/FTC-TP was driven by plasma TFV/FTC, which was described by a hybrid of first-order formation and saturation. An indirect response link model described the interplay between TFV-DP/FTC-TP and the dNTP pool change. The EC50 (interindividual variability, (%CV)) of TFV-DP and FTC-TP on the inhibition of deoxyadenosine triphosphate (dATP) and deoxycytidine triphosphate (dCTP) production were 1020 fmol/106 cells (130%) and 44.4 pmol/106 cells (82.5%), resulting in (90% prediction interval) 11% (0.45%, 53%) and 14% (2.6%, 35%) reductions. Model simulations of analog:dNTP molar ratios using IPERGAY dosing suggested that FTC significantly contributes to the protective effect of preexposure prophylaxis (PrEP). Simulation-based intracellular operational multiple dosing half-lives of TFV-DP and FTC-TP were 6.7 days and 33 hours. This model described the formation of intracellular TFV-DP/FTC-TP and the interaction with dNTPs, and can be used to simulate analog:dNTP time course for various dosing strategies.
Collapse
Affiliation(s)
- Xinhui Chen
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States of America
| | - Sharon M. Seifert
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States of America
| | - Jose R. Castillo-Mancilla
- University of Colorado, School of Medicine, Division of Infectious Diseases, Aurora, CO, United States of America
| | - Lane R. Bushman
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States of America
| | - Jia-Hua Zheng
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States of America
| | - Jennifer J. Kiser
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States of America
| | - Samantha MaWhinney
- University of Colorado, Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, United States of America
| | - Peter L. Anderson
- University of Colorado, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abhyankar D, Shedage A, Gole M, Raut P. Pharmacokinetics of fixed-dose combination of tenofovir disoproxil fumarate, lamivudine, and efavirenz: results of a randomized, crossover, bioequivalence study. Int J STD AIDS 2016; 28:491-498. [DOI: 10.1177/0956462416655955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to assess the bioequivalence between a fixed-dose combination of tenofovir disoproxil fumarate/lamivudine/efavirenz 300/300/600 mg and the individual innovator products. A randomized, balanced, open-label, two-sequence, two-treatment, two-period, single dose, crossover study in 48 healthy adults was conducted. Dosing was separated by a washout period of 32 days. Twenty-seven blood samples were collected in each period from pre-dose to 72 h post-dose. The data of 45 subjects were analyzed for pharmacokinetics and safety. Ninety percent CIs of geometric mean ratio on Cmax, AUC0–t, and AUC0-inf for tenofovir and lamivudine and on Cmax and AUC0-72 for efavirenz were within the acceptance criteria (80–125%). For tenofovir disoproxil fumarate, the Tmax, Kel, and t1/2 values for the test and reference products were 1.02 versus 0.91 h, 0.04 versus 0.04/h, 18.67 versus 18.46 h, respectively. For lamivudine, the Tmax, Kel, and t1/2 values were: 1.38 versus 1.30 h, 0.21 versus 0.19/h, 3.44 versus 3.91 h, respectively. For efavirenz, the Tmax values for the test and reference products were 3.71 and 3.65 h, respectively. Both the treatments were well tolerated. Our findings suggest that the tested formulation is bioequivalent to the innovators’ formulations, and both treatments were well tolerated.
Collapse
|
23
|
Antiviral Chemistry & Chemotherapy's Current Antiviral Agents FactFile 2006 (1st Edition) the DNA Viruses. Antivir Chem Chemother 2016. [DOI: 10.1177/095632020601700303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Antiviral Chemistry & Chemotherapy's Current Antiviral Agents FactFile 2006 (1st edition): The RNA Viruses with DNA Intermediates (Retroviruses). Antivir Chem Chemother 2016. [DOI: 10.1177/095632020601700305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
25
|
Antiviral Chemistry & Chemotherapy'sCurrent Antiviral Agents FactFile 2006 (1st edition) the RNA viruses. Antivir Chem Chemother 2016. [DOI: 10.1177/095632020601700304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Del Prete GQ, Smedley J, Macallister R, Jones GS, Li B, Hattersley J, Zheng J, Piatak M, Keele BF, Hesselgesser J, Geleziunas R, Lifson JD. Short Communication: Comparative Evaluation of Coformulated Injectable Combination Antiretroviral Therapy Regimens in Simian Immunodeficiency Virus-Infected Rhesus Macaques. AIDS Res Hum Retroviruses 2016; 32:163-8. [PMID: 26150024 DOI: 10.1089/aid.2015.0130] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The use of nonhuman primate (NHP) models to study persistent residual virus and viral eradication strategies in combination antiretroviral therapy (cART)-treated individuals requires regimens that effectively suppress SIV replication to clinically relevant levels in macaques. We developed and evaluated two novel cART regimens in SIVmac239-infected rhesus macaques: (1) a "triple regimen" containing the nucleo(s/t)ide reverse transcriptase inhibitors emtricitabine (FTC) and tenofovir disoproxil fumarate [TDF, prodrug of tenofovir (TFV, PMPA)] with the integrase strand transfer inhibitor dolutegravir (DTG) (n = 3), or (2) a "quad regimen" containing the same three drugs plus the protease inhibitor darunavir (DRV) (n = 3), with each regimen coformulated for convenient administration by a single daily subcutaneous injection. Plasma drug concentrations were consistent across