1
|
Liu S, Wang Y, Xu C. Suppressive effects of lemon myrtle extract against the colonization and virulence factors of Candida spp. J Oral Biosci 2025:100657. [PMID: 40127778 DOI: 10.1016/j.job.2025.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
OBJECTIVES Candida species (Candida spp.) are among the most common opportunistic pathogens inhabiting the oral cavity and frequently cause infection in immunocompromised individuals. Conventional antibiotic treatments for Candida infections face significant challenges, including the emergence of antimicrobial resistance. This highlights the urgent need for alternative therapeutic strategies, particularly those leveraging natural products. METHODS In this study, we evaluated the inhibitory effects of an aqueous lemon myrtle extract on the colonization and virulence of six Candida spp., including microbial adhesion, biofilm formation, extracellular polysaccharide production, hyphal production, and several invasion-associated virulence factors. RESULTS The extract significantly reduced Candida adhesion to hard surfaces and inhibited biofilm formation. Additionally, it suppressed the production of insoluble extracellular polysaccharides and various invasion-associated virulence factors, including phospholipase, ergosterol, protease, and hyphal formation. CONCLUSIONS These findings provide a better understanding of the potential role of lemon myrtle extract as a natural therapeutic agent for controlling Candida colonization and mitigating its invasive capabilities. This study provides a foundation for further exploration of lemon myrtle as a promising alternative for the management of Candida infections.
Collapse
Affiliation(s)
- Siyuan Liu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Yi Wang
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
2
|
Bai W, Wang Y, Ma J, Li G, Wang Y, Yang C, Zhang Q, Li Q, Zhang J, Zhang P. Histone deacetylase Hos1 promotes the homeostasis of Candida albicans cell wall and membrane and its specific inhibitor has an antifungal activity in vivo. Microbiol Res 2025; 296:128132. [PMID: 40112660 DOI: 10.1016/j.micres.2025.128132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
The rise of drug-resistant Candida albicans (C. albicans) has led to an urgent need for new therapeutic strategies. Histone deacetylases (HDACs) inhibition has been shown to limit fungal virulence while enhancing the efficacy of antifungal drugs against Candida. However, HDACs are highly conserved from yeast to humans, which has hindered the application of these inhibitors in the antifungal therapy. The aim of this study is to identify a suitable antifungal target and develop specific inhibitors targeting C. albicans HDACs. Based on sequence alignments, the HDAC Hos1 in C. albicans was proposed as a target for further investigation. We evaluated the impact of Hos1 on C. albicans pathogenicity using a murine model of disseminated candidiasis. Results showed that Hos1 null mutant caused less damage to mouse tissues. Additionally, we demonstrated that the reduced virulence was due to inhibition of cell wall O-mannan biosynthesis and altered metabolic flexibility, leading to decreased adaptability of C. albicans. Increased sensitivity of C. albicans to antifungal drugs was attributed to abnormal accumulation of ergosterol in the cell membrane. Furthermore, we identified Hos1 inhibitors from the ZINC database using molecular docking. These inhibitors exhibited highly specific inhibition of the deacetylation activity of C. albicans Hos1. Importantly, the inhibitors not only reduced colonization and invasion by C. albicans in vivo but also synergized with polyene drugs to combat C. albicans by causing abnormal accumulation of ergosterol. Our findings provide detailed insights into antifungal targets and a useful foundation for the discovery of antifungal drugs specifically targeting Candida.
Collapse
Affiliation(s)
- Wenhui Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yanmei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Ma
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi' an, Shaanxi 710061, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuchen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Zonglian College, Xi'an Jiaotong University, Xi' an, Shaanxi 710061, China
| | - Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
3
|
Hetta HF, Melhem T, Aljohani HM, Salama A, Ahmed R, Elfadil H, Alanazi FE, Ramadan YN, Battah B, Rottura M, Donadu MG. Beyond Conventional Antifungals: Combating Resistance Through Novel Therapeutic Pathways. Pharmaceuticals (Basel) 2025; 18:364. [PMID: 40143141 PMCID: PMC11944814 DOI: 10.3390/ph18030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The rising burden of fungal infections presents a significant challenge to global healthcare, particularly with increasing antifungal resistance limiting treatment efficacy. Early detection and timely intervention remain critical, yet fungal pathogens employ diverse mechanisms to evade host immunity and develop resistance, undermining existing therapeutic options. Limited antifungal options and rising resistance necessitate novel treatment strategies. This review provides a comprehensive overview of conventional antifungal agents, their mechanisms of action, and emerging resistance pathways. Furthermore, it highlights recently approved and investigational antifungal compounds while evaluating innovative approaches such as nanotechnology, drug repurposing, and immunotherapy. Addressing antifungal resistance requires a multifaceted strategy that integrates novel therapeutics, enhanced diagnostic tools, and future research efforts to develop sustainable and effective treatment solutions.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Tameem Melhem
- Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | - Hashim M. Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia;
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Antioch Syrian Private University, Maaret Saidnaya 22734, Syria;
| | - Michelangelo Rottura
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Matthew Gavino Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Carolus H, Sofras D, Boccarella G, Sephton-Clark P, Biriukov V, Cauldron NC, Lobo Romero C, Vergauwen R, Yazdani S, Pierson S, Jacobs S, Vandecruys P, Wijnants S, Meis JF, Gabaldón T, van den Berg P, Rybak JM, Cuomo CA, Van Dijck P. Acquired amphotericin B resistance leads to fitness trade-offs that can be mitigated by compensatory evolution in Candida auris. Nat Microbiol 2024; 9:3304-3320. [PMID: 39567662 DOI: 10.1038/s41564-024-01854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Candida auris is a growing concern due to its resistance to antifungal drugs, particularly amphotericin B (AMB), detected in 30 to 60% of clinical isolates. However, the mechanisms of AMB resistance remain poorly understood. Here we investigated 441 in vitro- and in vivo-evolved C. auris lineages from 4 AMB-susceptible clinical strains of different clades. Genetic and sterol analyses revealed four major types of sterol alterations as a result of clinically rare variations in sterol biosynthesis genes ERG6, NCP1, ERG11, ERG3, HMG1, ERG10 and ERG12. In addition, aneuploidies in chromosomes 4 and 6 emerged during resistance evolution. Fitness trade-off phenotyping and mathematical modelling identified diverse strain- and mechanism-dependent fitness trade-offs. Variation in CDC25 rescued fitness trade-offs, thereby increasing the infection capacity. This possibly contributed to therapy-induced acquired AMB resistance in the clinic. Our findings highlight sterol-modulating mechanisms and fitness trade-off compensation as risks for AMB treatment failure in clinical settings.
Collapse
Affiliation(s)
- Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Giorgio Boccarella
- Evolutionary Modelling Group, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | | | - Vladislav Biriukov
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nicholas C Cauldron
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI, USA
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Rudy Vergauwen
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Saleh Yazdani
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Siebe Pierson
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Stef Jacobs
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Paul Vandecruys
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jacques F Meis
- Centre of Expertise in Mycology, Radboudumc/CWZ, Nijmegen, The Netherlands
- Institute of Translational Research, CECAD, University of Cologne, Cologne, Germany
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Pieter van den Berg
- Evolutionary Modelling Group, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Evolutionary Modelling Group, Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Christina A Cuomo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
- KU Leuven One Health Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Tian S, Rong C, Li H, Wu Y, Wu N, Chu Y, Jiang N, Zhang J, Shang H. Genetic microevolution of clinical Candida auris with reduced Amphotericin B sensitivity in China. Emerg Microbes Infect 2024; 13:2398596. [PMID: 39234778 PMCID: PMC11385638 DOI: 10.1080/22221751.2024.2398596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The global rate of Amphotericin B (AmB) resistance in Candida auris has surpassed 12%. However, there is limited data on available clinical treatments and microevolutionary analyses concerning reduced AmB sensitivity. In this study, we collected 18 C. auris isolates from five patients between 2019 and 2022. We employed clinical data mining, genomic, and transcriptomic analyses to identify genetic evolutionary features linked to reduced AmB sensitivity in these isolates during clinical treatment. We identified six isolates with a minimum inhibitory concentration (MIC) of AmB below 0.5 µg/mL (AmB0.5) and 12 isolates with an AmB-MIC of 1 µg/mL (AmB1) or ≥ 2 µg/mL (AmB2). All five patients received 24-hour AmB (5 mg/L) bladder irrigation treatment. Evolutionary analyses revealed an ERG3 (c923t) mutation in AmB1 C. auris. Additionally, AmB2 C. auris was found to contain a t2831c mutation in the RAD2 gene. In the AmB1 group, membrane lipid-related gene expression (ERG1, ERG2, ERG13, and ERG24) was upregulated, while in the AmB2 group, expression of DNA-related genes (e.g. DNA2 and PRI1) was up-regulated. In a series of C.auris strains with reduced susceptibility to AmB, five key genes were identified: two upregulated (IFF9 and PGA6) and three downregulated (HGT7, HGT13,and PRI32). In this study, we demonstrate the microevolution of reduced AmB sensitivity in vivo and further elucidate the relationship between reduced AmB sensitivity and low-concentration AmB bladder irrigation. These findings offer new insights into potential antifungal drug targets and clinical markers for the "super fungus", C. auris.
Collapse
Affiliation(s)
- Sufei Tian
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chen Rong
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hailong Li
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
- NHC Key Laboratory of AIDS Prevention and Treatment, The First Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Yusheng Wu
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Na Wu
- Department of Infectious Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yunzhuo Chu
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ning Jiang
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jingping Zhang
- Department of Infectious Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hong Shang
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
- NHC Key Laboratory of AIDS Prevention and Treatment, The First Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
6
|
Carolus H, Sofras D, Boccarella G, Jacobs S, Biriukov V, Goossens L, Chen A, Vantyghem I, Verbeeck T, Pierson S, Lobo Romero C, Steenackers H, Lagrou K, van den Berg P, Berman J, Gabaldón T, Van Dijck P. Collateral sensitivity counteracts the evolution of antifungal drug resistance in Candida auris. Nat Microbiol 2024; 9:2954-2969. [PMID: 39472696 DOI: 10.1038/s41564-024-01811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/15/2024] [Indexed: 11/02/2024]
Abstract
Antifungal drug resistance represents a serious global health threat, necessitating new treatment strategies. Here we investigated collateral sensitivity (CS), in which resistance to one drug increases sensitivity to another, and cross-resistance (XR), in which one drug resistance mechanism reduces susceptibility to multiple drugs, since CS and XR dynamics can guide treatment design to impede resistance development, but have not been systematically explored in pathogenic fungi. We used experimental evolution and mathematical modelling of Candida auris population dynamics during cyclic and combined drug exposures and found that especially CS-based drug cycling can effectively prevent the emergence of drug resistance. In addition, we found that a CS-based treatment switch can actively select against or eradicate resistant sub-populations, highlighting the potential to consider CS in therapeutic decision-making upon resistance detection. Furthermore, we show that some CS trends are robust among different strains and resistance mechanisms. Overall, these findings provide a promising direction for improved antifungal treatment approaches.
