1
|
Gniech T, Humboldt A, Keith KA, James SH, Richert C. A ProTide of AZT Shows Activity Against Human Papillomaviruses. ChemMedChem 2024; 19:e202300661. [PMID: 38241205 DOI: 10.1002/cmdc.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/21/2024]
Abstract
Infection by human papillomaviruses (HPV) can cause warts and tumors. So far, no small molecule antiviral has been approved for the treatment of infections with this DNA virus, although preclinical studies show activity for nucleosidic compounds, such as 9-(2-phosphonylmethoxy)ethylguanine (PMEG) or cidofovir. This prompted us to test new prodrug versions of the nucleoside analog 3'-azido-2',3'-dideoxythymidine (AZT), known to be active against reverse transcriptases and approved for the treatment of HIV. Here we report the synthesis of an ethylbutyl alaninyl ester phosphosphoramidate prodrug of AZT, dubbed AZAEB, and its activity against HPV, a target not known to be sensitive to AZT. A methyl ester derivative was found to be inactive against this and three other DNA viruses, while the phosphoramidate prodrug AZAEB showed a modest inhibitory effect against HPV types 6, 11, 18 and 31. Our results open up new avenues of study for the treatment of diseases caused by members of the papillomaviridae family.
Collapse
Affiliation(s)
- Tim Gniech
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Adrian Humboldt
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Kathy A Keith
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scott H James
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Jovanovic D, Tremmel P, Pallan PS, Egli M, Richert C. The Enzyme‐Free Release of Nucleotides from Phosphoramidates Depends Strongly on the Amino Acid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dejana Jovanovic
- Institut für Organische Chemie Universität Stuttgart 70569 Stuttgart Germany
| | - Peter Tremmel
- Institut für Organische Chemie Universität Stuttgart 70569 Stuttgart Germany
| | - Pradeep S. Pallan
- Department of Biochemistry Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Martin Egli
- Department of Biochemistry Vanderbilt University School of Medicine Nashville TN 37232 USA
| | - Clemens Richert
- Institut für Organische Chemie Universität Stuttgart 70569 Stuttgart Germany
| |
Collapse
|
3
|
Jovanovic D, Tremmel P, Pallan PS, Egli M, Richert C. The Enzyme-Free Release of Nucleotides from Phosphoramidates Depends Strongly on the Amino Acid. Angew Chem Int Ed Engl 2020; 59:20154-20160. [PMID: 32757352 PMCID: PMC7436718 DOI: 10.1002/anie.202008665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2020] [Indexed: 12/23/2022]
Abstract
Phosphoramidates composed of an amino acid and a nucleotide analogue are critical metabolites of prodrugs, such as remdesivir. Hydrolysis of the phosphoramidate liberates the nucleotide, which can then be phosphorylated to become the pharmacologically active triphosphate. Enzymatic hydrolysis has been demonstrated, but a spontaneous chemical process may also occur. We measured the rate of enzyme-free hydrolysis for 17 phosphoramidates of ribonucleotides with amino acids or related compounds at pH 7.5. Phosphoramidates of proline hydrolyzed fast, with a half-life time as short as 2.4 h for Pro-AMP in ethylimidazole-containing buffer at 37 °C; 45-fold faster than Ala-AMP and 120-fold faster than Phe-AMP. Crystal structures of Gly-AMP, Pro-AMP, βPro-AMP and Phe-AMP bound to RNase A as crystallization chaperone showed how well the carboxylate is poised to attack the phosphoramidate, helping to explain this reactivity. Our results are significant for the design of new antiviral prodrugs.
Collapse
Affiliation(s)
- Dejana Jovanovic
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| | - Peter Tremmel
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| | - Pradeep S. Pallan
- Department of BiochemistryVanderbilt UniversitySchool of MedicineNashvilleTN37232USA
| | - Martin Egli
- Department of BiochemistryVanderbilt UniversitySchool of MedicineNashvilleTN37232USA
| | - Clemens Richert
- Institut für Organische ChemieUniversität Stuttgart70569StuttgartGermany
| |
Collapse
|
4
|
Eyer L, Šmídková M, Nencka R, Neča J, Kastl T, Palus M, De Clercq E, Růžek D. Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus. Antiviral Res 2016; 133:119-29. [DOI: 10.1016/j.antiviral.2016.07.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/05/2016] [Accepted: 07/24/2016] [Indexed: 12/30/2022]
|
5
|
Benzaria S, Bardiot D, Bouisset T, Counor C, Rabeson C, Pierra C, Storer R, Loi AG, Cadeddu A, Mura M, Musiu C, Liuzzi M, Loddo R, Bergelson S, Bichko V, Bridges E, Cretton-Scott E, Mao J, Sommadossi JP, Seifer M, Standring D, Tausek M, Gosselin G, La Colla P. 2′-C-Methyl Branched Pyrimidine Ribonucleoside Analogues: Potent Inhibitors of RNA Virus Replication. ACTA ACUST UNITED AC 2016; 18:225-42. [PMID: 17907380 DOI: 10.1177/095632020701800406] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RNA viruses are the agents of numerous widespread and often severe diseases. Their unique RNA-dependent RNA polymerase (RDRP) is essential for replication and, thus, constitutes a valid target for the development of selective chemotherapeutic agents. In this regard, we have investigated sugar-modified ribonucleoside analogues as potential inhibitors of the RDRP. Title compounds retain ‘natural’ pyrimidine bases, but possess a β-methyl substituent at the 2′-position of the D- or L-ribose moiety. Evaluation against a broad range of RNA viruses, either single-stranded positive (ssRNA), single-stranded negative (ssRNA−) or double-stranded (dsRNA), revealed potent activities for D-2′- C-methyl-cytidine and -uridine against ssRNA+, and dsRNA viruses. None of the L-enantiomers were active. Moreover, the 5′-triphosphates of the active D-enantiomers were found to inhibit the bovine virus diarrhoea virus polymerase. Thus, the 2′-methyl branching of natural pyrimidine ribonucleosides transforms physiological molecules into potent, broad-spectrum antiviral agents that merit further development.