animals within the triple and quad regimen-treated groups, although DTG levels were lower in the quad regimen animals. Time to achieve plasma viral loads stably <30 viral RNA copies/ml ranged from 12 to 20 weeks of treatment between animals, and viral loads <30 viral RNA copies/ml plasma were maintained through 40 weeks of follow-up on cART. Notably, although we show virologic suppression and development of viral resistance in a separate cohort of SIV-infected animals treated with oral DRV monotherapy, the addition of DRV in the quad regimen did not confer an apparent virologic benefit during early treatment, hence the quad regimen-treated animals were switched to the triple regimen after 4 weeks. This coformulated triple cART regimen can be safely, conveniently, and sustainably administered to durably suppress SIV replication to clinically relevant levels in rhesus macaques.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Rhonda Macallister
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Bei Li
- Gilead Sciences, Foster City, California
| | | | - Jim Zheng
- Gilead Sciences, Foster City, California
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
27
|
De Sousa Mendes M, Hirt D, Vinot C, Valade E, Lui G, Pressiat C, Bouazza N, Foissac F, Blanche S, Lê MP, Peytavin G, Treluyer JM, Urien S, Benaboud S. Prediction of human fetal pharmacokinetics using ex vivo human placenta perfusion studies and physiologically based models. Br J Clin Pharmacol 2016; 81:646-57. [PMID: 26518984 DOI: 10.1111/bcp.12815] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/08/2015] [Accepted: 10/27/2015] [Indexed: 01/04/2023] Open
Abstract
AIMS Pregnant women can be exposed to numerous drugs during the gestational period. For obvious ethical reasons, in vivo studies of fetal exposure to drugs are limited. Information about the transplacental transfer of drugs prior to their administration to pregnant women would be highly useful. In the present study, a novel approach was developed quantitatively predict or to predict the fetal exposure to drugs administered to the mother quantitatively. METHODS Transplacental parameters estimated from ex vivo human placenta perfusion experiments were implemented in pregnancy-physiologically based pharmacokinetic (p-PBPK) models in order to predict fetal PK. Thereafter, fetal PK profiles for two antiretroviral drugs, tenofovir (TFV) and emtricitabine (FTC) were simulated. These predictions were then compared to observed cord blood concentrations, to validate these models. RESULTS Parameters obtained from the ex vivo experiments enabled a good prediction of observed cord blood concentrations without additional a scaling factor. Moreover, a sensitivity analysis showed that fetal predictions were sensitive to changes in transplacental parameters values obtained ex vivo. CONCLUSION The integration of ex vivo human placental perfusion parameters in a p-PBPK model should be a promising new approach for predicting human fetal exposure to xenobiotics.
Collapse
Affiliation(s)
- Maïlys De Sousa Mendes
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France
| | - Deborah Hirt
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris, France
| | - Cécile Vinot
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France
| | - Elodie Valade
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France
| | - Gabrielle Lui
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris, France
| | - Claire Pressiat
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France
| | - Naïm Bouazza
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France
| | - Frantz Foissac
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France
| | - Stephane Blanche
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France.,AP-HP, Hôpital Necker-Enfants-Malades, Unité d'Immunologie, Hématologie et Rhumatologie Pédiatriques, 75015, Paris, France
| | - Minh Patrick Lê
- AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Pharmacologie, 75018, Paris, France
| | - Gilles Peytavin
- AP-HP, Hôpital Bichat-Claude Bernard, Laboratoire de Pharmacologie, 75018, Paris, France
| | - Jean-Marc Treluyer
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris, France
| | - Saik Urien
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France
| | - Sihem Benaboud
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, Unité de Recherche Clinique Paris Centre, 75006, Paris, France.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris, France
| |
Collapse
|
28
|
Identification of a novel human circulating metabolite of tenofovir disoproxil fumarate with LC-MS/MS. Bioanalysis 2016; 7:643-52. [PMID: 25871584 DOI: 10.4155/bio.14.300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Tenofovir disoproxil fumarate (TDF) is an antiretroviral drug used for the treatment of Human Immunodeficiency Virus and Hepatitis B infections. RESULTS A metabolite that has previously not been observed in the circulation of humans was detected by LC-MS/MS in early time point plasma samples following administration of TDF to healthy volunteers. The metabolite was identified using a range of LC-MS/MS-based techniques as a monoester of TDF, derived from the partially hydrolyzed bis-ester prodrug. TDF, when spiked into plasma, was observed to degrade first to the putative monoester and subsequently to tenofovir. CONCLUSION The presence of this unstable metabolite in some samples has implications for sample collection, handling and storage in studies of tenofovir where serum concentrations are determined.