Collapse
Affiliation(s)
- Hans Carolus
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Giorgio Boccarella
- Evolutionary Modelling Group, Department of Biology, KU Leuven, Leuven, Belgium
- Evolutionary Modelling Group, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Stef Jacobs
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Vladislav Biriukov
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Louise Goossens
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Alicia Chen
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ina Vantyghem
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tibo Verbeeck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Siebe Pierson
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Celia Lobo Romero
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Hans Steenackers
- Centre for Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Pieter van den Berg
- Evolutionary Modelling Group, Department of Biology, KU Leuven, Leuven, Belgium
- Evolutionary Modelling Group, Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
- KU Leuven One Health Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Tanwar S, Kalra S, Bari VK. Insights into the role of sterol metabolism in antifungal drug resistance: a mini-review. Front Microbiol 2024; 15:1409085. [PMID: 39464401 PMCID: PMC11502366 DOI: 10.3389/fmicb.2024.1409085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Sterols are essential for eukaryotic cells and are crucial in cellular membranes' structure, function, fluidity, permeability, adaptability to environmental stressors, and host-pathogen interactions. Fungal sterol, such as ergosterol metabolism, involves several organelles, including the mitochondria, lipid droplets, endoplasmic reticulum, and peroxisomes that can be regulated mainly by feedback mechanisms and transcriptionally. The majority of sterol transport in yeast occurs via non-vesicular transport pathways mediated by lipid transfer proteins, which determine the quantity of sterol present in the cell membrane. Pathogenic fungi Candida, Aspergillus, and Cryptococcus species can cause a range of superficial to potentially fatal systemic and invasive infections that are more common in immunocompromised patients. There is a significant risk of morbidity and mortality from these infections, which are very difficult to cure. Several antifungal drugs with different modes of action have received clinical approval to treat fungal infections. Antifungal drugs targeting the ergosterol biosynthesis pathway are well-known for their antifungal activity; however, an imbalance in the regulation and transport of ergosterol could lead to resistance to antifungal therapy. This study summarizes how fungal sterol metabolism and regulation can modulate sterol-targeting antifungal drug resistance.
Collapse
|
8
|
Eliaš D, Tóth Hervay N, Černáková L, Gbelská Y. Changes in Ergosterol Biosynthesis Alter the Response to Cycloheximide, 4-Nitroquinoline-N-Oxide, Weak Organic Acids, and Virulence in Candida glabrata. J Fungi (Basel) 2024; 10:669. [PMID: 39452621 PMCID: PMC11508597 DOI: 10.3390/jof10100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The ERG6 gene encodes the sterol C24-methyltransferase converting zymosterol to fecosterol in the ergosterol biosynthetic pathway. Here, we extend the results of functional analysis of the CgERG6 gene, which was previously shown to modulate drug susceptibility in Candida glabrata mutant cells, by demonstrating that its deletion leads to increased susceptibility to cycloheximide, 4-nitroquinoline-N-oxide and weak organic acids, and such effects are associated with attenuated virulence. Together with abrogated efflux of drug substrates by CgCdr1p and CgPdr12p, the Cgerg6Δ mutation leads to reduced cell surface hydrophobicity and decreased virulence of the mutant cells of C. glabrata. The absence of CgErg6p impacts the lipid organization and function of the plasma membrane, resulting in non-specific permeability and abrogation of normal function of membrane-bound proteins accompanied by decreased virulence in Cgerg6Δ cells. Galleria mellonella larvae were used as a non-vertebrate animal host model to determine differences in the virulence potential of C. glabrata strains (parental strain and the Cgerg6Δ deletion mutant). We found that Cgerg6Δ mutant strain attenuated in virulence caused 25-30% survival of larvae compared with parental strain.
Collapse
Affiliation(s)
| | - Nora Tóth Hervay
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Yvetta Gbelská
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
9
|
Ono J, Kuzmin A, Miller L, Otto SP. The limit to evolutionary rescue depends on ploidy in yeast exposed to nystatin. Can J Microbiol 2024; 70:394-404. [PMID: 38875715 DOI: 10.1139/cjm-2023-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
The number of copies of each chromosome, or ploidy, of an organism is a major genomic factor affecting adaptation. We set out to determine how ploidy can impact the outcome of evolution, as well as the likelihood of evolutionary rescue, using short-term experiments with yeast (Saccharomyces cerevisiae) in a high concentration of the fungicide nystatin. In similar experiments using haploid yeast, the genetic changes underlying evolutionary rescue were highly repeatable, with all rescued lines containing a single mutation in the ergosterol biosynthetic pathway. All of these beneficial mutations were recessive, which led to the expectation that diploids would find alternative genetic routes to adaptation. To test this, we repeated the experiment using both haploid and diploid strains and found that diploid populations did not evolve resistance. Although diploids are able to adapt at the same rate as haploids to a lower, not fully inhibitory, concentration of nystatin, the present study suggests that diploids are limited in their ability to adapt to an inhibitory concentration of nystatin, while haploids may undergo evolutionary rescue. These results demonstrate that ploidy can tip the balance between adaptation and extinction when organisms face an extreme environmental change.
Collapse
Affiliation(s)
- Jasmine Ono
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Ecology and Evolution & Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Anastasia Kuzmin
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lesley Miller
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah P Otto
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
10
|
Gonçalves C, Harrison MC, Steenwyk JL, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Hittinger CT, Rokas A. Diverse signatures of convergent evolution in cactus-associated yeasts. PLoS Biol 2024; 22:e3002832. [PMID: 39312572 PMCID: PMC11449361 DOI: 10.1371/journal.pbio.3002832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently approximately 17 times. Using a machine learning-based approach, we further found that cactophily can be predicted with 76% accuracy from both functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which we found to be likely associated with altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved independently through disparate molecular mechanisms. Notably, we found that multiple cactophilic species and their close relatives have been reported as emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-might preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high-throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.
Collapse
Affiliation(s)
- Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Biology Department, Villanova University, Villanova, Pennsylvania, United States of America
| | - Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
11
|
Navarro-Mendoza MI, Pérez-Arques C, Parker J, Xu Z, Kelly S, Heitman J. Alternative ergosterol biosynthetic pathways confer antifungal drug resistance in the human pathogens within the Mucor species complex. mBio 2024; 15:e0166124. [PMID: 38980037 PMCID: PMC11323496 DOI: 10.1128/mbio.01661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and, consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis. IMPORTANCE The Mucor species complex comprises a variety of opportunistic pathogens known to cause mucormycosis, a potentially lethal fungal infection with limited therapeutic options. The only effective first-line treatments against mucormycosis consist of liposomal formulations of amphotericin B and the triazoles posaconazole and isavuconazole, all of which target components within the ergosterol biosynthetic pathway. This study uncovered M. circinelloides Erg3 and Erg6a as key enzymes to produce ergosterol, a vital constituent of fungal membranes. Absence of any of those enzymes leads to decreased ergosterol and consequently, resistance to ergosterol-binding polyenes such as amphotericin B. Particularly, losing Erg6a function poses a higher threat as the ergosterol pathway is channeled into alternative sterols similar to cholesterol, which maintain membrane permeability. As a result, erg6a mutants survive within the host and disseminate the infection, indicating that Erg6a deficiency may arise during human infections and confer resistance to the most effective treatment against mucormycoses.
Collapse
Affiliation(s)
- María Isabel Navarro-Mendoza
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carlos Pérez-Arques
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Josie Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Steven Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
12
|
Vande Zande P, Gautier C, Kawar N, Maufrais C, Metzner K, Wash E, Beach AK, Bracken R, Maciel EI, Pereira de Sá N, Fernandes CM, Solis NV, Del Poeta M, Filler SG, Berman J, Ene IV, Selmecki A. Step-wise evolution of azole resistance through copy number variation followed by KSR1 loss of heterozygosity in Candida albicans. PLoS Pathog 2024; 20:e1012497. [PMID: 39213436 PMCID: PMC11392398 DOI: 10.1371/journal.ppat.1012497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/12/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Antimicrobial drug resistance poses a global health threat, requiring a deeper understanding of the evolutionary processes that lead to its emergence in pathogens. Complex evolutionary dynamics involve multiple mutations that can result in cooperative or competitive (clonal interference) effects. Candida albicans, a major fungal pathogen, displays high rates of copy number variation (CNV) and loss of heterozygosity (LOH). CNV and LOH events involve large numbers of genes and could synergize during evolutionary adaptation. Understanding the contributions of CNV and LOH to antifungal drug adaptation is challenging, especially in the context of whole-population genome sequencing. Here, we document the sequential evolution of fluconazole tolerance and then resistance in a C. albicans isolate involving an initial CNV on chromosome 4, followed by an LOH on chromosome R that involves KSR1. Similar LOH events involving KSR1, which encodes a reductase in the sphingolipid biosynthesis pathway, were also detected in independently evolved fluconazole resistant isolates. We dissect the specific KSR1 codons that affect fluconazole resistance and tolerance. The combination of the chromosome 4 CNV and KSR1 LOH results in a >500-fold decrease in azole susceptibility relative to the progenitor, illustrating a compelling example of rapid, yet step-wise, interplay between CNV and LOH in drug resistance evolution.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cécile Gautier
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Nora Kawar
- Shmunis School of Biotechnology and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
- Institut Pasteur Bioinformatic Hub, Université Paris Cité, Paris, France
| | - Katura Metzner
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Elizabeth Wash
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Annette K. Beach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ryan Bracken
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eli Isael Maciel
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Nívea Pereira de Sá
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Judith Berman
- Shmunis School of Biotechnology and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
13
|
Elsaman H, Golubtsov E, Brazil S, Ng N, Klugherz I, Martin R, Dichtl K, Müller C, Wagener J. Toxic eburicol accumulation drives the antifungal activity of azoles against Aspergillus fumigatus. Nat Commun 2024; 15:6312. [PMID: 39060235 PMCID: PMC11282106 DOI: 10.1038/s41467-024-50609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Azole antifungals inhibit the sterol C14-demethylase (CYP51/Erg11) of the ergosterol biosynthesis pathway. Here we show that the azole-induced synthesis of fungicidal cell wall carbohydrate patches in the pathogenic mold Aspergillus fumigatus strictly correlates with the accumulation of the CYP51 substrate eburicol. A lack of other essential ergosterol biosynthesis enzymes, such as sterol C24-methyltransferase (Erg6A), squalene synthase (Erg9) or squalene epoxidase (Erg1) does not trigger comparable cell wall alterations. Partial repression of Erg6A, which converts lanosterol into eburicol, increases azole resistance. The sterol C5-desaturase (ERG3)-dependent conversion of eburicol into 14-methylergosta-8,24(28)-dien-3β,6α-diol, the "toxic diol" responsible for the fungistatic activity against yeasts, is not required for the fungicidal effects in A. fumigatus. While ERG3-lacking yeasts are azole resistant, ERG3-lacking A. fumigatus becomes more susceptible. Mutants lacking mitochondrial complex III functionality, which are much less effectively killed, but strongly inhibited in growth by azoles, convert eburicol more efficiently into the supposedly "toxic diol". We propose that the mode of action of azoles against A. fumigatus relies on accumulation of eburicol which exerts fungicidal effects by triggering cell wall carbohydrate patch formation.
