1
|
Nguyen NNT, Nguyen TTD, Vo DL, Than DTM, Tien GP, Pham DT. Microemulsion-based topical hydrogels containing lemongrass leaf essential oil (Cymbopogon citratus (DC.) Stapf) and mango seed kernel extract (Mangifera indica Linn) for acne treatment: Preparation and in-vitro evaluations. PLoS One 2024; 19:e0312841. [PMID: 39480758 PMCID: PMC11527213 DOI: 10.1371/journal.pone.0312841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Current treatments for severe acne include combinations of synthetic anti-inflammatory and antibacterial drugs, which possess numerous side effects. Therefore, this study developed microemulsion-based hydrogel containing lemongrass leaf essential oil (Cymbopogon citratus (DC.) Stapf) and mango seed kernel extract (Mangifera indica Linn) as a potential natural therapy for inflammatory acne. To this end, the microemulsions were first prepared using pseudo-ternary phase diagrams with soybean oil and coconut oil, cremophor RH40, and PEG 400. The optimal formula could load 1% lemongrass oil and 10% mango extract, possessed a spherical droplet size of ~18.98 nm, a zeta potential of -5.56 mV, and a thermodynamic stability. Secondly, the microemulsion-based hydrogel was developed by simple mixing the optimal microemulsion in carbopol-940 hydrogel (3.5% w/w). The product showed a viscosity of ~3728 cPs, a pH of 5.4-6.2, a spreadability of ~24 cm, an in-vitro Franz-cell cumulative release rate of ~80% for polyphenol content and ~60% for citral within 12 h, and a good physicochemical stability of > 3 months. Thirdly, the skin compatibility/irritability of the microemulsion-based hydrogel was determined by the HET-CAM assay, which showed non-irritation level. Finally, the anti-inflammatory activities of the hydrogel, using heat-induced BSA denaturation assay and LPS-stimulated RAW 264.7 NO inhibition assay, was 4-times higher than that of the reference drug Klenzit-C® (adapalene and clindamycin gel). Moreover, the hydrogel possessed strong anti-biofilm activity in Cutibacterium acnes, comparable with Klenzit-C®. Conclusively, the microemulsion-based hydrogel containing lemongrass oil and mango seed extract demonstrated much potentials to be a promising natural drug for acne treatment.
Collapse
Affiliation(s)
- Ngoc Nha Thao Nguyen
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Thi Trang Dai Nguyen
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Duc Linh Vo
- DHG Pharmaceutical Joint-Stock Company, Can Tho, Vietnam
| | - Dang Tuyet Minh Than
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | | | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| |
Collapse
|
2
|
Pié-Amill A, Colás-Medà P, Viñas I, Falcó I, Alegre I. Efficacy of an Edible Coating with Carvacrol and Citral in Frozen Strawberries and Blueberries to Control Foodborne Pathogens. Foods 2024; 13:3167. [PMID: 39410201 PMCID: PMC11476209 DOI: 10.3390/foods13193167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Adding essential oils in an edible coating could be an alternative for the food industry to control foodborne pathogens. In 2014, EFSA published a report highlighting the risk associated with Salmonella spp. and Norovirus in fresh and frozen berries. This study aimed to evaluate the efficacy of an edible coating (RP-7) with carvacrol and citral on reducing the population of Salmonella enterica, Escherichia coli O157:H7, Listeria monocytogenes, and murine Norovirus (MNV-1) in frozen strawberries and blueberries. Before evaluating the efficacy, the best method for applying the coating on fruit was studied. The immersion method was selected, with an optimal drying time of 45 min. After this, the berries were frozen and stored for one, two, three, four, and eight weeks at -18 °C. In strawberries, all bacteria were reduced to below 0.7 log cfu/strawberry in the eighth week, and the MNV-1 infectivity showed a reduction of nearly 2 logarithmic units. In blueberries, S. enterica and E. coli O157:H7 were reduced to 0.8 log cfu/blueberries within a week, and MNV-1 achieved a reduction of 0.8 logarithmic units at the end of the assay. The application of RP-7 affected the studied microorganisms in frozen strawberries and blueberries.
