1
|
Sun Y, Zhang Y, Wei A, Shan X, Liu Q, Fan Z, Sun A, Zhu L, Kong L. Mixed Systems of Quaternary Ammonium Foam Drainage Agent with Carbon Quantum Dots and Silica Nanoparticles for Improved Gas Field Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1590. [PMID: 39404317 PMCID: PMC11478329 DOI: 10.3390/nano14191590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Foam drainage agents enhance gas production by removing wellbore liquids. However, due to the ultra-high salinity environments of the Hechuan gas field (salinity up to 32.5 × 104 mg/L), no foam drainage agent is suitable for this gas field. To address this challenge, we developed a novel nanocomposite foam drainage system composed of quaternary ammonium and two types of nanoparticles. This work describes the design and synthesis of a quaternary ammonium foam drainage agent and nano-engineered stabilizers. Nonylphenol polyoxyethylene ether sulfosuccinate quaternary ammonium foam drainage agent was synthesized using maleic anhydride, sodium chloroacetate, N,N-dimethylpropylenediamine, etc., as precursors. We employed the Stöber method to create hydrophobic silica nanoparticles. Carbon quantum dots were then prepared and functionalized with dodecylamine. Finally, carbon quantum dots were incorporated into the mesopores of silica nanoparticles to enhance stability. Through optimization, the best performance was achieved with a (quaternary ammonium foam drainage agents)-(carbon quantum dots/silica nanoparticles) ratio of 5:1 and a total dosage of 1.1%. Under harsh conditions (salinity 35 × 104 mg/L, condensate oil 250 cm3/m3, temperature 80 °C), the system exhibited excellent stability with an initial foam height of 160 mm, remaining at 110 mm after 5 min. Additionally, it displayed good liquid-carrying capacity (160 mL), low surface tension (27.91 mN/m), and a long half-life (659 s). These results suggest the effectiveness of nanoparticle-enhanced foam drainage systems in overcoming high-salinity challenges. Previous foam drainage agents typically exhibited a salinity resistance of no more than 25 × 104 mg/L. In contrast, this innovative system demonstrates a superior salinity tolerance of up to 35 × 104 mg/L, addressing a significant gap in available agents for high-salinity gas fields. This paves the way for future development of advanced foam systems for gas well applications with high salinity.
Collapse
Affiliation(s)
- Yongqiang Sun
- Petroleum Engineering College, Northeast Petroleum University, Daqing 163000, China; (Y.S.); (Q.L.); (Z.F.); (A.S.)
- The Fourth Oil Extraction Plant of Daqing Oilfield Co., Ltd., Daqing 163000, China; (A.W.); (L.K.)
| | - Yongping Zhang
- Oil Production Engineering Research Institute of Daqing Oilfield Co., Ltd., Daqing 163000, China
| | - Anqi Wei
- The Fourth Oil Extraction Plant of Daqing Oilfield Co., Ltd., Daqing 163000, China; (A.W.); (L.K.)
| | - Xin Shan
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China;
| | - Qingwang Liu
- Petroleum Engineering College, Northeast Petroleum University, Daqing 163000, China; (Y.S.); (Q.L.); (Z.F.); (A.S.)
| | - Zhenzhong Fan
- Petroleum Engineering College, Northeast Petroleum University, Daqing 163000, China; (Y.S.); (Q.L.); (Z.F.); (A.S.)
| | - Ao Sun
- Petroleum Engineering College, Northeast Petroleum University, Daqing 163000, China; (Y.S.); (Q.L.); (Z.F.); (A.S.)
| | - Lin Zhu
- Petroleum Engineering College, Northeast Petroleum University, Daqing 163000, China; (Y.S.); (Q.L.); (Z.F.); (A.S.)
| | - Lingjin Kong
- The Fourth Oil Extraction Plant of Daqing Oilfield Co., Ltd., Daqing 163000, China; (A.W.); (L.K.)
| |
Collapse
|
2
|
Zhang CJ, Zhou Z, Cha G, Li L, Fu L, Liu LY, Yang L, Wegener G, Cheng L, Li M. Anaerobic hydrocarbon biodegradation by alkylotrophic methanogens in deep oil reservoirs. THE ISME JOURNAL 2024; 18:wrae152. [PMID: 39083033 PMCID: PMC11376074 DOI: 10.1093/ismejo/wrae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/22/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
In subsurface biodegraded oil reservoirs, methanogenic biodegradation of crude oil is a common process. This process was previously assigned to the syntrophy of hydrocarbon-degrading bacteria and methanogenic archaea. Recent studies showed that archaea of the Candidatus Methanoliparum named as alkylotrophic methanogens couple hydrocarbon degradation and methane production in a single archaeon. To assess the geochemical role of Ca. Methanoliparum, we analyzed the chemical and microbial composition and metabolites of 209 samples from 15 subsurface oil reservoirs across China. Gas chromatography-mass spectrometry analysis revealed that 92% of the tested samples were substantially degraded. Molecular analysis showed that 85% of the tested samples contained Ca. Methanoliparum, and 52% of the tested samples harbored multiple alkyl-coenzyme M derivatives, the intercellular metabolites of alkylotrophic archaea. According to metagenomic and metatranscriptomic analyses, Ca. Methanoliparum dominates hydrocarbon degradation in biodegraded samples from the Changqing, Jiangsu, and Shengli (SL) oilfields, and it is persistently present as shown in a 15-year-long sampling effort at the Shengli oilfield. Together, these findings demonstrate that Ca. Methanoliparum is a widely distributed oil degrader in reservoirs of China, suggesting that alkylotrophic methanogenesis by archaea plays a key role in the alteration of oil reservoirs, thereby expanding our understanding of biogeochemical process in the deep biosphere.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Key laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
| | - Zhuo Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, 610041, Chengdu, China
| | - Guihong Cha
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, 610041, Chengdu, China
| | - Ling Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, 610041, Chengdu, China
| | - Lin Fu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, 610041, Chengdu, China
| | - Lai-Yan Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, 610041, Chengdu, China
| | - Lu Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, 610041, Chengdu, China
| | - Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, 610041, Chengdu, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Key laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
- Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
3
|
Voskuhl L, Brusilova D, Brauer VS, Meckenstock RU. Inhibition of sulfate-reducing bacteria with formate. FEMS Microbiol Ecol 2022; 98:6510814. [PMID: 35040992 PMCID: PMC8831227 DOI: 10.1093/femsec/fiac003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Despite hostile environmental conditions, microbial communities have been found in µL-sized water droplets enclosed in heavy oil of the Pitch Lake, Trinidad. Some droplets showed high sulfate concentrations and surprisingly low relative abundances of sulfate-reducing bacteria in a previous study. Hence, we investigated here whether sulfate reduction might be inhibited naturally. Ion chromatography revealed very high formate concentrations around 2.37 mM in 21 out of 43 examined droplets. Since these concentrations were unexpectedly high, we performed growth experiments with the three sulfate-reducing type strains Desulfovibrio vulgaris, Desulfobacter curvatus, and Desulfococcus multivorans, and tested the effects of 2.5, 8 or 10 mM formate on sulfate reduction. Experiments demonstrated that 8 or 10 mM formate slowed down the growth rate of D. vulgaris and D. curvatus and the sulfate reduction rate of D. curvatus and D. multivorans. Concerning D. multivorans, increasing formate concentrations delayed the onsets of growth and sulfate reduction, which were even inhibited completely while formate was added constantly. Contrary to previous studies, D. multivorans was the only organism capable of formate consumption. Our study suggests that formate accumulates in the natural environment of the water droplets dispersed in oil and that such levels are very likely inhibiting sulfate-reducing microorganisms.
Collapse
Affiliation(s)
- L Voskuhl
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - D Brusilova
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - V S Brauer
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| | - R U Meckenstock
- University of Duisburg-Essen - Faculty of Chemistry - Environmental Microbiology and Biotechnology (EMB) - Aquatic Microbiology, Universitätsstr. 5, 45141 Essen, Germany
| |
Collapse
|
4
|
Sun Y, Huang L, Lai C, Li H, Yang P. Removal of organics from shale gas fracturing flowback fluid using expanded granular sludge bed and moving bed biofilm reactor. ENVIRONMENTAL TECHNOLOGY 2021; 42:3736-3746. [PMID: 32149585 DOI: 10.1080/09593330.2020.1739750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Shale gas fracturing flowback fluid contains various degradation difficulty organic compounds after hydraulic fracturing. A hybrid treatment method was developed for treating flowback and produced water (FPW) using pre-treatment (NaClO) followed by the expanded granular sludge bed (EGSB) and moving bed biofilm reactor (MBBR). Gas chromatography-mass spectrometry (GC-MS) was employed to detect organic composition in the FPW, the pre-treated FPW, EGSB and MBBR effluent. FPW had high chemical oxygen demand (COD) (3278 mg/L) and the majority of organic compounds in the FPW composed of alkanes and heteroatomic compounds with polymers and polarity. 20% COD removal was achieved after adding 5 g/L of NaClO in FPW (pH = 7, stirring for 20 mins) as pre-treatment and > C30 alkanes in FPW were decomposed a lot in the pre-treatment process. The pre-treated FPW was diluted (volumetric ratio of 20%/50%) with synthetic wastewater/pure water. In the final stage of operation, Cl- and COD concentration of influent to EGSB-MBBR system was around 7000 ± 100 mg/L and 3000 mg/L. EGSB-MBBR system achieved 93.84% COD removal rate, in which EGSB dominated COD removal (>80%). According to the GC-MS results, EGSB had an increase of C11-C30 compounds and a decrease of less C1-C10 content due to the consumption of > C30 compounds and low molecular weight (LWM) compounds. Meanwhile, aerobic microorganisms in MBBR metabolized LWM organics which contributed a lot to the COD removal (25.06∼68. 22%). The results indicated that the pre-treatment and biological EGSB-MBBR system could be an efficient option used for FPW treating.
Collapse
Affiliation(s)
- Yu Sun
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Liang Huang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Changmiao Lai
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Huiqiang Li
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Ping Yang
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Sengupta K, Pal S. A review on microbial diversity and genetic markers involved in methanogenic degradation of hydrocarbons: futuristic prospects of biofuel recovery from contaminated regions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40288-40307. [PMID: 33844144 DOI: 10.1007/s11356-021-13666-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Microbial activities within oil reservoirs have adversely impacted the world's majority of oil by lowering its quality, thereby increasing its recovery and refining cost. Moreover, conventional method of extraction leaves behind nearly two-thirds of the fossil fuels in the oil fields. This huge potential can be extracted if engineered methanogenic consortium is adapted to convert the hydrocarbons into natural gas. This process involves conversion of crude oil hydrocarbons into methanogenic substrates by syntrophic and fermentative bacteria, which are subsequently utilized by methanogens to produce methane. Microbial diversity of such environments supports the viability of this process. This review illuminates the potentials of abundant microbial groups such as Syntrophaceae, Anaerolineaceae, Clostridiales and Euryarchaeota in petroleum hydrocarbon-related environment, their genetic markers, biochemical process and omics-based bioengineering methods involved in methane generation. Increase in the copy numbers of catabolic genes during methanogenesis highlights the prospect of developing engineered biofuel recovery technology. Several lab-based methanogenic consortia from depleted petroleum reservoirs and microcosm studies so far would not be enough for field application without the advent of multi-omics-based technologies to trawl out the bottleneck parameters of the enhanced fuel recovery process. The adaptability of efficient consortium of versatile hydrocarbonoclastic and methanogenic microorganisms under environmental stress conditions is further needed to be investigated. The improved process might hold the potential of methane extraction from petroleum waste like oil tank and refinery sludge, oil field deposits, etc. What sounds as biodegradation could be a beginning of converting waste into wealth by recovery of stranded energy assets.