Collapse
|
29
|
Ray AS, Fordyce MW, Hitchcock MJ. Tenofovir alafenamide: A novel prodrug of tenofovir for the treatment of Human Immunodeficiency Virus. Antiviral Res 2016; 125:63-70. [DOI: 10.1016/j.antiviral.2015.11.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
|
30
|
De Sousa Mendes M, Hirt D, Urien S, Valade E, Bouazza N, Foissac F, Blanche S, Treluyer JM, Benaboud S. Physiologically-based pharmacokinetic modeling of renally excreted antiretroviral drugs in pregnant women. Br J Clin Pharmacol 2015; 80:1031-41. [PMID: 26011128 DOI: 10.1111/bcp.12685] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 12/12/2022] Open
Abstract
AIM Physiological changes during pregnancy can affect drug disposition. Anticipating these changes will help to maximize drug efficacy and safety in pregnant women. Our objective was to determine if physiologically-based pharmacokinetics (PBPK) can accurately predict changes in the disposition of renally excreted antiretroviral drugs during pregnancy. METHODS Whole body PBPK models were developed for three renally excreted antiretroviral drugs, tenofovir (TFV), emtricitabine (FTC) and lamivudine (3TC). To assess the impact of pregnancy on PK, time-varying pregnancy-related physiological parameters available within the p-PBPK Simcyp software package were used. Renal clearance during pregnancy followed glomerular filtration changes with or without alterations in secretion. PK profiles were simulated and compared with observed data, i.e. area under the curves (AUC), peak plasma concentrations (Cmax ) and oral clearances (CL/F). RESULTS PBPK models successfully predicted TFV, FTC and 3TC disposition for non-pregnant and pregnant populations. Both renal secretion and filtration changed during pregnancy. Changes in renal clearance secretion were related to changes in renal plasma flow. The maximum clearance increases were approximately 30% (TFV 33%, FTC 31%, 3TC 29%). CONCLUSIONS Pregnancy PBPK models are useful tools to quantify a priori the drug exposure changes during pregnancy for renally excreted drugs. These models can be applied to evaluate alternative dosing regimens to optimize drug therapy during pregnancy.
Collapse
Affiliation(s)
- Maïlys De Sousa Mendes
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris
| | - Deborah Hirt
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris
| | - Saik Urien
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris.,CIC-1419 Inserm, Cochin-Necker, Paris
| | - Elodie Valade
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris
| | - Naïm Bouazza
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris
| | - Frantz Foissac
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris
| | - Stephane Blanche
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris.,AP-HP, hôpital Necker-Enfants-malades, unité d'immunologie, hématologie et rhumatologie pédiatriques, 75015, Paris, France
| | - Jean-Marc Treluyer
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris
| | - Sihem Benaboud
- EA08: Evaluation des thérapeutiques et pharmacologie périnatale et pédiatrique, unité de recherche clinique Paris centre, 75006, Paris.,Service de Pharmacologie Clinique, AP-HP, Hôpital Cochin-Broca-Hôtel-Dieu-Dieu, 75014, Paris
| |
Collapse
|
31
|
Bam RA, Birkus G, Babusis D, Cihlar T, Yant SR. Metabolism and antiretroviral activity of tenofovir alafenamide in CD4+ T-cells and macrophages from demographically diverse donors. Antivir Ther 2014; 19:669-77. [PMID: 24625459 DOI: 10.3851/imp2767] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tenofovir alafenamide (TAF) is a novel investigational prodrug of tenofovir (TFV) that permits enhanced delivery of TFV into peripheral blood mononuclear cells (PBMCs) and lymphatic tissues. A critical step in the intracellular metabolic activation of TAF is mediated by the lysosomal protease cathepsin A (CatA). Here, we investigated CatA levels together with intracellular metabolism and antiretroviral activity of TAF in primary CD4+ T-lymphocytes (CD4s) and monocyte-derived macrophages (MDMs) isolated from a demographically diverse group of blood donors. METHODS CD4s and MDMs were prepared from fresh PBMCs. CatA levels were quantified in cell extracts by monitoring TAF hydrolysis using HPLC. Intracellular TAF metabolites were quantified by HPLC combined with mass spectrometry. Antiviral activities in activated CD4s and MDMs were determined using HIV-1 single-cycle reporter and p24 antigen production assays, respectively. RESULTS The levels of CatA and intracellular TAF metabolites differed minimally in CD4s and MDMs among 13 tested donors. TAF was >600-fold and 80-fold more potent than parent TFV in CD4s and MDMs, respectively, and its relative range of antiviral activity across all tested donors was comparable to that of other HIV-1 reverse transcriptase inhibitors, with mean ±sd (range) EC50 values of 11.0 ±3.4 (6.6-19.9) nM and 9.7 ±4.6 (2.5-15.7) nM in CD4s and MDMs, respectively. CONCLUSIONS These results indicate consistent intracellular metabolism and antiretroviral potency of TAF in relevant target cells of HIV-1 infection across multiple donors of variable gender, age and ethnicity, supporting further clinical investigation of TAF.