Collapse
Affiliation(s)
- Samira Benzaria
- Laboratoire Coopératif Idenix-CNRS-Université Montpellier II, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Gogineni V, Schinazi RF, Hamann MT. Role of Marine Natural Products in the Genesis of Antiviral Agents. Chem Rev 2015; 115:9655-706. [PMID: 26317854 PMCID: PMC4883660 DOI: 10.1021/cr4006318] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vedanjali Gogineni
- Department of Pharmacognosy, Pharmacology, Chemistry & Biochemistry, University of Mississippi, School of Pharmacy, University, Mississippi 38677, United States
| | - Raymond F. Schinazi
- Center for AIDS Research, Department of Pediatrics, Emory University/Veterans Affairs Medical Center, 1760 Haygood Drive NE, Atlanta, Georgia 30322, United States
| | - Mark T. Hamann
- Department of Pharmacognosy, Pharmacology, Chemistry & Biochemistry, University of Mississippi, School of Pharmacy, University, Mississippi 38677, United States
| |
Collapse
|
7
|
Ai T, Xu Y, Qiu L, Geraghty RJ, Chen L. Hydroxamic Acids Block Replication of Hepatitis C Virus. J Med Chem 2014; 58:785-800. [DOI: 10.1021/jm501330g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Teng Ai
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Yanli Xu
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Li Qiu
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Robert J. Geraghty
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| | - Liqiang Chen
- Center for Drug Design, Academic
Health Center, University of Minnesota, 516 Delaware Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Mathur D, Rana N, Olsen CE, Parmar VS, Prasad AK. Cu(I)-Catalyzed Efficient Synthesis of 2′-Triazolo-nucleoside Conjugates. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- D. Mathur
- Bioorganic Laboratory, Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - N. Rana
- Bioorganic Laboratory, Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - C. E. Olsen
- Department of Natural Sciences; University of Copenhagen; DK-1871 Frederiksberg C Denmark
| | - V. S. Parmar
- Bioorganic Laboratory, Department of Chemistry; University of Delhi; Delhi 110 007 India
| | - A. K. Prasad
- Bioorganic Laboratory, Department of Chemistry; University of Delhi; Delhi 110 007 India
| |
Collapse
|
9
|
Efficiency of incorporation and chain termination determines the inhibition potency of 2'-modified nucleotide analogs against hepatitis C virus polymerase. Antimicrob Agents Chemother 2014; 58:3636-45. [PMID: 24733478 DOI: 10.1128/aac.02666-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ribonucleotide analog inhibitors of the RNA-dependent RNA polymerase of hepatitis C virus (HCV) represent one of the most exciting recent developments in HCV antiviral therapy. Although it is well established that these molecules cause chain termination by competing at the triphosphate level with natural nucleotides for incorporation into elongating RNA, strategies to rationally optimize antiviral potency based on enzyme kinetics remain elusive. In this study, we used the isolated HCV polymerase elongation complex to determine the pre-steady-state kinetics of incorporation of 2'F-2'C-Me-UTP, the active metabolite of the anti-HCV drug sofosbuvir. 2'F-2'C-Me-UTP was efficiently incorporated by HCV polymerase with apparent Kd (equilibrium constant) and kpol (rate of nucleotide incorporation at saturating nucleotide concentration) values of 113 ± 28 μM and 0.67 ± 0.05 s(-1), respectively, giving an overall substrate efficiency (kpol/Kd) of 0.0059 ± 0.0015 μM(-1) s(-1). We also measured the substrate efficiency of other UTP analogs and found that substitutions at the 2' position on the ribose can greatly affect their level of incorporation, with a rank order of OH > F > NH2 > F-C-Me > C-Me > N3 > ara. However, the efficiency of chain termination following the incorporation of UMP analogs followed a different order, with only 2'F-2'C-Me-, 2'C-Me-, and 2'ara-UTP causing complete and immediate chain termination. The chain termination profile of the 2'-modified nucleotides explains the apparent lack of correlation observed across all molecules between substrate efficiency at the single-nucleotide level and their overall inhibition potency. To our knowledge, these results provide the first attempt to use pre-steady-state kinetics to uncover the mechanism of action of 2'-modified NTP analogs against HCV polymerase.
Collapse
|
10
|
Evaluation of 2'-α-fluorine modified nucleoside phosphonates as potential inhibitors of HCV polymerase. Bioorg Med Chem Lett 2013; 23:3354-7. [PMID: 23639543 DOI: 10.1016/j.bmcl.2013.03.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 11/24/2022]
Abstract
Ribonucleoside phosphonate analogues containing 2'-α-fluoro modifications were synthesized and their potency evaluated against HCV RNA polymerase. The diphosphophosphonate (triphosphate equivalent) adenine and cytidine analogues displayed potent inhibition of the HCV polymerase in the range of 1.9-2.1 μM, but only modest cell-based activity in the HCV replicon. Pro-drugs of the parent nucleoside phosphonates improved the cell-based activity.