Collapse
Affiliation(s)
- Kriti Sengupta
- Bioenergy Group, Agharkar Research Institute, Pune, 411004, India
| | - Siddhartha Pal
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
6
|
Pannekens M, Voskuhl L, Mohammadian S, Köster D, Meier A, Köhne JM, Kulbatzki M, Akbari A, Haque S, Meckenstock RU. Microbial Degradation Rates of Natural Bitumen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8700-8708. [PMID: 34169718 PMCID: PMC8264945 DOI: 10.1021/acs.est.1c00596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms are present in nearly every oil or bitumen sample originating from temperate reservoirs. Nevertheless, it is very difficult to obtain reliable estimates about microbial processes taking place in deep reservoirs, since metabolic rates are rather low and differ strongly during artificially cultivation. Here, we demonstrate the importance and impact of microorganisms entrapped in microscale water droplets for the overall biodegradation process in bitumen. To this end, we measured degradation rates of heavily biodegraded bitumen from the Pitch Lake (Trinidad and Tobago) using the novel technique of reverse stable isotope labeling, allowing precise measurements of comparatively low mineralization rates in the ng range in microcosms under close to natural conditions. Freshly taken bitumen samples were overlain with artificial brackish water and incubated for 945 days. Additionally, three-dimensional distribution of water droplets in bitumen was studied with computed tomography, revealing a water bitumen interface of 1134 cm2 per liter bitumen, resulting in an average mineralization rate of 9.4-38.6 mmol CO2 per liter bitumen and year. Furthermore, a stable and biofilm-forming microbial community established on the bitumen itself, mainly composed of fermenting and sulfate-reducing bacteria. Our results suggest that small water inclusions inside the bitumen substantially increase the bitumen-water interface and might have a major impact on the overall oil degradation process.
Collapse
Affiliation(s)
- Mark Pannekens
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Lisa Voskuhl
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Sadjad Mohammadian
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Daniel Köster
- Instrumental
Analytical Chemistry, University of Duisburg—Essen, 45141 Essen, Germany
| | - Arne Meier
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - John M. Köhne
- Department
of Soil System Science, Helmholtz Centre
for Environmental Research, 06120 Halle, Germany
| | - Michelle Kulbatzki
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Ali Akbari
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| | - Shirin Haque
- Department
of Physics, Faculty of Science and Technology, The University of The West Indies, St. Augustine, Trinidad and Tobago
| | - Rainer U. Meckenstock
- Environmental
Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg—Essen, 45141 Essen, Germany
| |
Collapse
|
7
|
Study on the influence of the external conditions and internal components on foam performance in gas recovery. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Liu JF, Lu YW, Zhou L, Li W, Hou ZW, Yang SZ, Wu XL, Gu JD, Mu BZ. Simultaneous detection of transcribed functional assA gene and the corresponding metabolites of linear alkanes (C 4, C 5, and C 7) in production water of a low-temperature oil reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141290. [PMID: 32745846 DOI: 10.1016/j.scitotenv.2020.141290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Methanogenic hydrocarbon degradation is an important biogeochemical process in oil reservoirs; however, genomic DNA-based analysis of microorganisms and metabolite detection are not conclusive for identification of the ongoing nature of this bioprocess. In this study, a suite of analyses, involving the study of microbial community and selective gene quantification of both genomic DNA and RNA together with signature metabolites, were performed to comprehensively advance the understanding of the methanogenic biodegradation of hydrocarbons in a low-temperature oilfield. The fumarate addition products for alkanes-C4, C5, and C7-alkylsuccinates-and transcribed assA and mcrA genes were simultaneously detected in the production water sample, providing robust and convincing evidence for both the initial activation of n-alkanes and methane metabolism in this oilfield. The clone library of assA gene transcripts showed that Smithella was active and most likely responsible for the addition of fumarate to n-alkanes, whereas Methanoculleus and Methanothrix were the dominant and active methane-producers via CO2 reduction and acetoclastic pathways, respectively. Additionally, qPCR results of assA and mcrA genes and their transcribed gene copy numbers revealed a roughly similar transcriptional activity in both n-alkanes-degraders and methane producers, implying that they were the major participants in the methanogenic degradation of n-alkanes in this oilfield. To the best of our knowledge, this is the first report presenting sufficient speculation, through detection of signature intermediates, corresponding gene quantification at transcriptional levels, and microbial community analysis, of methanogenic degradation of n-alkanes in production water of an oil reservoir.
Collapse
Affiliation(s)
- Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yu-Wei Lu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei Li
- Exploration and Development Research Institute of Daqing Oilfield Company Limited, PetroChina, Daqing, Heilongjiang 163712, PR China
| | - Zhao-Wei Hou
- Exploration and Development Research Institute of Daqing Oilfield Company Limited, PetroChina, Daqing, Heilongjiang 163712, PR China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiao-Lin Wu
- Exploration and Development Research Institute of Daqing Oilfield Company Limited, PetroChina, Daqing, Heilongjiang 163712, PR China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, PR China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
9
|
Laczi K, Erdeiné Kis Á, Szilágyi Á, Bounedjoum N, Bodor A, Vincze GE, Kovács T, Rákhely G, Perei K. New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era. Front Microbiol 2020; 11:590049. [PMID: 33304336 PMCID: PMC7701123 DOI: 10.3389/fmicb.2020.590049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
The accumulation of petroleum hydrocarbons in the environment substantially endangers terrestrial and aquatic ecosystems. Many microbial strains have been recognized to utilize aliphatic and aromatic hydrocarbons under aerobic conditions. Nevertheless, most of these pollutants are transferred by natural processes, including rain, into the underground anaerobic zones where their degradation is much more problematic. In oxic zones, anaerobic microenvironments can be formed as a consequence of the intensive respiratory activities of (facultative) aerobic microbes. Even though aerobic bioremediation has been well-characterized over the past few decades, ample research is yet to be done in the field of anaerobic hydrocarbon biodegradation. With the emergence of high-throughput techniques, known as omics (e.g., genomics and metagenomics), the individual biodegraders, hydrocarbon-degrading microbial communities and metabolic pathways, interactions can be described at a contaminated site. Omics approaches provide the opportunity to examine single microorganisms or microbial communities at the system level and elucidate the metabolic networks, interspecies interactions during hydrocarbon mineralization. Metatranscriptomics and metaproteomics, for example, can shed light on the active genes and proteins and functional importance of the less abundant species. Moreover, novel unculturable hydrocarbon-degrading strains and enzymes can be discovered and fit into the metabolic networks of the community. Our objective is to review the anaerobic hydrocarbon biodegradation processes, the most important hydrocarbon degraders and their diverse metabolic pathways, including the use of various terminal electron acceptors and various electron transfer processes. The review primarily focuses on the achievements obtained by the current high-throughput (multi-omics) techniques which opened new perspectives in understanding the processes at the system level including the metabolic routes of individual strains, metabolic/electric interaction of the members of microbial communities. Based on the multi-omics techniques, novel metabolic blocks can be designed and used for the construction of microbial strains/consortia for efficient removal of hydrocarbons in anaerobic zones.
Collapse
Affiliation(s)
- Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ágnes Erdeiné Kis
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | | | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Pécs, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Sakamoto S, Nobu MK, Mayumi D, Tamazawa S, Kusada H, Yonebayashi H, Iwama H, Ikarashi M, Wakayama T, Maeda H, Sakata S, Tamura T, Nomura N, Kamagata Y, Tamaki H. Koleobacter methoxysyntrophicus gen. nov., sp. nov., a novel anaerobic bacterium isolated from deep subsurface oil field and proposal of Koleobacteraceae fam. nov. and Koleobacterales ord. nov. within the class Clostridia of the phylum Firmicutes. Syst Appl Microbiol 2020; 44:126154. [PMID: 33227632 DOI: 10.1016/j.syapm.2020.126154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022]
Abstract
An anaerobic thermophilic, rod-shaped bacterium possessing a unique non-lipid sheathed-like structure enveloping a single-membraned cell, designated strain NRmbB1T was isolated from at the deep subsurface oil field located in Yamagata Prefecture, Japan. Growth occurred with 40-60°C (optimum, 55°C), 0-2% (2%), NaCl and pH 6.0-8.5 (8.0). Fermentative growth with various sugars was observed. Glucose-grown cells generated acetate, hydrogen, pyruvate and lactate as the main end products. Syntrophic growth occurred with glucose, pyruvate and 3,4,5-trimethoxybenzoate in the presence of an H2-scavenging partner, and growth on 3,4,5-trimethoxybenzoate was only observed under syntrophic condition. The predominant cellular fatty acids were C16:0, iso-C16:0, anteiso-C15:0, and iso-C14:0. Respiratory quinone was not detected. The genomic G+C content was 40.8mol%. Based on 16S rRNA gene phylogeny, strain NRmbB1T belongs to a distinct order-level clade in the class Clostridia of the phylum Firmicutes, sharing low similarity with other isolated organisms (i.e., 87.5% for top hit Moorella thermoacetica DSM 2955T). In total, chemotaxonomic, phylogenetic and genomic characterization revealed that strain NRmbB1T (=KCTC 25035T, =JCM 39120T) represents a novel species of a new genus. In addition, we also propose the associated family and order as Koleobacteraceae fam. nov and Koleobacterales ord. nov., respectively.
