1
|
Dasgupta P, Vinil K, Kanaujia SP. Evolutionary trends indicate a coherent organization of sap operons. Res Microbiol 2024; 175:104228. [PMID: 38972435 DOI: 10.1016/j.resmic.2024.104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Human hosts possess a complex network of immune responses against microbial pathogens. The production of antimicrobial peptides (AMPs), which target the pathogen cell membranes and inhibit them from inhabiting the hosts, is one such mechanism. However, pathogens have evolved systems that encounter these host-produced AMPs. The Sap (sensitivity to antimicrobial peptides) transporter uptakes AMPs inside the microbial cell and proteolytically degrades them. The Sap transporters comprise five subunits encoded by genes in an operon. Despite its ubiquitous nature, its subunits are not found to be in tandem with many organisms. In this study, a total of 421 Sap transporters were analyzed for their operonic arrangement. Out of 421, a total of 352 operons were found to be in consensus arrangement, while the remaining 69 show a varying arrangement of genes. The analysis of the intergenic distance between the subunits of the sap operon suggests a signature pattern with sapAB (-4), sapBC (-14), sapCD (-1), and sapDF (-4 to 1). An evolutionary analysis of these operons favors the consensus arrangement of the Sap transporter systems, substantiating its prevalence in most of the Gram-negative pathogens. Overall, this study provides insight into bacterial evolution, favoring the maintenance of the genetic organization of essential pathogenicity factors.
Collapse
Affiliation(s)
- Pratik Dasgupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Kavya Vinil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
2
|
Salvaterra Pasquini JP, Queiroz PA, Rodrigues do Amaral PH, da Silva TC, de Souza Bonfim Mendonça P, Vandresen F, Carvalho Ceolis JP, de Lima Scodro RB, Caleffi-Ferracioli KR, Cardoso RF, Dias Siqueira VL. Polymyxin B adjuvants against polymyxin B- and carbapenem-resistant Gram-negative bacteria. Future Microbiol 2024; 19:1445-1454. [PMID: 39258398 PMCID: PMC11492663 DOI: 10.1080/17460913.2024.2398312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Aim: Polymyxin B (PMB) is one of the few therapeutic options for treating infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). However, the emergence of PMB-resistant CR-GNB strains has prompted the exploration of antibiotic adjuvants as potential therapeutic avenues. Thus, this study evaluates the potential of 3,5-dinitrobenzoic acid derivatives (DNH01, DNH11, DNH13 and DNH20) and isoniazid-N-acylhydrazones (INZ1-7, INZ9 and INZ11) as adjuvants to enhance PMB efficacy against CR-GNB.Materials & methods: MIC, MBC and drug combination assays were conducted using multidrug-resistant clinical isolates of Enterobacterales and Acinetobacter baumannii. In addition, the effects of PMB and PMB + DNH derivatives were assessed through flow cytometry and scanning electron microscopy (SEM).Results: DNH01, DNH11 and DNH20, unlike the INH-acylhydrazones, significantly restored PMB activity (MIC ≤ 2 μg/ml) in 80% of the tested isolates. Flow cytometry and SEM assays confirmed that DNH derivatives rescued the activity of PMB, yielding results comparable to those expected for PMB alone but at 256-fold lower concentrations.Conclusion: These findings suggest DNH derivatives hold substantial promise as PMB adjuvants to combat PMB-resistant CR-GNB infections.
Collapse
Affiliation(s)
| | - Paula Assis Queiroz
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Maringa, Parana, Brazil
| | | | - Thalita Camilo da Silva
- Department of Clinical Analysis & Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | | | - Fábio Vandresen
- Department of Chemistry, Federal Technological University of Parana, Londrina, Parana, Brazil
| | | | - Regiane Bertin de Lima Scodro
- Postgraduate Program in Health Sciences, State University of Maringa, Parana, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Vera Lúcia Dias Siqueira
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Maringa, Parana, Brazil
- Department of Clinical Analysis & Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| |
Collapse
|
3
|
Bray AS, Zafar MA. Deciphering the gastrointestinal carriage of Klebsiella pneumoniae. Infect Immun 2024; 92:e0048223. [PMID: 38597634 PMCID: PMC11384780 DOI: 10.1128/iai.00482-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Bacterial infections pose a significant global health threat, accounting for an estimated 7.7 million deaths. Hospital outbreaks driven by multi-drug-resistant pathogens, notably Klebsiella pneumoniae (K. pneumoniae), are of grave concern. This opportunistic pathogen causes pneumonia, urinary tract infections, and bacteremia, particularly in immunocompromised individuals. The rise of hypervirulent K. pneumoniae adds complexity, as it increasingly infects healthy individuals. Recent epidemiological data suggest that asymptomatic gastrointestinal carriage serves as a reservoir for infections in the same individual and allows for host-to-host transmission via the fecal-oral route. This review focuses on K. pneumoniae's gastrointestinal colonization, delving into epidemiological evidence, current animal models, molecular colonization mechanisms, and the protective role of the resident gut microbiota. Moreover, the review sheds light on in vivo high-throughput approaches that have been crucial for identifying K. pneumoniae factors in gut colonization. This comprehensive exploration aims to enhance our understanding of K. pneumoniae gut pathogenesis, guiding future intervention and prevention strategies.
Collapse
Affiliation(s)
- Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
4
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
5
|
Rivera K, Tanaka KJ, Buechel ER, Origel O, Harrison A, Mason KM, Pinkett HW. Antimicrobial Peptide Recognition Motif of the Substrate Binding Protein SapA from Nontypeable Haemophilus influenzae. Biochemistry 2024; 63:294-311. [PMID: 38189237 PMCID: PMC10851439 DOI: 10.1021/acs.biochem.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen associated with respiratory diseases, including otitis media and exacerbations of chronic obstructive pulmonary disease. NTHi exhibits resistance to killing by host antimicrobial peptides (AMPs) mediated by SapA, the substrate binding protein of the sensitivity to antimicrobial peptides (Sap) transporter. However, the specific mechanisms by which SapA selectively binds various AMPs such as defensins and cathelicidin are unknown. In this study, we report mutational analyses of both defensin AMPs and the SapA binding pocket to define the specificity of AMP recognition. Bactericidal assays revealed that NTHi lacking SapA are more susceptible to human beta defensins and LL-37, while remaining highly resistant to a human alpha defensin. In contrast to homologues, our research underscores the distinct specificity of NTHi SapA, which selectively recognizes and binds to peptides containing the charged-hydrophobic motif PKE and RRY. These findings provide valuable insight into the divergence of SapA among bacterial species and NTHi SapA's ability to selectively interact with specific AMPs to mediate resistance.
Collapse
Affiliation(s)
- Kristen
G. Rivera
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Kari J. Tanaka
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan R. Buechel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Octavio Origel
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Alistair Harrison
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Kevin M. Mason
- The
Center for Microbial Pathogenesis, The Abigail Wexner Research Institute
at Nationwide Children’s Hospital and College of Medicine,
Department of Pediatrics, The Ohio State
University, Columbus, Ohio 43205, United States
| | - Heather W. Pinkett
- Department
of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Elbaramawi SS, Eissa AG, Noureldin NA, Simons C. Exploring Proteus mirabilis Methionine tRNA Synthetase Active Site: Homology Model Construction, Molecular Dynamics, Pharmacophore and Docking Validation. Pharmaceuticals (Basel) 2023; 16:1263. [PMID: 37765071 PMCID: PMC10535265 DOI: 10.3390/ph16091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, the treatment of Proteus mirabilis infections is considered to be complicated as the organism has become resistant to numerous antibiotic classes. Therefore, new inhibitors should be developed, targeting bacterial molecular functions. Methionine tRNA synthetase (MetRS), a member of the aminoacyl-tRNA synthetase family, is essential for protein biosynthesis offering a promising target for novel antibiotics discovery. In the context of computer-aided drug design (CADD), the current research presents the construction and analysis of a comparative homology model for P. mirabilis MetRS, enabling development of novel inhibitors with greater selectivity. Molecular Operating Environment (MOE) software was used to build a homology model for P. mirabilis MetRS using Escherichia coli MetRS as a template. The model was evaluated, and the active site of the target protein predicted from its sequence using conservation analysis. Molecular dynamic simulations were performed to evaluate the stability of the modeled protein structure. In order to evaluate the predicted active site interactions, methionine (the natural substrate of MetRS) and several inhibitors of bacterial MetRS were docked into the constructed model using MOE. After validation of the model, pharmacophore-based virtual screening for a systemically prepared dataset of compounds was performed to prove the feasibility of the proposed model, identifying possible parent compounds for further development of MetRS inhibitors against P. mirabilis.
Collapse
Affiliation(s)
- Samar S. Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (S.S.E.); (A.G.E.); (N.A.N.)
| | - Ahmed G. Eissa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (S.S.E.); (A.G.E.); (N.A.N.)
| | - Nada A. Noureldin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (S.S.E.); (A.G.E.); (N.A.N.)
| | - Claire Simons
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK
| |
Collapse
|
7
|
Clarke OE, Pelling H, Bennett V, Matsumoto T, Gregory GE, Nzakizwanayo J, Slate AJ, Preston A, Laabei M, Bock LJ, Wand ME, Ikebukuro K, Gebhard S, Sutton JM, Jones BV. Lipopolysaccharide structure modulates cationic biocide susceptibility and crystalline biofilm formation in Proteus mirabilis. Front Microbiol 2023; 14:1150625. [PMID: 37089543 PMCID: PMC10113676 DOI: 10.3389/fmicb.2023.1150625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Chlorhexidine (CHD) is a cationic biocide used ubiquitously in healthcare settings. Proteus mirabilis, an important pathogen of the catheterized urinary tract, and isolates of this species are often described as "resistant" to CHD-containing products used for catheter infection control. To identify the mechanisms underlying reduced CHD susceptibility in P. mirabilis, we subjected the CHD tolerant clinical isolate RS47 to random transposon mutagenesis and screened for mutants with reduced CHD minimum inhibitory concentrations (MICs). One mutant recovered from these screens (designated RS47-2) exhibited ~ 8-fold reduction in CHD MIC. Complete genome sequencing of RS47-2 showed a single mini-Tn5 insert in the waaC gene involved in lipopolysaccharide (LPS) inner core biosynthesis. Phenotypic screening of RS47-2 revealed a significant increase in cell surface hydrophobicity and serum susceptibility compared to the wildtype, and confirmed defects in LPS production congruent with waaC inactivation. Disruption of waaC was also associated with increased susceptibility to a range of other cationic biocides but did not affect susceptibility to antibiotics tested. Complementation studies showed that repression of smvA efflux activity in RS47-2 further increased susceptibility to CHD and other cationic biocides, reducing CHD MICs to values comparable with the most CHD susceptible isolates characterized. The formation of crystalline biofilms and blockage of urethral catheters was also significantly attenuated in RS47-2. Taken together, these data show that aspects of LPS structure and upregulation of the smvA efflux system function in synergy to modulate susceptibility to CHD and other cationic biocides, and that LPS structure is also an important factor in P. mirabilis crystalline biofilm formation.
