1
|
Shaaban M, Elshaer SL, Abd El-Rahman OA. Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates. BMC Microbiol 2022; 22:247. [PMID: 36221063 PMCID: PMC9552493 DOI: 10.1186/s12866-022-02662-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Proteus mirabilis is an opportunistic pathogen, causing a variety of community-acquired and nosocomial illnesses. It poses a potential threat to patients via the production of β-lactamases, which decrease the efficacy of antimicrobial treatment and impair the management of its pathogenicity. Hence, this study was established to determine the prevalence of extended-spectrum β-lactamases (ESBLs), AmpC, and carbapenemases of P. mirabilis isolated from various clinical specimens. Results Proteus mirabilis was identified in 20.7% (58/280) of specimens. ESBL producers were present at a rate of 51.7% (30/58). All AmpC-positive isolates (n = 20) produced ESBLs as well, so 66.7% of ESBL-producing isolates coproduced AmpC enzymes. The modified Hodge test confirmed carbapenemase production in six out of seven imipenem nonsusceptible isolates. Of these, only two (5.7%) isolates were also ESBL-and AmpC-positive. Antibiotic resistance reached the highest level for cotrimoxazole (62.1%, n = 36/58 isolates) and the lowest for imipenem (12.1%, n = 7/58 isolates). The levels of multidrug-resistant (MDR) was 41.4% among the tested isolates. The blaSHV (83.3%), blaAmpC (80%), and blaVIM-1 (50%) were the most detected genes in phenotypically confirmed ESBL-, AmpC-, and carbapenemase-producing isolates, respectively. Besides, more than a half of the tested P. mirabilis strains (53%) coproduced ESBLs and AmpC. Moreover, two isolates coproduced ESBLs and AmpC together with carbapenemases. Furthermore, dendrogram analysis showed great genetic divergence based on the 21 different enterobacterial repetitive intergenic consensus (ERIC) patterns (P1–P21) through the 34 β-lactamase producers. ERIC analysis distinguished clonal similarities between isolates 21 and 22 in P2 and 9 and 10 in P4, which were isolated from the same clinical source and possessed similar patterns of β-lactamase-encoding genes. Conclusion Hence, there is an urgent need to monitor hospitalized patients and improve healthcare in order to reduce the incidence of infection and outbreaks of infection with antibiotic-resistant Proteus. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02662-3.
Collapse
Affiliation(s)
- Mona Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Soha Lotfy Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ola A Abd El-Rahman
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
| |
Collapse
|
2
|
El-Tarabili RM, Ahmed EM, Alharbi NK, Alharbi MA, AlRokban AH, Naguib D, Alhag SK, El Feky TM, Ahmed AE, Mahmoud AE. Prevalence, antibiotic profile, virulence determinants, ESBLs, and non-β-lactam encoding genes of MDR Proteus spp. isolated from infected dogs. Front Genet 2022; 13:952689. [PMID: 36276974 PMCID: PMC9583872 DOI: 10.3389/fgene.2022.952689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
This study investigated the prevalence, antibiogram, virulence, extended-spectrum β-lactamases (ESBLs), and non-β-lactam encoding genes of Proteus species isolated from infected dogs in Ismailia province, Egypt. The study was conducted on 70 fecal swabs collected from dogs with diarrhea for bacteriological identification of Proteus spp. The positive isolates were evaluated for antibiotic susceptibility, molecular tests of virulence, ESBLs, and non-β-lactam encoding genes. Prevalence of Proteus spp. was 35.7% (25/70), including Proteus mirabilis (n = 23) and Proteus vulgaris (n = 2). The Proteus spp. prevalence revealed diversity, higher in males than females, in ages < 12 weeks. Investigation of antimicrobial resistance was found against penicillin and amoxicillin (100%), amoxicillin–clavulanic acid (32%), cephalosporins: cefotaxime and ceftazidime (36%), and monobactam: aztreonam (28%) as ESBLs, in addition to tetracycline (32%) and trimethoprim sulfamethoxazole (100%). The strains retrieved by PCR revealed ureC, zapA, and rsbA virulence genes with variant prevalence as 92%, 60%, and 52%, respectively. In addition, the recovered strains contained ESBL genes with a dramatic variable prevalence of 100%, 92%, 36%, and 32%, to blaTEM, blaSHV, blaCTX-M, and blaOXA-1, respectively, and non β-lactam encoding genes with a prevalence of 100%, 48%, 44%, 20%, and 12%, to sul1, tetA, intI1, qnrA, and aadA1. Moreover, 28% (7/25) of recovering strains were MDR (multidrug-resistant) up to four classes of antimicrobials, and 48% (12/25) of the examined strains were MDR up to three antimicrobial classes. In conclusion, to the best of our knowledge, our study could be the first report recording MDR Proteus spp. in dogs in Egypt.
Collapse
Affiliation(s)
- Reham M El-Tarabili
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Elsayyad M Ahmed
- Department of Virology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Giza, Egypt
| | - Nada K Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maha A Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahlam H AlRokban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Doaa Naguib
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Sadeq K Alhag
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Tamer Mohamed El Feky
- Animal Health Research Institute(AHRI), Mansoura laboratory Branch, Agriculture Research Center (ARC), Giza, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ahmed E Mahmoud
- Department of Animal Medicine, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
3
|
Denissen J, Reyneke B, Waso-Reyneke M, Havenga B, Barnard T, Khan S, Khan W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int J Hyg Environ Health 2022; 244:114006. [PMID: 35841823 DOI: 10.1016/j.ijheh.2022.114006] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023]
Abstract
The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens are characterised by increased levels of resistance towards multiple classes of first line and last-resort antibiotics. Although these pathogens are frequently isolated from clinical environments and are implicated in a variety of life-threatening, hospital-associated infections; antibiotic resistant ESKAPE strains have been isolated from environmental reservoirs such as surface water, wastewater, food, and soil. Literature on the persistence and subsequent health risks posed by the ESKAPE isolates in extra-hospital settings is however, limited and the current review aims to elucidate the primary reservoirs of these pathogens in the environment, their antibiotic resistance profiles, and the link to community-acquired infections. Additionally, information on the current state of research regarding health-risk assessments linked to exposure of the ESKAPE pathogens in the natural environment, is outlined.
Collapse
Affiliation(s)
- Julia Denissen
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Monique Waso-Reyneke
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Benjamin Havenga
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| | - Tobias Barnard
- Water and Health Research Centre, University of Johannesburg, PO Box 17011, Doornfontein, 7305, South Africa
| | - Sehaam Khan
- Faculty of Health Sciences, University of Johannesburg, PO Box 17011, Doornfontein, 2028, South Africa
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa.
| |
Collapse
|
4
|
Investigation of OXA-23, OXA-24, OXA-40, OXA-51, and OXA-58 Genes in Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae Isolates from Patients with Urinary Tract Infections. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm-119480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Escherichia coli and Klebsiella pneumoniae are frequently responsible for urinary tract infections (UTIs). The high rate of carbapenem resistance in Enterobacteriaceae has become a global therapeutic concern. Objectives: The study investigated OXA-23, OXA-24, OXA-40, OXA-51, and OXA-58 genes in uropathogenic E. coli and K. pneumoniae isolates. Methods: We isolated 500 uropathogenic isolates of E. coli and K. pneumoniae from patients at Milad Hospital, Tehran, Iran. Antibiotic susceptibility testing was performed using a strip-test method, and the carbapenem-nonsusceptoble isolates were confirmed with an automated antibiotic sensitivity testing system. The OXA genes were determined by multiplex PCR. Molecular typing was performed by multilocus variable-number tandem repeat (VNTR) analysis (MLVA). Results: Out of 500 isolates, 40 (8%) were detected as carbapenem-resistant, including 13 E. coli and 27 K. pneumoniae. All carbapenem-resistant isolates were ESBL-producing and resistant to ceftriaxone, ciprofloxacin, meropenem, ceftazidime, and amoxicillin-clavulanate. Moreover, 46.1% and 26% of carbapenem-insensitive E. coli and K. pneumoniae isolates carried a beta-lactamase-producing gene associated with the OXA-23-like group. Finally, E. coli and K. pneumoniae isolates were divided into two and three MLVA patterns, respectively. Conclusions: This is the first report of OXA-51, 58, and 24 carbapenemases in clinical isolates of E. coli and K. pneumoniae from UTI patients in Iran. Significant differences were seen in OXA-51, 58, and 24 genes between carbapenem-insensitive and carbapenem-sensitive E. coli and K. pneumoniae isolates. Molecular typing suggested the vertical transmission of resistance genes.
Collapse
|
5
|
High prevalence of OXA-23 carbapenemase-producing Proteus mirabilis among amoxicillin-clavulanate resistant isolates in France. Antimicrob Agents Chemother 2021; 66:e0198321. [PMID: 34930033 DOI: 10.1128/aac.01983-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this multicentric study performed in 12 French hospitals, we reported that 26.9% (14/52) of the amoxicillin/clavulanate-resistant Proteus mirabilis isolates produced the OXA-23 carbapenemase. We found that inhibition zone diameter less than 11 mm around amoxicillin/clavulanate disc was an accurate screening cut-off to detect these OXA-23 producers. We confirmed by whole genome sequencing that these OXA-23-producers all belonged to the same lineage that has been demonstrated to disseminate OXA-23 or OXA-58 in P. mirabilis.