Collapse
Affiliation(s)
- Sachiko Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| | - Daisuke Mayumi
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1, Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Satoshi Tamazawa
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan; Northern Advancement Center for Science & Technology, H-RISE, 5-3 Sakae-machi, Horonobe-cho, Teshio-gun, BPRI, Hokkaido 098-3221, Japan
| | - Hiroyuki Kusada
- JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hideharu Yonebayashi
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Hiroki Iwama
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Masayuki Ikarashi
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Tatsuki Wakayama
- Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Haruo Maeda
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1, Higashi, Tsukuba 305-8566, Ibaraki, Japan; Technical Research Center, INPEX CORPORATION, 9-23-30, Kitakarasuyama, Setagaya, 157-0061, Tokyo, Japan
| | - Susumu Sakata
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1, Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan; Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Hideyuki Tamaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; JST ERATO Nomura Microbial Community Control Project, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba 305-8566, Japan.
| |
Collapse
|
11
|
Zamanpour MK, Kaliappan RS, Rockne KJ. Gas ebullition from petroleum hydrocarbons in aquatic sediments: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110997. [PMID: 32778285 DOI: 10.1016/j.jenvman.2020.110997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/19/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Gas ebullition in sediment results from biogenic gas production by mixtures of bacteria and archaea. It often occurs in organic-rich sediments that have been impacted by petroleum hydrocarbon (PHC) and other anthropogenic pollution. Ebullition occurs under a relatively narrow set of biological, chemical, and sediment geomechanical conditions. This process occurs in three phases: I) biogenic production of primarily methane and dissolved phase transport of the gases in the pore water to a bubble nucleation site, II) bubble growth and sediment fracture, and III) bubble rise to the surface. The rate of biogenic gas production in phase I and the resistance of the sediment to gas fracture in phase II play the most significant roles in ebullition kinetics. What is less understood is the role that substrate structure plays in the rate of methanogenesis that drives gas ebullition. It is well established that methanogens have a very restricted set of compounds that can serve as substrates, so any complex organic molecule must first be broken down to fermentable compounds. Given that most ebullition-active sediments are completely anaerobic, the well-known difficulty in degrading PHCs under anaerobic conditions suggests potential limitations on PHC-derived gas ebullition. To date, there are no studies that conclusively demonstrate that weathered PHCs can alone drive gas ebullition. This review consists of an overview of the factors affecting gas ebullition and the biochemistry of anaerobic PHC biodegradation and methanogenesis in sediment systems. We next compile results from the scholarly literature on PHCs serving as a source of methanogenesis. We combine these results to assess the potential for PHC-driven gas ebullition using energetics, kinetics, and sediment geomechanics analyses. The results suggest that short chain <C10 alkanes are the only PHC class that alone may have the potential to drive ebullition, and that PHC-derived methanogenesis likely plays a minor part in driving gas ebullition in contaminated sediments compared to natural organic matter.
Collapse
Affiliation(s)
| | - Raja Shankar Kaliappan
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Karl John Rockne
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
12
|
de Rezende JR, Oldenburg TBP, Korin T, Richardson WDL, Fustic M, Aitken CM, Bowler BFJ, Sherry A, Grigoryan A, Voordouw G, Larter SR, Head IM, Hubert CRJ. Anaerobic microbial communities and their potential for bioenergy production in heavily biodegraded petroleum reservoirs. Environ Microbiol 2020; 22:3049-3065. [PMID: 32216020 DOI: 10.1111/1462-2920.14995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/22/2020] [Indexed: 12/18/2022]
Abstract
Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 μmol CH4 g-1 oil d-1 , orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC-MS and FTICR-MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.
Collapse
Affiliation(s)
- Júlia R de Rezende
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.,The Lyell Centre, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Thomas B P Oldenburg
- PRG, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Tetyana Korin
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - William D L Richardson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Milovan Fustic
- PRG, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada, T2N 1N4.,School of Mining and Geoscience, Nazarbayev University, Nur-Sultan City, Kazakhstan
| | - Carolyn M Aitken
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Bernard F J Bowler
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Angela Sherry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | | | - Gerrit Voordouw
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Stephen R Larter
- PRG, Department of Geoscience, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| | - Ian M Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Casey R J Hubert
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.,Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada, T2N 1N4
| |
Collapse
|
13
|
Sierra-Garcia IN, Belgini DRB, Torres-Ballesteros A, Paez-Espino D, Capilla R, Santos Neto EV, Gray N, de Oliveira VM. In depth metagenomic analysis in contrasting oil wells reveals syntrophic bacterial and archaeal associations for oil biodegradation in petroleum reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136646. [PMID: 32014760 DOI: 10.1016/j.scitotenv.2020.136646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Microbial biodegradation of hydrocarbons in petroleum reservoirs has major consequences in the petroleum value and quality. The identification of microorganisms capable of in-situ degradation of hydrocarbons under the reservoir conditions is crucial to understand microbial roles in hydrocarbon transformation and the impact of oil exploration and production on energy resources. The aim of this study was to profile the metagenome of microbial communities in crude oils and associated formation water from two high temperature and relatively saline oil-production wells, where one has been subjected to water flooding (BA-2) and the other one is considered pristine (BA-1). The microbiome was studied in the fluids using shotgun metagenome sequencing. Distinct microbial compositions were revealed when comparing pristine and water flooded oil wells in contrast to the similar community structures observed between the aqueous and oil fluids from the same well (BA-2). The equal proportion of archaea and bacteria together with the greater anaerobic hydrocarbon degradation potential in the BA-1 pristine but degraded reservoir contrasted with the predominance of bacteria over archaea, aerobic pathways and lower frequency of anaerobic degradation genes in the BA-2 water flooded undegraded well. Our results suggest that Syntrophus, Syntrophomonas, candidatus Atribacteria and Synergistia, in association with mainly acetoclastic methanogenic archaea of the genus Methanothrix, were collectively responsible for the oil biodegradation observed in the pristine petroleum well BA-1. Conversely, the microbial composition of the water flooded oil well BA-2 was mainly dominated by the fast-growing and putatively aerobic opportunists Marinobacter and Marinobacterium. This presumable allochthonous community introduced a greater metabolic versatility, although oil biodegradation has not been detected hitherto perhaps due to in-reservoir unfavorable physicochemical conditions. These findings provide a better understanding of the petroleum reservoir microbiomes and their potential roles in biogeochemical processes occurring in environments with different geological and oil recovery histories.
Collapse
Affiliation(s)
- Isabel Natalia Sierra-Garcia
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil; Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil.
| | - Daiane R B Belgini
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil; Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Adriana Torres-Ballesteros
- Sustainable Agriculture Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | | | | | | | - Neil Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Valeria Maia de Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
14
|
Ji JH, Zhou L, Mbadinga SM, Irfan M, Liu YF, Pan P, Qi ZZ, Chen J, Liu JF, Yang SZ, Gu JD, Mu BZ. Methanogenic biodegradation of C 9 to C 12n-alkanes initiated by Smithella via fumarate addition mechanism. AMB Express 2020; 10:23. [PMID: 32008120 PMCID: PMC6995468 DOI: 10.1186/s13568-020-0956-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/16/2020] [Indexed: 11/15/2022] Open
Abstract
In the present study, a methanogenic alkane-degrading (a mixture of C9 to C12n-alkanes) culture enriched from production water of a low-temperature oil reservoir was established and assessed. Significant methane production was detected in the alkane-amended enrichment cultures compared with alkane-free controls over an incubation period of 1 year. At the end of the incubation, fumarate addition metabolites (C9 to C12 alkylsuccinates) and assA genes (encoding the alpha subunit of alkylsuccinate synthase) were detected only in the alkane-amended enrichment cultures. Microbial community analysis showed that putative syntrophic n-alkane degraders (Smithella) capable of initiating n-alkanes by fumarate addition mechanism were enriched in the alkane-amended enrichment cultures. In addition, both hydrogenotrophic (Methanocalculus) and acetoclastic (Methanothrix) methanogens were also observed. Our results provide further evidence that alkanes can be activated by addition to fumarate under methanogenic conditions.
Collapse
|
15
|
Yadav A, Vilcáez J, Farag IF, Johnson B, Mueller K, Youssef NH, Elshahed MS. Candidatus Mcinerneyibacterium aminivorans gen. nov., sp. nov., the first representative of the candidate phylum Mcinerneyibacteriota phyl. nov. recovered from a high temperature, high salinity tertiary oil reservoir in north central Oklahoma, USA. Syst Appl Microbiol 2020; 43:126057. [PMID: 31987701 DOI: 10.1016/j.syapm.2020.126057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022]
Abstract
We report on the characterization of a novel genomic assembly (ARYD3) recovered from formation water (17.6% salinity) and crude oil enrichment amended by isolated soy proteins (0.2%), and incubated for 100 days under anaerobic conditions at 50°C. Phylogenetic and phylogenomic analysis demonstrated that the ARYD3 is unaffiliated with all currently described bacterial phyla and candidate phyla, as evident by the low AAI (34.7%), shared gene content (19.4%), and 78.9% 16S rRNA gene sequence similarity to Halothiobacillus neapolitanus, its closest cultured relative. Genomic characterization predicts a slow-growing, non-spore forming, and non-motile Gram-negative rod. Adaptation to high salinity is potentially mediated by the production of the compatible solutes cyclic 2,3-diphosphoglycerate (cDPG), α-glucosylglycerate, as well as the uptake of glycine betaine. Metabolically, the genome encodes primarily aminolytic capabilities for a wide range of amino acids and peptides. Interestingly, evidence of propionate degradation to succinate via methyl-malonyl CoA was identified, suggesting possible capability for syntrophic propionate degradation. Analysis of ARYD3 global distribution patterns identified its occurrence in a very small fraction of Earth Microbiome Project datasets examined (318/27,068), where it consistently represented an extremely rare fraction (maximum 0.28%, average 0.004%) of the overall community. We propose the Candidatus name Mcinerneyibacterium aminivorans gen. nov, sp. nov. for ARYD3T, with the genome serving as the type material for the novel family Mcinerneyibacteriaceae fam. nov., order Mcinerneyibacteriales ord. nov., class Mcinerneyibacteria class nov., and phylum Mcinerneyibacteriota phyl. nov. The type material genome assembly is deposited in GenBank under accession number VSIX00000000.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Culture Media
- DNA, Bacterial/genetics
- Ecosystem
- Genome, Bacterial/genetics
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/classification
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/genetics
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/isolation & purification
- Gram-Negative Anaerobic Straight, Curved, and Helical Rods/metabolism
- Oil and Gas Fields/chemistry
- Oil and Gas Fields/microbiology
- Oklahoma
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Salinity
- Sequence Analysis, DNA
- Soybean Proteins/metabolism
- Temperature
Collapse
Affiliation(s)
- Archana Yadav
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Javier Vilcáez
- Boone Pickens School of Geology, Oklahoma State University, Stillwater, OK, United States
| | - Ibrahim F Farag
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Britny Johnson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Katherine Mueller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
16
|
Dhar K, Subashchandrabose SR, Venkateswarlu K, Krishnan K, Megharaj M. Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 251:25-108. [PMID: 31011832 DOI: 10.1007/398_2019_29] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of hazardous organic contaminants that are widely distributed in nature, and many of them are potentially toxic to humans and other living organisms. Biodegradation is the major route of detoxification and removal of PAHs from the environment. Aerobic biodegradation of PAHs has been the subject of extensive research; however, reports on anaerobic biodegradation of PAHs are so far limited. Microbial degradation of PAHs under anaerobic conditions is difficult because of the slow growth rate of anaerobes and low energy yield in the metabolic processes. Despite the limitations, some anaerobic bacteria degrade PAHs under nitrate-reducing, sulfate-reducing, iron-reducing, and methanogenic conditions. Anaerobic biodegradation, though relatively slow, is a significant process of natural attenuation of PAHs from the impacted anoxic environments such as sediments, subsurface soils, and aquifers. This review is intended to provide comprehensive details on microbial degradation of PAHs under various reducing conditions, to describe the degradation mechanisms, and to identify the areas that should receive due attention in further investigations.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, India
| | - Kannan Krishnan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
17
|
Methanogenic Degradation of Long n-Alkanes Requires Fumarate-Dependent Activation. Appl Environ Microbiol 2019; 85:AEM.00985-19. [PMID: 31175186 DOI: 10.1128/aem.00985-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 11/20/2022] Open
Abstract
Methanogenic degradation of n-alkanes is prevalent in n-alkane-impacted anoxic oil reservoirs and oil-polluted sites. However, little is known about the initial activation mechanism of the substrate, especially n-alkanes with a chain length above C16 Here, a methanogenic C16 to C20 n-alkane-degrading enrichment culture was established from production water of a low-temperature oil reservoir. At the end of the incubation (364 days), C16 to C20 (1-methylalkyl)succinates were detected in the n-alkane-amended enrichment culture, suggesting that fumarate addition had occurred in the degradation process. This evidence is supported further by the positive amplification of the assA gene encoding the alpha subunit of alkylsuccinate synthase. A phylogenetic analysis shows these assA amplicons to be affiliated with Smithella and Desulfatibacillum clades. Together with the high abundance of these clades in the bacterial community, these two species are postulated to be the key players in the degradation of C16 to C20 n-alkanes in the present study. Our results provide evidence that long n-alkanes are activated via a fumarate addition mechanism under methanogenic conditions.IMPORTANCE Methanogenic hydrocarbon degradation is the major process for oil degradation in subsurface oil reservoirs and is blamed for the formation of heavy oil and oil sands. Addition of n-alkanes to fumarate yielding alkyl-substituted succinates is a well-characterized anaerobic activation mechanism for hydrocarbons and is the most common activation mechanism in the anaerobic biodegradation of n-alkanes with chain lengths less than C16 However, the activation mechanism involved in the methanogenic biodegradation of n-alkanes longer than C16 is still uncertain. In this study, we analyzed a methanogenic enrichment culture amended with a mixture of C16 to C20 n-alkanes. These n-alkanes can be activated via fumarate addition by mixed cultures containing Smithella and Desulfatibacillum species under methanogenic conditions. These observations provide a fundamental understanding of long-n-alkane metabolism under methanogenic conditions and have important applications for the remediation of oil-contaminated sites and for energy recovery from oil reservoirs.