Collapse
Affiliation(s)
- Hesham Elsaman
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Evgeny Golubtsov
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sean Brazil
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland
| | - Natanya Ng
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland
| | - Isabel Klugherz
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Ronny Martin
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Karl Dichtl
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christoph Müller
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Wagener
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, the University of Dublin, St James's Hospital Campus, Dublin, Ireland.
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
14
|
Zhou X, Hilk A, Solis NV, Pereira De Sa N, Hogan BM, Bierbaum TA, Del Poeta M, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes. PLoS Pathog 2024; 20:e1012389. [PMID: 39078851 PMCID: PMC11315318 DOI: 10.1371/journal.ppat.1012389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/09/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Homozygous deletions of ERG251 resulted in accumulation of ergosterol intermediates consistent with the fitness defect in rich medium. Dysfunction of ERG251, together with FLC exposure, resulted in decreased accumulation of the toxic sterol (14-ɑ-methylergosta-8,24(28)-dien-3β,6α-diol) and increased accumulation of non-toxic alternative sterols. The altered sterol composition of the ERG251 mutants had pleiotropic effects on transcription, filamentation, and stress responses including cell membrane, osmotic and oxidative stress. Interestingly, while dysfunction of ERG251 resulted in azole tolerance, it also led to transcriptional upregulation of ZRT2, a membrane-bound Zinc transporter, in the presence of FLC, and overexpression of ZRT2 is sufficient to increase azole tolerance in wild-type C. albicans. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study demonstrates that single allele dysfunction of ERG251 is a recurrent and effective mechanism of acquired azole tolerance. We propose that altered sterol composition resulting from ERG251 dysfunction mediates azole tolerance as well as pleiotropic effects on stress response, filamentation and virulence.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
| | - Nivea Pereira De Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
15
|
Tulloch LB, Tinti M, Wall RJ, Weidt SK, Corpas- Lopez V, Dey G, Smith TK, Fairlamb AH, Barrett MP, Wyllie S. Sterol 14-alpha demethylase (CYP51) activity in Leishmania donovani is likely dependent upon cytochrome P450 reductase 1. PLoS Pathog 2024; 20:e1012382. [PMID: 38991025 PMCID: PMC11265716 DOI: 10.1371/journal.ppat.1012382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Liposomal amphotericin B is an important frontline drug for the treatment of visceral leishmaniasis, a neglected disease of poverty. The mechanism of action of amphotericin B (AmB) is thought to involve interaction with ergosterol and other ergostane sterols, resulting in disruption of the integrity and key functions of the plasma membrane. Emergence of clinically refractory isolates of Leishmania donovani and L. infantum is an ongoing issue and knowledge of potential resistance mechanisms can help to alleviate this problem. Here we report the characterisation of four independently selected L. donovani clones that are resistant to AmB. Whole genome sequencing revealed that in three of the moderately resistant clones, resistance was due solely to the deletion of a gene encoding C24-sterol methyltransferase (SMT1). The fourth, hyper-resistant resistant clone (>60-fold) was found to have a 24 bp deletion in both alleles of a gene encoding a putative cytochrome P450 reductase (P450R1). Metabolic profiling indicated these parasites were virtually devoid of ergosterol (0.2% versus 18% of total sterols in wild-type) and had a marked accumulation of 14-methylfecosterol (75% versus 0.1% of total sterols in wild-type) and other 14-alpha methylcholestanes. These are substrates for sterol 14-alpha demethylase (CYP51) suggesting that this enzyme may be a bona fide P450R specifically involved in electron transfer from NADPH to CYP51 during catalysis. Deletion of P450R1 in wild-type cells phenocopied the metabolic changes observed in our AmB hyper-resistant clone as well as in CYP51 nulls. Likewise, addition of a wild type P450R1 gene restored sterol profiles to wild type. Our studies indicate that P450R1 is essential for L. donovani amastigote viability, thus loss of this gene is unlikely to be a driver of clinical resistance. Nevertheless, investigating the mechanisms underpinning AmB resistance in these cells provided insights that refine our understanding of the L. donovani sterol biosynthetic pathway.
Collapse
Affiliation(s)
- Lindsay B. Tulloch
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Richard J. Wall
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Victoriano Corpas- Lopez
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Gourav Dey
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Alan H. Fairlamb
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michael P. Barrett
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
16
|
Fattouh N, Khalaf RA, Husni R. Candida glabrata hospital isolate from Lebanon reveals micafungin resistance associated with increased chitin and resistance to a cell-surface-disrupting agent. J Glob Antimicrob Resist 2024; 37:62-68. [PMID: 38408565 DOI: 10.1016/j.jgar.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
OBJECTIVES This study aimed to identify the resistance mechanisms to micafungin and fluconazole in a clinical isolate of Candida glabrata. METHODS The isolate was whole-genome sequenced to identify amino acid changes in key proteins involved in antifungal resistance, and the isolate was further characterised by pathogenicity-related phenotypic assays that supported the sequencing results. RESULTS Amino acid substitutions were detected in 8 of 17 protein candidates. Many of these substitutions were novel, including in CHS3, CHS3B, and KRE5, which are involved in the development of micafungin resistance. Regarding fluconazole resistance, overexpression of efflux pumps was observed. Our isolate did not exhibit an increased virulence potential compared with the control strain; however, a significant increase in chitin content and potential to resist the cell surface disruptant sodium dodecyl sulphate was observed. CONCLUSIONS This clinical Candida glabrata isolate experienced a change in cell wall architecture, which correlates with the development of micafungin resistance.
Collapse
Affiliation(s)
- Nour Fattouh
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon; Department of Biology, Saint George University of Beirut, Beirut, Lebanon
| | - Roy A Khalaf
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Rola Husni
- School of Medicine, Lebanese American University, Beirut, Lebanon; Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| |
Collapse
|
17
|
Keighley C, Gall M, Halliday CL, Chaw K, Newton P, Sintchenko V, Chen SCA. Breakthrough Candida albicans bloodstream infection associated with in vivo development of pan-azole resistance related to ERG3 gene deletion. Pathology 2024; 56:578-579. [PMID: 38065820 DOI: 10.1016/j.pathol.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 05/13/2024]
Affiliation(s)
- Caitlin Keighley
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney ID, The University of Sydney, Sydney, NSW, Australia; Medical School, The University of Wollongong, Wollongong, NSW, Australia; Southern IML Pathology, Sonic Healthcare, Wollongong, NSW, Australia.
| | - Mailie Gall
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney ID, The University of Sydney, Sydney, NSW, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney ID, The University of Sydney, Sydney, NSW, Australia
| | - Khin Chaw
- Medical School, The University of Wollongong, Wollongong, NSW, Australia; Microbiology, NSW Health Pathology, Wollongong Hospital, Wollongong, NSW, Australia; Australian Red Cross Lifeblood, Brisbane, Qld, Australia
| | - Peter Newton
- Medical School, The University of Wollongong, Wollongong, NSW, Australia; Microbiology, NSW Health Pathology, Wollongong Hospital, Wollongong, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney ID, The University of Sydney, Sydney, NSW, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney ID, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Navarro-Mendoza MI, Pérez-Arques C, Parker J, Xu Z, Kelly S, Heitman J. Alternative ergosterol biosynthetic pathways confer antifungal drug resistance in the human pathogens within the Mucor species complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569667. [PMID: 38076934 PMCID: PMC10705545 DOI: 10.1101/2023.12.01.569667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis.
Collapse
|
19
|
Ahmady L, Gothwal M, Mukkoli MM, Bari VK. Antifungal drug resistance in Candida: a special emphasis on amphotericin B. APMIS 2024; 132:291-316. [PMID: 38465406 DOI: 10.1111/apm.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Invasive fungal infections in humans caused by several Candida species, increased considerably in immunocompromised or critically ill patients, resulting in substantial morbidity and mortality. Candida albicans is the most prevalent species, although the frequency of these organisms varies greatly according to geographic region. Infections with C. albicans and non-albicans Candida species have become more common, especially in the past 20 years, as a result of aging, immunosuppressive medication use, endocrine disorders, malnourishment, extended use of medical equipment, and an increase in immunogenic diseases. Despite C. albicans being the species most frequently associated with human infections, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei also have been identified. Several antifungal drugs with different modes of action are approved for use in clinical settings to treat fungal infections. However, due to the common eukaryotic structure of humans and fungi, only a limited number of antifungal drugs are available for therapeutic use. Furthermore, drug resistance in Candida species has emerged as a result of the growing use of currently available antifungal drugs against fungal infections. Amphotericin B (AmB), a polyene class of antifungal drugs, is mainly used for the treatment of serious systemic fungal infections. AmB interacts with fungal plasma membrane ergosterol, triggering cellular ion leakage via pore formation, or extracting the ergosterol from the plasma membrane inducing cellular death. AmB resistance is primarily caused by changes in the content or structure of ergosterol. This review summarizes the antifungal drug resistance exhibited by Candida species, with a special focus on AmB.