Collapse
|
32
|
McConville C, Boyd P, Major I. Efficacy of Tenofovir 1% Vaginal Gel in Reducing the Risk of HIV-1 and HSV-2 Infection. CLINICAL MEDICINE INSIGHTS. WOMEN'S HEALTH 2014; 7:1-8. [PMID: 24741339 PMCID: PMC3988671 DOI: 10.4137/cmwh.s10353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/26/2013] [Accepted: 12/30/2013] [Indexed: 12/28/2022]
Abstract
Human Immunodeficiency Virus (HIV) is a retrovirus that can result in rare opportunistic infections occurring in humans. The onset of these infections is known as Acquired Immune Deficiency Syndrome (AIDS). Sexual transmission is responsible for the majority of infections 1, resulting in transmission of HIV due to infected semen or vaginal and cervical secretions containing infected lymphocytes. HIV microbicides are formulations of chemical or biological agents that can be applied to the vagina or rectum with the intention of reducing the acquisition of HIV. Tenofovir is an NRTI that is phosphorylated by adenylate kinase to tenofovir diphosphate, which in turn competes with deoxyadeosine 5’-triphosphate for incorporation into newly synthesized HIV DNA. Once incorporated, tenofovir diphosphate results in chain termination, thus inhibiting viral replication. Tenofovir has been formulated into a range of vaginal formulations, such as rings, tablets gels and films. It has been shown to safe and effective in numerous animal models, while demonstrating safety and acceptability in numerous human trials. The most encouraging results came from the CAPRISA 004 clinical trial which demonstrated that a 1% Tenofovir vaginal gel reduced HIV infection by approximately 39%.
Collapse
Affiliation(s)
- Christopher McConville
- Department of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Peter Boyd
- School of Pharmacy, Medical Biology Centre, Queen's University of Belfast, Belfast, Northern Ireland, UK
| | - Ian Major
- Materials Research Institute, Athlone Institute of Technology, Athlone, Westmeath, Ireland
| |
Collapse
|
33
|
Bruce RD, Altice FL, Friedland GH. Pharmacokinetic drug interactions between drugs of abuse and antiretroviral medications: implications and management for clinical practice. Expert Rev Clin Pharmacol 2014; 1:115-27. [PMID: 24410515 DOI: 10.1586/17512433.1.1.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Substance abuse and HIV/AIDS are two of the most serious, yet treatable diseases worldwide. Global access to HIV treatment continues to expand. In settings where both active illicit drug use and HIV treatment are concurrent, potentional problematic pharmacokinetic drug interactions may arise and complicate therapy. Clinical case series and carefully controlled pharmacokinetic interaction studies have been conducted between only a few drugs of abuse and approved antiretroviral therapies. Important pharmacokinetic drug interactions have been described for benzodiazepines, 3,4-methylenedioxymethamphetamine, methadone and buprenorphine; however, most have not been studied and few well-controlled studies have been conducted to adequately address the clinical implications of these interactions. The metabolism of drugs of abuse, description of the known interactions, and clinical implications and management of these interactions are reviewed. Certain interactions between drugs of abuse and antiretroviral therapies are known and others are likely based upon shared metabolic pathways. These may result in important clinical consequences. To optimize care, clinicians must be alert, knowledgeable about known and possible interactions and equipped to clinically manage the medical consequences. Moreover, there is considerable need for carefully controlled studies in this important and emerging area.