Collapse
|
18
|
Liang R, Davidova I, Hirano SI, Duncan KE, Suflita JM. Community succession in an anaerobic long-chain paraffin-degrading consortium and impact on chemical and electrical microbially influenced iron corrosion. FEMS Microbiol Ecol 2019; 95:5529450. [DOI: 10.1093/femsec/fiz111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/06/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Community compositional changes and the corrosion of carbon steel in the presence of different electron donor and acceptor combinations were examined with a methanogenic consortium enriched for its ability to mineralize paraffins. Despite cultivation in the absence of sulfate, metagenomic analysis revealed the persistence of several sulfate-reducing bacterial taxa. Upon sulfate amendment, the consortium was able to couple C28H58 biodegradation with sulfate reduction. Comparative analysis suggested that Desulforhabdus and/or Desulfovibrio likely supplanted methanogens as syntrophic partners needed for C28H58 mineralization. Further enrichment in the absence of a paraffin revealed that the consortium could also utilize carbon steel as a source of electrons. The severity of both general and localized corrosion increased in the presence of sulfate, regardless of the electron donor utilized. With carbon steel as an electron donor, Desulfobulbus dominated in the consortium and electrons from iron accounted for ∼92% of that required for sulfate reduction. An isolated Desulfovibrio spp. was able to extract electrons from iron and accelerate corrosion. Thus, hydrogenotrophic partner microorganisms required for syntrophic paraffin metabolism can be readily substituted depending on the availability of an external electron acceptor and a single paraffin-degrading consortium harbored microbes capable of both chemical and electrical microbially influenced iron corrosion.
Collapse
Affiliation(s)
- Renxing Liang
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Irene Davidova
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Shin-ichi Hirano
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Kathleen E Duncan
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Joseph M Suflita
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
19
|
Bioconversion Pathway of CO2 in the Presence of Ethanol by Methanogenic Enrichments from Production Water of a High-Temperature Petroleum Reservoir. ENERGIES 2019. [DOI: 10.3390/en12050918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transformation of CO2 in both carbon capture and storage (CCS) to biogenic methane in petroleum reservoirs is an attractive and promising strategy for not only mitigating the greenhouse impact but also facilitating energy recovery in order to meet societal needs for energy. Available sources of petroleum in the reservoirs reduction play an essential role in the biotransformation of CO2 stored in petroleum reservoirs into clean energy methane. Here, the feasibility and potential on the reduction of CO2 injected into methane as bioenergy by indigenous microorganisms residing in oilfields in the presence of the fermentative metabolite ethanol were assessed in high-temperature petroleum reservoir production water. The bio-methane production from CO2 was achieved in enrichment with ethanol as the hydrogen source by syntrophic cooperation between the fermentative bacterium Synergistetes and CO2-reducing Methanothermobacter via interspecies hydrogen transfer based upon analyses of molecular microbiology and stable carbon isotope labeling. The thermodynamic analysis shows that CO2-reducing methanogenesis and the methanogenic metabolism of ethanol are mutually beneficial at a low concentration of injected CO2 but inhibited by the high partial pressure of CO2. Our results offer a potentially valuable opportunity for clean bioenergy recovery from CCS in oilfields.
Collapse
|
20
|
Lan W, Yang C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:1270-1283. [PMID: 30841400 DOI: 10.1016/j.scitotenv.2018.11.180] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 05/16/2023]
Abstract
Methane emission from ruminants not only causes serious environmental problems, but also represents a significant source of energy loss to animals. The increasing demand for sustainable animal production is driving researchers to explore proper strategies to mitigate ruminal methanogenesis. Since hydrogen is the primary substrate of ruminal methanogenesis, hydrogen metabolism and its associated microbiome in the rumen may closely relate to low- and high-methane phenotypes. Using candidate microbes that can compete with methanogens and redirect hydrogen away from methanogenesis as ruminal methane mitigants are promising avenues for methane mitigation, which can both prevent the adverse effects deriving from chemical additives such as toxicity and resistance, and increase the retention of feed energy. This review describes the ruminal microbial ecosystem and its association with methane production, as well as the effects of interspecies hydrogen transfer on methanogenesis. It provides a scientific perspective on using bacteria that are involved in hydrogen utilization as ruminal modifiers to decrease methanogenesis. This information will be helpful in better understanding the key role of ruminal microbiomes and their relationship with methane production and, therefore, will form the basis of valuable and eco-friendly methane mitigation methods while improving animal productivity.
Collapse
Affiliation(s)
- Wei Lan
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China
| | - Chunlei Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; MoE Key Laboratory of Molecular Animal Nutrition, China.
| |
Collapse
|
21
|
Bohutskyi P, Phan D, Spierling RE, Kopachevsky AM, Bouwer EJ, Lundquist TJ, Betenbaugh MJ. Production of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: Enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:1377-1394. [PMID: 30759577 DOI: 10.1016/j.scitotenv.2018.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/11/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
The feasibility of generating a lipid-containing algal-bacterial polyculture biomass in municipal primary wastewater and enhancing biomethanation of lipid-extracted algal residues (LEA) through hydrothermal pretreatment and co-digestion with sewage sludge (SS) was investigated. In high-rate algal ponds, the polyculture of native algal and bacteria species demonstrated a monthly average net and gross biomass productivity of 30 ± 3 and 36 ± 3 gAFDW m-2 day-1 (summer season). The algal community was dominated by Micractinium sp. followed by Scenedesmus sp., Chlorella sp., pennate diatoms and Chlamydomonas sp. The polyculture metabolic activities resulted in average reductions of wastewater volatile suspended solids (VSS), carbonaceous soluble biochemical oxygen demand (csBOD5) and total nitrogen (Ntotal) of 63 ± 18%, 98 ± 1% and 76 ± 21%, respectively. Harvested biomass contained nearly 23% lipid content and an extracted blend of fatty acid methyl esters satisfied the ASTM D6751 standard for biodiesel. Anaerobic digestion of lipid extracted algal residues (LEA) demonstrated long lag-phase in methane production of 17 days and ultimate methane yield of 296 ± 2 mL/gVS (or ~50% of theoretical), likely because to its limited biodegradability and toxicity due to presence of the residual solvent (hexane). Hydrothermal pretreatment increased the ultimate methane yield and production rate by 15-30% but did not mitigate solvent toxicity effects completely leading to less substantial improvement in energy output of 5-20% and diminished Net Energy Ratio (NER < 1). In contrast, co-digestion of LEA with sewage sludge (10% to 90% ratio) was found to minimize solvent toxicity and improve methane yield enhancing the energy output ~4-fold, compared to using LEA as a single substrate, and advancing NER to 4.2.
Collapse
Affiliation(s)
- Pavlo Bohutskyi
- Biological Sciences Division, Pacific Northwest National Laboratory, 3300 Stevens Dr., Richland, WA 99354, USA.
| | - Duc Phan
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, USA; Department of Civil and Environmental Engineering, The University of Texas at San Antonio, 1 UTSA Cir San Antonio, TX 78249, USA
| | - Ruth E Spierling
- Civil and Environmental Engineering Department, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; MicroBio Engineering Inc, PO Box 15821, San Luis Obispo, CA 93406, USA
| | - Anatoliy M Kopachevsky
- Department of Water Supply and Sanitary Engineering, Academy of Construction and Architecture of V.I. Vernadsky Crimean Federal University, 4 Prospekt Vernadskogo, Simferopol 295007, Republic of Crimea; Water Technologies Research and Production Company, 7 Petropavlovskaya street, Simferopol 295000, Republic of Crimea; Water of the Crimea State Unitary Enterprise of the Republic of Crimea, 1а Kievskaya street, Simferopol 295053, Republic of Crimea
| | - Edward J Bouwer
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, USA
| | - Trygve J Lundquist
- Civil and Environmental Engineering Department, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA 93407, USA; MicroBio Engineering Inc, PO Box 15821, San Luis Obispo, CA 93406, USA
| | - Michael J Betenbaugh
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, USA
| |
Collapse
|
22
|
Stable Isotope and Metagenomic Profiling of a Methanogenic Naphthalene-Degrading Enrichment Culture. Microorganisms 2018; 6:microorganisms6030065. [PMID: 29996505 PMCID: PMC6164631 DOI: 10.3390/microorganisms6030065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 11/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) such as naphthalene are widespread, recalcitrant pollutants in anoxic and methanogenic environments. A mechanism catalyzing PAH activation under methanogenic conditions has yet to be discovered, and the microbial communities coordinating their metabolism are largely unknown. This is primarily due to the difficulty of cultivating PAH degraders, requiring lengthy incubations to yield sufficient biomass for biochemical analysis. Here, we sought to characterize a new methanogenic naphthalene-degrading enrichment culture using DNA-based stable isotope probing (SIP) and metagenomic analyses. 16S rRNA gene sequencing of fractionated DNA pinpointed an unclassified Clostridiaceae species as a putative naphthalene degrader after two months of SIP incubation. This finding was supported by metabolite and metagenomic evidence of genes predicted to encode for enzymes facilitating naphthalene carboxylic acid CoA-thioesterification and degradation of an unknown arylcarboxyl-CoA structure. Our findings also suggest a possible but unknown role for Desulfuromonadales in naphthalene degradation. This is the first reported functional evidence of PAH biodegradation by a methanogenic consortium, and we envision that this approach could be used to assess carbon flow through other slow growing enrichment cultures and environmental samples.