Collapse
|
6
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|
7
|
Abstract
Class D β-lactamases are composed of 14 families and the majority of the member enzymes are included in the OXA family. The genes for class D β-lactamases are frequently identified in the chromosome as an intrinsic resistance determinant in environmental bacteria and a few of these are found in mobile genetic elements carried by clinically significant pathogens. The most dominant OXA family among class D β-lactamases is superheterogeneous and the family needs to have an updated scheme for grouping OXA subfamilies through phylogenetic analysis. The OXA enzymes, even the members within a subfamily, have a diverse spectrum of resistance. Such varied activity could be derived from their active sites, which are distinct from those of the other serine β-lactamases. Their substrate profile is determined according to the size and position of the P-, Ω- and β5-β6 loops, assembling the active-site channel, which is very hydrophobic. Also, amino acid substitutions occurring in critical structures may alter the range of hydrolysed substrates and one subfamily could include members belonging to several functional groups. This review aims to describe the current class D β-lactamases including the functional groups, occurrence types (intrinsic or acquired) and substrate spectra and, focusing on the major OXA family, a new model for subfamily grouping will be presented.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Octavia S, Xu W, Ng OT, Marimuthu K, Venkatachalam I, Cheng B, Lin RTP, Teo JWP. Identification of AbaR4 Acinetobacter baumannii resistance island in clinical isolates of blaOXA-23-positive Proteus mirabilis. J Antimicrob Chemother 2021; 75:521-525. [PMID: 31725155 DOI: 10.1093/jac/dkz472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES bla OXA-23 is a class D carbapenemase-encoding gene typical of the Acinetobacter genus. However, its occurrence in the Enterobacteriaceae is uncommon. Here we provide the genome characterization of blaOXA-23-positive Proteus mirabilis. METHODS In Singapore, a national surveillance of carbapenem non-susceptible clinical Enterobacteriaceae has enabled the collection of OXA-23 bearing isolates. Three clinical P. mirabilis were whole-genome sequenced using Oxford Nanopore MinION and Illumina platforms. The sequence accuracy of MinION long-read contigs was enhanced by polishing with Illumina-derived short-read data. RESULTS In two P. mirabilis genomes, blaOXA-23 was detected as two copies, present on the chromosome and on a 60018 bp plasmid. blaOXA-23 was associated with the classic Acinetobacter composite transposon Tn2006, bounded by two copies of ISAba1 bracketing the carbapenemase gene. The Tn2006 itself was embedded within an Acinetobacter baumannii AbaR4 resistance island. In the chromosome, the AbaR4 was found integrated into the comM gene, which is also the preferred 'hotspot' in A. baumannii. In the plasmid, AbaR4 integrated into a putative colicin gene. CONCLUSIONS Our description of an A. baumannii AbaR4 encoding blaOXA-23 in P. mirabilis is to our knowledge the first description of an Acinetobacter resistance island in Proteus and suggests that P. mirabilis may be a reservoir for this class D carbapenemase gene.
Collapse
Affiliation(s)
- Sophie Octavia
- National Public Health Laboratory, Ministry of Health, Singapore.,National Centre for Infectious Diseases, Singapore
| | - Weizhen Xu
- National Centre for Infectious Diseases, Singapore.,Tan Tock Seng Hospital, Department of Infectious Diseases, Singapore
| | - Oon Tek Ng
- National Public Health Laboratory, Ministry of Health, Singapore.,National Centre for Infectious Diseases, Singapore.,Tan Tock Seng Hospital, Department of Infectious Diseases, Singapore.,Nanyang Technological University, Lee Kong Chian School of Medicine, Singapore
| | - Kalisvar Marimuthu
- National Centre for Infectious Diseases, Singapore.,Tan Tock Seng Hospital, Department of Infectious Diseases, Singapore.,National University of Singapore, Yong Loo Lin School of Medicine, Singapore
| | - Indumathi Venkatachalam
- Singapore General Hospital, Department of Infectious Diseases and Department of Infection Prevention & Epidemiology, Singapore
| | - Bernadette Cheng
- National University Hospital, Department of Laboratory Medicine, Singapore
| | - Raymond T P Lin
- National Public Health Laboratory, Ministry of Health, Singapore.,National Centre for Infectious Diseases, Singapore.,National University Hospital, Department of Laboratory Medicine, Singapore
| | - Jeanette W P Teo
- National University Hospital, Department of Laboratory Medicine, Singapore
| |
Collapse
|
9
|
Bonnin RA, Jousset AB, Emeraud C, Oueslati S, Dortet L, Naas T. Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales. Front Med (Lausanne) 2021; 7:616490. [PMID: 33553210 PMCID: PMC7855592 DOI: 10.3389/fmed.2020.616490] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/09/2020] [Indexed: 01/05/2023] Open
Abstract
Gram-negative bacteria, especially Enterobacterales, have emerged as major players in antimicrobial resistance worldwide. Resistance may affect all major classes of anti-gram-negative agents, becoming multidrug resistant or even pan-drug resistant. Currently, β-lactamase-mediated resistance does not spare even the most powerful β-lactams (carbapenems), whose activity is challenged by carbapenemases. The dissemination of carbapenemases-encoding genes among Enterobacterales is a matter of concern, given the importance of carbapenems to treat nosocomial infections. Based on their amino acid sequences, carbapenemases are grouped into three major classes. Classes A and D use an active-site serine to catalyze hydrolysis, while class B (MBLs) require one or two zinc ions for their activity. The most important and clinically relevant carbapenemases are KPC, IMP/VIM/NDM, and OXA-48. However, several carbapenemases belonging to the different classes are less frequently detected. They correspond to class A (SME-, Nmc-A/IMI-, SFC-, GES-, BIC-like…), to class B (GIM, TMB, LMB…), class C (CMY-10 and ACT-28), and to class D (OXA-372). This review will address the genetic diversity, biochemical properties, and detection methods of minor acquired carbapenemases in Enterobacterales.
Collapse
Affiliation(s)
- Rémy A Bonnin
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Agnès B Jousset
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Cécile Emeraud
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Saoussen Oueslati
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France
| | - Laurent Dortet
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team "Resist" UMR1184 "Immunology of Viral, Auto-Immune, Hematological and Bacterial diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, LabEx LERMIT, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur-APHP-Université Paris-Sud, Paris, France.,Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris Saclay, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
10
|
Viorica RP, Pawel P, Boguslaw B. Use of Lactobacillus paracasei isolated from whey for silver nanocomposite synthesis: Antiradical and antimicrobial properties against selected pathogens. J Dairy Sci 2021; 104:2480-2498. [PMID: 33455769 DOI: 10.3168/jds.2020-19049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/16/2020] [Indexed: 01/25/2023]
Abstract
The present research emphasizes the use of safe, inexpensive, and available whey using Lactobacillus paracasei as a source in silver nanocomposite synthesis as an alternative bioactive agent for dairy and biomedical applications. Through the multiinstrumental approach used in this study based on spectroscopic and microscopic methods as well as spectrometric techniques, the characterization and evaluation of silver composites and their antimicrobial and antiradical properties were enabled. Synthesized silver nanocomposites have been found in form of nanocrystals, naturally coated by an organic surface with high antimicrobial and antiradical properties. Furthermore, this work also presents an innovative approach regarding the organic surface (naturally secreted by the bacteria isolated from whey) of the core of nanoparticles, which has already been explored and therefore is starting to supplement the scientific approach concerning biologically synthesized nanoparticles. This work also presents a general frame on the resistance subject by performing the trial interaction of commercially available antibiotics (kanamycin and ampicillin) with new bioactive compounds that can create novel knowledge on complementing their action. Moreover, synthesized silver nanocomposites have shown great antioxidant and antimicrobial effects against various foodborne pathogens from dairy products and drug resistance pathogens found in the medical area to rank on the top of mortality rate.
Collapse
Affiliation(s)
- Railean-Plugaru Viorica
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Pomastowski Pawel
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Buszewski Boguslaw
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
11
|
Bonnin RA, Girlich D, Jousset AB, Gauthier L, Cuzon G, Bogaerts P, Haenni M, Madec JY, Couvé-Deacon E, Barraud O, Fortineau N, Glaser P, Glupczynski Y, Dortet L, Naas T. A single Proteus mirabilis lineage from human and animal sources: a hidden reservoir of OXA-23 or OXA-58 carbapenemases in Enterobacterales. Sci Rep 2020; 10:9160. [PMID: 32514057 PMCID: PMC7280188 DOI: 10.1038/s41598-020-66161-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
In Enterobacterales, the most common carbapenemases are Ambler's class A (KPC-like), class B (NDM-, VIM- or IMP-like) or class D (OXA-48-like) enzymes. This study describes the characterization of twenty-four OXA-23 or OXA-58 producing-Proteus mirabilis isolates recovered from human and veterinary samples from France and Belgium. Twenty-two P. mirabilis isolates producing either OXA-23 (n = 21) or OXA-58 (n = 1), collected between 2013 and 2018, as well as 2 reference strains isolated in 1996 and 2015 were fully sequenced. Phylogenetic analysis revealed that 22 of the 24 isolates, including the isolate from 1996, belonged to a single lineage that has disseminated in humans and animals over a long period of time. The blaOXA-23 gene was located on the chromosome and was part of a composite transposon, Tn6703, bracketed by two copies of IS15∆II. Sequencing using Pacbio long read technology of OXA-23-producing P. mirabilis VAC allowed the assembly of a 55.5-kb structure encompassing the blaOXA-23 gene in that isolate. By contrast to the blaOXA-23 genes, the blaOXA-58 gene of P. mirabilis CNR20130297 was identified on a 6-kb plasmid. The acquisition of the blaOXA-58 gene on this plasmid involved XerC-XerD recombinases. Our results suggest that a major clone of OXA-23-producing P. mirabilis is circulating in France and Belgium since 1996.