Collapse
Affiliation(s)
- R Douglas Bruce
- Yale University AIDS Program, 135 College Street, Suite 323, New Haven, CT 06511, USA.
| | | | | |
Collapse
|
34
|
De Clercq E. Potential of acyclic nucleoside phosphonates in the treatment of DNA virus and retrovirus infections. Expert Rev Anti Infect Ther 2014; 1:21-43. [PMID: 15482100 DOI: 10.1586/14787210.1.1.21] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The acyclic nucleoside phosphonates [HPMPC: cidofovir, Vistide; PMEA: adefovir dipivoxil, Hepsera; and PMPA: tenofovir, Viread] have proven to be effective in vitro (cell culture systems) and in vivo (animal models and clinical studies) against a wide variety of DNA virus and retrovirus infections, for example, cidofovir against herpesvirus [herpes simplex virus type 1 and 2, varicella-zoster virus, cytomegalovirus, Epstein-Barr virus, human herpesvirus type 6, 7 and 8), polyoma-, papilloma-, adeno- and poxvirus (variola virus, cowpox virus, vaccinia virus, molluscum contagiosum virus and orf) infections; adefovir against herpesvirus, hepadnavirus [human hepatitis B virus] and retrovirus [HIV type-1 and 2, simian immunodeficiency virus and feline immunodeficiency virus] infections; and tenofovir against both hepadna- and retrovirus infections. Cidofovir has been officially approved for the treatment of cytomegalovirus retinitis in AIDS patients, tenofovir disoproxil fumarate (Viread) for the treatment of HIV infections (i.e., AIDS) and adefovir dipivoxil for the treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Eric De Clercq
- Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
35
|
Bruce RD, Moody DE, Altice FL, Gourevitch MN, Friedland GH. A review of pharmacological interactions between HIV or hepatitis C virus medications and opioid agonist therapy: implications and management for clinical practice. Expert Rev Clin Pharmacol 2013; 6:249-69. [PMID: 23656339 DOI: 10.1586/ecp.13.18] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Global access to opioid agonist therapy and HIV/hepatitis C virus (HCV) treatment is expanding but when used concurrently, problematic pharmacokinetic and pharmacodynamic interactions may occur. Articles published from 1966 to 2012 in Medline were reviewed using the following keywords: HIV, AIDS, HIV therapy, HCV, HCV therapy, antiretroviral therapy, highly active antiretroviral therapy, drug interactions, methadone and buprenorphine. In addition, a review of abstracts from national and international meetings and conference proceedings was conducted; selected reports were reviewed as well. The metabolism of both opioid and antiretroviral therapies, description of their known interactions and clinical implications and management of these interactions were reviewed. Important pharmacokinetic and pharmacodynamic drug interactions affecting either methadone or HIV medications have been demonstrated within each class of antiretroviral agents. Drug interactions between methadone, buprenorphine and HIV medications are known and may have important clinical consequences. Clinicians must be alert to these interactions and have a basic knowledge regarding their management.
Collapse
|
36
|
Kearney BP, Sayre JR, Flaherty JF, Chen SS, Kaul S, Cheng AK. Drug-Drug and Drug-Food Interactions Between Tenofovir Disoproxil Fumarate and Didanosine. J Clin Pharmacol 2013; 45:1360-7. [PMID: 16291710 DOI: 10.1177/0091270005281351] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The drug-drug and drug-food interactions between tenofovir DF and didanosine EC were evaluated in 2 pharmacokinetic studies in healthy adult subjects. When 400 mg was dosed with tenofovir DF, mean didanosine AUC was increased by 44% to 60% following fasted or fed administration. Staggered coadministration (2 hour, fasted) of a reduced didanosine dose of 250 mg resulted in equivalent didanosine exposure, while simultaneous administration with tenofovir DF in the fasted and fed state resulted in didanosine AUCs similar to that of the reference treatment of 400 mg alone in the fasted state. These data indicate that a dose reduction of didanosine is warranted when it is used with tenofovir DF. The drug-drug-food interaction of didanosine may offer more flexible dosing of didanosine EC when it is used with tenofovir DF. Patients receiving tenofovir DF and didanosine together should be carefully monitored for safety and efficacy.
Collapse
Affiliation(s)
- Brian P Kearney
- Gilead Sciences, Inc, 333 Lakeside Drive, Foster City, CA 94404, USA
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Compared to subcutaneous tenofovir, oral tenofovir disoproxyl fumarate administration preferentially concentrates the drug into gut-associated lymphoid cells in simian immunodeficiency virus-infected macaques. Antimicrob Agents Chemother 2012; 56:4980-4. [PMID: 22777046 DOI: 10.1128/aac.01095-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To compare tissue-based pharmacokinetics and efficacy of oral tenofovir disoproxyl fumarate (TDF) versus subcutaneous tenofovir (TFV), macaques were treated for 2 weeks starting 1 week after simian immunodeficiency virus inoculation. Despite lower plasma TFV levels in the oral TDF arm, similar TFV diphosphate levels and antiviral activities were measured in lymphoid cells of most tissues. In intestinal tissues, however, oral TDF resulted in higher active drug levels, associated with lower virus levels and better immune preservation.