Collapse
|
23
|
Establishing anaerobic hydrocarbon-degrading enrichment cultures of microorganisms under strictly anoxic conditions. Nat Protoc 2018; 13:1310-1330. [DOI: 10.1038/nprot.2018.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Enzmann F, Mayer F, Rother M, Holtmann D. Methanogens: biochemical background and biotechnological applications. AMB Express 2018; 8:1. [PMID: 29302756 PMCID: PMC5754280 DOI: 10.1186/s13568-017-0531-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 02/05/2023] Open
Abstract
Since fossil sources for fuel and platform chemicals will become limited in the near future, it is important to develop new concepts for energy supply and production of basic reagents for chemical industry. One alternative to crude oil and fossil natural gas could be the biological conversion of CO2 or small organic molecules to methane via methanogenic archaea. This process has been known from biogas plants, but recently, new insights into the methanogenic metabolism, technical optimizations and new technology combinations were gained, which would allow moving beyond the mere conversion of biomass. In biogas plants, steps have been undertaken to increase yield and purity of the biogas, such as addition of hydrogen or metal granulate. Furthermore, the integration of electrodes led to the development of microbial electrosynthesis (MES). The idea behind this technique is to use CO2 and electrical power to generate methane via the microbial metabolism. This review summarizes the biochemical and metabolic background of methanogenesis as well as the latest technical applications of methanogens. As a result, it shall give a sufficient overview over the topic to both, biologists and engineers handling biological or bioelectrochemical methanogenesis.
Collapse
Affiliation(s)
- Franziska Enzmann
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Florian Mayer
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Michael Rother
- Technische Universität Dresden, Institut für Mikrobiologie, Zellescher Weg 20b, 01217 Dresden, Germany
| | - Dirk Holtmann
- DECHEMA Research Institute, Industrial Biotechnology, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| |
Collapse
|
25
|
Toth CRA, Gieg LM. Time Course-Dependent Methanogenic Crude Oil Biodegradation: Dynamics of Fumarate Addition Metabolites, Biodegradative Genes, and Microbial Community Composition. Front Microbiol 2018; 8:2610. [PMID: 29354103 PMCID: PMC5758579 DOI: 10.3389/fmicb.2017.02610] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Biodegradation of crude oil in subsurface petroleum reservoirs has adversely impacted most of the world's oil, converting this resource to heavier forms that are of lower quality and more challenging to recover. Oil degradation in deep reservoir environments has been attributed to methanogenesis over geological time, yet our understanding of the processes and organisms mediating oil transformation in the absence of electron acceptors remains incomplete. Here, we sought to identify hydrocarbon activation mechanisms and reservoir-associated microorganisms that may have helped shape the formation of biodegraded oil by incubating oilfield produced water in the presence of light (°API = 32) or heavy crude oil (°API = 16). Over the course of 17 months, we conducted routine analytical (GC, GC-MS) and molecular (PCR/qPCR of assA and bssA genes, 16S rRNA gene sequencing) surveys to assess microbial community composition and activity changes over time. Over the incubation period, we detected the formation of transient hydrocarbon metabolites indicative of alkane and alkylbenzene addition to fumarate, corresponding with increases in methane production and fumarate addition gene abundance. Chemical and gene-based evidence of hydrocarbon biodegradation under methanogenic conditions was supported by the enrichment of hydrocarbon fermenters known to catalyze fumarate addition reactions (e.g., Desulfotomaculum, Smithella), along with syntrophic bacteria (Syntrophus), methanogenic archaea, and several candidate phyla (e.g., “Atribacteria”, “Cloacimonetes”). Our results reveal that fumarate addition is a possible mechanism for catalyzing the methanogenic biodegradation of susceptible saturates and aromatic hydrocarbons in crude oil, and we propose the roles of community members and candidate phyla in our cultures that may be involved in hydrocarbon transformation to methane in crude oil systems.
Collapse
Affiliation(s)
- Courtney R A Toth
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Lisa M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Oberding LK, Gieg LM. Methanogenic Paraffin Biodegradation: Alkylsuccinate Synthase Gene Quantification and Dicarboxylic Acid Production. Appl Environ Microbiol 2018; 84:e01773-17. [PMID: 29030441 PMCID: PMC5734044 DOI: 10.1128/aem.01773-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/09/2017] [Indexed: 11/20/2022] Open
Abstract
Paraffinic n-alkanes (>C17) that are solid at ambient temperature comprise a large fraction of many crude oils. The comparatively low water solubility and reactivity of these long-chain alkanes can lead to their persistence in the environment following fuel spills and pose serious problems for crude oil recovery operations by clogging oil production wells. However, the degradation of waxy paraffins under the anoxic conditions characterizing contaminated groundwater environments and deep subsurface energy reservoirs is poorly understood. Here, we assessed the ability of a methanogenic culture enriched from freshwater fuel-contaminated aquifer sediments to biodegrade the model paraffin n-octacosane (C28H58). Compared with that in controls, the consumption of n-octacosane was coupled to methane production, demonstrating its biodegradation under these conditions. Smithella was postulated to be an important C28H58 degrader in the culture on the basis of its high relative abundance as determined by 16S rRNA gene sequencing. An identified assA gene (known to encode the α subunit of alkylsuccinate synthase) aligned most closely with those from other Smithella organisms. Quantitative PCR (qPCR) and reverse transcription qPCR assays for assA demonstrated significant increases in the abundance and expression of this gene in C28H58-degrading cultures compared with that in controls, suggesting n-octacosane activation by fumarate addition. A metabolite analysis revealed the presence of several long-chain α,ω-dicarboxylic acids only in the C28H58-degrading cultures, a novel observation providing clues as to how methanogenic consortia access waxy hydrocarbons. The results of this study broaden our understanding of how waxy paraffins can be biodegraded in anoxic environments with an application toward bioremediation and improved oil recovery.IMPORTANCE Understanding the methanogenic biodegradation of different classes of hydrocarbons has important applications for effective fuel-contaminated site remediation and for improved recovery from oil reservoirs. Previous studies have clearly demonstrated that short-chain alkanes (C17) that comprise many fuel mixtures. Using an enrichment culture derived from a freshwater fuel-contaminated site, we demonstrate that the model waxy alkane n-octacosane can be biodegraded under methanogenic conditions by a presumed Smithella phylotype. Compared with that of controls, we show an increased abundance and expression of the assA gene, which is known to be important for anaerobic n-alkane metabolism. Metabolite analyses revealed the presence of a range of α,ω-dicarboxylic acids found only in n-octacosane-degrading cultures, a novel finding that lends insight as to how anaerobic communities may access waxes as growth substrates in anoxic environments.
Collapse
Affiliation(s)
- Lisa K Oberding
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Kryachko Y. Novel approaches to microbial enhancement of oil recovery. J Biotechnol 2018; 266:118-123. [DOI: 10.1016/j.jbiotec.2017.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/01/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023]
|
28
|
Petrova EV, Egorova MA, Piskunkova NF, Kozhevin PA, Netrusov AI, Tsavkelova EA. Anaerobic cellulolytic microbial communities decomposing the biomass of Anabaena variabilis. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717060133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Ma TT, Liu LY, Rui JP, Yuan Q, Feng DS, Zhou Z, Dai LR, Zeng WQ, Zhang H, Cheng L. Coexistence and competition of sulfate-reducing and methanogenic populations in an anaerobic hexadecane-degrading culture. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:207. [PMID: 28878822 PMCID: PMC5584521 DOI: 10.1186/s13068-017-0895-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Over three-fifths of the world's known crude oil cannot be recovered using state-of-the-art techniques, but microbial conversion of petroleum hydrocarbons trapped in oil reservoirs to methane is one promising path to increase the recovery of fossil fuels. The process requires cooperation between syntrophic bacteria and methanogenic archaea, which can be affected by sulfate-reducing prokaryotes (SRPs). However, the effects of sulfate on hydrocarbon degradation and methane production remain elusive, and the microbial communities involved are not well understood. RESULTS In this study, a methanogenic hexadecane-degrading enrichment culture was treated with six different concentrations of sulfate ranging from 0.5 to 25 mM. Methane production and maximum specific methane production rate gradually decreased to 44 and 56% with sulfate concentrations up to 25 mM, respectively. There was a significant positive linear correlation between the sulfate reduction/methane production ratio and initial sulfate concentration, which remained constant during the methane production phase. The apparent methanogenesis fractionation factor (αapp) gradually increased during the methane production phase in each treatment, the αapp for the treatments with lower sulfate (0.5-4 mM) eventually plateaued at ~1.047, but that for the treatment with 10-25 mM sulfate only reached ~1.029. The relative abundance levels of Smithella and Methanoculleus increased almost in parallel with the increasing sulfate concentrations. Furthermore, the predominant sulfate reducer communities shifted from Desulfobacteraceae in the low-sulfate cultures to Desulfomonile in the high-sulfate cultures. CONCLUSION The distribution of hexadecane carbon between methane-producing and sulfate-reducing populations is dependent on the initial sulfate added, and not affected during the methane production period. There was a relative increase in hydrogenotrophic methanogenesis activity over time for all sulfate treatments, whereas the total activity was inhibited by sulfate addition. Both Smithella and Methanoculleus, the key alkane degraders and methane producers, can adapt to sulfate stress. Specifically, different SRP populations were stimulated at various sulfate concentrations. These results could help to evaluate interactions between sulfate-reducing and methanogenic populations during anaerobic hydrocarbon degradation in oil reservoirs.