Collapse
Affiliation(s)
- O. E. Clarke
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - H. Pelling
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - V. Bennett
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - T. Matsumoto
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - G. E. Gregory
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - J. Nzakizwanayo
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - A. J. Slate
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - A. Preston
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - M. Laabei
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - L. J. Bock
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - M. E. Wand
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - K. Ikebukuro
- Department of Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - S. Gebhard
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - J. M. Sutton
- United Kingdom Health Security Agency, Salisbury, United Kingdom
| | - B. V. Jones
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
8
|
Herout R, Khoddami S, Moskalev I, Reicherz A, Chew BH, Armbruster CE, Lange D. Role of Bacterial Surface Components in the Pathogenicity of Proteus mirabilis in a Murine Model of Catheter-Associated Urinary Tract Infection. Pathogens 2023; 12:pathogens12040509. [PMID: 37111395 PMCID: PMC10143806 DOI: 10.3390/pathogens12040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Proteus mirabilis (PM) is a Gram-negative, rod-shaped bacterium that causes catheter-associated urinary tract infections (CAUTIs). The specific roles of bacterial surface components (BSCs) in PM pathogenicity and CAUTIs remain unknown. To address this knowledge gap, we utilized relevant in vitro adhesion/invasion models and a well-established murine model of CAUTI to assess the ability of wildtype (WT) and seven mutant strains (MSs) of PM with deficiencies in various genes encoding BSCs to undergo the infectious process (including adhesion to catheters) in both model systems. Overall, MSs adhesion to catheters and the different cell types tested was significantly reduced compared to WT, while no invasion of cells was evident at 24 h. In vivo, WT showed a greater number of planktonic (urine) bacteria, bacteria adherent to catheters, and bacteria adherent to/invading bladder tissue when compared to the MSs. Bacterial counts in urine for PMI3191 and waaE mutants were lower than that for WT and other MSs. The complementation of mutated BSC genes resulting in the biggest defects restored the invasion phenotype both in vitro and in vivo. BSCs play a critical role at various steps in the pathogenicity of PM including adhesion to indwelling medical devices and adhesion/invasion of urinary tissue in vivo.
Collapse
Affiliation(s)
- Roman Herout
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
- Department of Urology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sara Khoddami
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Igor Moskalev
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Alina Reicherz
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
- Department of Urology, Marien Hospital Herne, Ruhr-University of Bochum, 44649 Herne, Germany
| | - Ben H Chew
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Chelsie E Armbruster
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14263, USA
| | - Dirk Lange
- The Stone Centre at Vancouver General Hospital, Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
9
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
10
|
Djebala S, Evrard J, Gregoire F, Bayrou C, Gille L, Eppe J, Casalta H, Frisée V, Moula N, Sartelet A, Thiry D, Bossaert P. Antimicrobial Susceptibility Profile of Several Bacteria Species Identified in the Peritoneal Exudate of Cows Affected by Parietal Fibrinous Peritonitis after Caesarean Section. Vet Sci 2021; 8:vetsci8120295. [PMID: 34941822 PMCID: PMC8707031 DOI: 10.3390/vetsci8120295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to identify the species and antimicrobial susceptibility of bacteria involved in parietal fibrinous peritonitis (PFP). We studied 156 peritoneal fluid samples from cows presenting PFP after caesarean section. Bacteria were cultured in selective media and their antimicrobial susceptibility was tested by disk diffusion assay. Bacteria were isolated in the majority (129/156; 83%) of samples. The majority (82/129; 63%) of positive samples contained one dominant species, while two or more species were cultured in 47/129 (36%) samples. Trueperella pyogenes (T. Pyogenes) (107 strains) was the most identified species, followed by Escherichia coli (E. coli) (38 strains), Proteus mirabilis (P. mirabilis) (6 strains), and Clostridium perfringens (C. perfringens) (6 strains). Several other species were sporadically identified. Antimicrobial susceptibility was tested in 59/185 strains, predominantly E. coli (38 strains) and P. mirabilis (6 strains). Antibiotic resistance, including resistance to molecules of critical importance, was commonly observed; strains were classified as weakly drug resistant (22/59; 37%), multidrug resistant (24/59; 41%), extensively drug resistant (12/59; 20%), or pan-drug resistant (1/59; 2%). In conclusion, extensive antibiotic resistance in the isolated germs might contribute to treatment failure. Ideally, antimicrobial therapy of PFP should be based upon bacterial culture and susceptibility testing.
Collapse
Affiliation(s)
- Salem Djebala
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
- Correspondence: ; Tel.: +32-493-333-591
| | - Julien Evrard
- Gestion et Prévention de Santé, Regional Association of Health and Animal Identification, Allée des Artisans 2, 5590 Ciney, Belgium; (J.E.); (F.G.)
| | - Fabien Gregoire
- Gestion et Prévention de Santé, Regional Association of Health and Animal Identification, Allée des Artisans 2, 5590 Ciney, Belgium; (J.E.); (F.G.)
| | - Calixte Bayrou
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Linde Gille
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Justine Eppe
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Hélène Casalta
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Vincent Frisée
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Nassim Moula
- Department of Veterinary Management of Animal Resources, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animal & Health (FARAH), University of Liège, 4000 Liège, Belgium;
- GIGA—Animal Facilities—ULiège—B 34, 4000 Liège, Belgium
| | - Arnaud Sartelet
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| | - Damien Thiry
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue Cureghem 6, 4000 Liège, Belgium;
| | - Philippe Bossaert
- Clinical Department of Production Animals, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium; (C.B.); (L.G.); (J.E.); (H.C.); (V.F.); (A.S.); (P.B.)
| |
Collapse
|
11
|
Gogry FA, Siddiqui MT, Sultan I, Haq QMR. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front Med (Lausanne) 2021; 8:677720. [PMID: 34476235 PMCID: PMC8406936 DOI: 10.3389/fmed.2021.677720] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/09/2021] [Indexed: 01/07/2023] Open
Abstract
Colistin regained global interest as a consequence of the rising prevalence of multidrug-resistant Gram-negative Enterobacteriaceae. In parallel, colistin-resistant bacteria emerged in response to the unregulated use of this antibiotic. However, some Gram-negative species are intrinsically resistant to colistin activity, such as Neisseria meningitides, Burkholderia species, and Proteus mirabilis. Most identified colistin resistance usually involves modulation of lipid A that decreases or removes early charge-based interaction with colistin through up-regulation of multistep capsular polysaccharide expression. The membrane modifications occur by the addition of cationic phosphoethanolamine (pEtN) or 4-amino-l-arabinose on lipid A that results in decrease in the negative charge on the bacterial surface. Therefore, electrostatic interaction between polycationic colistin and lipopolysaccharide (LPS) is halted. It has been reported that these modifications on the bacterial surface occur due to overexpression of chromosomally mediated two-component system genes (PmrAB and PhoPQ) and mutation in lipid A biosynthesis genes that result in loss of the ability to produce lipid A and consequently LPS chain, thereafter recently identified variants of plasmid-borne genes (mcr-1 to mcr-10). It was hypothesized that mcr genes derived from intrinsically resistant environmental bacteria that carried chromosomal pmrC gene, a part of the pmrCAB operon, code three proteins viz. pEtN response regulator PmrA, sensor kinase protein PmrAB, and phosphotransferase PmrC. These plasmid-borne mcr genes become a serious concern as they assist in the dissemination of colistin resistance to other pathogenic bacteria. This review presents the progress of multiple strategies of colistin resistance mechanisms in bacteria, mainly focusing on surface changes of the outer membrane LPS structure and other resistance genetic determinants. New handier and versatile methods have been discussed for rapid detection of colistin resistance determinants and the latest approaches to revert colistin resistance that include the use of new drugs, drug combinations and inhibitors. Indeed, more investigations are required to identify the exact role of different colistin resistance determinants that will aid in developing new less toxic and potent drugs to treat bacterial infections. Therefore, colistin resistance should be considered a severe medical issue requiring multisectoral research with proper surveillance and suitable monitoring systems to report the dissemination rate of these resistant genes.