Collapse
Affiliation(s)
- Rémy A Bonnin
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Delphine Girlich
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Agnès B Jousset
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Lauraine Gauthier
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Gaëlle Cuzon
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Pierre Bogaerts
- Belgian National Reference Laboratory for Monitoring of Antimicrobial Resistance in Gram-Negative Bacteria, CHU UCL Namur, B-5530, Yvoir, Belgium
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - ANSES Laboratoire de Lyon, 31 avenue Tony Garnier, 69364, Lyon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - ANSES Laboratoire de Lyon, 31 avenue Tony Garnier, 69364, Lyon, France
| | | | - Olivier Barraud
- Université de Limoges, INSERM, CHU Limoges, UMR 1092, Limoges, France
| | - Nicolas Fortineau
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Philippe Glaser
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
| | - Youri Glupczynski
- Belgian National Reference Laboratory for Monitoring of Antimicrobial Resistance in Gram-Negative Bacteria, CHU UCL Namur, B-5530, Yvoir, Belgium
| | - Laurent Dortet
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- UMR 1184, Team Resist, INSERM, Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicêtre, France.
- French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.
- Joint research Unit EERA « Evolution and Ecology of Resistance to Antibiotics », Institut Pasteur-APHP-University Paris Sud, Paris, France.
- Bacteriology-Hygiene unit, Assistance Publique - Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.
| |
Collapse
|
12
|
Girlich D, Bonnin RA, Dortet L, Naas T. Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front Microbiol 2020; 11:256. [PMID: 32153540 PMCID: PMC7046756 DOI: 10.3389/fmicb.2020.00256] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/03/2020] [Indexed: 01/30/2023] Open
Abstract
Proteus spp. are commensal Enterobacterales of the human digestive tract. At the same time, P. mirabilis is commonly involved in urinary tract infections (UTI). P. mirabilis is naturally resistant to several antibiotics including colistin and shows reduced susceptibility to imipenem. However higher levels of resistance to imipenem commonly occur in P. mirabilis isolates consecutively to the loss of porins, reduced expression of penicillin binding proteins (PBPs) PBP1a, PBP2, or acquisition of several antibiotic resistance genes, including carbapenemase genes. In addition, resistance to non-β-lactams is also frequently reported including molecules used for treating UTI infections (e.g., fluoroquinolones, nitrofurans). Emergence and spread of multidrug resistant P. mirabilis isolates, including those producing ESBLs, AmpC cephalosporinases and carbapenemases, are being more and more frequently reported. This review covers Proteus spp. with a focus on the different genetic mechanisms involved in the acquisition of resistance genes to multiple antibiotic classes turning P. mirabilis into a dreadful pandrug resistant bacteria and resulting in difficult to treat infections.
Collapse
Affiliation(s)
- Delphine Girlich
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| | - Rémy A Bonnin
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| | - Laurent Dortet
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| | - Thierry Naas
- EA7361 "Structure, dynamic, function and expression of broad spectrum β-lactamases", LabEx Lermit, Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-producing Enterobacteriaceae, Le Kremlin-Bicêtre, France.,Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur - APHP - Université Paris-Saclay, Paris, France
| |
Collapse
|
13
|
Lin MF, Liou ML, Kuo CH, Lin YY, Chen JY, Kuo HY. Antimicrobial Susceptibility and Molecular Epidemiology of Proteus mirabilis Isolates from Three Hospitals in Northern Taiwan. Microb Drug Resist 2019; 25:1338-1346. [PMID: 31295061 DOI: 10.1089/mdr.2019.0066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Of all the Proteus spp., Proteus mirabilis is the most common species identified in clinical specimens and is a leading agent of complicated urinary tract infection. This study was undertaken to understand the antimicrobial susceptibility, prevalence of antibiotic resistance genes, and molecular typing of P. mirabilis isolates collected from three hospitals in northern Taiwan. The results showed that the collected isolates of P. mirabilis were susceptible to most antibiotics except cefazolin and tigecycline. Many resistance genes were detected in the collected isolates, of which TEM genes were the most common. Resistance to third- or fourth-generation cephalosporins was related to the presence of at least one of the tested extended-spectrum β-lactamase (ESBL) or AmpC genes. The presence of the VEB-1 gene seemed to be a good predictor for both cefepime and ceftazidime resistance, which was further supported by quantitative polymerase chain reaction results. Of the four imipenem-resistant P. mirabilis isolates, three isolates could hydrolyze imipenem by mass spectrometry analysis. Molecular typing by pulsed-field gel electrophoresis showed that the pulsotyping of the selected P. mirabilis isolates was heterogeneous. By analyzing the relationship of antimicrobial resistance and the presence of resistance genes, revision of the Clinical and Laboratory Standards Institute cefepime and ceftazidime MIC breakpoints for Enterobacteriaceae to predict ESBL producers might possibly be needed.
Collapse
Affiliation(s)
- Ming-Feng Lin
- Department of Medicine, National Taiwan University Hospital Chu-Tung Branch, Hsin-Chu, Taiwan
| | - Ming-Li Liou
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsin-Chu, Taiwan
| | - Chiung-Hui Kuo
- Department of Laboratory Medicine, National Taiwan University Hospital Chu-Tung Branch, Hsin-Chu, Taiwan
| | - Yun-You Lin
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsin-Chu, Taiwan
| | - Jiann-Yuan Chen
- Department of Laboratory Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei, Taiwan
| | - Han-Yueh Kuo
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| |
Collapse
|
14
|
Bontron S, Poirel L, Kieffer N, Savov E, Trifonova A, Todorova I, Kueffer G, Nordmann P. Increased Resistance to Carbapenems inProteus mirabilisMediated by Amplification of theblaVIM-1-Carrying and IS26-Associated Class 1 Integron. Microb Drug Resist 2019; 25:663-667. [DOI: 10.1089/mdr.2018.0365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Séverine Bontron
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Nicolas Kieffer
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | | | | | | | - Gwendoline Kueffer
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
- Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| |
Collapse
|
15
|
Carbapenem-Susceptible OXA-23-Producing Proteus mirabilis in the French Community. Antimicrob Agents Chemother 2019; 63:AAC.00191-19. [PMID: 30962345 DOI: 10.1128/aac.00191-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/31/2019] [Indexed: 11/20/2022] Open
Abstract
Nineteen Proteus mirabilis isolates producing the carbapenemase OXA-23 were recovered over a 2-year period in 19 French hospitalized patients, of whom 12 had community onset infections. The isolates exhibited a slightly reduced susceptibility to carbapenems. Whole-genome analysis revealed that all 19 isolates formed a cluster compared to 149 other P. mirabilis isolates. Because of its susceptibility to carbapenems, this clone may be misidentified as a penicillinase producer while it constitutes a reservoir of the OXA-23-encoding gene in the community.
Collapse
|
16
|
Laurens C, Jean-Pierre H, Licznar-Fajardo P, Hantova S, Godreuil S, Martinez O, Jumas-Bilak E. Transmission of IMI-2 carbapenemase-producing Enterobacteriaceae from river water to human. J Glob Antimicrob Resist 2018; 15:88-92. [DOI: 10.1016/j.jgar.2018.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/17/2018] [Accepted: 06/29/2018] [Indexed: 11/16/2022] Open
|
17
|
Leulmi Z, Kandouli C, Mihoubi I, Benlabed K, Lezzar A, Rolain JM. First report of bla OXA-24 carbapenemase gene, armA methyltransferase and aac(6')-Ib-cr among multidrug-resistant clinical isolates of Proteus mirabilis in Algeria. J Glob Antimicrob Resist 2018; 16:125-129. [PMID: 30217548 DOI: 10.1016/j.jgar.2018.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Carbapenemase-producing, or carbapenem-resistant, Enterobacteriaceae are an emerging threat to human and animal health because they are resistant to many of the last-line antimicrobials available for treatment of infection. The aim of this study was to analyse the antimicrobial resistance patterns and their encoding genes of Proteus mirabilis isolated in Constantine, Algeria. METHODS A total of 108 Proteus, Morganella and Providencia (PMP) strains were isolated from a large variety of clinical specimens at University Hospital of Constantine in Algeria. Isolates were identified using the API 20E system and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Diagnostic accuracy was determined by independent comparison of each method to phylogenetic analysis based on 16S rRNA gene sequencing. Antimicrobial susceptibility was determined by the standard disk diffusion and Etest methods. The presence of antimicrobial resistance genes was screened for by PCR amplification and sequencing. RESULTS A total of 72 PMP strains were multidrug-resistant (MDR). Among them, one P. mirabilis isolate was resistant to imipenem with a minimum inhibitory concentration (MIC) of ≥12μg/mL. PCR and sequencing showed the presence of various antimicrobial resistance genes, including blaCTX-M-15, blaTEM-1, blaTEM-2, blaPER-1, blaSHV-11, aadA1, aadA2, armA, aac(6')-Ib, aac(6')-Ib-cr, aac(3)-Ia and ant(2″)-I, forming different resistance profiles. Moreover, the blaOXA-24 gene was detected in the imipenem-resistant P. mirabilis strain. CONCLUSION In this study, a MDR P. mirabilis isolate harbouring the blaOXA-24, armA 16S rRNA methylase and aac(6)-Ib-cr genes was found for the first time in Algeria.