Collapse
|
39
|
Fang J, Jadhav PR. From in vitro EC50 to in vivo dose–response for antiretrovirals using an HIV disease model. Part II: Application to drug development. J Pharmacokinet Pharmacodyn 2012; 39:369-81. [DOI: 10.1007/s10928-012-9257-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
|
40
|
From in vitro EC50 to in vivo dose–response for antiretrovirals using an HIV disease model. Part I: A framework. J Pharmacokinet Pharmacodyn 2012; 39:357-68. [DOI: 10.1007/s10928-012-9255-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/18/2012] [Indexed: 01/30/2023]
|
41
|
Van Rompay KKA, Jayashankar K. Animal models of HIV transmission through breastfeeding and pediatric HIV infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 743:89-108. [PMID: 22454344 DOI: 10.1007/978-1-4614-2251-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
42
|
Low cerebrospinal fluid concentrations of the nucleotide HIV reverse transcriptase inhibitor, tenofovir. J Acquir Immune Defic Syndr 2012; 59:376-81. [PMID: 22217676 DOI: 10.1097/qai.0b013e318247ec54] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tenofovir is a nucleotide HIV reverse transcriptase inhibitor whose chemical properties suggest that it may not penetrate into the central nervous system in therapeutic concentrations. The study's objective was to determine tenofovir's penetration into cerebrospinal fluid (CSF). METHODS CNS HIV Antiretroviral Therapy Effects Research is a multicenter observational study to determine the effects of antiretroviral therapy on HIV-associated neurological disease. Single random plasma and CSF samples were drawn within an hour of each other from subjects taking tenofovir between October 2003 and March 2007. All samples were assayed by mass spectrometry with a detection limit of 0.9 ng/mL. RESULTS One hundred eighty-three participants (age 44 ± 8 years; 83 ± 32 kg; 33 females; CSF protein 44 ± 16 mg/dL) had plasma and CSF samples drawn 12.2 ± 6.9 and 11 ± 7.8 hours post dose, respectively. Median plasma and CSF tenofovir concentrations were 96 ng/mL [interquartile range (IQR) 47-153 ng/mL] and 5.5 ng/mL (IQR 2.7-11.3 ng/mL), respectively. Thirty-four of 231 plasma (14.7%) and 9 of 77 CSF samples (11.7%) were below detection. CSF to plasma concentration ratio from paired samples was 0.057 (IQR 0.03-0.1; n = 38). Median CSF to wild-type 50% inhibitory concentration ratio was 0.48 (IQR 0.24-0.98). Seventy-seven percent of CSF concentrations were below the tenofovir wild-type 50% inhibitory concentration. More subjects had detectable CSF HIV with lower (≤ 7 ng/mL) versus higher (>7 ng/mL) CSF tenofovir concentrations (29% versus 9%; P = 0.05). CONCLUSIONS Tenofovir concentrations in the CSF are only 5% of plasma concentrations, suggesting limited transfer into the CSF, and possibly active transport out of the CSF. CSF tenofovir concentrations may not effectively inhibit viral replication in the CSF.
Collapse
|
43
|
Lu C, Jia Y, Yang J, Song Y, Liu W, Ding Y, Sun X, Wen A. Relative Bioavailability Study of a Novel Prodrug of Tenofovir, Tenofovir Dipivoxil Fumarate, in Healthy Male Fasted Volunteers. Clin Drug Investig 2012; 32:333-8. [DOI: 10.2165/11599910-000000000-00000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Patel N, Miller CD. New option for management of HIV-1 infection in treatment-naive patients: once-daily, fixed-dose combination of rilpivirine-emtricitabine-tenofovir. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2012; 4:61-71. [PMID: 22570576 PMCID: PMC3346062 DOI: 10.2147/hiv.s25149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fixed-dose combination tablets have become an important therapy option for patients infected with the human immunodeficiency virus. Fixed-dose combination rilpivirine-tenofovir-emtricitabine is a recently approved therapy option that has been extensively studied within the treatment-naïve population. When compared with efavirenz-based therapy, improved tolerability with rilpivirine-based therapy was balanced by higher rates of virologic failure to provide similar overall efficacy rates within the intention-to-treat analysis. As a result, providers will need to balance the potential for improved tolerability with fixed-dose combination rilpivirine-tenofovir-emtricitabine against a higher potential for virologic failure, particularly among patients with baseline viral loads above 100,000 copies/mL. Current treatment guidelines have recommended that fixed-dose combination rilpivirine-tenofovir-emtricitabine be an alternative therapy option for treatment-naïve patients and advise caution in those patients with high viral loads at baseline. Similar to other non-nucleoside reverse transcriptase inhibitor-based regimens, there are a number of drug interaction concerns with fixed-dose combination rilpivirine-tenofovir-emtricitabine that will necessitate monitoring and, in some cases, appropriate management. Additionally, the emergence of drug resistance to fixed-dose combination rilpivirine-tenofovir-emtricitabine has been well documented in clinical studies and close attention will be necessary in order to protect current and future therapy options. Overall, fixed-dose combination rilpivirine-tenofovir-emtricitabine is poised to provide an important therapy option for patients when appropriately applied.