Collapse
|
11
|
Sofia MJ. Nucleotide prodrugs for the treatment of HCV infection. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:39-73. [PMID: 23885998 DOI: 10.1016/b978-0-12-405880-4.00002-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The HCV RNA-dependent RNA polymerase is an essential enzyme in HCV viral replication and has been a prominent target in the search for therapies to treat individuals infected with HCV. The development of both nucleoside and nucleotide HCV inhibitors has been pursued because of their potential for showing pangenotypic activity and because of their high barrier to resistance. Even though nucleoside inhibitors were shown to be effective in a clinical setting, their potency limited their effectiveness. The exploitation of prodrug strategies to deliver nucleoside 5'-monophosphates has resulted in the development of a number of very potent inhibitors of HCV replication. In addition, several of these nucleotide prodrugs have demonstrated liver-targeting characteristics when administered orally. Human clinical studies have shown that a number of nucleotide prodrugs are potent inhibitors of viral replication leading to significant reductions in viral load when given orally. Combinations of these nucleotide prodrugs with either pegylated interferon-α and ribavirin or another direct acting antiviral alone has lead to cure rates as high as 100% after only 12 weeks of therapy. The combination of a nucleotide prodrug and another direct-acting antiviral agent holds the promise of delivering an interferon-free therapy for HCV patients thus eliminating the undesirable side effects associated with taking interferon.
Collapse
|
12
|
Arnold JJ, Sharma SD, Feng JY, Ray AS, Smidansky ED, Kireeva ML, Cho A, Perry J, Vela JE, Park Y, Xu Y, Tian Y, Babusis D, Barauskus O, Peterson BR, Gnatt A, Kashlev M, Zhong W, Cameron CE. Sensitivity of mitochondrial transcription and resistance of RNA polymerase II dependent nuclear transcription to antiviral ribonucleosides. PLoS Pathog 2012; 8:e1003030. [PMID: 23166498 PMCID: PMC3499576 DOI: 10.1371/journal.ppat.1003030] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/28/2012] [Indexed: 12/29/2022] Open
Abstract
Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by off target effects. Development of antiviral ribonucleosides for treatment of hepatitis C virus (HCV) infection has been hampered by appearance of toxicity during clinical trials that evaded detection during preclinical studies. It is well established that the human mitochondrial DNA polymerase is an off target for deoxyribonucleoside reverse transcriptase inhibitors. Here we test the hypothesis that triphosphorylated metabolites of therapeutic ribonucleoside analogues are substrates for cellular RNA polymerases. We have used ribonucleoside analogues with activity against HCV as model compounds for therapeutic ribonucleosides. We have included ribonucleoside analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents that are non-obligate chain terminators of the HCV RNA polymerase. We show that all of the anti-HCV ribonucleoside analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Unexpectedly, analogues containing 2′-C-methyl, 4′-methyl and 4′-azido substituents were inhibitors of POLRMT and Pol II. Importantly, the proofreading activity of TFIIS was capable of excising these analogues from Pol II transcripts. Evaluation of transcription in cells confirmed sensitivity of POLRMT to antiviral ribonucleosides, while Pol II remained predominantly refractory. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity. Ribonucleoside analogues have potential utility as anti-viral, -parasitic, -bacterial and -cancer agents. However, their clinical applications have been limited by side effects of unknown origin. Here we show in biochemical and cell-based studies that antiviral ribonucleotide analogues are substrates for human mitochondrial RNA polymerase (POLRMT) and eukaryotic core RNA polymerase II (Pol II) in vitro. Analogues that terminate RNA synthesis by viral RNA polymerases also inhibit these cellular RNA polymerase. Importantly, the TFIIS proofreading activity of Pol II is capable of excising these analogues from Pol II transcripts. We introduce a parameter termed the mitovir (mitochondrial dysfunction caused by antiviral ribonucleoside) score that can be readily obtained during preclinical studies that quantifies the mitochondrial toxicity potential of compounds. We suggest the possibility that patients exhibiting adverse effects during clinical trials may be more susceptible to damage by nucleoside analogs because of defects in mitochondrial or nuclear transcription. The paradigm reported here should facilitate development of ribonucleosides with a lower potential for toxicity.
Collapse
Affiliation(s)
- Jamie J. Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (JJA); (CEC)
| | - Suresh D. Sharma
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Joy Y. Feng
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Adrian S. Ray
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Eric D. Smidansky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Maria L. Kireeva
- Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland, United States of America
| | - Aesop Cho
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jason Perry
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Jennifer E. Vela
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Yeojin Park
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Yili Xu
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Yang Tian
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Darius Babusis
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Ona Barauskus
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Blake R. Peterson
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Averell Gnatt
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mikhail Kashlev
- Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland, United States of America
| | - Weidong Zhong
- Gilead Sciences, Inc., Foster City, California, United States of America
| | - Craig E. Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (JJA); (CEC)
| |
Collapse
|
13
|
Rocha-Pereira J, Jochmans D, Dallmeier K, Leyssen P, Cunha R, Costa I, Nascimento MSJ, Neyts J. Inhibition of norovirus replication by the nucleoside analogue 2'-C-methylcytidine. Biochem Biophys Res Commun 2012; 427:796-800. [PMID: 23063849 DOI: 10.1016/j.bbrc.2012.10.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 10/01/2012] [Indexed: 12/22/2022]
Abstract
We here report on the activity of 2'-C-methylcytidine (2CMC) [a nucleoside polymerase inhibitor of the hepatitis C virus (HCV)] on the in vitro replication of (murine) norovirus (MNV). 2CMC inhibits (i) virus-induced CPE formation, (ii) viral RNA synthesis and (iii) infectious progeny formation with EC(50) values of ∼2μM. 2CMC acts at a time-point that coincides with the onset of viral RNA synthesis. Even following 30 passages of selective pressure no MNV-resistant virus was selected, which is in line with the high barrier to resistance of the nucleoside analogue for HCV. When combined with the broad-spectrum RNA virus inhibitor ribavirin, a marked antagonistic activity was observed indicating that these molecules should not be combined for the treatment of norovirus infections. Our results suggest that 2'-C-methyl nucleoside analogues should be further explored for the treatment and prophylaxis of norovirus infections.