Collapse
Affiliation(s)
- Zineb Leulmi
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, URMITE CNRS-IRD, UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France; Laboratoire Microbiologie, CHU de Constantine, Constantine, Algeria
| | - Chouaib Kandouli
- Laboratoire de Biologie et Environnement, Faculté des Sciences de la Nature et de la Vie, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| | - Ilhem Mihoubi
- Laboratoire de Mycologie, Biotechnologie et de l'Activité Microbienne, Faculté des Sciences de la Nature et de la Vie, Université des Frères Mentouri Constantine 1, Constantine, Algeria
| | - Kaddour Benlabed
- Laboratoire Microbiologie, CHU de Constantine, Constantine, Algeria
| | - Abdeslam Lezzar
- Laboratoire Microbiologie, CHU de Constantine, Constantine, Algeria
| | - Jean-Marc Rolain
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, URMITE CNRS-IRD, UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
18
|
Kanzari L, Ferjani S, Saidani M, Hamzaoui Z, Jendoubi A, Harbaoui S, Ferjani A, Rehaiem A, Boutiba Ben Boubaker I, Slim A. First report of extensively-drug-resistant Proteus mirabilis isolate carrying plasmid-mediated bla NDM-1 in a Tunisian intensive care unit. Int J Antimicrob Agents 2018; 52:906-909. [PMID: 29958975 DOI: 10.1016/j.ijantimicag.2018.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/15/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
Emergence of the New Delhi metallo-β-lactamase (NDM-1), an Ambler class B metallo-β-lactamase able to hydrolyse all β-lactams except monobactams, constitutes a critical and increasingly important medical issue. The acquisition of blaNDM-1 is of particular concern for Proteus mirabilis, which is intrinsically resistant to tetracycline, tigecycline and colistin, as this will make clinical treatment extremely difficult. To the authors' knowledge, this is the first report of the blaNDM-1 gene in an extensively-drug-resistant P. mirabilis clinical isolate carrying plasmid-mediated resistance to carbapenems (blaNDM-1), cephalosporins (blaCMY-4), aminoglycosides (aph3 VIa and aph3 Ia) and fluoroquinolones (qnrA6).
Collapse
Affiliation(s)
- Lamia Kanzari
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de Recherche "Résistance aux antibiotiques" LR99ES09, 1007, Tunis, Tunisie; Hôpital Charles Nicolle, Laboratoire de microbiologie, Tunis, Tunisie.
| | - Sana Ferjani
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de Recherche "Résistance aux antibiotiques" LR99ES09, 1007, Tunis, Tunisie
| | - Mabrouka Saidani
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de Recherche "Résistance aux antibiotiques" LR99ES09, 1007, Tunis, Tunisie; Hôpital Charles Nicolle, Laboratoire de microbiologie, Tunis, Tunisie
| | - Zeineb Hamzaoui
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de Recherche "Résistance aux antibiotiques" LR99ES09, 1007, Tunis, Tunisie
| | - Ali Jendoubi
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de Recherche "Résistance aux antibiotiques" LR99ES09, 1007, Tunis, Tunisie; Hôpital Charles Nicolle, Unité de réanimation médico-chirurgicale, Tunis, Tunisie
| | - Sarra Harbaoui
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de Recherche "Résistance aux antibiotiques" LR99ES09, 1007, Tunis, Tunisie
| | - Asma Ferjani
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de Recherche "Résistance aux antibiotiques" LR99ES09, 1007, Tunis, Tunisie; Hôpital Charles Nicolle, Laboratoire de microbiologie, Tunis, Tunisie
| | - Amel Rehaiem
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de Recherche "Résistance aux antibiotiques" LR99ES09, 1007, Tunis, Tunisie; Hôpital Charles Nicolle, Laboratoire de microbiologie, Tunis, Tunisie
| | - Ilhem Boutiba Ben Boubaker
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de Recherche "Résistance aux antibiotiques" LR99ES09, 1007, Tunis, Tunisie; Hôpital Charles Nicolle, Laboratoire de microbiologie, Tunis, Tunisie
| | - Amine Slim
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Laboratoire de Recherche "Résistance aux antibiotiques" LR99ES09, 1007, Tunis, Tunisie; Hôpital Charles Nicolle, Laboratoire de microbiologie, Tunis, Tunisie
| |
Collapse
|
19
|
Evaluation of the Amplidiag CarbaR+VRE Kit for Accurate Detection of Carbapenemase-Producing Bacteria. J Clin Microbiol 2018; 56:JCM.01092-17. [PMID: 29305547 DOI: 10.1128/jcm.01092-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022] Open
Abstract
As carbapenemase-producing Gram-negative bacilli (CP-GNB) (Enterobacteriaceae, Pseudomonadaceae, and Acinetobacter spp.) are becoming a major public health issue, there is an urgent need for accurate and fast diagnostic tests. The Amplidiag CarbaR+VRE assay is a multiplex nucleic acid-based in vitro diagnostic test intended for the detection of CP-GNB and vancomycin-resistant enterococci (VRE) from cultured colonies. We have evaluated its ability to detect carbapenemase genes in 100 well-characterized GNB and in 200 consecutive enterobacterial isolates with reduced susceptibility to carbapenems that were referred to the French National Reference Center for carbapenem resistance. The assay has been validated on purified DNA but also directly on colonies. The Amplidiag CarbaR+VRE assay could detect all KPC, NDM, VIM, IMP, and OXA-48-like variants tested and all acquired carbapenem-hydrolyzing oxacillinases from Acinetobacter baumannii (OXA-23, OXA-24/-40, and OXA-58) as well as the overexpressed chromosomally encoded OXA-51-like β-lactamase associated with an upstream inserted ISAba1 However, as claimed by the manufacturer, other carbapenemases such as GES-like carbapenemases (GES-2, GES-5, and GES-14), GIM-1, AIM-1, SPM-1, DIM-1, OXA-198 in Pseudomonas aeruginosa, or OXA-143-like in A. baumannii were not detected. Amplidiag CarbaR+VRE's performance values were high (100% sensitivity and 99% specificity) as it could detect the five major carbapenemases-NDM, VIM, IMP, KPC, and OXA-48-as well as OXA-type carbapenemases from Acinetobacter spp. that are currently emerging also among Proteus mirabilis and other enterobacterial isolates. It can provide a result directly from colonies growing on Mueller-Hinton (MH) agar or on selective screening medium in less than 2 h. Further evaluations are now necessary to determine the performance values directly on rectal swabs.
Collapse
|
20
|
Lange F, Pfennigwerth N, Gerigk S, Gohlke F, Oberdorfer K, Purr I, Wohanka N, Roggenkamp A, Gatermann SG, Kaase M. Dissemination of blaOXA-58 in Proteus mirabilis isolates from Germany. J Antimicrob Chemother 2018; 72:1334-1339. [PMID: 28093482 DOI: 10.1093/jac/dkw566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023] Open
Abstract
Objectives Characterization of Proteus mirabilis isolates harbouring bla OXA-58 with emphasis on the genetic environment of this resistance determinant. Methods Strains of P. mirabilis ( n = 37) isolated from different patients were tested for the presence of bla OXA-58 . The genetic context of bla OXA-58 was determined by WGS of two strains and Sanger sequencing. Clonality of the strains was assessed by PFGE. Susceptibility testing was performed by microdilution according to EUCAST. Results Four strains isolated in different geographical regions of Germany were positive for bla OXA-58 , and WGS showed that this resistance gene was harboured on a plasmid. Sanger sequencing confirmed the presence of two nearly identical plasmids, 6219 and 6208 bp in size, in all four strains. Upstream of bla OXA-58 an IS Aba 3-like transposase gene was located. The P. mirabilis strains were not clonally related according to PFGE. MICs of meropenem for three of the strains were only just above the EUCAST breakpoint and the Carba NP test was positive for only two of the strains. Conclusions To our knowledge, this is the first description of bla OXA-58 in the species P. mirabilis . The resistance gene is harboured by almost identical plasmids in strains not clonally related and from different geographical regions. Apart from an IS Aba 3-like transposase gene upstream of bla OXA-58 the genetic context is different from bla OXA-58 harboured on plasmids in the genus Acinetobacter . With MICs of meropenem well below the EUCAST breakpoint or only just above it and equivocal or false negative results from the Carba NP test, bla OXA-58 can be easily overlooked in P. mirabilis .