Collapse
Affiliation(s)
- Lailema Ahmady
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Manisha Gothwal
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
20
|
Zhou X, Hilk A, Solis NV, Hogan BM, Bierbaum TA, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on azole susceptibility, filamentation, and stress response phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583770. [PMID: 38496635 PMCID: PMC10942443 DOI: 10.1101/2024.03.06.583770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Dysfunction of ERG251 resulted in transcriptional upregulation of the alternate sterol biosynthesis pathway and ZRT2, a Zinc transporter. Notably, we determined that overexpression of ZRT2 is sufficient to increase azole tolerance in C. albicans. Our combined transcriptional and phenotypic analyses revealed the pleiotropic effects of ERG251 on stress responses including cell wall, osmotic and oxidative stress. Interestingly, while loss of either allele of ERG251 resulted in similar antifungal drug responses, we observed functional divergence in filamentation regulation between the two alleles of ERG251 (ERG251-A and ERG251-B) with ERG251-A exhibiting a dominant role in the SC5314 genetic background. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study provides extensive genetic, transcriptional and phenotypic analysis for the effects of ERG251 on drug susceptibility, fitness, filamentation and stress responses.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Day AW, Kumamoto CA. Selection of ethanol tolerant strains of Candida albicans by repeated ethanol exposure results in strains with reduced susceptibility to fluconazole. PLoS One 2024; 19:e0298724. [PMID: 38377103 PMCID: PMC10878505 DOI: 10.1371/journal.pone.0298724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.
Collapse
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Gregor JB, Gutierrez-Schultz VA, Hoda S, Baker KM, Saha D, Burghaze MG, Vazquez C, Burgei KE, Briggs SD. An expanded toolkit of drug resistance cassettes for Candida glabrata, Candida auris, and Candida albicans leads to new insights into the ergosterol pathway. mSphere 2023; 8:e0031123. [PMID: 37929964 PMCID: PMC10732037 DOI: 10.1128/msphere.00311-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE The increasing problem of drug resistance and emerging pathogens is an urgent global health problem that necessitates the development and expansion of tools for studying fungal drug resistance and pathogenesis. Prior studies in Candida glabrata, Candida auris, and Candida albicans have been mainly limited to the use of NatMX/SAT1 and HphMX/CaHyg for genetic manipulation in prototrophic strains and clinical isolates. In this study, we demonstrated that NatMX/SAT1, HphMX, KanMX, and/or BleMX drug resistance cassettes when coupled with a CRISPR-ribonucleoprotein (RNP)-based system can be efficiently utilized for deleting or modifying genes in the ergosterol pathway of C. glabrata, C. auris, and C. albicans. Moreover, the utility of these tools has provided new insights into ERG genes and their relationship to azole resistance in Candida. Overall, we have expanded the toolkit for Candida pathogens to increase the versatility of genetically modifying complex pathways involved in drug resistance and pathogenesis.
Collapse
Affiliation(s)
- Justin B. Gregor
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Smriti Hoda
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Kortany M. Baker
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Debasmita Saha
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Cynthia Vazquez
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Kendra E. Burgei
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Scott D. Briggs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Purdue University Institute for Cancer Research, West Lafayette, Indiana, USA
| |
Collapse
|
23
|
Feng Y, Lu H, Whiteway M, Jiang Y. Understanding fluconazole tolerance in Candida albicans: implications for effective treatment of candidiasis and combating invasive fungal infections. J Glob Antimicrob Resist 2023; 35:314-321. [PMID: 37918789 DOI: 10.1016/j.jgar.2023.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVES Fluconazole (FLC) tolerant phenotypes in Candida species contribute to persistent candidemia and the emergence of FLC resistance. Therefore, making FLC fungicidal and eliminating FLC tolerance are important for treating invasive fungal diseases (IFDs) caused by Candida species. However, the mechanisms of FLC tolerance in Candida species remain to be fully explored. METHODS This review discusses the high incidence of FLC tolerance in Candida species and the importance of successfully clearing FLC tolerance in treating candidiasis. We further define and characterize FLC tolerance in C. albicans. RESULTS This review identifies global factors affecting FLC tolerance and suggest that FLC tolerance is a strategy of C. albicans response to FLC damage whose mechanism differs from FLC resistance. CONCLUSIONS This review highlights the significance of the cell membrane and cell wall integrity in FLC tolerance, guiding approaches to combat IFDs caused by Candida species..
Collapse
Affiliation(s)
- Yanru Feng
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
24
|
Czajka KM, Venkataraman K, Brabant-Kirwan D, Santi SA, Verschoor C, Appanna VD, Singh R, Saunders DP, Tharmalingam S. Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells 2023; 12:2655. [PMID: 37998390 PMCID: PMC10670235 DOI: 10.3390/cells12222655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Candidiasis is a highly pervasive infection posing major health risks, especially for immunocompromised populations. Pathogenic Candida species have evolved intrinsic and acquired resistance to a variety of antifungal medications. The primary goal of this literature review is to summarize the molecular mechanisms associated with antifungal resistance in Candida species. Resistance can be conferred via gain-of-function mutations in target pathway genes or their transcriptional regulators. Therefore, an overview of the known gene mutations is presented for the following antifungals: azoles (fluconazole, voriconazole, posaconazole and itraconazole), echinocandins (caspofungin, anidulafungin and micafungin), polyenes (amphotericin B and nystatin) and 5-fluorocytosine (5-FC). The following mutation hot spots were identified: (1) ergosterol biosynthesis pathway mutations (ERG11 and UPC2), resulting in azole resistance; (2) overexpression of the efflux pumps, promoting azole resistance (transcription factor genes: tac1 and mrr1; transporter genes: CDR1, CDR2, MDR1, PDR16 and SNQ2); (3) cell wall biosynthesis mutations (FKS1, FKS2 and PDR1), conferring resistance to echinocandins; (4) mutations of nucleic acid synthesis/repair genes (FCY1, FCY2 and FUR1), resulting in 5-FC resistance; and (5) biofilm production, promoting general antifungal resistance. This review also provides a summary of standardized inhibitory breakpoints obtained from international guidelines for prominent Candida species. Notably, N. glabrata, P. kudriavzevii and C. auris demonstrate fluconazole resistance.
Collapse
Affiliation(s)
- Karolina M. Czajka
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
| | - Krishnan Venkataraman
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | | | - Stacey A. Santi
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Chris Verschoor
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Vasu D. Appanna
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Ravi Singh
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Deborah P. Saunders
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada; (K.M.C.); (K.V.); (C.V.); (R.S.); (D.P.S.)
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada; (D.B.-K.); (S.A.S.)
| |
Collapse
|
25
|
Stover KR, Hawkins BK, Keck JM, Barber KE, Cretella DA. Antifungal resistance, combinations and pipeline: oh my! Drugs Context 2023; 12:2023-7-1. [PMID: 38021410 PMCID: PMC10653594 DOI: 10.7573/dic.2023-7-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023] Open
Abstract
Invasive fungal infections are a strong contributor to healthcare costs, morbidity and mortality, especially amongst hospitalized patients. Historically, Candida was responsible for approximately 15% of all nosocomial bloodstream infections. In the past 10 years, the epidemiology of Candida species has altered, with increasing prevalence of resistant species. With rising fungal resistance, especially in Candida spp., the demand for novel antifungal therapies has exponentially increased over the last decade. Newer antifungal agents have become an attractive option for patients needing long-term therapy for infections or those requiring antifungal prophylaxis. Despite advances in coverage of non-Candida pathogens with newer agents, clinical scenarios involving multidrug-resistant fungal pathogens continue to arise in practice. Combination antifungal therapy can lead to a host of side-effects, some of which can be drug limiting. Additional antifungal therapies with enhanced fungal spectrum of activity and decreased rates of adverse effects are warranted. Fosmanogepix, ibrexafungerp, olorofim and rezafungin may help fill some of these gaps in the antifungal armamentarium. This article is part of the Challenges and strategies in the management of invasive fungal infections Special Issue: https://www.drugsincontext.com/special_issues/challenges-and-strategies-in-the-management-of-invasive-fungal-infections.
Collapse
Affiliation(s)
- Kayla R Stover
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - Brandon K Hawkins
- Department of Clinical Pharmacy and Translational Science, The University of Tennessee Health Science Center, Knoxville, TN, USA
| | - J Myles Keck
- Department of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Katie E Barber
- Department of Pharmacy Practice, University of Mississippi School of Pharmacy, Jackson, MS, USA
| | - David A Cretella
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
26
|
Dumeaux V, Massahi S, Bettauer V, Mottola A, Dukovny A, Khurdia SS, Costa ACBP, Omran RP, Simpson S, Xie JL, Whiteway M, Berman J, Hallett MT. Candida albicans exhibits heterogeneous and adaptive cytoprotective responses to antifungal compounds. eLife 2023; 12:e81406. [PMID: 37888959 PMCID: PMC10699808 DOI: 10.7554/elife.81406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/26/2023] [Indexed: 10/28/2023] Open
Abstract
Candida albicans, an opportunistic human pathogen, poses a significant threat to human health and is associated with significant socio-economic burden. Current antifungal treatments fail, at least in part, because C. albicans can initiate a strong drug tolerance response that allows some cells to grow at drug concentrations above their minimal inhibitory concentration. To better characterize this cytoprotective tolerance program at the molecular single-cell level, we used a nanoliter droplet-based transcriptomics platform to profile thousands of individual fungal cells and establish their subpopulation characteristics in the absence and presence of antifungal drugs. Profiles of untreated cells exhibit heterogeneous expression that correlates with cell cycle stage with distinct metabolic and stress responses. At 2 days post-fluconazole exposure (a time when tolerance is measurable), surviving cells bifurcate into two major subpopulations: one characterized by the upregulation of genes encoding ribosomal proteins, rRNA processing machinery, and mitochondrial cellular respiration capacity, termed the Ribo-dominant (Rd) state; and the other enriched for genes encoding stress responses and related processes, termed the Stress-dominant (Sd) state. This bifurcation persists at 3 and 6 days post-treatment. We provide evidence that the ribosome assembly stress response (RASTR) is activated in these subpopulations and may facilitate cell survival.
Collapse
Affiliation(s)
- Vanessa Dumeaux
- Department of Anatomy and Cell Biology, Western University, London, Canada
| | - Samira Massahi
- Department of Biology, Concordia University, Montreal, Canada
| | - Van Bettauer
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Austin Mottola
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Anna Dukovny
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | | | | | | - Shawn Simpson
- Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada
| | - Jinglin Lucy Xie
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | | | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| | | |
Collapse
|
27
|
Gonçalves C, Harrison MC, Steenwyk JL, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Hittinger CT, Rokas A. Diverse signatures of convergent evolution in cacti-associated yeasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557833. [PMID: 37745407 PMCID: PMC10515907 DOI: 10.1101/2023.09.14.557833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently ~17 times. Using machine-learning, we further found that cactophily can be predicted with 76% accuracy from functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which is likely associated with duplication and altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved through disparate molecular mechanisms. Remarkably, multiple cactophilic lineages and their close relatives are emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-may preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.