Collapse
Affiliation(s)
- J Rocha-Pereira
- Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
14
|
C-6 aryl substituted 4-quinolone-3-carboxylic acids as inhibitors of hepatitis C virus. Bioorg Med Chem 2012; 20:4790-800. [PMID: 22748708 DOI: 10.1016/j.bmc.2012.05.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/21/2012] [Accepted: 05/29/2012] [Indexed: 12/20/2022]
Abstract
Quinolone-3-carboxylic acid represents a highly privileged chemotype in medicinal chemistry and has been extensively explored as antibiotics and antivirals targeting human immunodeficiency virus (HIV) integrase (IN). Herein we describe the synthesis and anti-hepatitis C virus (HCV) profile of a series of C-6 aryl substituted 4-quinlone-3-carboxylic acid analogues. Significant inhibition was observed with a few analogues at low micromolar range against HCV replicon in cell culture and a reduction in replicon RNA was confirmed through an RT-qPCR assay. Interestingly, evaluation of analogues as inhibitors of NS5B in a biochemical assay yielded only modest inhibitory activities, suggesting that a different mechanism of action could operate in cell culture.
Collapse
|
15
|
Arnold JJ, Smidansky ED, Moustafa IM, Cameron CE. Human mitochondrial RNA polymerase: structure-function, mechanism and inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:948-60. [PMID: 22551784 DOI: 10.1016/j.bbagrm.2012.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 11/29/2022]
Abstract
Transcription of the human mitochondrial genome is required for the expression of 13 subunits of the respiratory chain complexes involved in oxidative phosphorylation, which is responsible for meeting the cells' energy demands in the form of ATP. Also transcribed are the two rRNAs and 22 tRNAs required for mitochondrial translation. This process is accomplished, with the help of several accessory proteins, by the human mitochondrial RNA polymerase (POLRMT, also known as h-mtRNAP), a nuclear-encoded single-subunit DNA-dependent RNA polymerase (DdRp or RNAP) that is distantly related to the bacteriophage T7 class of single-subunit RNAPs. In addition to its role in transcription, POLRMT serves as the primase for mitochondrial DNA replication. Therefore, this enzyme is of fundamental importance for both expression and replication of the human mitochondrial genome. Over the past several years rapid progress has occurred in understanding POLRMT and elucidating the molecular mechanisms of mitochondrial transcription. Important accomplishments include development of recombinant systems that reconstitute human mitochondrial transcription in vitro, determination of the X-ray crystal structure of POLRMT, identification of distinct mechanisms for promoter recognition and transcription initiation, elucidation of the kinetic mechanism for POLRMT-catalyzed nucleotide incorporation and discovery of unique mechanisms of mitochondrial transcription inhibition including the realization that POLRMT is an off target for antiviral ribonucleoside analogs. This review summarizes the current understanding of POLRMT structure-function, mechanism and inhibition. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
16
|
Sofia MJ, Chang W, Furman PA, Mosley RT, Ross BS. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. J Med Chem 2012; 55:2481-531. [PMID: 22185586 DOI: 10.1021/jm201384j] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael J Sofia
- Pharmasset, Inc., 303A College Road East, Princeton, New Jersey 08540, United States.
| | | | | | | | | |
Collapse
|
17
|
Chen YL, Tang J, Kesler MJ, Sham YY, Vince R, Geraghty RJ, Wang Z. The design, synthesis and biological evaluations of C-6 or C-7 substituted 2-hydroxyisoquinoline-1,3-diones as inhibitors of hepatitis C virus. Bioorg Med Chem 2011; 20:467-79. [PMID: 22100256 DOI: 10.1016/j.bmc.2011.10.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 12/14/2022]
Abstract
C7-Substituted 2-hydroxyisoquinoline-1,3-diones inhibit the strand transfer of HIV integrase (IN) and the reverse-transcriptase-associated ribonuclease H (RNH). Hepatitis C virus (HCV) NS5B polymerase shares a similar active site fold to RNH and IN, suggesting that N-hydroxyimides could be useful inhibitor scaffolds of HCV via targeting the NS5B. Herein we describe the design, chemical synthesis, replicon and biochemical assays, and molecular docking of C-6 or C-7 aryl substituted 2-hydroxyisoquinoline-1,3-diones as novel HCV inhibitors. The synthesis involved an improved and clean cyclization method, which allowed the convenient preparation of various analogs. Biological studies revealed that the C-6 analogs, a previously unknown chemotype, consistently inhibit both HCV replicon and recombinant NS5B at low micromolar range. Molecular modeling studies suggest that these inhibitors may bind to the NS5B active site.
Collapse
Affiliation(s)
- Yue-Lei Chen
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware St. SE, MMC 204, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Nucleoside analog inhibitors of hepatitis C viral replication: recent advances, challenges and trends. Future Med Chem 2011; 1:1429-52. [PMID: 21426058 DOI: 10.4155/fmc.09.88] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a global health problem, with over 170 million people infected worldwide. The current therapy, pegylated interferon (PEG-IFN) plus ribavirin (RBV), provides only approximately a 40% sustained virological response (undetectable HCV RNA for greater than 24 weeks after cessation of therapy), in genotype 1-infected individuals. In addition to the limited sustained virological response, PEG-IFN/RBV treatment is associated with serious adverse effects. Nucleosides have long been the cornerstone of antiviral therapy because of their proven efficacy and high barrier to resistance. Through the use of surrogate viruses or the HCV subgenomic replicon, several classes of nucleoside analogs or their monophosphate prodrugs have been identified that inhibit HCV RNA replication. Nucleoside analogs that possess the 2´-C-methyl modification vary in their ability to be phosphorylated and to act as alternative substrate inhibitors of the HCV RNA polymerase. Herein, we discuss various classes of nucleoside inhibitors, with a focus on available structure-activity relationships, their mode of action and resistance profile.