Collapse
Affiliation(s)
- Ting-Ting Ma
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin South Road, Chengdu, 610041 People's Republic of China
| | - Lai-Yan Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin South Road, Chengdu, 610041 People's Republic of China
| | - Jun-Peng Rui
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology of Chinese Academy of Sciences, Section 4-9, Renmin South Road, Chengdu, 610041 People's Republic of China
- Environmental Microbiology Key Laboratory of Sichuan Province, Section 4-9, Renmin South Road, Chengdu, 610041 People's Republic of China
| | - Quan Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 99 Lincheng West Road, Guanshanhu District, Guiyang, 550081 People's Republic of China
| | - Ding-Shan Feng
- Anhui Normal University, 1 Beijing East Road, Wuhu, 241000 People's Republic of China
| | - Zheng Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin South Road, Chengdu, 610041 People's Republic of China
| | - Li-Rong Dai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin South Road, Chengdu, 610041 People's Republic of China
| | - Wan-Qiu Zeng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin South Road, Chengdu, 610041 People's Republic of China
| | - Hui Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin South Road, Chengdu, 610041 People's Republic of China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin South Road, Chengdu, 610041 People's Republic of China
| |
Collapse
|
30
|
Sherry A, Andrade L, Velenturf A, Christgen B, Gray ND, Head IM. How to access and exploit natural resources sustainably: petroleum biotechnology. Microb Biotechnol 2017; 10:1206-1211. [PMID: 28771985 PMCID: PMC5609234 DOI: 10.1111/1751-7915.12793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/28/2022] Open
Abstract
As we transition from fossil fuel reliance to a new energy future, innovative microbial biotechnologies may offer new routes to maximize recovery from conventional and unconventional energy assets; as well as contributing to reduced emission pathways and new technologies for carbon capture and utilization. Here we discuss the role of microbiology in petroleum biotechnologies in relation to addressing UN Sustainable Development Goal 12 (ensure sustainable consumption and production patterns), with a focus on microbially‐mediated energy recovery from unconventionals (heavy oil to methane), shale gas and fracking, bioelectrochemical systems for the production of electricity from fossil fuel resources, and innovations in synthetic biology. Furthermore, using wastes to support a more sustainable approach to fossil fuel extraction processes is considered as we undertake the move towards a more circular global economy. How to access and exploit natural resources sustainably: petroleum biotechnology.
Collapse
Affiliation(s)
- Angela Sherry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Luiza Andrade
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Anne Velenturf
- School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Beate Christgen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Neil D Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| | - Ian M Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, NE1 7RU, UK
| |
Collapse
|
31
|
Qin QS, Feng DS, Liu PF, He Q, Li X, Liu AM, Zhang H, Hu GQ, Cheng L. Metagenomic Characterization of Candidatus Smithella cisternae Strain M82_1, a Syntrophic Alkane-Degrading Bacteria, Enriched from the Shengli Oil Field. Microbes Environ 2017; 32:234-243. [PMID: 28781346 PMCID: PMC5606693 DOI: 10.1264/jsme2.me17022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The methanogenic degradation of hydrocarbons plays an important role in hydrocarbon-contaminated environments in the absence of an external electron acceptor. Members of Syntrophaceae sublineages were previously reported to be responsible for syntrophic alkane degradation. However, limited information is currently available on their physiological capabilities in nature because it is very challenging to cultivate these as-yet uncultured microbes. We herein performed metagenomic sequencing of the methanogenic hexadecane-degrading culture M82 and recovered a nearly complete genome (2.75 Mb, estimated completeness ≥97%) belonging to Syntrophaceae sublineage II. The assembly genome was tentatively named “Candidatus Smithella cisternae strain M82_1”. Genes encoding alkylsuccinate synthase for alkane activation were identified, suggesting that this organism is capable of oxidizing alkanes through fumarate addition. This capability was further supported by the detection of methyl pentadecyl succinic acid and methyl tetradecyl succinic acid in cultures amended with hexadecane and pentadecane, respectively. Genes encoding enzymes for the β-oxidation of long-chain fatty acids and butyrate were also identified. The electron transfer flavoprotein/DUF224 complex is presumed to link electron flow from acyl-CoA dehydrogenase to a membrane hydrogenase or formate dehydrogenase. Although no indications of Rnf complexes were detected, genes encoding electron-confurcating hydrogenase and formate dehydrogenase were proposed to couple the thermodynamically favorable oxidation of ferredoxin to generate H2 and formate from NADH. Strain M82_1 synthesized ATP from acetyl-CoA by substrate-level phosphorylation or F1F0-ATP synthases. These results provide an insight into the potential metabolic traits and ecophysiological roles of the syntrophic alkane degrader Syntrophaceae.
Collapse
Affiliation(s)
- Qian-Shan Qin
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | | | - Peng-Fei Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Qiao He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Xia Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | | | - Hui Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Guo-Quan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture
| |
Collapse
|
32
|
Skovhus TL, Eckert RB, Rodrigues E. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry—Overview and a North Sea case study. J Biotechnol 2017; 256:31-45. [DOI: 10.1016/j.jbiotec.2017.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
|
33
|
Nazina TN, Shestakova NM, Semenova EM, Korshunova AV, Kostrukova NK, Tourova TP, Min L, Feng Q, Poltaraus AB. Diversity of Metabolically Active Bacteria in Water-Flooded High-Temperature Heavy Oil Reservoir. Front Microbiol 2017; 8:707. [PMID: 28487680 PMCID: PMC5403907 DOI: 10.3389/fmicb.2017.00707] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/05/2017] [Indexed: 11/30/2022] Open
Abstract
The goal of this work was to study the overall genomic diversity of microorganisms of the Dagang high-temperature oilfield (PRC) and to characterize the metabolically active fraction of these populations. At this water-flooded oilfield, the microbial community of formation water from the near-bottom zone of an injection well where the most active microbial processes of oil degradation occur was investigated using molecular, cultural, radiotracer, and physicochemical techniques. The samples of microbial DNA and RNA from back-flushed water were used to obtain the clone libraries for the 16S rRNA gene and cDNA of 16S rRNA, respectively. The DNA-derived clone libraries were found to contain bacterial and archaeal 16S rRNA genes and the alkB genes encoding alkane monooxygenases similar to those encoded by alkB-geo1 and alkB-geo6 of geobacilli. The 16S rRNA genes of methanogens (Methanomethylovorans, Methanoculleus, Methanolinea, Methanothrix, and Methanocalculus) were predominant in the DNA-derived library of Archaea cloned sequences; among the bacterial sequences, the 16S rRNA genes of members of the genus Geobacillus were the most numerous. The RNA-derived library contained only bacterial cDNA of the 16S rRNA sequences belonging to metabolically active aerobic organotrophic bacteria (Tepidimonas, Pseudomonas, Acinetobacter), as well as of denitrifying (Azoarcus, Tepidiphilus, Calditerrivibrio), fermenting (Bellilinea), iron-reducing (Geobacter), and sulfate- and sulfur-reducing bacteria (Desulfomicrobium, Desulfuromonas). The presence of the microorganisms of the main functional groups revealed by molecular techniques was confirmed by the results of cultural, radioisotope, and geochemical research. Functioning of the mesophilic and thermophilic branches was shown for the microbial food chain of the near-bottom zone of the injection well, which included the microorganisms of the carbon, sulfur, iron, and nitrogen cycles.
Collapse
Affiliation(s)
- Tamara N. Nazina
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Natalya M. Shestakova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Ekaterina M. Semenova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Alena V. Korshunova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Nadezda K. Kostrukova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Tatiana P. Tourova
- Laboratory of Petroleum Microbiology, Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
| | - Liu Min
- Dagang Oil Field Group Ltd.Tianjin, China
| | | | - Andrey B. Poltaraus
- Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
34
|
Mohamad Shahimin MF, Siddique T. Sequential biodegradation of complex naphtha hydrocarbons under methanogenic conditions in two different oil sands tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:398-406. [PMID: 27939633 DOI: 10.1016/j.envpol.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Methane emissions in oil sands tailings ponds are sustained by anaerobic biodegradation of unrecovered hydrocarbons. Naphtha (primarily C6-C10; n- iso- and cycloalkanes) is commonly used as a solvent during bitumen extraction process and its residue escapes to tailings ponds during tailings deposition. To investigate biodegradability of hydrocarbons in naphtha, mature fine tailings (MFT) collected from Albian and CNRL tailings ponds were amended with CNRL naphtha at ∼0.2 wt% (∼2000 mg L-1) and incubated under methanogenic conditions for ∼1600 d. Microbial communities in both MFTs started metabolizing naphtha after a lag phase of ∼100 d. Complete biodegradation/biotransformation of all n-alkanes (except partial biodegradation of n-octane in CNRL MFT) followed by major iso-alkanes (2-methylpentane, 3-methylhexane, 2- and 4-methylheptane, iso-nonanes and 2-methylnonane) and a few cycloalkanes (derivatives of cyclopentane and cyclohexane) was observed during the incubation. 16S rRNA gene pyrosequencing showed dominance of Peptococcaceae and Anaerolineaceae in Albian MFT and Anaerolineaceae and Syntrophaceae in CNRL MFT bacterial communities with co-domination of Methanosaetaceae and "Candidatus Methanoregula" in archaeal populations during active biodegradation of hydrocarbons. The findings extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments and help refine existing kinetic model to predict greenhouse gas emissions from tailings ponds.
Collapse
Affiliation(s)
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
35
|
Shelton JL, Akob DM, McIntosh JC, Fierer N, Spear JR, Warwick PD, McCray JE. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient. Front Microbiol 2016; 7:1535. [PMID: 27733847 PMCID: PMC5039232 DOI: 10.3389/fmicb.2016.01535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022] Open
Abstract
Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells had statistically similar microbial communities despite significant changes in environmental parameters between oil fields. Together, this implies that no single microbial population is a reliable indicator of a reservoir's ability to degrade crude oil to methane, and that geochemistry may be a more important indicator for selecting a reservoir suitable for microbial enhancement of natural gas generation.
Collapse
Affiliation(s)
- Jenna L Shelton
- Eastern Energy Resources Science Center, U.S. Geological Survey Reston, VA, USA
| | - Denise M Akob
- National Research Program-Eastern Branch, U.S. Geological Survey Reston, VA, USA
| | - Jennifer C McIntosh
- Eastern Energy Resources Science Center, U.S. Geological SurveyReston, VA, USA; Department of Hydrology and Atmospheric Sciences, University of ArizonaTucson, AZ, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA; Cooperative Institute for Research in Environmental Science, University of ColoradoBoulder, CO, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines Golden, CO, USA
| | - Peter D Warwick
- Eastern Energy Resources Science Center, U.S. Geological Survey Reston, VA, USA
| | - John E McCray
- Department of Civil and Environmental Engineering, Colorado School of MinesGolden, CO, USA; Hydrologic Science and Engineering Program, Colorado School of MinesGolden, CO, USA
| |
Collapse
|
36
|
Head IM, Gray ND. Microbial Biotechnology 2020; microbiology of fossil fuel resources. Microb Biotechnol 2016; 9:626-34. [PMID: 27506422 PMCID: PMC4993181 DOI: 10.1111/1751-7915.12396] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets.