Collapse
Affiliation(s)
- Carla Gonçalves
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Present address: Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Present address: UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department, Villanova University, Villanova, PA 19085, USA
| | - Abigail L. LaBella
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte NC 28223
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xiaofan Zhou
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
28
|
Abstract
Candida auris is a multidrug-resistant fungal pathogen that presents a serious threat to global human health. Since the first reported case in 2009 in Japan, C. auris infections have been reported in more than 40 countries, with mortality rates between 30% and 60%. In addition, C. auris has the potential to cause outbreaks in health care settings, especially in nursing homes for elderly patients, owing to its efficient transmission via skin-to-skin contact. Most importantly, C. auris is the first fungal pathogen to show pronounced and sometimes untreatable clinical drug resistance to all known antifungal classes, including azoles, amphotericin B, and echinocandins. In this review, we explore the causes of the rapid spread of C. auris. We also highlight its genome organization and drug resistance mechanisms and propose future research directions that should be undertaken to curb the spread of this multidrug-resistant pathogen.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India;
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Kusum Jain
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India;
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
29
|
Asadzadeh M, Alfouzan W, Parker JE, Meis JF, Kelly SL, Joseph L, Ahmad S. Molecular Characterization and Sterol Profiles Identify Nonsynonymous Mutations in ERG2 as a Major Mechanism Conferring Reduced Susceptibility to Amphotericin B in Candida kefyr. Microbiol Spectr 2023; 11:e0147423. [PMID: 37358415 PMCID: PMC10434000 DOI: 10.1128/spectrum.01474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023] Open
Abstract
The molecular basis of reduced susceptibility to amphotericin B (rs-AMB) among any yeasts is poorly defined. Genetic alterations in genes involved in ergosterol biosynthesis and total cell sterols were investigated among clinical Candida kefyr isolates. C. kefyr isolates (n = 81) obtained from 74 patients in Kuwait and identified by phenotypic and molecular methods were analyzed. An Etest was initially used to identify isolates with rs-AMB. Specific mutations in ERG2 and ERG6 involved in ergosterol biosynthesis were detected by PCR sequencing. Twelve selected isolates were also tested by the SensiTitre Yeast One (SYO), and total cell sterols were evaluated by gas chromatography-mass spectrometry and ERG3 and ERG11 sequencing. Eight isolates from 8 patients showed rs-AMB by Etest, including 2 isolates with additional resistance to fluconazole or to all three antifungals. SYO correctly identified 8 of 8 rs-AMB isolates. A nonsynonymous mutation in ERG2 was detected in 6 of 8 rs-AMB isolates but also in 3 of 73 isolates with a wild-type AMB pattern. One rs-AMB isolate contained a deletion (frameshift) mutation in ERG2. One or more nonsynonymous mutations was detected in ERG6 in 11 of 81 isolates with the rs-AMB or wild-type AMB pattern. Among 12 selected isolates, 2 and 2 isolates contained a nonsynonymous mutation(s) in ERG3 and ERG11, respectively. Ergosterol was undetectable in 7 of 8 rs-AMB isolates, and the total cell sterol profiles were consistent with loss of ERG2 function in 6 rs-AMB isolates and loss of ERG3 activity in another rs-AMB isolate. Our data showed that ERG2 is a major target conferring rs-AMB in clinical C. kefyr isolates. IMPORTANCE Some yeast species exhibit intrinsic resistance or rapidly acquire resistance to azole antifungals. Despite >50 years of clinical use, resistance to amphotericin B (AMB) among yeast species has been extremely rarely reported until recently. Reduced susceptibility to AMB (rs-AMB) among yeast species is, therefore, a matter of serious concern due to the availability of only four classes of antifungal drugs. Recent studies in Candida glabrata, Candida lusitaniae, and Candida auris have identified ERG genes involved in ergosterol biosynthesis as the major targets conferring rs-AMB. The results of this study also show that nonsynonymous mutations in ERG2 impair its function, abolish ergosterol from C. kefyr, and confer rs-AMB. Thus, rapid detection of rs-AMB among clinical isolates will help in proper management of invasive C. kefyr infections.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Josie E. Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands
- Center of Expertise in Mycology, Radboudumc, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands
- Department of Internal Medicine, Excellence Center for Medical Mycology, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Steven L. Kelly
- Institute of Life Science, Faculty of Health, Medicine and Life Sciences, Swansea University, Swansea, Wales, United Kingdom
| | - Leena Joseph
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
30
|
Scott NE, Edwin Erayil S, Kline SE, Selmecki A. Rapid Evolution of Multidrug Resistance in a Candida lusitaniae Infection during Micafungin Monotherapy. Antimicrob Agents Chemother 2023; 67:e0054323. [PMID: 37428075 PMCID: PMC10433866 DOI: 10.1128/aac.00543-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Candida (Clavispora) lusitaniae is a rare, emerging non-albicans Candida species that can cause life-threatening invasive infections, spread within hospital settings, and rapidly acquire antifungal drug resistance, including multidrug resistance. The frequency and spectrum of mutations causing antifungal drug resistance in C. lusitaniae are poorly understood. Analyses of serial clinical isolates of any Candida species are uncommon and often analyze a limited number of samples collected over months of antifungal therapy with multiple drug classes, limiting the ability to understand relationships between drug classes and specific mutations. Here, we performed comparative genomic and phenotypic analysis of 20 serial C. lusitaniae bloodstream isolates collected daily from an individual patient treated with micafungin monotherapy during a single 11-day hospital admission. We identified isolates with decreased micafungin susceptibility 4 days after initiation of antifungal therapy and a single isolate with increased cross-resistance to micafungin and fluconazole, despite no history of azole therapy in this patient. Only 14 unique single nucleotide polymorphisms (SNPs) were identified between all 20 samples, including three different FKS1 alleles among isolates with decreased micafungin susceptibility and an ERG3 missense mutation found only in the isolate with increased cross-resistance to both micafungin and fluconazole. This is the first clinical evidence of an ERG3 mutation in C. lusitaniae that occurred during echinocandin monotherapy and is associated with cross-resistance to multiple drug classes. Overall, the evolution of multidrug resistance in C. lusitaniae is rapid and can emerge during treatment with only first-line antifungal therapy.
Collapse
Affiliation(s)
- Nancy E. Scott
- University of Minnesota, Bioinformatics and Computational Biology Program, Minneapolis, Minnesota, USA
- University of Minnesota, Department of Microbiology and Immunology, Minneapolis, Minnesota, USA
| | - Serin Edwin Erayil
- University of Minnesota Medical School, Department of Medicine, Division of Infectious Diseases and International Medicine, Minneapolis, Minnesota, USA
| | - Susan E. Kline
- University of Minnesota Medical School, Department of Medicine, Division of Infectious Diseases and International Medicine, Minneapolis, Minnesota, USA
| | - Anna Selmecki
- University of Minnesota, Bioinformatics and Computational Biology Program, Minneapolis, Minnesota, USA
- University of Minnesota, Department of Microbiology and Immunology, Minneapolis, Minnesota, USA
| |
Collapse
|
31
|
Franconi I, Rizzato C, Poma N, Tavanti A, Lupetti A. Candida parapsilosis sensu stricto Antifungal Resistance Mechanisms and Associated Epidemiology. J Fungi (Basel) 2023; 9:798. [PMID: 37623569 PMCID: PMC10456088 DOI: 10.3390/jof9080798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Fungal diseases cause millions of deaths per year worldwide. Antifungal resistance has become a matter of great concern in public health. In recent years rates of non-albicans species have risen dramatically. Candida parapsilosis is now reported to be the second most frequent species causing candidemia in several countries in Europe, Latin America, South Africa and Asia. Rates of acquired azole resistance are reaching a worrisome threshold from multiple reports as in vitro susceptibility testing is now starting also to explore tolerance and heteroresistance to antifungal compounds. With this review, the authors seek to evaluate known antifungal resistance mechanisms and their worldwide distribution in Candida species infections with a specific focus on C. parapsilosis.
Collapse
Affiliation(s)
- Iacopo Franconi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (I.F.); (C.R.)
| | - Cosmeri Rizzato
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (I.F.); (C.R.)
| | - Noemi Poma
- Department of Biology, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (N.P.); (A.T.)
| | - Arianna Tavanti
- Department of Biology, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (N.P.); (A.T.)
| | - Antonella Lupetti
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno, 37, 56127 Pisa, Italy; (I.F.); (C.R.)
| |
Collapse
|
32
|
Sardana K, Sharath S, Khurana A, Ghosh S. An update on the myriad antifungal resistance mechanisms in dermatophytes and the place of experimental and existential therapeutic agents for Trichophyton complex implicated in tinea corporis and cruris. Expert Rev Anti Infect Ther 2023; 21:977-991. [PMID: 37606343 DOI: 10.1080/14787210.2023.2250555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION There is an epidemic emergence of increased resistance in dermatophytes with to antifungal drugs with ergosterol1 (Erg1) and Erg11 mutations to terbinafine and azoles. Apart from mutations, mechanisms that predict clinical failure include efflux pumps, cellular kinases, heat shock proteins (Hsp), and biofilms. Apart from itraconazole and SUBATM (Super-Bioavailable) itraconazole, measures that can be used in terbinafine failure include efflux-pump inhibitors, Hsp inhibitors and judicious use of antifungal drugs (topical + systemic) combinations. AREAS COVERED A PubMed search was done for the relevant studies and reviews published in the last 22 years using keywords dermatophytes OR Trichophyton, anti-fungal, resistance, mechanism and fungal AND resistance mechanisms. Our aim was to look for literature on prevalent species and we specifically researched studies on Trichophyton genus. We have analyzed varied antifungal drug mechanisms and detailed varied experimental and approved drugs to treat recalcitrant dermatophytosis. EXPERT OPINION Apart from administering drugs with low minimum inhibitory concentration, combinations of oral and topical antifungals (based on synergy data) and new formulations of existing drugs are useful in recalcitrant cases. There is a need for research into resistance mechanism of the existent Trichophyton strains in therapeutic failures in tinea corporis & cruris instead of data derived from laboratory strains which may not mirror clinical failures.