Collapse
Affiliation(s)
- Nimish Patel
- Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | | |
Collapse
|
45
|
Van Rompay KK. The use of nonhuman primate models of HIV infection for the evaluation of antiviral strategies. AIDS Res Hum Retroviruses 2012; 28:16-35. [PMID: 21902451 DOI: 10.1089/aid.2011.0234] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Several nonhuman primate models are used in HIV/AIDS research. In contrast to natural host models, infection of macaques with virulent simian immunodeficiency virus (SIV) isolates results in a disease (simian AIDS) that closely resembles HIV infection and AIDS. Although there is no perfect animal model, and each of the available models has its limitations, a carefully designed study allows experimental approaches that are not feasible in humans, but that can provide better insights in disease pathogenesis and proof-of-concept of novel intervention strategies. In the early years of the HIV pandemic, nonhuman primate models played a minor role in the development of antiviral strategies. Since then, a better understanding of the disease and the development of better compounds and assays to monitor antiviral effects have increased the usefulness and relevance of these animal models in the preclinical development of HIV vaccines, microbicides, and antiretroviral drugs. Several strategies that were first discovered to have efficacy in nonhuman primate models are now increasingly used in humans. Recent trends include the use of nonhuman primate models to explore strategies that could reduce viral reservoirs and, ultimately, attempt to cure infection. Ongoing comparison of results obtained in nonhuman primate models with those observed in human studies will lead to further validation and improvement of these animal models so they can continue to advance our scientific knowledge and guide clinical trials.
Collapse
Affiliation(s)
- Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
46
|
Ray AS, Hostetler KY. Application of kinase bypass strategies to nucleoside antivirals. Antiviral Res 2011; 92:277-91. [PMID: 21878354 DOI: 10.1016/j.antiviral.2011.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 12/19/2022]
Abstract
Nucleoside and nucleotide analogs have served as the cornerstones of antiviral therapy for many viruses. However, the requirement for intracellular activation and side-effects caused by distribution to off-target sites of toxicity still limit the efficacy of the current generation of drugs. Kinase bypass strategies, where phosphorylated nucleosides are delivered directly into cells, thereby, removing the requirement for enzyme catalyzed phosphorylation steps, have already changed the face of antiviral therapy in the form of the acyclic nucleoside phosphonates, cidofovir, adefovir (given orally as its dipivoxil prodrug) and tenofovir (given orally as its disoproxil prodrug), currently used clinically. These strategies hold further promise to advance the field of antiviral therapy with at least 10 kinase bypass and tissue targeted prodrugs, representing seven distinct prodrug classes, currently in clinical trials. This article reviews the history of kinase bypass strategies applied to nucleoside antivirals and the evolution of different tissue targeted prodrug strategies, highlighting clinically relevant examples.
Collapse
Affiliation(s)
- Adrian S Ray
- Gilead Sciences, Inc., Foster City, CA 94404, USA.
| | | |
Collapse
|
47
|
Al-Rajab AJ, Sabourin L, Chapman R, Lapen DR, Topp E. Fate of the antiretroviral drug tenofovir in agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:5559-5564. [PMID: 20800877 DOI: 10.1016/j.scitotenv.2010.07.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/06/2010] [Accepted: 07/28/2010] [Indexed: 05/29/2023]
Abstract
Tenofovir (9-(R)-(2-phosphonylmethoxypropyl)-adenine) is an antiretroviral drug widely used for the treatment of human immunodeficiency virus (HIV-1) and Hepatitis B virus (HBV) infections. Tenofovir is extensively and rapidly excreted unchanged in the urine. In the expectation that tenofovir could potentially reach agricultural lands through the application of municipal biosolids or wastewater, and in the absence of any environmental fate data, we evaluated its persistence in selected agricultural soils. Less than 10% of [adenine-8-(14)C]-tenofovir added to soils varying widely in texture (sand, loam, clay loam) was mineralized in a 2-month incubation under laboratory conditions. Tenofovir was less readily extractable from clay soils than from a loam or a sandy loam soil. Radioactive residues of tenofovir were removed from the soil extractable fraction with DT(50)s ranging from 24±2 to 67+22days (first order kinetic model) or 44+9 to 127+55days (zero order model). No extractable transformation products were detectable by HPLC. Tenofovir mineralization in the loam soil increased with temperature (range 4°C to 30°C), and did not occur in autoclaved soil, suggesting a microbial basis. Mineralization rates increased with soil moisture content, ranging from air-dried to saturated. In summary, tenofovir was relatively persistent in soils, there were no extractable transformation products detected, and the response of [adenine-8-(14)C]-tenofovir mineralization to soil temperature and heat sterilization indicated that the molecule was biodegraded by aerobic microorganisms. Sorption isotherms with dewatered biosolids suggested that tenofovir residues could potentially partition into the particulate fraction during sewage treatment.