Collapse
Affiliation(s)
- Ian M Head
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Neil D Gray
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
37
|
Conlette OC, Emmanuel NE, Chijoke OG. Methanogen Population of an Oil Production Skimmer Pit and the Effects of Environmental Factors and Substrate Availability on Methanogenesis and Corrosion Rates. MICROBIAL ECOLOGY 2016; 72:175-184. [PMID: 27075654 DOI: 10.1007/s00248-016-0764-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Assessment of microbial communities from an oil production skimmer pit using 16S rRNA gene sequencing technique revealed massive dominance of methanogenic archaea in both the skimmer pit water and sediment samples. The dominant genera of methanogens involved are mostly the acetotrophic Methanosaeta (36-83 %), and the hydrogenotrophic Methanococcus (49 %) indicating that methanogenesis is the dominant terminal metabolic process in the skimmer pit. Further studies showed that the methanogens had their optimal activity at pH 6-6.5, salinity of 100 mM, and temperature of 35-45 °C. When appropriate substrates are available and utilized by methanogens, methane production correlates with general corrosion rates (r = +0.927; p < 0.01), and under different conditions of pH, salinity and temperature, methane production showed significantly strong positive correlations (r = +0.824, +0.827, and +0.805; p < 0.01, respectively) with general corrosion rates. To the best of our knowledge, this research work was the first to assess microbial community composition of an oil production skimmer pit at Escravos facility in Nigeria.
Collapse
Affiliation(s)
- Okoro Chuma Conlette
- Department of Biology, Microbiology and Biotechnology, Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria.
| | - Nwezza Elebe Emmanuel
- Department of Mathemetics/Computer science/Statistics/Informatics, Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | | |
Collapse
|
38
|
Wawrik B, Marks CR, Davidova IA, McInerney MJ, Pruitt S, Duncan KE, Suflita JM, Callaghan AV. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by 'Smithella' spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environ Microbiol 2016; 18:2604-19. [PMID: 27198766 DOI: 10.1111/1462-2920.13374] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization.
Collapse
Affiliation(s)
- Boris Wawrik
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA
| | - Christopher R Marks
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Irene A Davidova
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Michael J McInerney
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA
| | - Shane Pruitt
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Development and Alumni Relations, Oglethorpe University, 4484 Peachtree Road, NE, Atlanta, GA, 30319, USA
| | - Kathleen E Duncan
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Joseph M Suflita
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Amy V Callaghan
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA
| |
Collapse
|
39
|
Fowler SJ, Toth CRA, Gieg LM. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments. Front Microbiol 2016; 7:562. [PMID: 27148240 PMCID: PMC4840303 DOI: 10.3389/fmicb.2016.00562] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/04/2016] [Indexed: 11/17/2022] Open
Abstract
The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst bacteria themselves are as important as interactions between bacteria and methanogens in complex methanogenic communities.
Collapse
Affiliation(s)
- S Jane Fowler
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Courtney R A Toth
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Lisa M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| |
Collapse
|
40
|
Gales G, Tsesmetzis N, Neria I, Alazard D, Coulon S, Lomans BP, Morin D, Ollivier B, Borgomano J, Joulian C. Preservation of ancestral Cretaceous microflora recovered from a hypersaline oil reservoir. Sci Rep 2016; 6:22960. [PMID: 26965360 PMCID: PMC4786803 DOI: 10.1038/srep22960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/19/2016] [Indexed: 11/16/2022] Open
Abstract
Microbiology of a hypersaline oil reservoir located in Central Africa was investigated with molecular and culture methods applied to preserved core samples. Here we show that the community structure was partially acquired during sedimentation, as many prokaryotic 16S rRNA gene sequences retrieved from the extracted DNA are phylogenetically related to actual Archaea inhabiting surface evaporitic environments, similar to the Cretaceous sediment paleoenvironment. Results are discussed in term of microorganisms and/or DNA preservation in such hypersaline and Mg-rich solutions. High salt concentrations together with anaerobic conditions could have preserved microbial/molecular diversity originating from the ancient sediment basin wherein organic matter was deposited.
Collapse
Affiliation(s)
- Grégoire Gales
- Aix-Marseille Université, CEREGE, Centre St Charles, Case 67, 3 Place Victor Hugo, 13331 Marseille, France.,Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, cedex 09, France
| | - Nicolas Tsesmetzis
- Shell International Exploration and Production Inc., 3333 Highway 6 South, Houston, Texas 77082, USA
| | - Isabel Neria
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, cedex 09, France
| | - Didier Alazard
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, cedex 09, France
| | - Stéphanie Coulon
- BRGM, Unité BioGéochimie Environnementale, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS cedex 2, France
| | - Bart P Lomans
- Emerging Technologies - Subsurface, Projects &Technologies, Shell Global Solutions International B.V., Kessler Park 1, 2288 GS Rijswijk, The Netherlands
| | - Dominique Morin
- BRGM, Unité BioGéochimie Environnementale, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS cedex 2, France
| | - Bernard Ollivier
- Aix-Marseille Université, Université du Sud Toulon-Var, CNRS/INSU, IRD, MIO, UM 110, 13288, Marseille, cedex 09, France
| | - Jean Borgomano
- Aix-Marseille Université, CEREGE, Centre St Charles, Case 67, 3 Place Victor Hugo, 13331 Marseille, France
| | - Catherine Joulian
- BRGM, Unité BioGéochimie Environnementale, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS cedex 2, France
| |
Collapse
|
41
|
Jiménez N, Richnow HH, Vogt C, Treude T, Krüger M. Methanogenic Hydrocarbon Degradation: Evidence from Field and Laboratory Studies. J Mol Microbiol Biotechnol 2016; 26:227-42. [PMID: 26959375 DOI: 10.1159/000441679] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microbial transformation of hydrocarbons to methane is an environmentally relevant process taking place in a wide variety of electron acceptor-depleted habitats, from oil reservoirs and coal deposits to contaminated groundwater and deep sediments. Methanogenic hydrocarbon degradation is considered to be a major process in reservoir degradation and one of the main processes responsible for the formation of heavy oil deposits and oil sands. In the absence of external electron acceptors such as oxygen, nitrate, sulfate or Fe(III), fermentation and methanogenesis become the dominant microbial metabolisms. The major end product under these conditions is methane, and the only electron acceptor necessary to sustain the intermediate steps in this process is CO2, which is itself a net product of the overall reaction. We are summarizing the state of the art and recent advances in methanogenic hydrocarbon degradation research. Both the key microbial groups involved as well as metabolic pathways are described, and we discuss the novel insights into methanogenic hydrocarbon-degrading populations studied in laboratory as well as environmental systems enabled by novel cultivation-based and molecular approaches. Their possible implications on energy resources, bioremediation of contaminated sites, deep-biosphere research, and consequences for atmospheric composition and ultimately climate change are also addressed.
Collapse
Affiliation(s)
- Núria Jiménez
- Department of Resource Geochemistry, BGR - Federal Institute for Geosciences and Natural Resources, Hannover, Germany
| | | | | | | | | |
Collapse
|
42
|
The Biodiversity Changes in the Microbial Population of Soils Contaminated with Crude Oil. Curr Microbiol 2016; 72:663-70. [PMID: 26858133 DOI: 10.1007/s00284-016-1001-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
Abstract
Crude oil spills resulting from excavation, transportation and downstream processes can cause intensive damage to living organisms and result in changes in the microbial population of that environment. In this study, we used a pyrosequencing analysis to investigate changes in the microbial population of soils contaminated with crude oil. Crude oil contamination in soil resulted in the creation of a more homogenous population of microorganisms dominated by members of the Actinomycetales, Clostridiales and Bacillales (all belonging to Gram-positive bacteria) as well as Flavobacteriales, Pseudomonadales, Burkholderiales, Rhizobiales and Sphingomonadales (all belonging to Gram-negative bacteria). These changes in the biodiversity decreased the ratios of chemoheterotrophic bacteria at higher concentrations of crude oil contamination, with these being replaced by photoheterotrophic bacteria, mainly Rhodospirillales. Several of the dominant microbial orders in the crude oil contaminated soils are able to degrade crude oil hydrocarbons and therefore are potentially useful for remediation of crude oil in contaminated sites.
Collapse
|
43
|
Kilbane JJ. Future Applications of Biotechnology to the Energy Industry. Front Microbiol 2016; 7:86. [PMID: 26870033 PMCID: PMC4741079 DOI: 10.3389/fmicb.2016.00086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- John J Kilbane
- Intertek Westport Technology CenterHouston, TX, USA; Biological, Chemical and Physical Sciences, Illinois Institute of TechnologyChicago, IL, USA
| |
Collapse
|
44
|
Schouw A, Leiknes Eide T, Stokke R, Pedersen RB, Steen IH, Bødtker G. Abyssivirga alkaniphila gen. nov., sp. nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. Int J Syst Evol Microbiol 2016; 66:1724-1734. [PMID: 26822139 DOI: 10.1099/ijsem.0.000934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strictly anaerobic, mesophilic, syntrophic, alkane-degrading strain, L81T, was isolated from a biofilm sampled from a black smoker chimney at the Loki's Castle vent field. Cells were straight, rod-shaped, Gram-positive-staining and motile. Growth was observed at pH 6.2-9.5, 14-42 °C and 0.5-6 % (w/w) NaCl, with optima at pH 7.0-8.2, 37 °C and 3% (w/w) NaCl. Proteinaceous substrates, sugars, organic acids and hydrocarbons were utilized for growth. Thiosulfate was used as an external electron acceptor during growth on crude oil. Strain L81T was capable of syntrophic hydrocarbon degradation when co-cultured with a methanogenic archaeon, designated strain LG6, isolated from the same enrichment. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain L81T is affiliated with the family Lachnospiraceae, and is most closely related to the type strains of Natranaerovirga pectinivora (92 % sequence similarity) and Natranaerovirga hydrolytica (90%). The major cellular fatty acids of strain L81T were C15 : 0, anteiso-C15 : 0 and C16 : 0, and the profile was distinct from those of the species of the genus Natranaerovirga. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol, three unidentified phospholipids, four unidentified glycolipids and two unidentified phosphoglycolipids. The G+C content of genomic DNA was determined to be 31.7 mol%. Based on our phenotypic, phylogenetic and chemotaxonomic results, strain L81T is considered to represent a novel species of a new genus of the family Lachnospiraceae, for which we propose the name Abyssivirga alkaniphila gen. nov., sp. nov. The type strain of Abyssivirga alkaniphila is L81T (=DSM 29592T=JCM 30920T). We also provide emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica.
Collapse
Affiliation(s)
- Anders Schouw
- Department of Biology, University of Bergen, Thormøhlensgate 53 A/B, N-5020, Bergen, Norway
| | - Tove Leiknes Eide
- Centre for Integrated Petroleum Research, Uni Research AS, Thormøhlensgate 55, N-5008, Bergen, Norway
| | - Runar Stokke
- Department of Biology, University of Bergen, Thormøhlensgate 53 A/B, N-5020, Bergen, Norway
| | - Rolf Birger Pedersen
- Centre for Geobiology, University of Bergen, Allégaten 41, N-5007, Bergen, Norway.,Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Ida Helene Steen
- Department of Biology, University of Bergen, Thormøhlensgate 53 A/B, N-5020, Bergen, Norway.,Centre for Geobiology, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - Gunhild Bødtker
- Centre for Integrated Petroleum Research, Uni Research AS, Thormøhlensgate 55, N-5008, Bergen, Norway
| |
Collapse
|
45
|
Mand J, Park HS, Okoro C, Lomans BP, Smith S, Chiejina L, Voordouw G. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field. Front Microbiol 2016; 6:1538. [PMID: 26793176 PMCID: PMC4707241 DOI: 10.3389/fmicb.2015.01538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/21/2015] [Indexed: 11/26/2022] Open
Abstract
Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.