Collapse
Affiliation(s)
| | | | - Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | |
Collapse
|
12
|
Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chem Rev 2021; 122:15767-15821. [PMID: 34286971 DOI: 10.1021/acs.chemrev.0c01321] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lipopolysaccharide (LPS) is a crucial constituent of the outer membrane of most Gram-negative bacteria, playing a fundamental role in the protection of bacteria from environmental stress factors, in drug resistance, in pathogenesis, and in symbiosis. During the last decades, LPS has been thoroughly dissected, and massive information on this fascinating biomolecule is now available. In this Review, we will give the reader a third millennium update of the current knowledge of LPS with key information on the inherent peculiar carbohydrate chemistry due to often puzzling sugar residues that are uniquely found on it. Then, we will drive the reader through the complex and multifarious immunological outcomes that any given LPS can raise, which is strictly dependent on its chemical structure. Further, we will argue about issues that still remain unresolved and that would represent the immediate future of LPS research. It is critical to address these points to complete our notions on LPS chemistry, functions, and roles, in turn leading to innovative ways to manipulate the processes involving such a still controversial and intriguing biomolecule.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Katarzyna A Duda
- Research Center Borstel Leibniz Lung Center, Parkallee 4a, 23845 Borstel, Germany
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Cristina De Castro
- Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Agricultural Sciences, University of Naples Federico II, Via Università 96, 80055 Portici, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy.,Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
13
|
Xia J, Ge C, Yao H. Antimicrobial Peptides from Black Soldier Fly ( Hermetia illucens) as Potential Antimicrobial Factors Representing an Alternative to Antibiotics in Livestock Farming. Animals (Basel) 2021; 11:1937. [PMID: 34209689 PMCID: PMC8300228 DOI: 10.3390/ani11071937] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Functional antimicrobial peptides (AMPs) are an important class of effector molecules of innate host immune defense against pathogen invasion. Inability of microorganisms to develop resistance against the majority of AMPs has made them alternatives to antibiotics, contributing to the development of a new generation of antimicrobials. Due to extensive biodiversity, insects are one of the most abundant sources of novel AMPs. Notably, black soldier fly insect (BSF; Hermetia illucens (Diptera: Stratiomyidae)) feeds on decaying substrates and displays a supernormal capacity to survive under adverse conditions in the presence of abundant microorganisms, therefore, BSF is one of the most promising sources for identification of AMPs. However, discovery, functional investigation, and drug development to replace antibiotics with AMPs from Hermetia illucens remain in a preliminary stage. In this review, we provide general information on currently verified AMPs of Hermetia illucens, describe their potential medical value, discuss the mechanism of their synthesis and interactions, and consider the development of bacterial resistance to AMPs in comparison with antibiotics, aiming to provide a candidate for substitution of antibiotics in livestock farming or, to some extent, for blocking the horizontal transfer of resistance genes in the environment, which is beneficial to human and animal welfare.
Collapse
Affiliation(s)
- Jing Xia
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
14
|
Algammal AM, Hashem HR, Alfifi KJ, Hetta HF, Sheraba NS, Ramadan H, El-Tarabili RM. atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antimicrobial resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci Rep 2021; 11:9476. [PMID: 33947875 PMCID: PMC8096940 DOI: 10.1038/s41598-021-88861-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/19/2021] [Indexed: 02/02/2023] Open
Abstract
Proteus mirabilis is a common opportunistic pathogen causing severe illness in humans and animals. To determine the prevalence, antibiogram, biofilm-formation, screening of virulence, and antimicrobial resistance genes in P. mirabilis isolates from ducks; 240 samples were obtained from apparently healthy and diseased ducks from private farms in Port-Said Province, Egypt. The collected samples were examined bacteriologically, and then the recovered isolates were tested for atpD gene sequencing, antimicrobial susceptibility, biofilm-formation, PCR detection of virulence, and antimicrobial resistance genes. The prevalence of P. mirabilis in the examined samples was 14.6% (35/240). The identification of the recovered isolates was confirmed by the atpD gene sequencing, where the tested isolates shared a common ancestor. Besides, 94.3% of P. mirabilis isolates were biofilm producers. The recovered isolates were resistant to penicillins, sulfonamides, β-Lactam-β-lactamase-inhibitor-combinations, tetracyclines, cephalosporins, macrolides, and quinolones. Using PCR, the retrieved strains harbored atpD, ureC, rsbA, and zapA virulence genes with a prevalence of 100%, 100%, 94.3%, and 91.4%, respectively. Moreover, 31.4% (11/35) of the recovered strains were XDR to 8 antimicrobial classes that harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Besides, 22.8% (8/35) of the tested strains were MDR to 3 antimicrobial classes and possessed blaTEM, tetA, and sul1genes. Furthermore, 17.1% (6/35) of the tested strains were MDR to 7 antimicrobial classes and harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Alarmingly, three strains were carbapenem-resistant that exhibited PDR to all the tested 10 antimicrobial classes and shared blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Of them, two strains harbored the blaNDM-1 gene, and one strain carried the blaKPC gene. In brief, to the best of our knowledge, this is the first study demonstrating the emergence of XDR and MDR-P.mirabilis in ducks. Norfloxacin exhibited promising antibacterial activity against the recovered XDR and MDR-P. mirabilis. The emergence of PDR, XDR, and MDR-strains constitutes a threat alarm that indicates the complicated treatment of the infections caused by these superbugs.
Collapse
Affiliation(s)
- Abdelazeem M. Algammal
- grid.33003.330000 0000 9889 5690Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| | - Hany R. Hashem
- grid.411170.20000 0004 0412 4537Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514 Egypt
| | - Khyreyah J. Alfifi
- grid.440760.10000 0004 0419 5685Department of Biology, Faculty of Science, Tabuk University, Tabuk, 7149 Saudi Arabia
| | - Helal F. Hetta
- grid.252487.e0000 0000 8632 679XDepartment of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit, 71515 Egypt
| | - Norhan S. Sheraba
- grid.463319.aVACSERA, the Holding Company for Biological Products and Vaccines, Giza, 12511 Egypt
| | - Hazem Ramadan
- grid.10251.370000000103426662Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Reham M. El-Tarabili
- grid.33003.330000 0000 9889 5690Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522 Egypt
| |
Collapse
|
15
|
Antimicrobial Peptides from Rat-Tailed Maggots of the Drone Fly Eristalis tenax Show Potent Activity against Multidrug-Resistant Gram-Negative Bacteria. Microorganisms 2020; 8:microorganisms8050626. [PMID: 32344933 PMCID: PMC7284870 DOI: 10.3390/microorganisms8050626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
The spread of multidrug-resistant Gram-negative bacteria is an increasing threat to human health, because novel compound classes for the development of antibiotics have not been discovered for decades. Antimicrobial peptides (AMPs) may provide a much-needed breakthrough because these immunity-related defense molecules protect many eukaryotes against Gram-negative pathogens. Recent concepts in evolutionary immunology predict the presence of potent AMPs in insects that have adapted to survive in habitats with extreme microbial contamination. For example, the saprophagous and coprophagous maggots of the drone fly Eristalis tenax (Diptera) can flourish in polluted aquatic habitats, such as sewage tanks and farmyard liquid manure storage pits. We used next-generation sequencing to screen the E. tenax immunity-related transcriptome for AMPs that are synthesized in response to the injection of bacterial lipopolysaccharide. We identified 22 AMPs and selected nine for larger-scale synthesis to test their activity against a broad spectrum of pathogens, including multidrug-resistant Gram-negative bacteria. Two cecropin-like peptides (EtCec1-a and EtCec2-a) and a diptericin-like peptide (EtDip) displayed strong activity against the pathogens, even under simulated physiological conditions, and also achieved a good therapeutic window. Therefore, these AMPs could be used as leads for the development of novel antibiotics.
Collapse
|
16
|
Baindara P, Ghosh AK, Mandal SM. Coevolution of Resistance Against Antimicrobial Peptides. Microb Drug Resist 2020; 26:880-899. [PMID: 32119634 DOI: 10.1089/mdr.2019.0291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ananta K Ghosh
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santi M Mandal
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
17
|
Hirsch R, Wiesner J, Marker A, Pfeifer Y, Bauer A, Hammann PE, Vilcinskas A. Profiling antimicrobial peptides from the medical maggot Lucilia sericata as potential antibiotics for MDR Gram-negative bacteria. J Antimicrob Chemother 2020; 74:96-107. [PMID: 30272195 PMCID: PMC6322280 DOI: 10.1093/jac/dky386] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background The ability of MDR Gram-negative bacteria to evade even antibiotics of last resort is a severe global challenge. The development pipeline for conventional antibiotics cannot address this issue, but antimicrobial peptides (AMPs) offer an alternative solution. Objectives Two insect-derived AMPs (LS-sarcotoxin and LS-stomoxyn) were profiled to assess their suitability for systemic application in humans. Methods The peptides were tested against an extended panel of 114 clinical MDR Gram-negative bacterial isolates followed by time–kill analysis, interaction studies and assays to determine the likelihood of emerging resistance. In further in vitro studies we addressed cytotoxicity, cardiotoxicity and off-target interactions. In addition, an in vivo tolerability and pharmacokinetic study in mice was performed. Results LS-sarcotoxin and LS-stomoxyn showed potent and selective activity against Gram-negative bacteria and no cross-resistance with carbapenems, fluoroquinolones or aminoglycosides. Peptide concentrations of 4 or 8 mg/L inhibited 90% of the clinical MDR isolates of Escherichia coli, Enterobacter cloacae, Acinetobacter baumannii and Salmonella enterica isolates tested. The ‘all-d’ homologues of the peptides displayed markedly reduced activity, indicating a chiral target. Pharmacological profiling revealed a good in vitro therapeutic index, no cytotoxicity or cardiotoxicity, an inconspicuous broad-panel off-target profile, and no acute toxicity in mice at 10 mg/kg. In mouse pharmacokinetic experiments LS-sarcotoxin and LS-stomoxyn plasma levels above the lower limit of quantification (1 and 0.25 mg/mL, respectively) were detected after 5 and 15 min, respectively. Conclusions LS-sarcotoxin and LS-stomoxyn are suitable as lead candidates for the development of novel antibiotics; however, their pharmacokinetic properties need to be improved for systemic administration.
Collapse
Affiliation(s)
- Rolf Hirsch
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
- Present address: Evotec International GmbH, Hamburg, Germany
| | - Jochen Wiesner
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
| | - Alexander Marker
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
| | - Yvonne Pfeifer
- Department 1 – Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Armin Bauer
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
| | - Peter E Hammann
- Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, Frankfurt, Germany
- Present address: Evotec International GmbH, Hamburg, Germany
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Gießen, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Gießen, Germany
- Corresponding author. Tel: +49 641 99 39500; E-mail: orcid.org/0000-0001-8276-4968
| |
Collapse
|
18
|
Hsu CR, Chang IW, Hsieh PF, Lin TL, Liu PY, Huang CH, Li KT, Wang JT. A Novel Role for the Klebsiella pneumoniae Sap (Sensitivity to Antimicrobial Peptides) Transporter in Intestinal Cell Interactions, Innate Immune Responses, Liver Abscess, and Virulence. J Infect Dis 2020; 219:1294-1306. [PMID: 30476200 PMCID: PMC6452313 DOI: 10.1093/infdis/jiy615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022] Open
Abstract
Klebsiella pneumoniae is an important human pathogen causing hospital-acquired and community-acquired infections. Systemic K. pneumoniae infections may be preceded by gastrointestinal colonization, but the basis of this bacterium’s interaction with the intestinal epithelium remains unclear. Here, we report that the K. pneumoniae Sap (sensitivity to antimicrobial peptides) transporter contributes to bacterial–host cell interactions and in vivo virulence. Gene deletion showed that sapA is required for the adherence of a K. pneumoniae blood isolate to intestinal epithelial, lung epithelial, urinary bladder epithelial, and liver cells. The ΔsapA mutant was deficient for translocation across intestinal epithelial monolayers, macrophage interactions, and induction of proinflammatory cytokines. In a mouse gastrointestinal infection model, ΔsapA yielded significantly decreased bacterial loads in liver, spleen and intestine, reduced liver abscess generation, and decreased mortality. These findings offer new insights into the pathogenic interaction of K. pneumoniae with the host gastrointestinal tract to cause systemic infection.