Collapse
|
48
|
Assessment of the role of renal organic anion transporters in drug-induced nephrotoxicity. Toxins (Basel) 2010; 2:2055-82. [PMID: 22069672 PMCID: PMC3153278 DOI: 10.3390/toxins2082055] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 01/09/2023] Open
Abstract
In the present review we have attempted to assess the involvement of the organic anion transporters OAT1, OAT2, OAT3, and OAT4, belonging to the SLC22 family of polyspecific carriers, in drug-induced renal damage in humans. We have focused on drugs with widely recognized nephrotoxic potential, which have previously been reported to interact with OAT family members, and whose underlying pathogenic mechanism suggests the participation of tubular transport. Thus, only compounds generally believed to cause kidney injury either by means of direct tubular toxicity or crystal nephropathy have been considered. For each drug, or class of agents, the evidence for actual transport mediated by individual OATs under in vivo conditions is discussed. We have then examined their role in the context of other carriers present in the renal proximal tubule sharing certain substrates with OATs, as these are critical determinants of the overall contribution of OAT-dependent transport to intracellular accumulation and transepithelial drug secretion, and thus the impact it may have in drug-induced nephrotoxicity.
Collapse
|
49
|
Katritzky AR, Hall CD, El-Gendy BEDM, Draghici B. Tautomerism in drug discovery. J Comput Aided Mol Des 2010; 24:475-84. [PMID: 20490619 DOI: 10.1007/s10822-010-9359-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/17/2010] [Indexed: 12/26/2022]
|
50
|
Di Mascio M, Srinivasula S, Bhattacharjee A, Cheng L, Martiniova L, Herscovitch P, Lertora J, Kiesewetter D. Antiretroviral tissue kinetics: in vivo imaging using positron emission tomography. Antimicrob Agents Chemother 2009; 53:4086-95. [PMID: 19667288 PMCID: PMC2764156 DOI: 10.1128/aac.00419-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 05/28/2009] [Accepted: 07/31/2009] [Indexed: 11/20/2022] Open
Abstract
Our current knowledge on the antiviral efficacy, dosing, and toxicity of available highly active antiretroviral therapy regimens is mostly derived from plasma or blood kinetics of anti-human immunodeficiency virus (anti-HIV) drugs. However, the blood comprises only 2% of the total target cells in the body. Tissue drug levels may differ substantially from corresponding plasma levels, and drug distribution processes may be characterized by high intertissue variability, leading to suboptimal target site concentrations and the potential risk for therapeutic failures. Positron emission tomography has greatly expanded the scope of the pharmacokinetic measurements that can be performed noninvasively in animal models or humans. We have prepared [18F]FPMPA, a fluorine-18-radiolabeled analogue of tenofovir, to study antiretroviral tissue kinetics in vivo noninvasively and tested the imaging probe in rats. The biodistribution of the fluorine-18 analogue closely follows that of nonfluorinated tenofovir. Compared to that in the blood, the levels of penetration of the antiretroviral drug were found to be significantly reduced in the spleen and submandibular lymph nodes (approximately 2-fold), in the mesenteric lymph nodes and the testes (approximately 4-fold), and in the brain compartment (approximately 25-fold). Intersubject variability of the trough drug concentration (measured at 120 min) in certain tissues, like the colon (coefficient of variation, >100%), is not reflected by the intersubject variability in the blood compartment (coefficient of variation, 24%). Positron emission tomography imaging of the fluorine-18 analogue revealed the accumulation of the antiretroviral drug in the cortex of the kidneys, a potential correlate of tenofovir-induced nephrotoxicity observed in HIV-1-infected treated patients. Thus, [18F]FPMPA is a promising radiotracer for evaluation of tenofovir biodistribution under carefully controlled drug administration protocols.
Collapse
Affiliation(s)
- Michele Di Mascio
- Division of Clinical Research, Biostatistics Research Branch, National Institue of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|