Collapse
|
19
|
Bookser BC, Raffaele NB, Reddy KR, Fan K, Huang W, Erion MD. Synthesis of 3'-amino-3'-deoxyguanosine and 3'-amino-3'-deoxyxyloguanosine monophosphate HepDirect prodrugs from guanosine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:969-86. [PMID: 20183565 DOI: 10.1080/15257770903307151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The synthesis of 3'-amino-3'-deoxyguanosine and 3'-amino-3'-deoxyxyloguanosine monophosphate HepDirect prodrugs from guanosine is reported. Initial incorporation of N,N-dibenzylformamidino protection of the C2-amino of guanosine masked the reactivity of that group and simplified purification of subsequent analogues. The first key intermediate, 9-(2,5-bis-O-tert-butyldimethylsilyl-beta-D-ribofuranosyl)-2-N-(N,N-dibenzylformamidino)guanine (3a), was prepared in 60% yield after recycling of the undesired 3',5'-bis-O-protected byproduct (4a) by simple equilibration in methanol to a mixture of the two bis-O-protected compounds. Thus, protected, the 3'-position was manipulated to form the 3'-deoxyribo- or 3'-deoxyxylo-3'-azido derivatives (9 or 16, respectively). Further selective manipulations provided the cis-5'-monophosphate (3-chlorophenyl)-1,3-propanyl diester prodrugs (HepDirect prodrugs), 15 and 21. These HepDirect prodrugs were demonstrated to activate to their respective NTPs in rat hepatocytes.
Collapse
|
20
|
Abstract
Nucleoside or nucleotide analogue inhibitors of viral replication almost act as chain terminators during DNA (DNA- and retroviruses) or RNA (RNA viruses) synthesis. Following intracellular phosphorylation, by viral and/or cellular kinases, the 5'-triphosphate metabolites (or 2'-diphosphate metabolites in the case of acyclic nucleoside phosphonate analogues) compete with the natural substrate in the DNA or RNA polymerization reaction. Obligatory chain terminators (e.g., acyclovir) do not offer the 3'-hydroxyl function at the riboside moiety of the molecule. Nucleoside analogues that possess a hydroxyl function at a position equivalent of the 3'-hydroxyl position may act as chain terminators if this hydroxyl group is conformationally constrained (e.g., ganciclovir) or sterically hindered to enter into a phosphodiester linkage with the incoming nucleotide. In case that the 3'-hydroxylgroup is correctly positioned, chain elongation may be hampered through steric hindrance from neighboring substituents (e.g., 2'-C-methyl or 4'-azido nucleoside inhibitors of HCV replication). Here, we review the molecular mechanism of action and the clinical applications of the nucleosides and nucleotides acting as chain terminators. A further discussion of clinical applications in combination therapy can be found in Chap. 12.
Collapse
Affiliation(s)
- E De Clercq
- Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, Leuven, B-3000, Belgium.
| | | |
Collapse
|
21
|
|
22
|
Klumpp K, Kalayanov G, Ma H, Le Pogam S, Leveque V, Jiang WR, Inocencio N, De Witte A, Rajyaguru S, Tai E, Chanda S, Irwin MR, Sund C, Winqist A, Maltseva T, Eriksson S, Usova E, Smith M, Alker A, Najera I, Cammack N, Martin JA, Johansson NG, Smith DB. 2'-deoxy-4'-azido nucleoside analogs are highly potent inhibitors of hepatitis C virus replication despite the lack of 2'-alpha-hydroxyl groups. J Biol Chem 2007; 283:2167-75. [PMID: 18003608 DOI: 10.1074/jbc.m708929200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerases effectively discriminate against deoxyribonucleotides and specifically recognize ribonucleotide substrates most likely through direct hydrogen bonding interaction with the 2'-alpha-hydroxy moieties of ribonucleosides. Therefore, ribonucleoside analogs as inhibitors of viral RNA polymerases have mostly been designed to retain hydrogen bonding potential at this site for optimal inhibitory potency. Here, two novel nucleoside triphosphate analogs are described, which are efficiently incorporated into nascent RNA by the RNA-dependent RNA polymerase NS5B of hepatitis C virus (HCV), causing chain termination, despite the lack of alpha-hydroxy moieties. 2'-deoxy-2'-beta-fluoro-4'-azidocytidine (RO-0622) and 2'-deoxy-2'-beta-hydroxy-4'-azidocytidine (RO-9187) were excellent substrates for deoxycytidine kinase and were phosphorylated with efficiencies up to 3-fold higher than deoxycytidine. As compared with previous reports on ribonucleosides, higher levels of triphosphate were formed from RO-9187 in primary human hepatocytes, and both compounds were potent inhibitors of HCV virus replication in the replicon system (IC(50) = 171 +/- 12 nM and 24 +/- 3 nM for RO-9187 and RO-0622, respectively; CC(50) >1 mM for both). Both compounds inhibited RNA synthesis by HCV polymerases from either HCV genotypes 1a and 1b or containing S96T or S282T point mutations with similar potencies, suggesting no cross-resistance with either R1479 (4'-azidocytidine) or 2'-C-methyl nucleosides. Pharmacokinetic studies with RO-9187 in rats and dogs showed that plasma concentrations exceeding HCV replicon IC(50) values 8-150-fold could be achieved by low dose (10 mg/kg) oral administration. Therefore, 2'-alpha-deoxy-4'-azido nucleosides are a new class of antiviral nucleosides with promising preclinical properties as potential medicines for the treatment of HCV infection.