Collapse
Affiliation(s)
- Chun-Ru Hsu
- Department of Medical Research, I-Shou University, Kaohsiung, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - I-Wei Chang
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan.,Department of Pathology, College of Medicine, Taipei Medical University.,Department of Pathology, Taipei Medical University Hospital
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine
| | - Pei-Yin Liu
- Department of Microbiology, National Taiwan University College of Medicine
| | - Chen-Hsiu Huang
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Kun-Tzu Li
- Department of Medical Research, I-Shou University, Kaohsiung, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine.,Internal Medicine, National Taiwan University Hospital, Taipei
| |
Collapse
|
19
|
Tawab A, Akbar N, Hasssan M, Habib F, Ali A, Rahman M, Jabbar A, Rauf W, Iqbal M. Mass spectrometric analysis of lipid A obtained from the lipopolysaccharide ofPasteurella multocida. RSC Adv 2020; 10:30917-30933. [PMID: 35516050 PMCID: PMC9056370 DOI: 10.1039/d0ra05463a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/06/2020] [Indexed: 01/14/2023] Open
Abstract
LC/MS-based variant profiling of lipid A component of endotoxic lipopolysaccharides ofPasteurella multocidatype B:2, a causative agent of haemorrhagic septicaemia in water buffalo and cattle.
Collapse
Affiliation(s)
- Abdul Tawab
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- Department of Biotechnology NIBGE
| | - Noor Akbar
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Mujtaba Hasssan
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Fazale Habib
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Aamir Ali
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Moazur Rahman
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- School of Biological Sciences
| | - Abdul Jabbar
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- Department of Biotechnology
| | - Waqar Rauf
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division
- National Institute for Biotechnology and Genetic Engineering (NIBGE)
- Faisalabad-38000
- Pakistan
- Department of Biotechnology NIBGE
| |
Collapse
|
20
|
Anandan A, Vrielink A. Structure and function of lipid A-modifying enzymes. Ann N Y Acad Sci 2019; 1459:19-37. [PMID: 31553069 DOI: 10.1111/nyas.14244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharides are complex molecules found in the cell envelop of many Gram-negative bacteria. The toxic activity of these molecules has led to the terminology of endotoxins. They provide bacteria with structural integrity and protection from external environmental conditions, and they interact with host signaling receptors to induce host immune responses. Bacteria have evolved enzymes that act to modify lipopolysaccharides, particularly the lipid A region of the molecule, to enable the circumvention of host immune system responses. These modifications include changes to lipopolysaccharide by the addition of positively charged sugars, such as N-Ara4N, and phosphoethanolamine (pEtN). Other modifications include hydroxylation, acylation, and deacylation of fatty acyl chains. We review the two-component regulatory mechanisms for enzymes that carry out these modifications and provide details of the structures of four enzymes (PagP, PagL, pEtN transferases, and ArnT) that modify the lipid A portion of lipopolysaccharides. We focus largely on the three-dimensional structures of these enzymes, which provide an understanding of how their substrate binding and catalytic activities are mediated. A structure-function-based understanding of these enzymes provides a platform for the development of novel therapeutics to treat antibiotic resistance.
Collapse
Affiliation(s)
- Anandhi Anandan
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
21
|
Pelling H, Bock LJ, Nzakizwanayo J, Wand ME, Denham EL, MacFarlane WM, Sutton JM, Jones BV. De-repression of the smvA efflux system arises in clinical isolates of Proteus mirabilis and reduces susceptibility to chlorhexidine and other biocides. Antimicrob Agents Chemother 2019; 63:AAC.01535-19. [PMID: 31570392 PMCID: PMC6879213 DOI: 10.1128/aac.01535-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/18/2019] [Indexed: 01/14/2023] Open
Abstract
Proteus mirabilis is a common pathogen of the catheterised urinary tract and often described as intrinsically resistant to the biocide chlorhexidine (CHD). Here we demonstrate that de-repression of the smvA efflux system has occurred in clinical isolates of P. mirabilis and reduces susceptibility to CHD and other cationic biocides. Compared to other isolates examined, P. mirabilis RS47 exhibited a significantly higher CHD MIC (≥512 μg/ml) and significantly greater expression of smvA. Comparison of the RS47 smvA and cognate smvR repressor with sequences from other isolates, indicated that RS47 encodes an inactivated smvR. Complementation of RS47 with a functional smvR from isolate RS50a (which exhibited the lowest smvA expression and lowest CHD MIC) reduced smvA expression by ∼59-fold, and markedly lowered the MIC of CHD and other cationic biocides. Although complementation of RS47 did not reduce MICs to concentrations observed in isolate RS50a, the significantly lower polymyxin B MIC of RS50a indicated that differences in LPS structure are also a factor in P. mirabilis CHD susceptibility. To determine if exposure to CHD can select for mutations in smvR, clinical isolates with the lowest CHD MICs were adapted to grow at increasing concentrations of CHD up to 512 μg/ml. Analysis of the smvR in adapted populations indicated that mutations predicted to inactivate smvR occurred following CHD exposure in some isolates. Collectively, our data show that smvA de-repression contributes to reduced biocide susceptibility in P. mirabilis, but differences in LPS structure between strains are also likely to be an important factor.
Collapse
Affiliation(s)
- H Pelling
- Dept. of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - L J Bock
- National Infections Service, Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | - J Nzakizwanayo
- Dept. of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - M E Wand
- National Infections Service, Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | - E L Denham
- Dept. of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - W M MacFarlane
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - J M Sutton
- National Infections Service, Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | - B V Jones
- Dept. of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
22
|
Cell Shape and Population Migration Are Distinct Steps of Proteus mirabilis Swarming That Are Decoupled on High-Percentage Agar. J Bacteriol 2019; 201:JB.00726-18. [PMID: 30858303 DOI: 10.1128/jb.00726-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/08/2019] [Indexed: 01/10/2023] Open
Abstract
Swarming on rigid surfaces requires movement of cells as individuals and as a group of cells. For the bacterium Proteus mirabilis, an individual cell can respond to a rigid surface by elongating and migrating over micrometer-scale distances. Cells can form groups of transiently aligned cells, and the collective population is capable of migrating over centimeter-scale distances. To address how P. mirabilis populations swarm on rigid surfaces, we asked whether cell elongation and single-cell motility are coupled to population migration. We first measured the relationship between agar concentration (a proxy for surface rigidity), single-cell phenotypes, and swarm colony phenotypes. We find that cell elongation and single-cell motility are coupled with population migration on low-percentage hard agar (1% to 2.5%) and become decoupled on high-percentage hard agar (>2.5%). Next, we evaluate how disruptions in lipopolysaccharide (LPS), specifically the O-antigen components, affect responses to hard agar. We find that LPS is not essential for elongation and motility of individual cells, as predicted, and instead functions to broaden the range of agar concentrations on which cell elongation and motility are coupled with population migration. These findings demonstrate that cell elongation and motility are coupled with population migration under a permissive range of surface conditions; increasing agar concentration is sufficient to decouple these behaviors. Since swarm colonies cover greater distances when these steps are coupled than when they are not, these findings suggest that collective interactions among P. mirabilis cells might be emerging as a colony expands outwards on rigid surfaces.IMPORTANCE How surfaces influence cell size, cell-cell interactions, and population migration for robust swarmers like P. mirabilis is not fully understood. Here, we have elucidated how cells change length along a spectrum of sizes that positively correlates with increases in agar concentration, regardless of population migration. Single-cell phenotypes can be decoupled from collective population migration simply by increasing agar concentration. A cell's lipopolysaccharides function to broaden the range of agar conditions under which cell elongation and single-cell motility remain coupled with population migration. In eukaryotes, the physical environment, such as a surface matrix, can impact cell development, shape, and migration. These findings support the idea that rigid surfaces similarly act on swarming bacteria to impact cell shape, single-cell motility, and collective population migration.
Collapse
|
23
|
Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, Yousefi M, Asgharzadeh M, Yousefi B, Kafil HS. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist 2019; 12:965-975. [PMID: 31190901 PMCID: PMC6519339 DOI: 10.2147/idr.s199844] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gram-negative bacteria. Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella spp. have an acquired resistance against colistin. However, other bacteria, including Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic. In addition, clinicians should be alert to the possibility of colistin resistance among multidrug-resistant bacteria and development through mutation or adaptation mechanisms. Rapidly emerging bacterial resistance has made it harder for us to rely completely on the discovery of new antibiotics; therefore, we need to have logical approaches to use old antibiotics, such as colistin. This review presents current knowledge about the different mechanisms of colistin resistance.
Collapse
Affiliation(s)
- Zahra Aghapour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Suhad Saad Mahmood
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Asghar Tanomand
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Abstract
The opportunistic pathogen Proteus mirabilis engages in visually dramatic and dynamic social behaviors. Populations of P. mirabilis can rapidly occupy surfaces, such as high-percentage agar and latex, through a collective surface-based motility termed swarming. When in these surface-occupying swarm colonies, P. mirabilis can distinguish between clonal siblings (self) and foreign P. mirabilis strains (nonself). This ability can be assessed by at least two standard methods: boundary formation, aka a Dienes line, and territorial exclusion. Here we describe methods for quantitative analysis of swarm colony expansion, of boundary formation, and of territorial exclusion. These assays can be employed to assess several aspects of P. mirabilis sociality including collective swarm motility, competition, and self versus nonself recognition.