Collapse
Affiliation(s)
- Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Research Institute and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Savitha Sharath
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Research Institute and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Research Institute and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Shamik Ghosh
- Rejuvenation Technologies Inc, Harvard Medical School, New York City, NY, USA
| |
Collapse
|
33
|
Gregor JB, Gutierrez-Schultz VA, Hoda S, Baker KM, Saha D, Burghaze MG, Briggs SD. Expanding the toolkit for genetic manipulation and discovery in Candida species using a CRISPR ribonucleoprotein-based approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545382. [PMID: 37398038 PMCID: PMC10312801 DOI: 10.1101/2023.06.16.545382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The World Health Organization recently published the first list of priority fungal pathogens highlighting multiple Candida species including C. glabrata, C. albicans, and C. auris. The use of CRISPR-Cas9 and auxotrophic C. glabrata and C. albicans strains have been instrumental in the study of these fungal pathogens. Dominant drug resistance cassettes are also critical for genetic manipulation and eliminate the concern of altered virulence when using auxotrophic strains. However, genetic manipulation has been mainly limited to the use of two drug resistance cassettes, NatMX and HphMX. Using an in vitro assembled CRISPR-Cas9 ribonucleoprotein (RNP)-based system and 130-150 bp homology regions for directed repair, we expand the drug resistance cassettes for Candida to include KanMX and BleMX, commonly used in S. cerevisiae. As a proof of principle, we demonstrated efficient deletion of ERG genes using KanMX and BleMX. We also showed the utility of the CRISPR-Cas9 RNP system for generating double deletions of genes in the ergosterol pathway and endogenous epitope tagging of ERG genes using an existing KanMX cassette. This indicates that CRISPR-Cas9 RNP can be used to repurpose the S. cerevisiae toolkit. Furthermore, we demonstrated that this method is effective at deleting ERG3 in C. auris using a codon optimized BleMX cassette and effective at deleting the epigenetic factor, SET1, in C. albicans using a recyclable SAT1. Using this expanded toolkit, we discovered new insights into fungal biology and drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Scott D. Briggs
- Department of Biochemistry
- Purdue University Institute for Cancer Research
| |
Collapse
|
34
|
Remines M, Schoonover M, Knox Z, Kenwright K, Hoffert KM, Coric A, Mead J, Ampfer J, Seye S, Strome ED. Profiling The Compendium Of Changes In Saccharomyces cerevisiae Due To Mutations That Alter Availability Of The Main Methyl Donor S-Adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544294. [PMID: 37333147 PMCID: PMC10274911 DOI: 10.1101/2023.06.09.544294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The SAM1 and SAM2 genes encode for S-AdenosylMethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in S. cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1∆/sam1∆, and sam2∆/sam2∆ strains in 15 different Phenotypic Microarray plates with different components, equal to 1440 wells, and measured for growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. In this study, we explore how the phenotypic growth differences are linked to the altered gene expression, and thereby predict the mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact S. cerevisiae pathways and processes. We present six stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart, even when the conditions tested were not specifically selected as targeting known methyl involving pathways. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role is production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.
Collapse
Affiliation(s)
- McKayla Remines
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Makailyn Schoonover
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Zoey Knox
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kailee Kenwright
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Kellyn M. Hoffert
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Amila Coric
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - James Mead
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Joseph Ampfer
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Serigne Seye
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| | - Erin D. Strome
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY 41099
| |
Collapse
|
35
|
Osset-Trénor P, Pascual-Ahuir A, Proft M. Fungal Drug Response and Antimicrobial Resistance. J Fungi (Basel) 2023; 9:jof9050565. [PMID: 37233275 DOI: 10.3390/jof9050565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Antifungal resistance is a growing concern as it poses a significant threat to public health. Fungal infections are a significant cause of morbidity and mortality, especially in immunocompromised individuals. The limited number of antifungal agents and the emergence of resistance have led to a critical need to understand the mechanisms of antifungal drug resistance. This review provides an overview of the importance of antifungal resistance, the classes of antifungal agents, and their mode of action. It highlights the molecular mechanisms of antifungal drug resistance, including alterations in drug modification, activation, and availability. In addition, the review discusses the response to drugs via the regulation of multidrug efflux systems and antifungal drug-target interactions. We emphasize the importance of understanding the molecular mechanisms of antifungal drug resistance to develop effective strategies to combat the emergence of resistance and highlight the need for continued research to identify new targets for antifungal drug development and explore alternative therapeutic options to overcome resistance. Overall, an understanding of antifungal drug resistance and its mechanisms will be indispensable for the field of antifungal drug development and clinical management of fungal infections.
Collapse
Affiliation(s)
- Paloma Osset-Trénor
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas IBMCP, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, 46010 Valencia, Spain
| |
Collapse
|
36
|
Lim HJ, Choi MJ, Byun SA, Won EJ, Park JH, Choi YJ, Choi HJ, Choi HW, Kee SJ, Kim SH, Shin MG, Lee SY, Kim MN, Shin JH. Whole-Genome Sequence Analysis of Candida glabrata Isolates from a Patient with Persistent Fungemia and Determination of the Molecular Mechanisms of Multidrug Resistance. J Fungi (Basel) 2023; 9:jof9050515. [PMID: 37233226 DOI: 10.3390/jof9050515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Whole-genome sequencing (WGS) was used to determine the molecular mechanisms of multidrug resistance for 10 serial Candida glabrata bloodstream isolates obtained from a neutropenic patient during 82 days of amphotericin B (AMB) or echinocandin therapy. For WGS, a library was prepared and sequenced using a Nextera DNA Flex Kit (Illumina) and the MiseqDx (Illumina) instrument. All isolates harbored the same Msh2p substitution, V239L, associated with multilocus sequence type 7 and a Pdr1p substitution, L825P, that caused azole resistance. Of six isolates with increased AMB MICs (≥2 mg/L), three harboring the Erg6p A158fs mutation had AMB MICs ≥ 8 mg/L, and three harboring the Erg6p R314K, Erg3p G236D, or Erg3p F226fs mutation had AMB MICs of 2-3 mg/L. Four isolates harboring the Erg6p A158fs or R314K mutation had fluconazole MICs of 4-8 mg/L while the remaining six had fluconazole MICs ≥ 256 mg/L. Two isolates with micafungin MICs > 8 mg/L harbored Fks2p (I661_L662insF) and Fks1p (C499fs) mutations, while six isolates with micafungin MICs of 0.25-2 mg/L harbored an Fks2p K1357E substitution. Using WGS, we detected novel mechanisms of AMB and echinocandin resistance; we explored mechanisms that may explain the complex relationship between AMB and azole resistance.
Collapse
Affiliation(s)
- Ha Jin Lim
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Min Ji Choi
- Microbiological Analysis Team, Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Seung A Byun
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Eun Jeong Won
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Joo Heon Park
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Yong Jun Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Hyun-Jung Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Hyun-Woo Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Soo Hyun Kim
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Seung Yeob Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
37
|
Siswina T, Miranti Rustama M, Sumiarsa D, Kurnia D. Phytochemical profiling of Piper crocatum and its antifungal mechanism action as Lanosterol 14 alpha demethylase CYP51 inhibitor: a review. F1000Res 2023; 11:1115. [PMID: 37151610 PMCID: PMC10157293.2 DOI: 10.12688/f1000research.125645.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Mycoses or fungal infections are general health problem that often occurs in healthy and immunocompromised people in the community. The development of resistant strains in Fungi and the incidence of azole antibiotic resistance in the Asia Pacific which reached 83% become a critical problem nowadays. To control fungal infections, substances and extracts isolated from natural resources, especially in the form of plants as the main sources of drug molecules today, are needed. Especially from Piperaceae, which have long been used in India, China, and Korea to treat human ailments in traditional medicine. The purpose of this review is to describe the antifungal mechanism action from Piper crocatum and its phytochemical profiling against lanosterol 14a demethylase CYP51. The methods used to search databases from Google Scholar to find the appropriate databases using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Flow Diagram as a clinical information retrieval method. From 1.150.000 results searched by database, there is 73 final results article to review. The review shows that P. crocatum contains flavonoids, tannins, terpenes, saponins, polyphenols, eugenol, alkaloids, quinones, chavibetol acetate, glycosides, triterpenoids or steroids, hydroxychavikol, phenolics, glucosides, isoprenoids, and non-protein amino acids. Its antifungal mechanisms in fungal cells occur due to ergosterol especially lanosterol 14a demethylase (CYP51) inhibition, which is one of the main target sites for antifungal activity because it functions to maintain the integrity and function of cell membranes in Candida. P. crocatum has an antifungal activity through its phytochemical profiling against fungal by inhibiting the lanosterol 14a demethylase, make damaging cell membranes, fungal growth inhibition, and fungal cell lysis.
Collapse
|
38
|
Cruz R, Wuest WM. Beyond Ergosterol: Strategies for Combatting Antifungal Resistance in Aspergillus fumigatus and Candida auris. Tetrahedron 2023; 133:133268. [PMID: 36938356 PMCID: PMC10022592 DOI: 10.1016/j.tet.2023.133268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aspergillus fumigatus and Candida auris are historically problematic fungal pathogens responsible for systemic infections and high mortality rates, especially in immunocompromised populations. The three antifungal classes that comprise our present day armamentarium have facilitated efficacious treatment of these fungal infections in past decades, but their potency has steadily declined over the years as resistance to these compounds has accumulated. Importantly, pan-resistant strains of Candida auris have been observed in clinical settings, leaving affected patients with no treatment options and a death sentence. Many compounds in the ongoing antifungal drug discovery pipeline, similar to those within our aforementioned trinity, are predicated on the binding or inhibition of ergosterol. Recurring accounts of resistance to antifungals targeting this pathway suggest optimization of ergosterol-dependent antifungals is likely not the best solution for the long-term. This review aims to present several natural products with novel or underexplored biological targets, as well as similarly underutilized drug discovery strategies to inspire future biological investigations and medicinal chemistry campaigns.
Collapse
Affiliation(s)
- Ricardo Cruz
- Department of Chemistry, Emory University, 1515 Dickey Dr. Atlanta GA 30322
| | - William M Wuest
- Department of Chemistry, Emory University, 1515 Dickey Dr. Atlanta GA 30322
| |
Collapse
|
39
|
Malik MA, AlHarbi L, Nabi A, Alzahrani KA, Narasimharao K, Kamli MR. Facile Synthesis of Magnetic Nigella Sativa Seeds: Advances on Nano-Formulation Approaches for Delivering Antioxidants and Their Antifungal Activity against Candida albicans. Pharmaceutics 2023; 15:pharmaceutics15020642. [PMID: 36839964 PMCID: PMC9965733 DOI: 10.3390/pharmaceutics15020642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
This article reports on incorporating magnetic nanoparticles into natural carbon frameworks derived from Nigella Sativa seeds and their synthesis via co-precipitation reactions for application in biomedicine. The magnetic Nigella Sativa Seeds (Magnetic NSS), a metal oxide-based bio-nanomaterial, has shown excellent water diaper presence due to the presence of a wide range of oxygenous hydroxyl and carboxyl groups. The physicochemical properties of the composites were characterized extensively using Fourier transform infrared spectroscopy (FTIR), powder-X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental analysis, transmission electron microscopy (TEM), and vibrating-sample magnetometer. Furthermore, synthesized magnetic NSS showed antioxidant and antifungal activity. The antifungal susceptibility was further tested against Candida albicans with a MIC value of 3.125 µg/mL. Analysis of antioxidant defense enzymes was determined quantitatively; the results suggested that antioxidant enzyme activity increase with increased magnetic NSS concentration. Furthermore, biofilm inhibition assay from scanning electron microscopy results revealed that magnetic NSS at the concentration of 3.5 μg/mL has anti-biofilm properties and can disrupt membrane integrity.