Collapse
Affiliation(s)
- Klaus Klumpp
- Roche Palo Alto LLC, Palo Alto, California 94304, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mishchenko EL, Bezmaternykh KD, Likhoshvai VA, Ratushny AV, Khlebodarova TM, Yu Sournina N, Ivanisenko VA, Kolchanov NA. Mathematical model for suppression of subgenomic hepatitis C virus RNA replication in cell culture. J Bioinform Comput Biol 2007; 5:593-609. [PMID: 17636864 DOI: 10.1142/s0219720007002849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 11/18/2022]
Abstract
A mathematical model for suppression of the hepatitis C virus RNA replicon replication in Huh-7 cell culture in the presence of potential drugs was built. There was a good agreement between the experimental and theoretical kinetic data for the decrease in the level of viral RNA in the cell in the presence of the competitive HCV NS3 protease inhibitor. Using the model, we verified the estimates for the efficiency of the effect of potential drugs on replication of viral RNA and viral protein processing. It was demonstrated that the tested drugs are most efficient at the replication step of viral RNA. The efficiency of the combined action of real and putative inhibitors target on the host and viral proteins was also studied. It was found that the action of the inhibitor at low concentrations on the host factors considerably enhances the suppressive effect on viral RNA replication in the presence of even the low affine NS3 protease inhibitors. The developed mathematical model may serve as a tool for the evaluation of the efficiency of potential drugs on the HCV genome.
Collapse
Affiliation(s)
- Elena L Mishchenko
- Institute of Cytology and Genetics SB RAS, Lavrentieva Ave., 10, Novosibirsk State University, Pirogova Ave., Novosibirsk 630090, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ma H, Jiang WR, Robledo N, Leveque V, Ali S, Lara-Jaime T, Masjedizadeh M, Smith DB, Cammack N, Klumpp K, Symons J. Characterization of the metabolic activation of hepatitis C virus nucleoside inhibitor beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) and identification of a novel active 5'-triphosphate species. J Biol Chem 2007; 282:29812-20. [PMID: 17698842 DOI: 10.1074/jbc.m705274200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) is a potent inhibitor of hepatitis C virus (HCV) replication in the subgenomic HCV replicon system, and its corresponding 5'-triphosphate is a potent inhibitor of the HCV RNA polymerase in vitro. In this study the formation of PSI-6130-triphosphate was characterized in primary human hepatocytes. PSI-6130 and its 5'-phosphorylated derivatives were identified, and the intracellular concentrations were determined. In addition, the deaminated derivative of PSI-6130, beta-d-2'-deoxy-2'-fluoro-2'-C-methyluridine (RO2433, PSI-6026) and its corresponding phosphorylated metabolites were identified in human hepatocytes after incubation with PSI-6130. The formation of the 5'-triphosphate (TP) of PSI-6130 (PSI-6130-TP) and RO2433 (RO2433-TP) increased with time and reached steady state levels at 48 h. The formation of both PSI-6130-TP and RO2433-TP demonstrated a linear relationship with the extracellular concentrations of PSI-6130 up to 100 mum, suggesting a high capacity of human hepatocytes to generate the two triphosphates. The mean half-lives of PSI-6130-TP and RO2433-TP were 4.7 and 38 h, respectively. RO2433-TP also inhibited RNA synthesis by the native HCV replicase isolated from HCV replicon cells and the recombinant HCV polymerase NS5B with potencies comparable with those of PSI-6130-TP. Incorporation of RO2433-5'-monophosphate (MP) into nascent RNA by NS5B led to chain termination similar to that of PSI-6130-MP. These results demonstrate that PSI-6130 is metabolized to two pharmacologically active species in primary human hepatocytes.
Collapse
Affiliation(s)
- Han Ma
- Roche Palo Alto LLC, Palo Alto, California 94304, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Deval J, Powdrill MH, D'Abramo CM, Cellai L, Götte M. Pyrophosphorolytic excision of nonobligate chain terminators by hepatitis C virus NS5B polymerase. Antimicrob Agents Chemother 2007; 51:2920-8. [PMID: 17502402 PMCID: PMC1932539 DOI: 10.1128/aac.00186-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonobligate chain terminators, such as 2'-C-methylated nucleotides, block RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of hepatitis C virus (HCV). Previous studies with related viral polymerases have shown that classical chain terminators lacking the 3'-hydroxyl group can be excised in the presence of pyrophosphate (PP(i)), which is detrimental to the inhibitory activity of these compounds. Here we demonstrate that the HCV RdRp enzyme is capable of removing both obligate and clinically relevant nonobligate chain terminators. Pyrimidines are more efficiently excised than are purines. The presence of the next complementary templated nucleotide literally blocks the excision of obligate chain terminators through the formation of a dead-end complex (DEC). However, 2'-C-methylated CMP is still cleaved efficiently under these conditions. These findings show that a 2'-methylated primer terminus impedes nucleotide binding. The S282T mutation, associated with resistance to 2'-C-methylated nucleotides, does not affect the excision patterns. Thus, the decreased susceptibility to 2'-C-methylated nucleotides appears to be based solely on improved discrimination between the inhibitor and its natural counterpart. In conclusion, our data suggest that the phosphorolytic excision of nonobligate, pyrimidine-based chain terminators can diminish their potency. The templated nucleotide does not appear to provide protection from excision through DEC formation.