Collapse
Affiliation(s)
- Felix Lange
- Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Niels Pfennigwerth
- Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Sonja Gerigk
- Medizinische Laboratorien Düsseldorf, Nordstraße 44, Düsseldorf, 40477, Germany
| | - Frank Gohlke
- Eifeldialyse Mechernich-Euskirchen, Zum Markt 12, Mechernich, 53894, Germany
| | - Klaus Oberdorfer
- MVZ Labor Dr. Limbach & Kollegen GbR, Heidelberg, Im Breitspiel 15, Heidelberg, 69126, Germany
| | - Ingvill Purr
- MVZ synlab Leverkusen GmbH, Paracelsusstraße 13, Leverkusen, 51375, Germany
| | - Nikolaus Wohanka
- MVZ Dr. Engelschalk, Dr. Schubach, Dr. Wiegel und Kollegen, Wörth 15, Passau, 94034, Germany
| | - Andreas Roggenkamp
- MVZ Dr. Engelschalk, Dr. Schubach, Dr. Wiegel und Kollegen, Wörth 15, Passau, 94034, Germany
| | - Sören G Gatermann
- Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Martin Kaase
- Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| |
Collapse
|
21
|
Paul D, Ingti B, Bhattacharjee D, Maurya AP, Dhar D, Chakravarty A, Bhattacharjee A. An unusual occurrence of plasmid-mediated bla OXA-23 carbapenemase in clinical isolates of Escherichia coli from India. Int J Antimicrob Agents 2017; 49:642-645. [PMID: 28365429 DOI: 10.1016/j.ijantimicag.2017.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 10/19/2022]
Abstract
The blaOXA-23 group was considered as the first group of OXA-type β-lactamases conferring carbapenem resistance and has been reported worldwide in Acinetobacter baumannii, however their presence in Escherichia coli is very rare and unique. This study describes an unusual occurrence of blaOXA-23 in 14 clinical isolates of E. coli obtained from intensive care unit patients admitted to a tertiary referral hospital in India. The blaOXA-23 gene was found located within a self-conjugative plasmid of IncFrepB and IncK incompatibility types and simultaneously carrying blaCTX-M-15, blaVEB-1, blaPER-1 and/or blaNDM-1. The copy number of blaOXA-23 within the IncK-type plasmid was inversely proportional to increasing concentrations of imipenem, whereas in the case of the IncFrepB-type the result was variable; and increased copy number of the IncK-type plasmid was observed with increasing concentrations of meropenem. Plasmids encoding blaOXA-23 could be successfully eliminated after single treatment and were found to be not highly stable, as complete loss of plasmids was observed within 5-10 days. This study emphasises that carbapenem stress invariably altered the copy number of two different Inc type plasmids encoding the blaOXA-23 resistance gene and also highlights a potential threat of clonal expansion of this class D carbapenemase through a heterologous host in this country, which is in second incidence globally.
Collapse
Affiliation(s)
- Deepjyoti Paul
- Department of Microbiology, Assam University, Silchar, India
| | - Birson Ingti
- Department of Microbiology, Assam University, Silchar, India
| | | | | | - Debadatta Dhar
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, India
| | - Atanu Chakravarty
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, India
| | | |
Collapse
|
22
|
Chromosomal Amplification of the blaOXA-58 Carbapenemase Gene in a Proteus mirabilis Clinical Isolate. Antimicrob Agents Chemother 2017; 61:AAC.01697-16. [PMID: 27855079 DOI: 10.1128/aac.01697-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/24/2016] [Indexed: 01/30/2023] Open
Abstract
Horizontal gene transfer may occur between distantly related bacteria, thus leading to genetic plasticity and in some cases to acquisition of novel resistance traits. Proteus mirabilis is an enterobacterial species responsible for human infections that may express various acquired β-lactam resistance genes, including different classes of carbapenemase genes. Here we report a Proteus mirabilis clinical isolate (strain 1091) displaying resistance to penicillin, including temocillin, together with reduced susceptibility to carbapenems and susceptibility to expanded-spectrum cephalosporins. Using biochemical tests, significant carbapenem hydrolysis was detected in P. mirabilis 1091. Since PCR failed to detect acquired carbapenemase genes commonly found in Enterobacteriaceae, we used a whole-genome sequencing approach that revealed the presence of blaOXA-58 class D carbapenemase gene, so far identified only in Acinetobacter species. This gene was located on a 3.1-kb element coharboring a blaAmpC-like gene. Remarkably, these two genes were bracketed by putative XerC-XerD binding sites and inserted at a XerC-XerD site located between the terminase-like small- and large-subunit genes of a bacteriophage. Increased expression of the two bla genes resulted from a 6-time tandem amplification of the element as revealed by Southern blotting. This is the first isolation of a clinical P. mirabilis strain producing OXA-58, a class D carbapenemase, and the first description of a XerC-XerD-dependent insertion of antibiotic resistance genes within a bacteriophage. This study revealed a new role for the XerC-XerD recombinase in bacteriophage biology.
Collapse
|
23
|
Escandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2016; 15:277-297. [PMID: 27915487 DOI: 10.1080/14787210.2017.1268918] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Enterobacteriaceae, Pseudomonas spp., and Acinetobacter spp. infections are major causes of morbidity and mortality, especially due to the emergence and spread of β-lactamases. Carbapenemases, which are β-lactamases with the capacity to hydrolyze or inactivate carbapenems, have become a serious concern as they have the largest hydrolytic spectrum and therefore limit the utility of most β-lactam antibiotics. Areas covered: Here, we present an update of the current status of carbapenemases in Latin America and the Caribbean. Expert commentary: The increased frequency of reports on carbapenemases in Latin America and the Caribbean shows that they have successfully spread and have even become endemic in some countries. Countries such as Brazil, Colombia, Argentina, and Mexico account for the majority of these reports. Early suspicion and detection along with implementation of antimicrobial stewardship programs in all healthcare settings are crucial for the control and prevention of carbapenemase-producing bacteria.
Collapse
Affiliation(s)
- Kevin Escandón-Vargas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Reyes
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - Sergio Gutiérrez
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia
| | - María Virginia Villegas
- a Bacterial Resistance and Hospital Epidemiology Unit , International Center for Medical Research and Training (CIDEIM) , Cali , Colombia.,b Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics , Universidad El Bosque , Bogotá , Colombia
| |
Collapse
|
24
|
First Occurrence of OXA-72-Producing Acinetobacter baumannii in Serbia. Antimicrob Agents Chemother 2016; 60:5724-30. [PMID: 27431216 DOI: 10.1128/aac.01016-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022] Open
Abstract
Here, we characterized the first OXA-72-producing Acinetobacter baumannii isolate (designated MAL) recovered from a urine sample from a Serbian patient. Antimicrobial susceptibility testing, plasmid analysis, and whole-genome sequencing (WGS) were performed to fully characterize the resistome of the A. baumannii MAL clinical isolate. The isolate was multidrug resistant and remained susceptible only to colistin and tigecycline. PCR analysis revealed the presence of the carbapenemase OXA-72, an OXA-40 variant. Extraction by the Kieser method revealed the presence of two plasmids, and one of these, a ca. 10-kb plasmid, harbored the blaOXA-72 gene. WGS revealed 206 contigs corresponding to a genome of 3.9 Mbp in size with a G+C content of 38.8%. The isolate belonged to sequence type 492 and to worldwide clone II (WWCII). Naturally occurring β-lactamase-encoding genes (blaADC-25 and blaOXA-66) were also identified. Aminoglycoside resistance genes encoding one aminoglycoside adenyltransferase (aadA2), three aminoglycoside phosphatases (strA, strB, aphA6), and one 16S RNA methylase (armA) conferring resistance to all aminoglycosides were identified. Resistance to fluoroquinolones was likely due to mutations in gyrA, parC, and parE Of note, the resistome matched perfectly with the antibiotic susceptibility testing results.
Collapse
|
25
|
Insights on the Horizontal Gene Transfer of Carbapenemase Determinants in the Opportunistic Pathogen Acinetobacter baumannii. Microorganisms 2016; 4:microorganisms4030029. [PMID: 27681923 PMCID: PMC5039589 DOI: 10.3390/microorganisms4030029] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/21/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022] Open
Abstract
Horizontal gene transfer (HGT) is a driving force to the evolution of bacteria. The fast emergence of antimicrobial resistance reflects the ability of genetic adaptation of pathogens. Acinetobacter baumannii has emerged in the last few decades as an important opportunistic nosocomial pathogen, in part due to its high capacity of acquiring resistance to diverse antibiotic families, including to the so-called last line drugs such as carbapenems. The rampant selective pressure and genetic exchange of resistance genes hinder the effective treatment of resistant infections. A. baumannii uses all the resistance mechanisms to survive against carbapenems but production of carbapenemases are the major mechanism, which may act in synergy with others. A. baumannii appears to use all the mechanisms of gene dissemination. Beyond conjugation, the mostly reported recent studies point to natural transformation, transduction and outer membrane vesicles-mediated transfer as mechanisms that may play a role in carbapenemase determinants spread. Understanding the genetic mobilization of carbapenemase genes is paramount in preventing their dissemination. Here we review the carbapenemases found in A. baumannii and present an overview of the current knowledge of contributions of the various HGT mechanisms to the molecular epidemiology of carbapenem resistance in this relevant opportunistic pathogen.