Collapse
Affiliation(s)
- Maqsood Ahmad Malik
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (M.A.M.); (M.R.K.)
| | - Laila AlHarbi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Arshid Nabi
- Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khalid Ahmed Alzahrani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Katabathini Narasimharao
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (M.A.M.); (M.R.K.)
| |
Collapse
|
40
|
Lv J, Liu S, Zhang X, Zhao L, Zhang T, Zhang Z, Feng Z, Wei F, Zhou J, Zhao R, Feng H, Zhu H, Li C, Zhang Y. VdERG2 was involved in ergosterol biosynthesis, nutritional differentiation and virulence of Verticillium dahliae. Curr Genet 2023; 69:25-40. [PMID: 36416932 DOI: 10.1007/s00294-022-01257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022]
Abstract
The ergosterol biosynthesis pathway plays an important role in model pathogenic bacteria Saccharomyces cerevisiae, but little is known about the biosynthesis of ergosterol in the pathogenic fungus Verticillium dahliae. In this study, we identified the VdERG2 gene encoding sterol C-8 isomerase from V. dahliae and investigated its function in virulence by generating gene deletion mutants (ΔVdERG2) and complemented mutants (C-ΔVdERG2). Knockout of VdERG2 reduced ergosterol content. The conidial germination rate and conidial yield of ΔVdERG2 significantly decreased and abnormal conidia were produced. In spite of VdERG2 did not affect the utilization of carbon sources by V. dahliae, but the melanin production of ΔVdERG2 was decreased in cellulose and pectin were used as the sole carbon sources. Furthermore, the ΔVdERG2 mutants produced less microsclerotia and melanin with a significant decrease in the expression of microsclerotia and melanin-related genes VaflM, Vayg1, VDH1, VdLAC, VdSCD and VT4HR. In addition, mutants ΔVdERG2 were very sensitive to congo red (CR), sodium dodecyl sulfate (SDS) and hydrogen peroxide (H2O2) stresses, indicating that VdERG2 was involved in the cell wall and oxidative stress response. The absence of VdERG2 weakened the penetration ability of mycelium on cellophane and affected the growth of mycelium. Although ΔVdERG2 could infect cotton, its pathogenicity was significantly impaired. These phenotypic defects in ΔVdERG2 could be complemented by the reintroduction of a full-length VdERG2 gene. In summary, as a single conservative secretory protein, VdERG2 played a crucial role in ergosterol biosynthesis, nutritional differentiation and virulence in V. dahliae.
Collapse
Affiliation(s)
- Junyuan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shichao Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571533, Hainan, China
| | - Xiaojian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Tao Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhigang Zhang
- Cotton Sciences Research Institute of Hunan, Changde, 415101, Hunan, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruiyuan Zhao
- Cotton Sciences Research Institute of Hunan, Changde, 415101, Hunan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Caihong Li
- Cotton Sciences Research Institute of Hunan, Changde, 415101, Hunan, China.
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
41
|
Jin Q, Li G, Qin K, Shang Y, Yan H, Liu H, Zeng B, Hu Z. The expression pattern, subcellular localization and function of three sterol 14α-demethylases in Aspergillus oryzae. Front Genet 2023; 14:1009746. [PMID: 36755574 PMCID: PMC9899854 DOI: 10.3389/fgene.2023.1009746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Sterol 14α-demethylase catalyzes lanosterol hydroxylation, which is one of the key reactions in the biosynthetic pathway of sterols. There is only one sterol 14α-demethylases gene named Erg11 in Saccharomyces cerevisiae genome. In this study, three sterol 14α-demethylases genes named AoErg11A, AoErg11B and AoErg11C were identified in Aspergillus oryzae genome through bioinformatics analysis. The function of these three genes were studied by yeast complementation, and the expression pattern/subcellular localization of these genes/proteins were detected. The results showed that the three AoErg11s were expressed differently at different growth times and under different abiotic stresses. All of the three proteins were located in endoplasmic reticulum. The AoErg11s could not restore the temperature-sensitive phenotype of S. cerevisiae erg11 mutant. Overexpression of the three AoErg11s affected both growth and sporulation, which may be due to the effect of AoErg11s on ergosterol content. Therefore, this study revealed the functions of three AoErg11s and their effects on the growth and ergosterol biosynthesis of A. oryzae, which may contribute to the further understanding of the ergosterol biosynthesis and regulation mechanism in this important filamentous fungus, A. oryzae.
Collapse
Affiliation(s)
- Qi Jin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ganghua Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
| | - Kunhai Qin
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yitong Shang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Huanhuan Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Hongliang Liu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| | - Zhihong Hu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China,*Correspondence: Zhihong Hu, ; Bin Zeng,
| |
Collapse
|
42
|
Patel SK, Sahu SR, Utkalaja BG, Bose S, Acharya N. Pol32, an accessory subunit of DNA polymerase delta, plays an essential role in genome stability and pathogenesis of Candida albicans. Gut Microbes 2023; 15:2163840. [PMID: 36601868 PMCID: PMC9828637 DOI: 10.1080/19490976.2022.2163840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Candida albicans is a pathobiont that inflicts serious bloodstream fungal infections in individuals with compromised immunity and gut dysbiosis. Genomic diversity in the form of copy number alteration, ploidy variation, and loss of heterozygosity as an adaptive mechanism to adverse environments is frequently observed in C. albicans. Such genomic variations also confer a varied degree of fungal virulence and drug resistance, yet the factors propelling these are not completely understood. DNA polymerase delta (Polδ) is an essential replicative DNA polymerase in the eukaryotic cell and is yet to be characterized in C. albicans. Therefore, this study was designed to gain insights into the role of Polδ, especially its non-essential subunit Pol32, in the genome plasticity and life cycle of C. albicans. PCNA, the DNA clamp, recruits Polδ to the replication fork for processive DNA replication. Unlike in Saccharomyces cerevisiae, the PCNA interaction protein (PIP) motif of CaPol32 is critical for Polδ's activity during DNA replication. Our comparative genetic analyses and whole-genome sequencing of POL32 proficient and deficient C. albicans cells revealed a critical role of Pol32 in DNA replication, cell cycle progression, and genome stability as SNPs, indels, and repeat variations were largely accumulated in pol32 null strain. The loss of pol32 in C. albicans conferred cell wall deformity; Hsp90 mediated azoles resistance, biofilm development, and a complete attenuation of virulence in an animal model of systemic candidiasis. Thus, although Pol32 is dispensable for cell survival, its function is essential for C. albicans pathogenesis; and we discuss its translational implications in antifungal drugs and whole-cell vaccine development.
Collapse
Affiliation(s)
- Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,Regional center of Biotechnology, Faridabad, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,Regional center of Biotechnology, Faridabad, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,Regional center of Biotechnology, Faridabad, India
| | - Swagata Bose
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India,CONTACT Narottam Acharya ; Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar751023, India
| |
Collapse
|
43
|
Lu Q, Wang Y, Liao X, Zhou F, Zhang B, Wu X. Physiological and transcriptome analysis of Candida albicans in response to X33 antimicrobial oligopeptide treatment. Front Cell Infect Microbiol 2023; 13:1123393. [PMID: 36743308 PMCID: PMC9892945 DOI: 10.3389/fcimb.2023.1123393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Introduction Candida albicans is an opportunistic pathogenic fungus, which frequently causes systemic or local fungal infections in humans. The evolution of its drug-resistant mutants necessitate an urgent development of novel antimicrobial agents. Results Here, we explored the antimicrobial activity and inhibitory mechanisms of X33 antimicrobial oligopeptide (X33 AMOP) against C. albicans. The oxford cup test results showed that X33 AMOP had strong inhibitory activity against C. albicans, and its MIC and MFC were 0.625 g/L and 2.5 g/L, respectively. Moreover, SEM and TEM showed that X33 AMOP disrupted the integrity of cell membrane. The AKP, ROS, H2O2 and MDA contents increased, while the reducing sugar, soluble protein, and pyruvate contents decreased after the X33 AMOP treatment. This indicated that X33 AMOP could damage the mitochondrial integrity of the cells, thereby disrupting the energy metabolism by inducing oxidative stress in C. albicans. Furthermore, transcriptome analysis showed that X33 AMOP treatment resulted in the differential expression of 1140 genes, among which 532 were up-regulated, and 608 were down-regulated. These DEGs were related to protein, nucleic acid, and carbohydrate metabolism, and their expression changes were consistent with the changes in physiological characteristics. Moreover, we found that X33 AMOP could effectively inhibit the virulence attributes of C. albicans by reducing phospholipase activity and disrupting hypha formation. Discussion These findings provide the first-ever detailed reference for the inhibitory mechanisms of X33 AMOP against C. albicans and suggest that X33 AMOP is a potential drug candidate for treating C. albicans infections.