Collapse
Affiliation(s)
- Jérôme Deval
- Department of Microbiology & Immunology, McGill University, Duff Medical Building, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
26
|
McGuigan C, Hassan-Abdallah A, Srinivasan S, Wang Y, Siddiqui A, Daluge SM, Gudmundsson KS, Zhou H, McLean EW, Peckham JP, Burnette TC, Marr H, Hazen R, Condreay LD, Johnson L, Balzarini J. Application of phosphoramidate ProTide technology significantly improves antiviral potency of carbocyclic adenosine derivatives. J Med Chem 2007; 49:7215-26. [PMID: 17125274 DOI: 10.1021/jm060776w] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the application of phosphoramidate pronucleotide (ProTide) technology to the antiviral agent carbocyclic L-d4A (L-Cd4A). The phenyl methyl alaninyl parent ProTide of L-Cd4A was prepared by Grignard-mediated phosphorochloridate reaction and resulted in a compound with significantly improved anti-HIV (2600-fold) and HBV activity. We describe modifications of the aryl, ester, and amino acid regions of the ProTide and how these changes affect antiviral activity and metabolic stability. Separate and distinct SARs were noted for HIV and HBV. Additionally, ProTides were prepared from the D-nucleoside D-Cd4A and the dideoxy analogues L-CddA and D-CddA. These compounds showed more modest potency improvements over the parent drug. In conclusion, the ProTide approach is highly successful when applied to L-Cd4A with potency improvements in vitro as high as 9000-fold against HIV. With a view to preclinical candidate selection we carried out metabolic stability studies using cynomolgus monkey liver and intestinal S9 fractions.
Collapse
Affiliation(s)
- Christopher McGuigan
- Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
De Clercq E. Status presens of antiviral drugs and strategies: Part II: RNA VIRUSES (EXCEPT RETROVIRUSES). ADVANCES IN ANTIVIRAL DRUG DESIGN 2007; 5:59-112. [PMID: 32288473 PMCID: PMC7146830 DOI: 10.1016/s1075-8593(06)05002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
More than 40 compounds have been formally licensed for clinical use as antiviral drugs, and half of these are used for the treatment of HIV infections. The others have been approved for the therapy of herpesvirus (HSV, VZV, CMV), hepadnavirus (HBV), hepacivirus (HCV) and myxovirus (influenza, RSV) infections. New compounds are in clinical development or under preclinical evaluation, and, again, half of these are targeting HIV infections. Yet, quite a number of important viral pathogens (i.e. HPV, HCV, hemorrhagic fever viruses) remain in need of effective and/or improved antiviral therapies.
Collapse
|
28
|
De Clercq E. Viruses and Viral Diseases. COMPREHENSIVE MEDICINAL CHEMISTRY II 2007. [PMCID: PMC7151824 DOI: 10.1016/b0-08-045044-x/00211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
More than 40 compounds have been formally licensed for clinical use as antiviral drugs, and half of these are used for the treatment of human immunodeficiency virus (HIV) infections. The others have been approved for the therapy of herpesvirus (herpes simplex virus (HSV), varicella-zoster virus (VZV), cytomegalovirus (CMV)), hepadnavirus (hepatitis B virus (HBV)), hepacivirus (hepatitis C virus (HCV)), and myxovirus (influenza, respiratory synctural virus (RSV)) infections. New compounds are in clinical development or under preclinical evaluation, and, again, half of these target HIV infections. Yet, quite a number of important viral pathogens (i.e., human papilloma virus (HPV), HCV, hemorrhagic fever viruses) remain in need of effective and/or improved antiviral therapies.
Collapse
|
29
|
Dutartre H, Bussetta C, Boretto J, Canard B. General catalytic deficiency of hepatitis C virus RNA polymerase with an S282T mutation and mutually exclusive resistance towards 2'-modified nucleotide analogues. Antimicrob Agents Chemother 2006; 50:4161-9. [PMID: 17000745 PMCID: PMC1693996 DOI: 10.1128/aac.00433-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
The hepatitis C virus (HCV) RNA-dependent RNA polymerase NS5B is an important target for antiviral therapies. NS5B is able to initiate viral RNA synthesis de novo and then switch to a fast and processive RNA elongation synthesis mode. The nucleotide analogue 2'-C-methyl CTP (2'-C-Me-CTP) is the active metabolite of NM283, a drug currently in clinical phase II trials. The resistance mutation S282T can be selected in HCV replicon studies. Likewise, 2'-O-Me nucleotides are active both against the purified polymerase and in replicon studies. We have determined the molecular mechanism by which the S282T mutation confers resistance to 2'-modified nucleotide analogues. 2'-C-Me-CTP is no longer incorporated during the initiation step of RNA synthesis and is discriminated 21-fold during RNA elongation by the NS5B S282T mutant. Strikingly, 2'-O-methyl CTP sensitivity does not change during initiation, but the analogue is no longer incorporated during elongation. This mutually exclusive resistance mechanism suggests not only that "2'-conformer" analogues target distinct steps in RNA synthesis but also that these analogues have interesting potential in combination therapies. In addition, the presence of the S282T mutation induces a general cost in terms of polymerase efficiency that may translate to decreased viral fitness: natural nucleotides become 5- to 20-fold less efficiently incorporated into RNA by the NS5B S282T mutant. As in the case for human immunodeficiency virus, our results might provide a mechanistic basis for the rational combination of drugs for low-fitness viruses.
Collapse
Affiliation(s)
- Hélène Dutartre
- AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France
| | | | | | | |
Collapse
|
30
|
Koch U, Attenni B, Malancona S, Colarusso S, Conte I, Di Filippo M, Harper S, Pacini B, Giomini C, Thomas S, Incitti I, Tomei L, De Francesco R, Altamura S, Matassa VG, Narjes F. 2-(2-Thienyl)-5,6-dihydroxy-4-carboxypyrimidines as inhibitors of the hepatitis C virus NS5B polymerase: discovery, SAR, modeling, and mutagenesis. J Med Chem 2006; 49:1693-705. [PMID: 16509585 DOI: 10.1021/jm051064t] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Infections caused by hepatitis C virus (HCV) are a significant world health problem for which novel therapies are in urgent demand. The polymerase of HCV is responsible for the replication of viral RNA. We recently disclosed dihydroxypyrimidine carboxylates 2 as novel, reversible inhibitors of the HCV NS5B polymerase. This series was further developed into 5,6-dihydroxy-2-(2-thienyl)pyrimidine-4-carboxylic acids such as 34 (EC50 9.3 microM), which now show activity in the cell-based HCV replication assay. The structure-activity relationship of these inhibitors is discussed in the context of their physicochemical properties and of the polymerase crystal structure. We also report the results of mutagenesis experiments which support the proposed binding model, which involves pyrophosphate-like chelation of the active site Mg ions.