Collapse
|
26
|
Rare Detection of the Acinetobacter Class D Carbapenemase blaOXA-23 Gene in Proteus mirabilis. Antimicrob Agents Chemother 2016; 60:3243-5. [PMID: 26902769 DOI: 10.1128/aac.03119-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Mlynarcik P, Roderova M, Kolar M. Primer Evaluation for PCR and its Application for Detection of Carbapenemases in Enterobacteriaceae. Jundishapur J Microbiol 2016; 9:e29314. [PMID: 27099689 PMCID: PMC4834133 DOI: 10.5812/jjm.29314] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/21/2015] [Accepted: 07/25/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND During the last decade, the prevalence of carbapenem-resistant Enterobacteriaceae in human patients has increased. Carbapenemase-producing bacteria are usually multidrug resistant. Therefore, early recognition of carbapenemase producers is critical to prevent their spread. OBJECTIVES The objective of this study was to develop the primers for single and/or multiplex PCR amplification assays for simultaneous identification of class A, class B, and class D carbapenem hydrolyzing β-lactamases in Enterobacteriaceae and then to evaluate their efficiency. MATERIALS AND METHODS The reference sequences of all genes encoding carbapenemases were downloaded from GenBank. Primers were designed to amplify the following 11 genes: bla KPC, bla OXA, bla VIM, bla NDM, bla IMP, bla SME, bla IMI, bla GES , bla GIM, bla DIM and bla CMY . PCR conditions were tested to amplify fragments of different sizes. Two multiplex PCR sets were created for the detection of clinically important carbapenemases. The third set of primers was included for detection of all known carbapenemases in Enterobacteriaceae. They were evaluated using six reference strains and nine clinical isolates. RESULTS Using optimized conditions, all carbapenemase-positive controls yielded predicted amplicon sizes and confirmed the specificity of the primers in single and multiplex PCR. CONCLUSIONS We have reported here a reliable method, composed of single and multiplex PCR assays, for screening all clinically known carbapenemases. Primers tested in silico and in vitro may distinguish carbapenem-resistant Enterobacteriaceae and could assist in combating the spread of carbapenem resistance in Enterobacteriaceae.
Collapse
Affiliation(s)
- Patrik Mlynarcik
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Corresponding author: Patrik Mlynarcik, Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, 775 15, Olomouc, Czech Republic. Tel: +420-585632406, E-mail:
| | - Magdalena Roderova
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Milan Kolar
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
28
|
High Prevalence of SXT/R391-Related Integrative and Conjugative Elements Carrying blaCMY-2 in Proteus mirabilis Isolates from Gulls in the South of France. Antimicrob Agents Chemother 2015; 60:1148-52. [PMID: 26643344 DOI: 10.1128/aac.01654-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/17/2015] [Indexed: 11/20/2022] Open
Abstract
The genetic structures involved in the dissemination of blaCMY-2 carried by Proteus mirabilis isolates recovered from different gull species in the South of France were characterized and compared to clinical isolates. blaCMY-2 was identified in P. mirabilis isolates from 27/93 yellow-legged gulls and from 37/65 slender-billed gulls. It was carried by a conjugative SXT/R391-like integrative and conjugative element (ICE) in all avian strains and in 3/7 human strains. Two clinical isolates had the same genetic background as six avian isolates.
Collapse
|
29
|
Zahedi bialvaei A, Samadi kafil H, Ebrahimzadeh Leylabadlo H, Asgharzadeh M, Aghazadeh M. Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. IRANIAN JOURNAL OF MICROBIOLOGY 2015; 7:226-46. [PMID: 26719779 PMCID: PMC4695504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The emergence and spread of carbapenemase-producing bacteria, that hydolyze most β-lactams, including carbapenems, are a major concern of public health system worldwide, particularly in the Middle East area. Since the plasmids harboring resistance genes could be spread across other bacterial populations, detection of carbapenemase-producing organisms has become more problematic. These organisms produce different types of enzymes including the most prevalent types including KPC, VIM, IMP, NDM, and OXA-48. Carbapenemase producers are mostly identified among Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. This study reviewed almost all papers, which conducted in the Middle East. In order to decrease the spread of resistance, the regional cooperation has been emphasized by the Middle East countries. The highest resistance, which is mediated by KPC has been observed in Afghanistan, Saudi Arabia and Jordan followed by NDM in Pakistan and OXA in Turkey and Pakistan. It is important to mention that the spread of these types have been reported sporadically in the other countries of this area. This review described the widespread carbapenemases in the Middle East area, which have been identified in an alarming rate.
Collapse
Affiliation(s)
- Abed Zahedi bialvaei
- Infectious Disease and Tropical Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding author: Hossein Samadi Kafil PhD. Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. E-mail:
| | | | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Infectious Disease and Tropical Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Rapidec Carba NP Test for Rapid Detection of Carbapenemase Producers. J Clin Microbiol 2015; 53:3003-8. [PMID: 26085619 DOI: 10.1128/jcm.00977-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022] Open
Abstract
Performances of the Rapidec Carba NP test (bioMérieux) were evaluated for detection of all types of carbapenemases in Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa. In less than 2 h after sample preparation, it showed a sensitivity and specificity of 96%. This ready-to-use test is well adapted to the daily need for detection of carbapenemase producers in any laboratory worldwide.
Collapse
|
31
|
Ahmed S, Kawaguchiya M, Ghosh S, Paul SK, Urushibara N, Mahmud C, Nahar K, Hossain MA, Kobayashi N. Drug resistance and molecular epidemiology of aerobic bacteria isolated from puerperal infections in Bangladesh. Microb Drug Resist 2015; 21:297-306. [PMID: 25555043 DOI: 10.1089/mdr.2014.0219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Puerperal infection is a common complication during postnatal period in developing countries. Bacterial species, drug resistance, and genetic characteristics were investigated for a total of 470 isolates from puerperal infections in Bangladesh for a 2-year period (2010-2012). The most common species was Escherichia coli (n=98), followed by Enterococcus faecalis (n=54), Staphylococcus haemolyticus (n=33), Proteus mirabilis (n=32), Staphylococcus aureus (n=27), Klebsiella pneumoniae (n=22), and Enterobacter cloacae (n=21). S. aureus and Acinetobacter baumannii were isolated at a higher frequency from wound infections after cesarean section, while E. coli, E. cloacae, and K. pneumoniae were isolated from community-acquired endometritis and urinary tract infections. Resistance to third-generation cephalosporins was frequent for Enterobacteriacae, and was mainly mediated by blaCTX-M-1 group beta-lactamases. The CTX-M gene in E. coli from the four phylogroups was identified as blaCTX-M-15, and phylogroup B2 isolates with blaCTX-M-15 were classified into ST131 with O25b allele, harboring aac(6')-Ib-cr and various virulence factors. Carbapenemase genes blaNDM-1 and blaNDM-7 were identified in one isolate each of phylogroup A E. coli. Methicillin-resistant S. aureus isolates had type IV or V SCCmec, including isolates of ST361 (CC672), which is related to an emerging ST672 clone in the Indian subcontinent. This study revealed the recent epidemiological status of aerobic bacteria causing puerperal infections in Bangladesh, providing useful information to improve clinical practice and infection control.
Collapse
Affiliation(s)
- Salma Ahmed
- 1Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Mitsuyo Kawaguchiya
- 2Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Souvik Ghosh
- 2Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan.,3Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - Shyamal Kumar Paul
- 1Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Noriko Urushibara
- 2Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Chand Mahmud
- 1Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Kamrun Nahar
- 4Department of Gynecology and Obstetrics, Mymensingh Medical College, Mymensingh, Bangladesh
| | | | - Nobumichi Kobayashi
- 2Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
32
|
Girlich D, Dortet L, Poirel L, Nordmann P. Integration of the blaNDM-1 carbapenemase gene into Proteus genomic island 1 (PGI1-PmPEL) in a Proteus mirabilis clinical isolate. J Antimicrob Chemother 2014; 70:98-102. [PMID: 25239462 DOI: 10.1093/jac/dku371] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To decipher the mechanisms and their associated genetic determinants responsible for β-lactam resistance in a Proteus mirabilis clinical isolate. METHODS The entire genetic structure surrounding the β-lactam resistance genes was characterized by PCR, gene walking and DNA sequencing. RESULTS Genes encoding the carbapenemase NDM-1 and the ESBL VEB-6 were located in a 38.5 kb MDR structure, which itself was inserted into a new variant of the Proteus genomic island 1 (PGI1). This new PGI1-PmPEL variant of 64.4 kb was chromosomally located, as an external circular form in the P. mirabilis isolate, suggesting potential mobility. CONCLUSIONS This is the first known description of the bla(NDM-1) gene in a genomic island structure, which might further enhance the spread of the bla(NDM-1) carbapenemase gene among enteric pathogens.