Collapse
Affiliation(s)
- Qunlin Lu
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agriculture University, Nanchang, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Jiangxi Agriculture University, Nanchang, China
| | - Yuanxiu Wang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agriculture University, Nanchang, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Jiangxi Agriculture University, Nanchang, China
| | - Xing Liao
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agriculture University, Nanchang, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Jiangxi Agriculture University, Nanchang, China
| | - Fu Zhou
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agriculture University, Nanchang, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Jiangxi Agriculture University, Nanchang, China
| | - Bin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agriculture University, Nanchang, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Jiangxi Agriculture University, Nanchang, China
- *Correspondence: Bin Zhang, ; Xiaoyu Wu,
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agriculture University, Nanchang, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agriculture University, Nanchang, China
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Jiangxi Agriculture University, Nanchang, China
- *Correspondence: Bin Zhang, ; Xiaoyu Wu,
| |
Collapse
|
44
|
Mathematical Modeling of Fluconazole Resistance in the Ergosterol Pathway of Candida albicans. mSystems 2022; 7:e0069122. [PMID: 36383015 PMCID: PMC9765018 DOI: 10.1128/msystems.00691-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candidiasis is reported to be the most common fungal infection in the critical care setting. The causative agent of this infection is a commensal pathogen belonging to the genus Candida, the most common species of which is Candida albicans. The ergosterol pathway in yeast is a common target by many antifungal agents, as ergosterol is an essential component of the cell membrane. The current antifungal agent of choice for the treatment of candidiasis is fluconazole, which is classified under the azole antifungals. In recent years, the significant increase of fluconazole-resistant C. albicans in clinical samples has revealed the need for a search for other possible drug targets. In this study, we constructed a mathematical model of the ergosterol pathway of C. albicans using ordinary differential equations with mass action kinetics. From the model simulations, we found the following results: (i) a partial inhibition of the sterol-methyltransferase enzyme yields a fair amount of fluconazole resistance; (ii) the overexpression of the ERG6 gene, which leads to an increased sterol-methyltransferase enzyme, is a good target of antifungals as an adjunct to fluconazole; (iii) a partial inhibition of lanosterol yields a fair amount of fluconazole resistance; (iv) the C5-desaturase enzyme is not a good target of antifungals as an adjunct to fluconazole; (v) the C14α-demethylase enzyme is confirmed to be a good target of fluconazole; and (vi) the dose-dependent effect of fluconazole is confirmed. This study hopes to aid experimenters in narrowing down possible drug targets prior to costly and time-consuming experiments and serve as a cross-validation tool for experimental data. IMPORTANCE Candidiasis is reported to be the most common fungal infection in the critical care setting, and it is caused by a commensal pathogen belonging to the genus Candida, the most common species of which is Candida albicans. The current antifungal agent of choice for the treatment of candidiasis is fluconazole, which is classified under the azole antifungals. There has been a significant increase in fluconazole-resistant C. albicans in recent years, which has revealed the need for a search for other possible drug targets. We constructed a mathematical model of the ergosterol pathway in C. albicans using ordinary differential equations with mass action kinetics. In our simulations, we found that by increasing the amount of the sterol-methyltransferase enzyme, C. albicans becomes more susceptible to fluconazole. This study hopes to aid experimenters in narrowing down the possible drug targets prior to costly and time-consuming experiments and to serve as a cross-validation tool for experimental data.
Collapse
|
45
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
46
|
Rajasenan S, Osmani AH, Osmani SA. Modulation of sensitivity to gaseous signaling by sterol-regulatory hypoxic transcription factors in Aspergillus nidulans biofilm cells. Fungal Genet Biol 2022; 163:103739. [PMID: 36089227 DOI: 10.1016/j.fgb.2022.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 01/06/2023]
Abstract
Fungal biofilm founder cells experience self-generated hypoxia leading to dramatic changes in their cell biology. For example, during Aspergillus nidulans biofilm formation microtubule (MT) disassembly is triggered causing dispersal of EB1 from MT tips. This process is dependent on SrbA, a sterol regulatory element-binding transcription factor required for adaptation to hypoxia. We show that SrbA, an ER resident protein prior to activation, is proteolytically activated during early stages of biofilm formation and that, like SrbA itself, its activating proteases are also required for normal biofilm MT disassembly. In addition to SrbA, the AtrR transcription factor is also found to be required to modulate cellular responses to gaseous signaling during biofilm development. Using co-cultures, we further show that cells lacking srbA or atrR are capable of responding to biofilm generated gaseous microenvironments but are actually more sensitive to this signal than wild type cells. SrbA is a regulator of ergosterol biosynthetic genes and we find that the levels of seven GFP-tagged Erg proteins differentially accumulate during biofilm formation with various dependencies on SrbA for their accumulation. This uncovers a complex pattern of regulation with biofilm accumulation of only some Erg proteins being dependent on SrbA with others accumulating to higher levels in its absence. Because different membrane sterols are known to influence cell permeability to gaseous molecules, including oxygen, we propose that differential regulation of ergosterol biosynthetic proteins by SrbA potentially calibrates the cell's responsiveness to gaseous signaling which in turn modifies the cell biology of developing biofilm cells.
Collapse
Affiliation(s)
- Shobhana Rajasenan
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States
| | - Aysha H Osmani
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States
| | - Stephen A Osmani
- Ohio State University, Department of Molecular Genetics, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, United States.
| |
Collapse
|
47
|
Mahendrarajan V, Bari VK. A critical role of farnesol in the modulation of Amphotericin B and Aureobasidin A antifungal drug susceptibility. Mycology 2022; 13:305-317. [DOI: 10.1080/21501203.2022.2138599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Venkatramanan Mahendrarajan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, India
| |
Collapse
|
48
|
Raman Metabolomics of Candida auris Clades: Profiling and Barcode Identification. Int J Mol Sci 2022; 23:ijms231911736. [PMID: 36233043 PMCID: PMC9569935 DOI: 10.3390/ijms231911736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
This study targets on-site/real-time taxonomic identification and metabolic profiling of seven different Candida auris clades/subclades by means of Raman spectroscopy and imaging. Representative Raman spectra from different Candida auris samples were systematically deconvoluted by means of a customized machine-learning algorithm linked to a Raman database in order to decode structural differences at the molecular scale. Raman analyses of metabolites revealed clear differences in cell walls and membrane structure among clades/subclades. Such differences are key in maintaining the integrity and physical strength of the cell walls in the dynamic response to external stress and drugs. It was found that Candida cells use the glucan structure of the extracellular matrix, the degree of α-chitin crystallinity, and the concentration of hydrogen bonds between its antiparallel chains to tailor cell walls’ flexibility. Besides being an effective ploy in survivorship by providing stiff shields in the α–1,3–glucan polymorph, the α–1,3–glycosidic linkages are also water-insoluble, thus forming a rigid and hydrophobic scaffold surrounded by a matrix of pliable and hydrated β–glucans. Raman analysis revealed a variety of strategies by different clades to balance stiffness, hydrophobicity, and impermeability in their cell walls. The selected strategies lead to differences in resistance toward specific environmental stresses of cationic/osmotic, oxidative, and nitrosative origins. A statistical validation based on principal component analysis was found only partially capable of distinguishing among Raman spectra of clades and subclades. Raman barcoding based on an algorithm converting spectrally deconvoluted Raman sub-bands into barcodes allowed for circumventing any speciation deficiency. Empowered by barcoding bioinformatics, Raman analyses, which are fast and require no sample preparation, allow on-site speciation and real-time selection of appropriate treatments.
Collapse
|
49
|
Siswina T, Miranti Rustama M, Sumiarsa D, Kurnia D. Phytochemical profiling of Piper crocatum and its antifungal mechanism action as Lanosterol 14 alpha demethylase CYP51 inhibitor: a review. F1000Res 2022; 11:1115. [PMID: 37151610 PMCID: PMC10157293 DOI: 10.12688/f1000research.125645.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 07/20/2023] Open
Abstract
Mycoses or fungal infections are a general health problem that often occurs in healthy and immunocompromised people in the community. The development of resistant strains in Fungi and the incidence of azole antibiotic resistance in the Asia Pacific which reached 83% become a critical problem nowadays. To control fungal infections, substances and extracts isolated from natural resources, especially in the form of plants as the main sources of drug molecules today, are needed. Especially from Piperaceae, which have long been used in India, China, and Korea to treat human ailments in traditional medicine. The purpose of this review is to describe the antifungal mechanism action from Piper crocatum and its phytochemical profiling against lanosterol 14a demethylase CYP51. The methods used to search databases from Google Scholar to find the appropriate databases using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Flow Diagram as a clinical information retrieval method. From 1.150.000 results searched by database, there is 73 final results article to review. The review shows that P. crocatum contains flavonoids, tannins, terpenes, saponins, polyphenols, eugenol, alkaloids, quinones, chavibetol acetate, glycosides, triterpenoids or steroids, hydroxychavikol, phenolics, glucosides, isoprenoids, and non-protein amino acids. Its antifungal mechanisms in fungal cells occur due to ergosterol, especially lanosterol 14a demethylase (CYP51) inhibition, which is one of the main target sites for antifungal activity because it functions to maintain the integrity and function of cell membranes in Candida. P. crocatum has an antifungal activity through its phytochemical profiling against fungal by inhibiting the lanosterol 14a demethylase, make damaging cell membranes, fungal growth inhibition, and fungal cell lysis.
Collapse
Affiliation(s)
- Tessa Siswina
- Midwifery, Poltekkes Kemenkes Pontianak, Pontianak, Kalimantan Barat, 78124, Indonesia
- Chemistry, Padjadjaran University, Sumedang, Jawa Barat, 45363, Indonesia
| | | | - Dadan Sumiarsa
- Chemistry, Padjadjaran University, Sumedang, Jawa Barat, 45363, Indonesia
| | - Dikdik Kurnia
- Chemistry, Padjadjaran University, Sumedang, Jawa Barat, 45363, Indonesia
| |
Collapse
|
50
|
Siswina T, Miranti Rustama M, Sumiarsa D, Kurnia D. Phytochemical profiling of Piper crocatum and its antifungal activity as Lanosterol 14 alpha demethylase CYP51 inhibitor: a review. F1000Res 2022; 11:1115. [PMID: 37151610 PMCID: PMC10157293 DOI: 10.12688/f1000research.125645.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/20/2022] Open
Abstract
Mycoses or fungal infections are a general health problem that often occurs in healthy and immunocompromised people in the community. The development of resistant strains in Fungi and the incidence of azole antibiotic resistance in the Asia Pacific which reached 83% become a critical problem nowadays. To control fungal infections, substances and extracts isolated from natural resources, especially in the form of plants as the main sources of drug molecules today, are needed. Especially from Piperaceae, which have long been used in India, China, and Korea to treat human ailments in traditional medicine. The purpose of this review was to describe antifungal activity from Piper crocatum and its phytochemical profiling against lanosterol 14 alpha demethylase CYP51. The methods used search databases from Google Scholar to find the appropriate databases using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram as a clinical information retrieval method. From 1,150,000 results search by database, there were 73 selected articles to review. The review shows that P. crocatum contains flavonoids, tannins, terpenes, saponins, polyphenols, eugenol, alkaloids, quinones, chavibetol acetate, glycosides, triterpenoids or steroids, hydroxychavikol, phenolics, glucosides, isoprenoids, and non-protein amino acids. Its antifungal mechanisms in fungal cells occur due to ergosterol especially lanosterol 14 alpha demethylase CYP51 inhibition as a result of 5,6 desaturase (ERG3) downregulation. P. crocatum has an antifungal activity by its phytochemical profiling that act against fungi by inhibiting the fungal cytochrome P 450 pathway, make damaging cell membranes, fungal growth inhibition, morphological changes, and fungal cell lysis.
Collapse
|