Collapse
Affiliation(s)
- Kristin Little
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Karine A Gibbs
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
25
|
Molecular mechanisms of polymyxin resistance and detection of mcr genes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:28-38. [PMID: 30439931 DOI: 10.5507/bp.2018.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is an ever-increasing global problem. Major commercial antibiotics often fail to fight common bacteria, and some pathogens have become multi-resistant. Polymyxins are potent bactericidal antibiotics against gram-negative bacteria. Known resistance to polymyxin includes intrinsic, mutational and adaptive mechanisms, with the recently described horizontally acquired resistance mechanisms. In this review, we present several strategies for bacteria to develop enhanced resistance to polymyxins, focusing on changes in the outer membrane, efflux and other resistance determinants. Better understanding of the genes involved in polymyxin resistance may pave the way for the development of new and effective antimicrobial agents. We also report novel in silico tested primers for PCR assay that may be able distinguish colistin-resistant isolates carrying the plasmid-encoded mcr genes and will assist in combating the spread of colistin resistance in bacteria.
Collapse
|
26
|
Abstract
Polymyxins (e.g., colistin) are the drugs of last resort to treat multidrug-resistant infections in humans. To control mobile colistin resistance, there is a worldwide trend to limit colistin use in animal production. However, simply limiting colistin use in animal production may still not effectively mitigate colistin resistance due to an overlooked non-colistin usage factor(s). Using controlled systems, in this study, we observed that MCR-1 confers cross-resistance to bacitracin, a popular in-feed antibiotic used in food animals. Thus, imprudent and extensive usage of bacitracin in food animals may serve as a non-colistin usage risk factor for the transmissible colistin resistance. Further comprehensive in vitro and in vivo studies are highly warranted to generate science-based information for risk assessment and risk management of colistin resistance, consequently facilitating the development of proactive and effective strategies to mitigate colistin resistance in animal production system and protect public health. Extensive use of colistin in food animals is deemed a major driving force for the emergence and transmission of mcr-1. However, a non-colistin usage factor(s) contributing to mobile colistin resistance may also exist in animal production systems. Given that polymyxin, a bacterium-derived peptide antibiotic, has been successfully used as a surrogate to study bacterial resistance to antimicrobial peptides (AMPs), acquisition of MCR-1 may confer cross-resistance to the unrelated AMPs implicated in practical applications. To test this, we first constructed Escherichia coli recombinant strains differing only in the presence or absence of functional MCR-1. Among diverse tested AMPs, MCR-1 was observed to confer cross-resistance to bacitracin, an in-feed antibiotic widely used in animal industry. The significantly (2-fold) increased bacitracin MIC was confirmed by using different bacitracin products, broth media, and laboratory host strains for susceptibility tests. Subsequently, an original mcr-1 gene-bearing plasmid, pSLy21, was conjugatively transferred to eight clinical E. coli recipient strains isolated from diarrheic pigs, which also led to significantly increased MICs of both colistin (4-fold to 8-fold) and bacitracin (2-fold). Growth curve examination further demonstrated that MCR-1 provides a growth advantage to various E. coli strains in the presence of bacitracin. Given that bacitracin, a feed additive displaying low absorption in the intestine, can be used in food animals with no withdrawal required, imprudent use of bacitracin in food animals may serve as a risk factor to enhance the ecological fitness of MCR-1-positive E. coli strains, consequently facilitating the persistence and transmission of plasmid-mediated colistin resistance in agricultural ecosystem. IMPORTANCE Polymyxins (e.g., colistin) are the drugs of last resort to treat multidrug-resistant infections in humans. To control mobile colistin resistance, there is a worldwide trend to limit colistin use in animal production. However, simply limiting colistin use in animal production may still not effectively mitigate colistin resistance due to an overlooked non-colistin usage factor(s). Using controlled systems, in this study, we observed that MCR-1 confers cross-resistance to bacitracin, a popular in-feed antibiotic used in food animals. Thus, imprudent and extensive usage of bacitracin in food animals may serve as a non-colistin usage risk factor for the transmissible colistin resistance. Further comprehensive in vitro and in vivo studies are highly warranted to generate science-based information for risk assessment and risk management of colistin resistance, consequently facilitating the development of proactive and effective strategies to mitigate colistin resistance in animal production system and protect public health.
Collapse
|
27
|
Swarmer Cell Development of the Bacterium Proteus mirabilis Requires the Conserved Enterobacterial Common Antigen Biosynthesis Gene rffG. J Bacteriol 2018; 200:JB.00230-18. [PMID: 29967121 DOI: 10.1128/jb.00230-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023] Open
Abstract
Individual cells of the bacterium Proteus mirabilis can elongate up to 40-fold on surfaces before engaging in a cooperative surface-based motility termed swarming. How cells regulate this dramatic morphological remodeling remains an open question. In this paper, we move forward the understanding of this regulation by demonstrating that P. mirabilis requires the gene rffG for swarmer cell elongation and subsequent swarm motility. The rffG gene encodes a protein homologous to the dTDP-glucose 4,6-dehydratase protein of Escherichia coli, which contributes to enterobacterial common antigen biosynthesis. Here, we characterize the rffG gene in P. mirabilis, demonstrating that it is required for the production of large lipopolysaccharide-linked moieties necessary for wild-type cell envelope integrity. We show that the absence of the rffG gene induces several stress response pathways, including those controlled by the transcriptional regulators RpoS, CaiF, and RcsB. We further show that in rffG-deficient cells, the suppression of the Rcs phosphorelay, via loss of RcsB, is sufficient to induce cell elongation and swarm motility. However, the loss of RcsB does not rescue cell envelope integrity defects and instead results in abnormally shaped cells, including cells producing more than two poles. We conclude that an RcsB-mediated response acts to suppress the emergence of shape defects in cell envelope-compromised cells, suggesting an additional role for RcsB in maintaining cell morphology under stress conditions. We further propose that the composition of the cell envelope acts as a checkpoint before cells initiate swarmer cell elongation and motility.IMPORTANCEProteus mirabilis swarm motility has been implicated in pathogenesis. We have found that cells deploy multiple uncharacterized strategies to handle cell envelope stress beyond the Rcs phosphorelay when attempting to engage in swarm motility. While RcsB is known to directly inhibit the master transcriptional regulator for swarming, we have shown an additional role for RcsB in protecting cell morphology. These data support a growing appreciation that the Rcs phosphorelay is a multifunctional regulator of cell morphology in addition to its role in microbial stress responses. These data also strengthen the paradigm that outer membrane composition is a crucial checkpoint for modulating entry into swarm motility. Furthermore, the rffG-dependent moieties provide a novel attractive target for potential antimicrobials.
Collapse
|
28
|
Plasmid-mediated colistin resistance in animals: current status and future directions. Anim Health Res Rev 2018; 18:136-152. [DOI: 10.1017/s1466252317000111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AbstractColistin, a peptide antibiotic belonging to the polymyxin family, is one of the last effective drugs for the treatment of multidrug resistant Gram-negative infections. Recent discovery of a novel mobile colistin resistance gene,mcr-1, from people and food animals has caused a significant public health concern and drawn worldwide attention. Extensive usage of colistin in food animals has been proposed as a major driving force for the emergence and transmission ofmcr-1; thus, there is a worldwide trend to limit colistin usage in animal production. However, despite lack of colistin usage in food animals in the USA,mcr-1-positiveEscherichia coliisolates were still isolated from swine. In this paper, we provided an overview of colistin usage and epidemiology ofmcr-1in food animals, and summarized the current status of mechanistic and evolutionary studies of the plasmid-mediated colistin resistance. Based on published information, we further discussed several non-colistin usage risk factors that may contribute to the persistence, transmission, and emergence of colistin resistance in an animal production system. Filling the knowledge gaps identified in this review is critical for risk assessment and risk management of colistin resistance, which will facilitate proactive and effective strategies to mitigate colistin resistance in future animal production systems.
Collapse
|
29
|
Armbruster CE, Mobley HLT, Pearson MM. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0009-2017. [PMID: 29424333 PMCID: PMC5880328 DOI: 10.1128/ecosalplus.esp-0009-2017] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 01/10/2023]
Abstract
Proteus mirabilis, a Gram-negative rod-shaped bacterium most noted for its swarming motility and urease activity, frequently causes catheter-associated urinary tract infections (CAUTIs) that are often polymicrobial. These infections may be accompanied by urolithiasis, the development of bladder or kidney stones due to alkalinization of urine from urease-catalyzed urea hydrolysis. Adherence of the bacterium to epithelial and catheter surfaces is mediated by 17 different fimbriae, most notably MR/P fimbriae. Repressors of motility are often encoded by these fimbrial operons. Motility is mediated by flagella encoded on a single contiguous 54-kb chromosomal sequence. On agar plates, P. mirabilis undergoes a morphological conversion to a filamentous swarmer cell expressing hundreds of flagella. When swarms from different strains meet, a line of demarcation, a "Dienes line," develops due to the killing action of each strain's type VI secretion system. During infection, histological damage is caused by cytotoxins including hemolysin and a variety of proteases, some autotransported. The pathogenesis of infection, including assessment of individual genes or global screens for virulence or fitness factors has been assessed in murine models of ascending urinary tract infections or CAUTIs using both single-species and polymicrobial models. Global gene expression studies performed in culture and in the murine model have revealed the unique metabolism of this bacterium. Vaccines, using MR/P fimbria and its adhesin, MrpH, have been shown to be efficacious in the murine model. A comprehensive review of factors associated with urinary tract infection is presented, encompassing both historical perspectives and current advances.