Collapse
Affiliation(s)
- Delphine Girlich
- INSERM U914 'Emerging Resistance to Antibiotics', Faculté de Médecine et Université Paris Sud, K.-Bicêtre, France
| | - Laurent Dortet
- INSERM U914 'Emerging Resistance to Antibiotics', Faculté de Médecine et Université Paris Sud, K.-Bicêtre, France
| | - Laurent Poirel
- INSERM U914 'Emerging Resistance to Antibiotics', Faculté de Médecine et Université Paris Sud, K.-Bicêtre, France Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| | - Patrice Nordmann
- INSERM U914 'Emerging Resistance to Antibiotics', Faculté de Médecine et Université Paris Sud, K.-Bicêtre, France Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
33
|
Antunes NT, Fisher JF. Acquired Class D β-Lactamases. Antibiotics (Basel) 2014; 3:398-434. [PMID: 27025753 PMCID: PMC4790369 DOI: 10.3390/antibiotics3030398] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
The Class D β-lactamases have emerged as a prominent resistance mechanism against β-lactam antibiotics that previously had efficacy against infections caused by pathogenic bacteria, especially by Acinetobacter baumannii and the Enterobacteriaceae. The phenotypic and structural characteristics of these enzymes correlate to activities that are classified either as a narrow spectrum, an extended spectrum, or a carbapenemase spectrum. We focus on Class D β-lactamases that are carried on plasmids and, thus, present particular clinical concern. Following a historical perspective, the susceptibility and kinetics patterns of the important plasmid-encoded Class D β-lactamases and the mechanisms for mobilization of the chromosomal Class D β-lactamases are discussed.
Collapse
Affiliation(s)
- Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
34
|
Bonnin RA, Poirel L, Nordmann P. New Delhi metallo-β-lactamase-producing Acinetobacter baumannii: a novel paradigm for spreading antibiotic resistance genes. Future Microbiol 2014; 9:33-41. [PMID: 24328379 DOI: 10.2217/fmb.13.69] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The impact of carbapenemase production among clinically significant Gram-negative rods is becoming a major medical issue. To date, Acinetobacter baumannii has been considered as a final recipient of carbapenemase genes (imipenemase, Verona metallo-β-lactamase, Guiana extended-spectrum β-lactamase and Klebsiella pneumonia carbapenemase types) from Enterobacteriaceae and Pseudomonas aeruginosa. However, recent findings regarding the spread of the blaNDM carbapenemase genes revealed that A. baumannii likely acts as a source of emerging antibiotic resistance genes. The analysis of genetic structure surrounding the blaNDM-1 gene revealed that the genetic structure (Tn125) responsible for its dissemination most probably originates from Acinetobacter. Moreover, analysis of the blaNDM-1 gene itself demonstrated that it might be constructed in Acinetobacter through a recombination event with another resistance gene found in A. baumannii (aphA6). This novel paradigm highlights a novel and unexpected role played by A. baumannii.
Collapse
Affiliation(s)
- Rémy A Bonnin
- INSERM U914, Emerging Resistance to Antibiotics, K. Bicêtre, France
| | | | | |
Collapse
|
35
|
Unusual detection of an Acinetobacter class D carbapenemase gene, blaOXA-23, in a clinical Escherichia coli isolate. J Clin Microbiol 2014; 52:3822-3. [PMID: 25031438 DOI: 10.1128/jcm.01566-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Beyrouthy R, Robin F, Dabboussi F, Mallat H, Hamzé M, Bonnet R. Carbapenemase and virulence factors of Enterobacteriaceae in North Lebanon between 2008 and 2012: evolution via endemic spread of OXA-48. J Antimicrob Chemother 2014; 69:2699-705. [DOI: 10.1093/jac/dku181] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
37
|
IS1R-mediated plasticity of IncL/M plasmids leads to the insertion of bla OXA-48 into the Escherichia coli Chromosome. Antimicrob Agents Chemother 2014; 58:3785-90. [PMID: 24752261 DOI: 10.1128/aac.02669-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The OXA-48 carbapenemase is mainly encoded by ∼ 62-kb IncL/M plasmids. However, chromosome-mediated genes have been observed in Escherichia coli isolates. In this work, we investigated the genetic environment of OXA-48 in members of the family Enterobacteriaceae (n = 22) to understand how the OXA-48-encoding gene is transferred into the E. coli chromosome. The OXA-48-encoding gene was located within intact Tn1999.2 transposons in the ∼ 62-kb plasmids or within a truncated variant of Tn1999.2 for the OXA-48-encoding genes located in the chromosomes of E. coli bacteria. The analysis of the Tn1999.2 genetic environment revealed an inverted orientation of the transposon in five ∼ 62-kb plasmids (5/14 [35%]) and in all chromosome inserts (n = 8). The sequencing of pRA35 plasmid showed that this orientation of Tn1999.2 and the acquisition of an IS1R insertion sequence generated a 21.9-kb IS1R-based composite transposon encoding OXA-48 and designated Tn6237. The sequencing of a chromosomal insert encoding OXA-48 also revealed this new transposon in the E. coli chromosome. PCR mapping showed the presence of this element in all strains harboring an OXA-48-encoding chromosomal insert. However, different insertion sites of this transposon were observed in the E. coli chromosome. Overall, these findings indicate a plasticity of the OXA-48 genetic environment mediated by IS1R insertion sequences. The insertion sequences can induce the transfer of the OXA-encoding gene into E. coli chromosomes and thereby promote its persistence and expression at low levels.
Collapse
|
38
|
Cicek AC, Duzgun AO, Saral A, Sandalli C. Determination of a novel integron-located variant (bla
OXA
-320
) of Class D β-lactamase in Proteus mirabilis. J Basic Microbiol 2013; 54:1030-5. [DOI: 10.1002/jobm.201300264] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/11/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Aysegul Copur Cicek
- Department of Medical Microbiology, Faculty of Medicine; Recep Tayyip Erdogan University; Rize Turkey
| | - Azer Ozad Duzgun
- Department of Biology, Faculty of Arts & Sciences; Giresun University; Giresun Turkey
| | - Aysegul Saral
- Department of Biology, Faculty of Arts & Sciences; Artvin Coruh University; Artvin Turkey
| | - Cemal Sandalli
- Department of Biology, Faculty of Arts & Sciences; Recep Tayyip Erdogan University; Rize Turkey
| |
Collapse
|
39
|
Patel G, Bonomo RA. "Stormy waters ahead": global emergence of carbapenemases. Front Microbiol 2013; 4:48. [PMID: 23504089 PMCID: PMC3596785 DOI: 10.3389/fmicb.2013.00048] [Citation(s) in RCA: 304] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/20/2013] [Indexed: 01/08/2023] Open
Abstract
Carbapenems, once considered the last line of defense against of serious infections with Enterobacteriaceae, are threatened with extinction. The increasing isolation of carbapenem-resistant Gram-negative pathogens is forcing practitioners to rely on uncertain alternatives. As little as 5 years ago, reports of carbapenem resistance in Enterobacteriaceae, common causes of both community and healthcare-associated infections, were sporadic and primarily limited to case reports, tertiary care centers, intensive care units, and outbreak settings. Carbapenem resistance mediated by β-lactamases, or carbapenemases, has become widespread and with the paucity of reliable antimicrobials available or in development, international focus has shifted to early detection and infection control. However, as reports of Klebsiella pneumoniae carbapenemases, New Delhi metallo-β-lactamase-1, and more recently OXA-48 (oxacillinase-48) become more common and with the conveniences of travel, the assumption that infections with highly resistant Gram-negative pathogens are limited to the infirmed and the heavily antibiotic and healthcare exposed are quickly being dispelled. Herein, we provide a status report describing the increasing challenges clinicians are facing and forecast the “stormy waters” ahead.
Collapse
Affiliation(s)
- Gopi Patel
- Department of Medicine, Mount Sinai School of Medicine New York, NY, USA
| | | |
Collapse
|
40
|
Beyrouthy R, Robin F, Cougnoux A, Dalmasso G, Darfeuille-Michaud A, Mallat H, Dabboussi F, Hamzé M, Bonnet R. Chromosome-mediated OXA-48 carbapenemase in highly virulent Escherichia coli. J Antimicrob Chemother 2013; 68:1558-61. [PMID: 23447140 DOI: 10.1093/jac/dkt051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Bacteria multiresistant to antibiotics are widely supposed to be weakly virulent. However, the virulence traits of carbapenem-resistant Enterobacteriaceae have not been investigated. In this work, we investigated the virulence and resistance mechanism of an extraintestinal pathogenic Escherichia coli (ExPEC) strain (LEB15) that exhibited decreased susceptibility to carbapenems. METHODS The MICs were determined by a microdilution method. The β-lactamase-encoding gene was identified by PCR and sequencing, and the genetic environment was analysed by PFGE and PCR mapping. The genetic background was investigated by multilocus sequence typing (MLST). Virulence-factor-encoding genes and pathogenic islands (PAIs) were detected by multiplex PCR. Virulence was assessed in a mouse sepsis model. RESULTS Strain LEB15 produced a chromosomal OXA-48 carbapenemase. The complete bla(OXA-48)-encoding Tn1999.2 transposon was inserted in the LEB15 chromosome. The strain belonged to an MLST cluster of emerging ExPEC strains (ST-127/ST-22). It had a high pathogenic score and eight PAIs (I536, II536, III536, IV536, VI536, I(CFT073), II(CFT073) and II(J96)) and induced an unusually high lethality in the mouse sepsis model. CONCLUSIONS Strain LEB15 combines both an atypical broad accumulation of virulence factors, which confers a strong killer phenotype, and a decrease in susceptibility to carbapenems following the chromosomal acquisition of bla(OXA-48). This association of virulence and carbapenemase in E. coli strains might pose major problems in the future for E. coli infection management.