Collapse
Affiliation(s)
- Jaspreet Mand
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | - Hyung S Park
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of CalgaryCalgary, AB, Canada; Cormetrics Ltd.Calgary, AB, Canada
| | - Chuma Okoro
- Department of Biology, Microbiology and Biotechnology, Federal University, Ndufu-Alike, Ikwo Ebonyi, Nigeria
| | - Bart P Lomans
- Shell Global Solutions International Rijswijk, Netherlands
| | - Seun Smith
- Shell Nigeria Exploration and Petroleum Company Lagos, Nigeria
| | - Leo Chiejina
- Shell Petroleum Development Company of Nigeria Port Harcourt, Nigeria
| | - Gerrit Voordouw
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| |
Collapse
|
46
|
Zhou J, Bian XY, Zhou L, Mbadinga SM, Yang SZ, Liu JF, Gu JD, Mu BZ. Synthesis and characterization of anaerobic degradation biomarkers of n-alkanes via hydroxylation/carboxylation pathways. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:31-37. [PMID: 26863073 DOI: 10.1255/ejms.1402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Metabolite profiling is a powerful method in research on anaerobic biodegradation of hydrocarbons. Hydroxylation and carboxylation are proposed pathways in anaerobic degradation but very little direct evidence is available about metabolites and signature biomarkers. 2-Acetylalkanoic acid is a potential signature metabolite because of its unique and specific structure among possible intermediates. A procedure for the synthesis of four homologues with various carbon chain lengths was proposed and the characteristics of 2-acetyl- alkanoic acid esters were investigated using four derivatization processes, namely methyl, ethyl, n-butyl and trimethylsilyl esterification. Four intermediate fragments observed were at m/z 73 + 14n, 87 + 14n, 102 + 14n (n = 1, 2 and 4 for methyl, ethyl and n-butyl ester, respectively) and [M - 42]+ for three of the derivatization methods. For silylation, characteristic ions were observed at m/z 73, 117, [M - 42](+) and [M - 55](+). These are basic and significant data for the future identification of potential intermediates of the hydroxylation and carboxylation pathways in hydrocarbon degradation.
Collapse
Affiliation(s)
- Jing Zhou
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Xin-Yu Bian
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Serge Maurice Mbadinga
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China and Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, PR China.
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, PR China and Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, PR China.
| |
Collapse
|
47
|
Abbasian F, Lockington R, Palanisami T, Megharaj M, Naidu R. Multiwall carbon nanotubes increase the microbial community in crude oil contaminated fresh water sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 539:370-380. [PMID: 26372939 DOI: 10.1016/j.scitotenv.2015.09.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Since crude oil contamination is one of the biggest environmental concerns, its removal from contaminated sites is of interest for both researchers and industries. In situ bioremediation is a promising technique for decreasing or even eliminating crude oil and hydrocarbon contamination. However, since these compounds are potentially toxic for many microorganisms, high loads of contamination can inhibit the microbial community and therefore reduce the removal rate. Therefore, any strategy with the ability to increase the microbial population in such circumstances can be of promise in improving the remediation process. In this study, multiwall carbon nanotubes were employed to support microbial growth in sediments contaminated with crude oil. Following spiking of fresh water sediments with different concentrations of crude oil alone and in a mixture with carbon nanotubes for 30days, the microbial profiles in these sediments were obtained using FLX-pyrosequencing. Next, the ratios of each member of the microbial population in these sediments were compared with those values in the untreated control sediment. This study showed that combination of crude oil and carbon nanotubes can increase the diversity of the total microbial population. Furthermore, these treatments could increase the ratios of several microorganisms that are known to be effective in the degradation of hydrocarbons.
Collapse
Affiliation(s)
- Firouz Abbasian
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, University of Newcastle, Callaghan NSW2308, Australia; Cooperative Research Centre for Environmental Risk Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Australia.
| | - Robin Lockington
- Centre of Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Australia.
| | - Thavamani Palanisami
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, University of Newcastle, Callaghan NSW2308, Australia; Cooperative Research Centre for Environmental Risk Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Australia.
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, University of Newcastle, Callaghan NSW2308, Australia; Cooperative Research Centre for Environmental Risk Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, University of Newcastle, Callaghan NSW2308, Australia; Cooperative Research Centre for Environmental Risk Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Australia.
| |
Collapse
|
48
|
Davidova IA, Wawrik B, Callaghan AV, Duncan K, Marks CR, Suflita JM. Dethiosulfatarculus sandiegensis gen. nov., sp. nov., isolated from a methanogenic paraffin-degrading enrichment culture and emended description of the family Desulfarculaceae. Int J Syst Evol Microbiol 2015; 66:1242-1248. [PMID: 26704417 DOI: 10.1099/ijsem.0.000864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mesophilic deltaproteobacterium, designated strain SPRT, was isolated from a methanogenic consortium capable of degrading long-chain paraffins. Cells were motile, vibrio-shaped, and occurred singly, in pairs or in clusters. Strain SPRT did not metabolize hydrocarbons but grew fermentatively on pyruvate and oxaloacetate and autotrophically with H2 and CO2. Thiosulfate served as a terminal electron acceptor, but sulfate or sulfite did not. The organism required at least 10 g NaCl l- 1 and a small amount of yeast extract (0.001%) for growth. Optimal growth was observed between 30 and 37 °C and a pH range from 6.0 to 7.2. The DNA G+C content of SPRT's genome was 52.02 mol%. Based on 16S rRNA gene sequence analysis, strain SPRT was distinct from previously described Deltaproteobacteria, exhibiting the closest affiliation to Desulfarculus baarsii DSM 2075T and Desulfocarbo indianensis SCBMT, with only 91% similarity between their respective 16S gene sequences. In silico genome comparison supported the distinctiveness between strain SPRT and both Desulfocarbo indianensis SCBMT and Desulfarculus baarsii DSM 2075T. Based on physiological differences, as well as phylogenetic and genomic comparisons, we propose to classify SPRT as the type strain ( = DSM 100305T = JCM 30857T) of a novel species of a new genus with the name Dethiosulfatarculus sandiegensis gen. nov., sp. nov.
Collapse
Affiliation(s)
- Irene A Davidova
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK 73019, USA.,Institute for Energy and the Environment, The University of Oklahoma, 100 East Boyd Street, Room 1510, Norman, OK 73019-1015, USA
| | - Boris Wawrik
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK 73019, USA
| | - Amy V Callaghan
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK 73019, USA
| | - Kathleen Duncan
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK 73019, USA.,Institute for Energy and the Environment, The University of Oklahoma, 100 East Boyd Street, Room 1510, Norman, OK 73019-1015, USA
| | - Christopher R Marks
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK 73019, USA.,Institute for Energy and the Environment, The University of Oklahoma, 100 East Boyd Street, Room 1510, Norman, OK 73019-1015, USA
| | - Joseph M Suflita
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK 73019, USA.,Institute for Energy and the Environment, The University of Oklahoma, 100 East Boyd Street, Room 1510, Norman, OK 73019-1015, USA
| |
Collapse
|
49
|
Siddique T, Mohamad Shahimin MF, Zamir S, Semple K, Li C, Foght JM. Long-Term Incubation Reveals Methanogenic Biodegradation of C5 and C6 iso-Alkanes in Oil Sands Tailings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14732-14739. [PMID: 26571341 DOI: 10.1021/acs.est.5b04370] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
iso-Alkanes are major components of petroleum and have been considered recalcitrant to biodegradation under methanogenic conditions. However, indigenous microbes in oil sands tailings ponds exposed to solvents rich in 2-methylbutane, 2-methylpentane, 3-methylpentane, n-pentane, and n-hexane produce methane in situ. We incubated defined mixtures of iso- or n-alkanes with mature fine tailings from two tailings ponds of different ages historically exposed to different solvents: one, ~10 years old, receiving C5-C6 paraffins and the other, ~35 years old, receiving naphtha. A lengthy incubation (>6 years) revealed iso-alkane biodegradation after lag phases of 900-1800 and ~280 days, respectively, before the onset of methanogenesis, although lag phases were shorter with n-alkanes (~650-1675 and ~170 days, respectively). 2-Methylpentane and both n-alkanes were completely depleted during ~2400 days of incubation, whereas 2-methylbutane and 3-methylpentane were partially depleted only during active degradation of 2-methylpentane, suggesting co-metabolism. In both cases, pyrotag sequencing of 16S rRNA genes showed codominance of Peptococcaceae with acetoclastic (Methanosaeta) and hydrogenotrophic (Methanoregula and Methanolinea) methanogens. These observations are important for predicting long-term greenhouse-gas emissions from oil sands tailings ponds and extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments.
Collapse
Affiliation(s)
- Tariq Siddique
- Department of Renewable Resources, University of Alberta , Edmonton, AB T6G 2G7, Canada
| | | | - Saima Zamir
- Department of Renewable Resources, University of Alberta , Edmonton, AB T6G 2G7, Canada
| | - Kathleen Semple
- Department of Biological Sciences, University of Alberta , Edmonton, AB T6G 2E9, Canada
| | - Carmen Li
- Department of Biological Sciences, University of Alberta , Edmonton, AB T6G 2E9, Canada
| | - Julia M Foght
- Department of Biological Sciences, University of Alberta , Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
50
|
Liang B, Wang LY, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu BZ. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 2015; 5:117. [PMID: 26080793 PMCID: PMC4469597 DOI: 10.1186/s13568-015-0117-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022] Open
Abstract
The methanogenic alkanes-degrading enrichment culture which had been incubated for over 1,300 days amended with n-alkanes (C15–C20) was investigated through clone libraries of bacteria, archaea and assA, mcrA functional genes. These enrichment cultures were obtained from oily sludge after an initial incubation of the oily sludge without any carbon source and then an enrichment transfer with n-alkanes (C15–C20) for acclimation. Activation of alkanes, methane precursor generation and methanogenic pathways are considered as three pivotal stages for the continuous methanogenesis from degradation of alkanes. The presence of functional genes encoding the alkylsuccinate synthase α-subunit indicated that fumarate addition is most likely the one of initial activation step for degradation of n-alkanes. Degradation intermediates of n-alkanes were octadecanoate, hexadecanoate, butyrate, isobutyrate, acetate and propionate, which could provide the appropriate substrates for acetate formation. Both methyl coenzyme M reductase gene and 16S rRNA gene analysis showed that microorganisms of Methanoseata were the most dominant methanogens, capable of using acetate as the electron donor to produce methane. Bacterial clone libraries showed organisms of Anaerolineaceae (within the phylum of Chloroflexi) were predominant (45.5%), indicating syntrophically cooperation with Methanosaeta archaea was likely involved in the process of methanogenic degradation of alkanes. Alkanes may initially be activated via fumarate addition and degraded to fatty acids, then converted to acetate, which was further converted to methane and carbon dioxide by methanogens.
Collapse
|