Collapse
Affiliation(s)
- Chelsie E Armbruster
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14263
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Melanie M Pearson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
30
|
Baron S, Leulmi Z, Villard C, Olaitan AO, Telke AA, Rolain JM. Inactivation of the arn operon and loss of aminoarabinose on lipopolysaccharide as the cause of susceptibility to colistin in an atypical clinical isolate of proteus vulgaris. Int J Antimicrob Agents 2017; 51:450-457. [PMID: 29203405 DOI: 10.1016/j.ijantimicag.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 12/27/2022]
Abstract
Colistin has become a last-line antibiotic for the treatment of multidrug-resistant bacterial infections; however, resistance to colistin has emerged in recent years. Some bacteria, such as Proteus and Serratia spp., are intrinsically resistant to colistin although the exact mechanism of resistance is unknown. Here we identified the molecular support for intrinsic colistin resistance in Proteus spp. by comparative genomic, transcriptomic and proteomic analyses of colistin-susceptible (CSUR P1868_S) and colistin-resistant (CSUR P1867_R) strains of an atypical Proteus vulgaris. A significant difference in outer membrane glycoside structures in both strains that was corroborated by MALDI-TOF/MS analysis was found, which showed an absence of 4-amino-4-deoxy-l-arabinose (L-Ara4N) in the outer membrane lipid A moiety of the susceptible strain. Comparative genomic analysis with other resistant strains of P. vulgaris available in a local database found a mutation in the arnBCADTEF operon of the susceptible strain. Transcriptomic analysis of genes belonging to the arnBCADTEF operon showed a significant decrease in mRNA expression level of these genes in the susceptible strain, supporting addition of L-Ara4N in the outer membrane lipid A moiety as an explanation for colistin resistance. Insertion of the arnD gene that was suggested to be altered in the susceptible strain by in silico analysis led to a 16-fold increase of colistin MIC in the susceptible strain, confirming its role in colistin resistance in this species. Here we show that constitutive activation of the arn operon and addition of L-Ara4N is the main molecular mechanism of colistin resistance in P. vulgaris.
Collapse
Affiliation(s)
- Sophie Baron
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Facultés de Médecine et de Pharmacie, 19-21 bd Jean Moulin, Marseille, France
| | - Zineb Leulmi
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Facultés de Médecine et de Pharmacie, 19-21 bd Jean Moulin, Marseille, France
| | - Claude Villard
- Aix-Marseille Université, Plateforme Protéomique et Innovation Technologique, Faculté de Pharmacie, 27 boulevard Jean Moulin, Marseille 13385 CEDEX 05, France
| | - Abiola Olumuyiwa Olaitan
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Facultés de Médecine et de Pharmacie, 19-21 bd Jean Moulin, Marseille, France
| | - Amar A Telke
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Facultés de Médecine et de Pharmacie, 19-21 bd Jean Moulin, Marseille, France
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Facultés de Médecine et de Pharmacie, 19-21 bd Jean Moulin, Marseille, France.
| |
Collapse
|
31
|
Inhibition of the ATP Synthase Eliminates the Intrinsic Resistance of Staphylococcus aureus towards Polymyxins. mBio 2017; 8:mBio.01114-17. [PMID: 28874470 PMCID: PMC5587909 DOI: 10.1128/mbio.01114-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Staphylococcus aureus is intrinsically resistant to polymyxins (polymyxin B and colistin), an important class of cationic antimicrobial peptides used in treatment of Gram-negative bacterial infections. To understand the mechanisms underlying intrinsic polymyxin resistance in S. aureus, we screened the Nebraska Transposon Mutant Library established in S. aureus strain JE2 for increased susceptibility to polymyxin B. Nineteen mutants displayed at least 2-fold reductions in MIC, while the greatest reductions (8-fold) were observed for mutants with inactivation of either graS, graR, vraF, or vraG or the subunits of the ATP synthase (atpA, atpB, atpG, or atpH), which during respiration is the main source of energy. Inactivation of atpA also conferred hypersusceptibility to colistin and the aminoglycoside gentamicin, whereas susceptibilities to nisin, gallidermin, bacitracin, vancomycin, ciprofloxacin, linezolid, daptomycin, and oxacillin were unchanged. ATP synthase activity is known to be inhibited by oligomycin A, and the presence of this compound increased polymyxin B-mediated killing of S. aureus Our results demonstrate that the ATP synthase contributes to intrinsic resistance of S. aureus towards polymyxins and that inhibition of the ATP synthase sensitizes S. aureus to this group of compounds. These findings show that by modulation of bacterial metabolism, new classes of antibiotics may show efficacy against pathogens towards which they were previously considered inapplicable. In light of the need for new treatment options for infections with serious pathogens like S. aureus, this approach may pave the way for novel applications of existing antibiotics.IMPORTANCE Bacterial pathogens that cause disease in humans remain a serious threat to public health, and antibiotics are still our primary weapon in treating bacterial diseases. The ability to eradicate bacterial infections is critically challenged by development of resistance to all clinically available antibiotics. Polymyxins constitute an important class of antibiotics for treatment of infections caused by Gram-negative pathogens, whereas Gram-positive bacteria remain largely insusceptible towards class of antibiotics. Here we performed a whole-genome screen among nonessential genes for polymyxin intrinsic resistance determinants in Staphylococcus aureus We found that the ATP synthase is important for polymyxin susceptibility and that inhibition of the ATP synthase sensitizes S. aureus towards polymyxins. Our study provides novel insights into the mechanisms that limit polymyxin activity against S. aureus and provides valuable targets for inhibitors to potentially enable the use of polymyxins against S. aureus and other Gram-positive pathogens.
Collapse
|
32
|
Józefiak A, Engberg R. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. JOURNAL OF ANIMAL AND FEED SCIENCES 2017. [DOI: 10.22358/jafs/69998/2017] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are small naturally occurring microbicidal molecules produced by the host innate immune response that function as a first line of defense to kill pathogenic microorganisms by inducing deleterious cell membrane damage. AMPs also possess signaling and chemoattractant activities and can modulate the innate immune response to enhance protective immunity or suppress inflammation. Human pathogens have evolved defense molecules and strategies to counter and survive the AMPs released by host immune cells such as neutrophils and macrophages. Here, we review the various mechanisms used by human bacterial pathogens to resist AMP-mediated killing, including surface charge modification, active efflux, alteration of membrane fluidity, inactivation by proteolytic digestion, and entrapment by surface proteins and polysaccharides. Enhanced understanding of AMP resistance at the molecular level may offer insight into the mechanisms of bacterial pathogenesis and augment the discovery of novel therapeutic targets and drug design for the treatment of recalcitrant multidrug-resistant bacterial infections.
Collapse
|
34
|
Trent MS, Stead CM, Tran AX, Hankins JV. Invited review: Diversity of endotoxin and its impact on pathogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120040201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharide or LPS is localized to the outer leaflet of the outer membrane and serves as the major surface component of the bacterial cell envelope. This remarkable glycolipid is essential for virtually all Gram-negative organisms and represents one of the conserved microbial structures responsible for activation of the innate immune system. For these reasons, the structure, function, and biosynthesis of LPS has been an area of intense research. The LPS of a number of bacteria is composed of three distinct regions — lipid A, a short core oligosaccharide, and the O-antigen polysaccharide. The lipid A domain, also known as endotoxin, anchors the molecule in the outer membrane and is the bioactive component recognized by TLR4 during human infection. Overall, the biochemical synthesis of lipid A is a highly conserved process; however, investigation of the lipid A structures of various organisms shows an impressive amount of diversity. These differences can be attributed to the action of latent enzymes that modify the canonical lipid A molecule. Variation of the lipid A domain of LPS serves as one strategy utilized by Gram-negative bacteria to promote survival by providing resistance to components of the innate immune system and helping to evade recognition by TLR4. This review summarizes the biochemical machinery required for the production of diverse lipid A structures of human pathogens and how structural modification of endotoxin impacts pathogenesis.
Collapse
Affiliation(s)
- M. Stephen Trent
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA,
| | - Christopher M. Stead
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - An X. Tran
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jessica V. Hankins
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
35
|
Abstract
Proteus mirabilis is a Gram-negative bacterium and is well known for its ability to robustly swarm across surfaces in a striking bulls'-eye pattern. Clinically, this organism is most frequently a pathogen of the urinary tract, particularly in patients undergoing long-term catheterization. This review covers P. mirabilis with a focus on urinary tract infections (UTI), including disease models, vaccine development efforts, and clinical perspectives. Flagella-mediated motility, both swimming and swarming, is a central facet of this organism. The regulation of this complex process and its contribution to virulence is discussed, along with the type VI-secretion system-dependent intra-strain competition, which occurs during swarming. P. mirabilis uses a diverse set of virulence factors to access and colonize the host urinary tract, including urease and stone formation, fimbriae and other adhesins, iron and zinc acquisition, proteases and toxins, biofilm formation, and regulation of pathogenesis. While significant advances in this field have been made, challenges remain to combatting complicated UTI and deciphering P. mirabilis pathogenesis.
Collapse
|
36
|
Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents 2016; 48:583-591. [PMID: 27524102 DOI: 10.1016/j.ijantimicag.2016.06.023] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
Colistin, also referred to as polymyxin E, is an effective antibiotic against most multidrug-resistant Gram-negative bacteria and is currently used as a last-line drug for treating severe bacterial infections. Colistin resistance has increased gradually for the last few years, and knowledge of its multifaceted mechanisms is expanding. This includes the newly discovered plasmid-mediated colistin resistance gene mcr-1, which has been detected in over 20 countries within 3 months of its first report. We previously reported all of the known mechanisms of polymyxin resistance in our first review in 2014, but an update seems necessary in 2016, considering the significant recent discoveries that have been made in this domain. This review provides an update about what is already known, what is new, and some unresolved questions with respect to colistin resistance.