Collapse
Affiliation(s)
- Uwe Koch
- Istituto Di Ricerche Di Biologia Molecolare, P. Angeletti S.p.A. (Merck Research Laboratories, Rome), Via Pontina Km 30,600, 00040 Pomezia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Understanding the RNA-Specificity of HCV RdRp: Implications for Anti-HCV Drug Discovery. B KOREAN CHEM SOC 2006. [DOI: 10.5012/bkcs.2006.27.1.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Abstract
Approximately 40 compounds have been formally licensed for clinical use as antiviral drugs, with half of these in use for the treatment of HIV infections. The remaining have been approved for use in the therapy of herpes virus (herpes simplex virus, varicella zoster virus and cytomegalovirus), hepadnavirus, hepacivirus and myxovirus (influenza and respiratory syncytial virus) infections. New compounds are in clinical development or under preclinical evaluation, and again, half of these are intended to target HIV infections. However, quite a number of important viral pathogens (i.e., human papillomavirus, hepatitis C virus and hemorrhagic fever viruses) remain in need of effective and/or improved antiviral therapies.
Collapse
Affiliation(s)
- Erik De Clercq
- Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
33
|
Pierra C, Amador A, Badaroux E, Storer R, Gosselin G. Synthesis of 2'-C-Methylcytidine and 2'-C-Methyluridine Derivatives Modified in the 3'-Position as Potential Antiviral Agents. ACTA ACUST UNITED AC 2006. [DOI: 10.1135/cccc20060991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As part of our anti-hepatitis C program, we recently discovered 2'-C-methylcytidine (1) and 2'-C-methyluridine (2), which are potent inhibitors in cell culture of several viruses (bovine viral diarrhea virus (BVDV), yellow fever virus (YFV)) closely related to HCV. In order to characterize structure-activity relationships, we introduced some structural and functional modifications into the 3'-position of 2'-C-methylcytidine and 2'-C-methyluridine. All these hitherto unknown compounds thus synthesized were tested for the activity against a wide range of viruses and found to be inactive.
Collapse
|
34
|
Windisch MP, Frese M, Kaul A, Trippler M, Lohmann V, Bartenschlager R. Dissecting the interferon-induced inhibition of hepatitis C virus replication by using a novel host cell line. J Virol 2005; 79:13778-93. [PMID: 16227297 PMCID: PMC1262607 DOI: 10.1128/jvi.79.21.13778-13793.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Hepatitis C virus (HCV), a member of the family Flaviviridae, is a major cause of chronic liver disease. Patients are currently treated with alpha interferon (IFN-alpha) that is given alone or in combination with ribavirin. Unfortunately, this treatment is ineffective in eliminating the virus in a large proportion of individuals. IFN-induced antiviral activities have been intensively studied in the HCV replicon system. It was found that both IFN-alpha and IFN-gamma inhibit HCV replicons, but the underlying mechanisms have not yet been identified. Of note is that nearly all of these studies were performed with the human hepatoma cell line Huh-7. Here, we report that genotypes 1b and 2a replicons also replicate in the human hepatoblastoma cell line HuH6. Similar to what has been described for Huh-7 cells, we observed that efficient HCV replication in HuH6 cells depends on the presence of cell culture-adaptive mutations and the permissiveness of the host cell. However, three major differences exist: in HuH6 cells, viral replication is (i) independent from ongoing cell proliferation, (ii) less sensitive to certain antiviral compounds, and (iii) highly resistant to IFN-gamma. The latter is not due to a general defect in IFN signaling, as IFN-gamma induces the nuclear translocation of signal transducer and activator of transcription 1 (STAT1), the enhanced transcription of several IFN-regulated genes, and the inhibition of unrelated viruses such as influenza A virus and Semliki Forest virus. Taken together, the results establish HuH6 replicon cells as a valuable tool for IFN studies and for the evaluation of antiviral compounds.
Collapse
Affiliation(s)
- Marc P Windisch
- Department of Molecular Virology, Hygiene Institute, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Zhang P, Zhang N, Korba BE, Hosmane RS. Synthesis and in vitro anti-hepatitis B and C virus activities of ring-expanded ('fat') nucleobase analogues containing the imidazo[4,5-e][1,3]diazepine-4,8-dione ring system. Bioorg Med Chem Lett 2005; 15:5397-401. [PMID: 16213713 DOI: 10.1016/j.bmcl.2005.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Revised: 09/01/2005] [Accepted: 09/01/2005] [Indexed: 02/08/2023]
Abstract
As part of our structure-activity relationship studies, we report here the synthesis and in vitro anti-HBV and anti-HCV activities of a number of ring-expanded ('fat') nucleobases containing the imidazo[4,5-e][1,3]diazepine-4,8-dione ring system. One of the compounds, ZP-88, exhibited a good activity/toxicity profile against HBV by inhibition of the synthesis of extracellular virion release (EC(50)=1.7microM, CC(50)=286microM, SI=168) and intracellular HBV replication intermediates (EC(50)=8.4microM, CC(50)=286microM, SI=34) in cultured human hepatoblastoma 2.2.15 cells. By contrast, most of the compounds tested against HCV had only marginal activity/toxicity profile, although that was still better than that of the reference compound ribavirin.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | | | |
Collapse
|