Collapse
Affiliation(s)
- Racha Beyrouthy
- Clermont Université, UMR 1071 Inserm/Université d'Auvergne, 63000 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Torol S, Kasap M. Purification and characterization of OXA-23 from Acinetobacter baumannii. J Enzyme Inhib Med Chem 2012; 28:836-42. [PMID: 22651799 DOI: 10.3109/14756366.2012.689296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the existence of bla(OXA-23) is reported in various parts of the world, the product of bla(OXA-23) gene, OXA-23, has not been purified and its kinetic properties are not known. In this study, OXA-23 of Acinetobacter baumannii isolated from Kocaeli University intensive care unit was characterized after purification using recombinant methods. Preliminary results showed that conventional protein purification methods were not effective for purification of OXA-23. Therefore, OXA-23 was fused to maltose-binding protein of Escherichia coli, the fused protein was expressed and purified to homogeneity. Kinetic properties of the pure protein were then studied with substrates e.g., imipenem, meropenem, cefepime, ceftazidime, ampicilline, piperacillin, penicillin G, and nitrocefin. Also clavulanic acid, tazobactam, and sulbactam concentrations that inhibit 50% of OXA-23 enzyme activity were calculated. Modelling of OXA-23 revealed its ionic surface structure, conformation in the fused form and its topology allowing us to make predictions for OXA-23 substrate specificity.
Collapse
Affiliation(s)
- Sinem Torol
- Department Of Medical Biology/KABI Proteomics Laboratory, Kocaeli University Medical School, Kocaeli, Turkey
| | | |
Collapse
|
42
|
Roca I, Espinal P, Vila-Farrés X, Vila J. The Acinetobacter baumannii Oxymoron: Commensal Hospital Dweller Turned Pan-Drug-Resistant Menace. Front Microbiol 2012; 3:148. [PMID: 22536199 PMCID: PMC3333477 DOI: 10.3389/fmicb.2012.00148] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 03/28/2012] [Indexed: 12/28/2022] Open
Abstract
During the past few decades Acinetobacter baumannii has evolved from being a commensal dweller of health-care facilities to constitute one of the most annoying pathogens responsible for hospitalary outbreaks and it is currently considered one of the most important nosocomial pathogens. In a prevalence study of infections in intensive care units conducted among 75 countries of the five continents, this microorganism was found to be the fifth most common pathogen. Two main features contribute to the success of A. baumannii: (i) A. baumannii exhibits an outstanding ability to accumulate a great variety of resistance mechanisms acquired by different mechanisms, either mutations or acquisition of genetic elements such as plasmids, integrons, transposons, or resistant islands, making this microorganism multi- or pan-drug-resistant and (ii) The ability to survive in the environment during prolonged periods of time which, combined with its innate resistance to desiccation and disinfectants, makes A. baumannii almost impossible to eradicate from the clinical setting. In addition, its ability to produce biofilm greatly contributes to both persistence and resistance. In this review, the pathogenesis of the infections caused by this microorganism as well as the molecular bases of antibacterial resistance and clinical aspects such as treatment and potential future therapeutic strategies are discussed in depth.
Collapse
Affiliation(s)
- Ignasi Roca
- Department of Clinical Microbiology, School of Medicine, IDIBAPS and Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona Barcelona, Spain
| | | | | | | |
Collapse
|
43
|
Chromosomal integration and location on IncT plasmids of the blaCTX-M-2 gene in Proteus mirabilis clinical isolates. Antimicrob Agents Chemother 2011; 56:1093-6. [PMID: 22106217 DOI: 10.1128/aac.00258-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Analysis of five CTX-M-2-producing Proteus mirabilis isolates in Japan demonstrated that bla(CTX-M-2) was located on the chromosome in four isolates and on IncT plasmids in three isolates, including two isolates that also carried the gene on the chromosome. In all four isolates with chromosomal bla(CTX-M-2), ISEcp1 was responsible for the integration of the gene into the chromosome. Three different sites in the P. mirabilis genomic sequence were utilized as integration sites.
Collapse
|
44
|
Abstract
Innate resistance and remarkable ability to acquire additional resistance determinants underline the clinical importance of Acinetobacter. Over 210 β-lactamases belonging to 16 families have been identified in the genus, mostly in clinical isolates of A. baumannii. In this review, we update the current taxonomy of the genus Acinetobacter and summarize the β-lactamases detected in Acinetobacter spp. with an emphasis on Acinetobacter-derived cephalosporinases (ADCs) and carbapenem-hydrolysing class D β-lactamases (CHDLs). We also discuss the roles of integrons and insertion sequence (IS) elements in the expression and dissemination of such resistance determinants.
Collapse
Affiliation(s)
- Wei-Hua Zhao
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
45
|
Patel G, Bonomo RA. Status report on carbapenemases: challenges and prospects. Expert Rev Anti Infect Ther 2011; 9:555-70. [PMID: 21609267 DOI: 10.1586/eri.11.28] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antimicrobial resistance in hospital and community-onset bacterial infections is a significant source of patient morbidity and mortality. In the past decade, we have witnessed the increasing recovery of carbapenem-resistant Gram-negative bacteria. For many isolates, carbapenem resistance is due to the production of carbapenemases, β-lactamases that can inactivate carbapenems and frequently other β-lactam antibiotics. Currently, these enzymes are mainly found in three different β-lactamase classes (class A, B and D). Regardless of the molecular classification, there are few antimicrobials available to treat infections with these organisms and data regarding agents in development are limited to in vitro studies. This article focuses on the epidemiology of carbapenemase-producing Gram-negative bacteria. We also review available agents and those in development with potential activity against this evolving threat.
Collapse
Affiliation(s)
- Gopi Patel
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
46
|
Raghunathan A, Samuel L, Tibbetts RJ. Evaluation of a real-time PCR assay for the detection of the Klebsiella pneumoniae carbapenemase genes in microbiological samples in comparison with the modified Hodge test. Am J Clin Pathol 2011; 135:566-71. [PMID: 21411778 DOI: 10.1309/ajcppvnui3o9jhjw] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Transfer of the bla(KPC) genes encoding the Klebsiella pneumoniae carbapenemase (KPC) are increasingly responsible for emerging carbapenem resistance. The modified Hodge test (MHT) is recommended for the detection of KPC. We compared MHT with a real-time polymerase chain reaction (PCR) assay targeting common subtypes of bla(KPC), using previously described forward and reverse primer sequences. The PCR product was detected using SYBR Green (Applied Biosystems, Foster City, CA) and confirmed by melt curve analysis. PCR was positive in 96% (52/54) of isolates that were MHT+, 90% (28/31) of MHT- isolates were PCR-, and the results were strongly correlated (P = .0001; Fisher exact test). The PCR assay is a sensitive, specific, and rapid test for detecting bla(KPC) genes. It could help optimize patient care by reducing the time taken to institute appropriate antimicrobial therapy and so help improve patient outcomes.
Collapse
|
47
|
Abstract
Eighteen carbapenem-resistant, OXA-48-positive enterobacterial isolates recovered from Turkey, Lebanon, Egypt, France, and Belgium were analyzed. In most isolates, similar 70-kb plasmids carrying the carbapenemase gene bla(OXA-48) were identified. That gene was located within either transposon Tn1999 or transposon Tn1999.2, which was always inserted within the same gene. This work highlights the current plasmid-mediated dissemination of the OXA-48 carbapenemase worldwide.
Collapse
|
48
|
First isolation of the blaOXA-23 carbapenemase gene from an environmental Acinetobacter baumannii isolate. Antimicrob Agents Chemother 2009; 54:578-9. [PMID: 19884362 DOI: 10.1128/aac.00861-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Abstract
Class D beta-lactamase-mediated resistance to beta-lactams has been increasingly reported during the last decade. Those enzymes also known as oxacillinases or OXAs are widely distributed among Gram negatives. Genes encoding class D beta-lactamases are known to be intrinsic in many Gram-negative rods, including Acinetobacter baumannii and Pseudomonas aeruginosa, but play a minor role in natural resistance phenotypes. The OXAs (ca. 150 variants reported so far) are characterized by an important genetic diversity and a great heterogeneity in terms of beta-lactam hydrolysis spectrum. The acquired OXAs possess either a narrow spectrum or an expanded spectrum of hydrolysis, including carbapenems in several instances. Acquired class D beta-lactamase genes are mostly associated to class 1 integron or to insertion sequences.
Collapse
|
50
|
Patel JB, Rasheed JK, Kitchel B. Carbapenemases in Enterobacteriaceae: Activity, Epidemiology, and Laboratory Detection. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.clinmicnews.2009.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|