Collapse
Affiliation(s)
- Sophie Baron
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Linda Hadjadj
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| | - Abiola Olumuyiwa Olaitan
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
37
|
Antimicrobial peptide resistance in Neisseria meningitidis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3026-31. [PMID: 26002321 DOI: 10.1016/j.bbamem.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
Antimicrobial peptides (AMPs) play an important role as a host defense against microbial pathogens and are key components of the human innate immune response. Neisseria meningitidis frequently colonizes the human nasopharynx as a commensal but also is a worldwide cause of epidemic meningitis and rapidly fatal sepsis. In the human respiratory tract, the only known reservoir of N. meningitidis, meningococci are exposed to human endogenous AMPs. Thus, it is not surprising that meningococci have evolved effective mechanisms to confer intrinsic and high levels of resistance to the action of AMPs. This article reviews the current knowledge about AMP resistance mechanisms employed by N. meningitidis. Two major resistance mechanisms employed by meningococci are the constitutive modification of the lipid A head groups of lipooligosaccharides by phosphoethanolamine and the active efflux pump mediated excretion of AMPs. Other factors influencing AMP resistance, such as the major porin PorB, the pilin biogenesis apparatus, and capsular polysaccharides, have also been identified. Even with an inherently high intrinsic resistance, several AMP resistance determinants can be further induced upon exposure to AMPs. Many well-characterized AMP resistance mechanisms in other Gram-negative bacteria are not found in meningococci. Thus, N. meningitidis utilizes a limited but highly effective set of molecular mechanisms to mediate antimicrobial peptide resistance. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
|
38
|
Bauer ME, Shafer WM. On the in vivo significance of bacterial resistance to antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3101-11. [PMID: 25701234 DOI: 10.1016/j.bbamem.2015.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 12/17/2022]
Abstract
Antimicrobial peptides (AMPs) are at the front-line of host defense during infection and play critical roles both in reducing the microbial load early during infection and in linking innate to adaptive immunity. However, successful pathogens have developed mechanisms to resist AMPs. Although considerable progress has been made in elucidating AMP-resistance mechanisms of pathogenic bacteria in vitro, less is known regarding the in vivo significance of such resistance. Nevertheless, progress has been made in this area, largely by using murine models and, in two instances, human models of infection. Herein, we review progress on the use of in vivo infection models in AMP research and discuss the AMP resistance mechanisms that have been established by in vivo studies to contribute to microbial infection. We posit that in vivo infection models are essential tools for investigators to understand the significance to pathogenesis of genetic changes that impact levels of bacterial susceptibility to AMPs. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Margaret E Bauer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635 Barnhill Drive MS-420, Indianapolis, IN 46254, USA.
| | - William M Shafer
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, GA 30033, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Aoyagi KL, Brooks BD, Bearden SW, Montenieri JA, Gage KL, Fisher MA. LPS modification promotes maintenance of Yersinia pestis in fleas. MICROBIOLOGY-SGM 2014; 161:628-38. [PMID: 25533446 DOI: 10.1099/mic.0.000018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Yersinia pestis, the causative agent of plague, can be transmitted by fleas by two different mechanisms: by early-phase transmission (EPT), which occurs shortly after flea infection, or by blocked fleas following long-term infection. Efficient flea-borne transmission is predicated upon the ability of Y. pestis to be maintained within the flea. Signature-tagged mutagenesis (STM) was used to identify genes required for Y. pestis maintenance in a genuine plague vector, Xenopsylla cheopis. The STM screen identified seven mutants that displayed markedly reduced fitness in fleas after 4 days, the time during which EPT occurs. Two of the mutants contained insertions in genes encoding glucose 1-phosphate uridylyltransferase (galU) and UDP-4-amino-4-deoxy-l-arabinose-oxoglutarate aminotransferase (arnB), which are involved in the modification of lipid A with 4-amino-4-deoxy-l-arabinose (Ara4N) and resistance to cationic antimicrobial peptides (CAMPs). These Y. pestis mutants were more susceptible to the CAMPs cecropin A and polymyxin B, and produced lipid A lacking Ara4N modifications. Surprisingly, an in-frame deletion of arnB retained modest levels of CAMP resistance and Ara4N modification, indicating the presence of compensatory factors. It was determined that WecE, an aminotransferase involved in biosynthesis of enterobacterial common antigen, plays a novel role in Y. pestis Ara4N modification by partially offsetting the loss of arnB. These results indicated that mechanisms of Ara4N modification of lipid A are more complex than previously thought, and these modifications, as well as several factors yet to be elucidated, play an important role in early survival and transmission of Y. pestis in the flea vector.
Collapse
Affiliation(s)
- Kari L Aoyagi
- University of Utah Department of Pathology, 2100 JMRB, 15 North Medical Drive East, Salt Lake City, UT 84132, USA
| | - Benjamin D Brooks
- University of Utah Department of Pathology, 2100 JMRB, 15 North Medical Drive East, Salt Lake City, UT 84132, USA
| | - Scott W Bearden
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - John A Montenieri
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Kenneth L Gage
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Mark A Fisher
- University of Utah Department of Pathology, 2100 JMRB, 15 North Medical Drive East, Salt Lake City, UT 84132, USA ARUP Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| |
Collapse
|
40
|
Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol 2014; 5:643. [PMID: 25505462 PMCID: PMC4244539 DOI: 10.3389/fmicb.2014.00643] [Citation(s) in RCA: 968] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/07/2014] [Indexed: 01/06/2023] Open
Abstract
Polymyxins are polycationic antimicrobial peptides that are currently the last-resort antibiotics for the treatment of multidrug-resistant, Gram-negative bacterial infections. The reintroduction of polymyxins for antimicrobial therapy has been followed by an increase in reports of resistance among Gram-negative bacteria. Some bacteria, such as Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii, develop resistance to polymyxins in a process referred to as acquired resistance, whereas other bacteria, such as Proteus spp., Serratia spp., and Burkholderia spp., are naturally resistant to these drugs. Reports of polymyxin resistance in clinical isolates have recently increased, including acquired and intrinsically resistant pathogens. This increase is considered a serious issue, prompting concern due to the low number of currently available effective antibiotics. This review summarizes current knowledge concerning the different strategies bacteria employ to resist the activities of polymyxins. Gram-negative bacteria employ several strategies to protect themselves from polymyxin antibiotics (polymyxin B and colistin), including a variety of lipopolysaccharide (LPS) modifications, such as modifications of lipid A with phosphoethanolamine and 4-amino-4-deoxy-L-arabinose, in addition to the use of efflux pumps, the formation of capsules and overexpression of the outer membrane protein OprH, which are all effectively regulated at the molecular level. The increased understanding of these mechanisms is extremely vital and timely to facilitate studies of antimicrobial peptides and find new potential drugs targeting clinically relevant Gram-negative bacteria.
Collapse
Affiliation(s)
- Abiola O Olaitan
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université Marseille, France
| | - Serge Morand
- Institut des Sciences de l'Evolution, CNRS-IRD-UM2, CC065, Université Montpellier 2 Montpellier, France
| | - Jean-Marc Rolain
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille-Université Marseille, France
| |
Collapse
|
41
|
Maleki-Ravasan N, Oshaghi MA, Hajikhani S, Saeidi Z, Akhavan AA, Gerami-Shoar M, Shirazi MH, Yakhchali B, Rassi Y, Afshar D. Aerobic Microbial Community of Insectary Population of Phlebotomus papatasi. J Arthropod Borne Dis 2013; 8:69-81. [PMID: 25629067 PMCID: PMC4289513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 10/01/2013] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND Microbes particularly bacteria presenting in the gut of haematophagous insects may have an important role in the epidemiology of human infectious disease. METHODS The microbial flora of gut and surrounding environmental of a laboratory strain of Phlebotomus papatasi, the main vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in the old world, was investigated. Biochemical reactions and 16s rDNA sequencing of the isolated bacteria against 24 sugars and amino acids were used for bacteria species identification. Common mycological media used for fungi identification as well. RESULTS Most isolates belonged to the Enterobacteriaceae, a large, heterogeneous group of gram-negative rods whose natural habitat is the intestinal tract of humans and animals. Enterobacteriaceae groups included Edwardsiella, Enterobacter, Escherichia, Klebsiella, Kluyvera, Leminorella, Pantoea, Proteus, Providencia, Rahnella, Serratia, Shigella, Tatumella, and Yersinia and non Enterobacteriaceae groups included Bacillus, Staphylococcus and Pseudomonas. The most prevalent isolates were Proteus mirabilis and P. vulgaris. These saprophytic and swarming motile bacteria were isolated from all immature, pupae, and mature fed or unfed male or female sand flies as well as from larval and adult food sources. Five fungi species were also isolated from sand flies, their food sources and colonization materials where Candida sp. was common in all mentioned sources. CONCLUSION Midgut microbiota are increasingly seen as an important factor for modulating vector competence in insect vectors so their possible effects of the mirobiota on the biology of P. papatasi and their roles in the sandfly-Leishmania interaction are discussed.
Collapse
Affiliation(s)
- Naseh Maleki-Ravasan
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Prof Mohammad Ali Oshaghi, E-mail:
| | - Sara Hajikhani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Saeidi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ahmad Akhavan
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Gerami-Shoar
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Shirazi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Yakhchali
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Yavar Rassi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Davoud Afshar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 2013; 11:467-81. [PMID: 23748343 PMCID: PMC6913092 DOI: 10.1038/nrmicro3047] [Citation(s) in RCA: 408] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gram-negative bacteria decorate their outermost surface structure, lipopolysaccharide, with elaborate chemical moieties, which effectively disguises them from immune surveillance and protects them from the onslaught of host defences. Many of these changes occur on the lipid A moiety of lipopolysaccharide, a component that is crucial for host recognition of Gram-negative infection. In this Review, we describe the regulatory mechanisms controlling lipid A modification and discuss the impact of modifications on pathogenesis, bacterial physiology and bacterial interactions with the host immune system.
Collapse
Affiliation(s)
- Brittany D Needham
- The Institute of Cellular and Molecular Biology, The University of Texas at Austin, 78712, USA
| | | |
Collapse
|
43
|
Kilár A, Dörnyei Á, Kocsis B. Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques. MASS SPECTROMETRY REVIEWS 2013; 32:90-117. [PMID: 23165926 DOI: 10.1002/mas.21352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 06/01/2023]
Abstract
The focus of this review is the application of mass spectrometry to the structural characterization of bacterial lipopolysaccharides (LPSs), also referred to as "endotoxins," because they elicit the strong immune response in infected organisms. Recently, a wide variety of MS-based applications have been implemented to the structure elucidation of LPS. Methodological improvements, as well as on- and off-line separation procedures, proved the versatility of mass spectrometry to study complex LPS mixtures. Special attention is given in the review to the tandem mass spectrometric methods and protocols for the analyses of lipid A, the endotoxic principle of LPS. We compare and evaluate the different ionization techniques (MALDI, ESI) in view of their use in intact R- and S-type LPS and lipid A studies. Methods for sample preparation of LPS prior to mass spectrometric analysis are also described. The direct identification of intrinsic heterogeneities of most intact LPS and lipid A preparations is a particular challenge, for which separation techniques (e.g., TLC, slab-PAGE, CE, GC, HPLC) combined with mass spectrometry are often necessary. A brief summary of these combined methodologies to profile LPS molecular species is provided.
Collapse
Affiliation(s)
- Anikó Kilár
- Department of Analytical and Environmental Chemistry, Institute of Chemistry, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| | | | | |
Collapse
|
44
|
Anaya-López JL, López-Meza JE, Ochoa-Zarzosa A. Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol 2012; 39:180-95. [PMID: 22799636 DOI: 10.3109/1040841x.2012.699025] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally occurring cationic antimicrobial peptides (CAMPs) have been considered as promising candidates to treat infections caused by pathogenic bacteria to animals and humans. This assumption is based on their mechanism of action, which is mainly performed through electrostatic membrane interactions. Unfortunately, the rise in the reports that describe bacterial resistance to CAMPs has redefined their role as therapeutic agents. In this review, we describe the state of the art of the most common resistance mechanisms developed by bacteria to CAMPs, making special emphasis on resistance selection. Considering most of the resistance mechanisms here reviewed, the emergence of resistance is unlikely in the short term, however we also described evidences that show the evolution of resistance to CAMPs, reevaluating their use as good antibacterial agents. Finally, the knowledge related to the description of CAMP resistance mechanisms may provide useful information for improving strategies to control infections.
Collapse
Affiliation(s)
- José Luis Anaya-López
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Unidad de Biotecnología, Celaya, México
| | | | | |
Collapse
|
45
|
Vogel AR, Szelestey BR, Raffel FK, Sharpe SW, Gearinger RL, Justice SS, Mason KM. SapF-mediated heme-iron utilization enhances persistence and coordinates biofilm architecture of Haemophilus. Front Cell Infect Microbiol 2012; 2:42. [PMID: 22919633 PMCID: PMC3417626 DOI: 10.3389/fcimb.2012.00042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/14/2012] [Indexed: 01/28/2023] Open
Abstract
Non-typeable Haemophilus influenzae (NTHI) is a common commensal bacterium that resides in the human upper respiratory tract of healthy individuals. NTHI is also a known causative agent of multiple diseases including sinusitis, otitis media, as well as exacerbates disease severity of patients with cystic fibrosis and chronic obstructive pulmonary disease. We have previously shown that the Sap transporter mediates resistance to host antimicrobial peptides (AMPs) and import of the iron-containing compound heme. Here, we analyzed the contribution of the Sap structural ATPase protein, SapF, in these essential functions. In contrast to SapD, SapF was dispensable for NTHI survival when exposed to AMPs in vitro. SapF was responsible for heme utilization and recovery of depleted internal heme-iron stores. Further, a loss of SapF resulted in morphological plasticity and enhanced community development and biofilm architecture, suggesting the potential role of heme-iron availability in coordinating the complexity of NTHI biofilm architecture. SapF was required for colonization of the nasopharynx and acute infection of the middle ear, as SapF deficiency correlated with a statistically significant decrease in NTHI persistence in vivo. These data suggest that SapF is required for proper heme utilization which directly impacts NTHI survival. Thus, these studies further support a role for the Sap complex in the transport of multiple substrates and further defines substrate specificity for the two ATPase subunits. Given the multiple essential functions provided by the Sap transporter, this complex could prove to be an effective therapeutic target for the treatment of NTHI diseases.
Collapse
Affiliation(s)
- Andrew R Vogel
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University School of Medicine, Columbus OH, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Begde DN, Bundale SB, Pise MV, Rudra JA, Nashikkar NA, Upadhyay AA. In Vitro Modulation of E. coli Community Behavior and Human Innate Immune System by Lantibiotic Nisin. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9290-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Zamyatina A, Hollaus R, Blaukopf M, Kosma P. Synthesis of Lipid A and Inner Core LPS ligands containing 4-amino-4-deoxy-l-arabinose units. PURE APPL CHEM 2011; 84:11-21. [PMID: 22942477 PMCID: PMC3430960 DOI: 10.1351/pac-con-11-08-01] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Attachment of 4-amino-4-deoxy-l-arabinose to phosphates or sugar hydroxyl groups of lipopolysaccharide contributes to bacterial resistance against common antibiotics. For a detailed study of antigenic properties and binding interactions, Ara4N-containing inner core ligands related to Burkholderia and Proteus LPS have been synthesized in good yields. Glycosylation at position 8 of allyl glycosides of oct-2-ulosonic acids (Ko, Kdo) has been accomplished using an N-phenyltrifluoroacetimidate 4-azido-4-deoxy-l-arabinosyl glycosyl donor followed by azide reduction and global deprotection. The β-l-Ara4N-(1→8)-α-Kdo disaccharide was further extended into the branched β-l-Ara4N-(1→8)[α-Kdo-(2→4)]-α-Kdo trisaccharide via a regioselective glycosylation of a protected triol intermediate. Synthesis of Ara4N-modified lipid A - part structure occurring in the LPS of Burkholderia, Pseudomonas and Klebsiellla strains was accomplished using the H-phosphonate approach. The stereocontrolled assembly of the phosphodiester linkage connecting glycosidic centres of two aminosugars was elaborated employing an anomeric H-phosphonate of cyclic silyl-ether protected 4-azido-4-deoxy-β-l-arabinose which was coupled to the hemiacetal of the lipid A GlcN-disaccharide backbone. Conditions for global deprotection which warrant the integrity of "double anomeric" phosphodiester linkage were successfully developed. Introduction of thiol-terminated spacer at the synthetic ligands allows both coupling to BSA and immobilization on gold nanoparticles as well as generation of glycoarrays.
Collapse
Affiliation(s)
- Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | | | | | | |
Collapse
|
48
|
Bile salts induce resistance to polymyxin in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2011; 193:4509-15. [PMID: 21725004 DOI: 10.1128/jb.00200-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many enteric bacteria use bile as an environmental cue to signal resistance and virulence gene expression. Microarray analysis of enterohemorrhagic Escherichia coli O157:H7 (EHEC) treated with bile salts revealed upregulation of genes for an efflux system (acrAB), a two-component signal transduction system (basRS/pmrAB), and lipid A modification (arnBCADTEF and ugd). Bile salt treatment of EHEC produced a basS- and arnT-dependent resistance to polymyxin.
Collapse
|
49
|
Hein-Kristensen L, Knapp KM, Franzyk H, Gram L. Bacterial membrane activity of α-peptide/β-peptoid chimeras: influence of amino acid composition and chain length on the activity against different bacterial strains. BMC Microbiol 2011; 11:144. [PMID: 21693068 PMCID: PMC3224213 DOI: 10.1186/1471-2180-11-144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/22/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Characterization and use of antimicrobial peptides (AMPs) requires that their mode of action is determined. The interaction of membrane-active peptides with their target is often established using model membranes, however, the actual permeabilization of live bacterial cells and subsequent killing is usually not tested. In this report, six α-peptide/β-peptoid chimeras were examined for the effect of amino acid/peptoid substitutions and chain length on the membrane perturbation and subsequent killing of food-borne and clinical bacterial isolates. RESULTS All six AMP analogues inhibited growth of twelve food-borne and clinical bacterial strains including Extended Spectrum Beta-Lactamase-producing Escherichia coli. In general, the Minimum Inhibitory Concentrations (MIC) against Gram-positive and -negative bacteria were similar, ranging from 1 to 5 μM. The type of cationic amino acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time of onset and reduction in the number of viable cells. EDTA pre-treatment of S. marcescens and E. coli followed by treatment with chimeras resulted in pronounced killing indicating that disintegration of the Gram-negative outer membrane eliminated innate differences in susceptibility. Chimera chain length did not influence the degree of ATP leakage, but the amount of intracellular ATP remaining in the cell after treatment was influenced by chimera length with the longest analogue causing complete depletion of intracellular ATP. Hence some chimeras caused a complete disruption of the membrane, and this was parallel by the largest reduction in number of viable bacteria. CONCLUSION We found that chain length but not type of cationic amino acid influenced the antibacterial activity of a series of synthetic α-peptide/β-peptoid chimeras. The synthetic chimeras exert their killing effect by permeabilization of the bacterial cell envelope, and the outer membrane may act as a barrier in Gram-negative bacteria. The tolerance of S. marcescens to chimeras may be due to differences in the composition of the lipopolysaccharide layer also responsible for its resistance to polymyxin B.
Collapse
Affiliation(s)
- Line Hein-Kristensen
- Division of Industrial Food Research, National Food Institute, Technical University of Denmark, Søltofts Plads, Lyngby, DK-Denmark.
| | | | | | | |
Collapse
|
50
|
Burkholderia cenocepacia phenotypic clonal variation during a 3.5-year colonization in the lungs of a cystic fibrosis patient. Infect Immun 2011; 79:2950-60. [PMID: 21536796 DOI: 10.1128/iai.01366-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chronic lung infection is the major cause of morbidity and premature mortality in cystic fibrosis (CF) patients. Bacteria of the Burkholderia cepacia complex are the most threatening pathogens in CF, and a better understanding of how these bacteria adapt to the CF airway environment and resist the host defense mechanisms and therapeutically administered antibiotics is crucial. To provide clues to the adaptive strategies adopted by Burkholderia cenocepacia during long-term colonization, we carried out a phenotypic assessment of 11 clonal variants obtained at the major Portuguese CF Center in Lisbon from sputa of the same CF patient during 3.5 years of colonization of the lungs, until the patient's death with cepacia syndrome. Phenotypic characterization included susceptibility assays against different classes of antimicrobials and characterization of cell motility, cell hydrophobicity and zeta potential, colony and cell morphology, fatty acid composition, growth under iron limitation/load conditions, exopolysaccharide production, and size of the biofilms formed. The results suggest the occurrence of clonal expansion during long-term colonization. For a number of the characteristics tested, no isolation time-dependent consistent alteration pattern could be identified. However, the values for antimicrobial susceptibility and swarming motility for the first B. cenocepacia isolate, thought to have initiated the infection, were consistently above those for the clonal variants obtained during the course of infection, and the opposite was found for the zeta potential. The adaptive strategy for long-term colonization, described here for the first time, involved the alteration of membrane fatty acid composition, in particular a reduction of the degree of fatty acid saturation, in the B. cenocepacia variants retrieved, along with the deterioration of pulmonary function and severe oxygen limitation.
Collapse
|