Collapse
Affiliation(s)
- Anna Pié-Amill
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| | - Pilar Colás-Medà
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| | - Inmaculada Viñas
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA), Centro Superior de Investigaciones Científicas (CSIC), Avda. Agustín Escardino 7, 46980 Paterna, Spain;
| | - Isabel Alegre
- Postharvest Biology and Technology Unit, Department of Food Technology, Engineering and Science, University of Lleida, AGROTECNIO-CERCA Center, Av. Rovira Roure 191, 25198 Lleida, Spain; (A.P.-A.); (P.C.-M.); (I.V.)
| |
Collapse
|
3
|
Furukawa T, Inagaki A, Hatta T, Moroishi S, Kawanishi K, Itoh Y, Maehana S, Amarasiri M, Sei K. Cell Extracts Derived from Cypress and Cedar Show Antiviral Activity against Enveloped Viruses. Microorganisms 2024; 12:1813. [PMID: 39338487 PMCID: PMC11433713 DOI: 10.3390/microorganisms12091813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
The antiviral efficacy of cell-extracts (CEs) derived from cypress (Chamaecyparis obtusa (Siebold & Zucc.) Endl., C. obtusa) and cedar (Cryptomeria japonica (Thunb. ex. L.) D.Don, C. japonica) was assessed using phi6 and MS2 bacteriophages, which are widely accepted surrogate models for enveloped and non-enveloped viruses, in order to verify their potential use as antiviral agents. Our results indicate that CEs derived from C. obtusa are dominantly composed of terpinen-4-ol (18.0%), α-terpinyl acetate (10.1%), bornyl acetate (9.7%), limonene (7.1%), and γ-terpinene (6.7%), while CEs derived from C. japonica are dominantly composed of terpinen-4-ol (48.0%) and α-pinene (15.9%), which exhibited robust antiviral activity against phi6 bacteriophage. Both CEs successfully inactivated the phi6 bacteriophage below the detection limit (10 PFU/mL) within a short exposure time of 30 s (log reduction value, LRV > 4). Through exposure experiments utilizing CEs with content ratios prepared via 2-fold serial dilutions (ranging from 3.13% to 100%), we demonstrated that the antiviral effect could be sustained up to a concentration of 25% (C. obtusa LRV = 3.8, C. japonica LRV > 4.3 at a 25% CE content ratio for each species). However, CEs with content ratios below 12.5% did not produce a significant reduction in bacteriophage concentration and consequently lost their antiviral effects. Conversely, both CEs did not exhibit antiviral activity against MS2 bacteriophage, a non-enveloped virus. Our findings reveal for the first time the potential of CEs derived from C. obtusa and C. japonica for use as antiviral agents specifically targeting enveloped viruses.
Collapse
Affiliation(s)
- Takashi Furukawa
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Ayumu Inagaki
- Department of Mechanical Engineering, National Institute of Technology, Oita College, 1666 Maki, Oita 870-0152, Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, School of Medicine, Kitasato University, Sagamihara 252-0374, Japan
| | - Suzuha Moroishi
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Katsuki Kawanishi
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Yuki Itoh
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Shotaro Maehana
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
- Research Facility of Regenerative Medicine and Cell Design, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| | - Mohan Amarasiri
- Graduate School of Engineering, Tohoku University, 6-6-06, Aoba-Ku, Sendai 980-8579, Japan
| | - Kazunari Sei
- Department of Health Science, School of Allied Health Sciences, Kitasato University, 1-15-1, Kitasato, Sagamihara 252-0373, Japan
| |
Collapse
|
4
|
Lanave G, Catella C, Catalano A, Lucente MS, Pellegrini F, Fracchiolla G, Diakoudi G, Palmisani J, Trombetta CM, Martella V, Camero M. Assessing the virucidal activity of essential oils against feline calicivirus, a non-enveloped virus used as surrogate of norovirus. Heliyon 2024; 10:e30492. [PMID: 38711631 PMCID: PMC11070907 DOI: 10.1016/j.heliyon.2024.e30492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/08/2024] Open
Abstract
Norovirus (NoV) causes serious gastrointestinal disease worldwide and is regarded as an important foodborne pathogen. Due the difficulties of in vitro cultivation for human NoV, alternative caliciviruses (i.e., feline calicivirus, FCV, or murine NoV) have long been used as surrogates for in vitro assessment of the efficacy of antivirals. Essential oils (EOs) are natural compounds that have displayed antimicrobial and antioxidant properties. We report in vitro the virucidal efficacy of four EOs, Melissa officinalis L. EO (MEO), Thymus vulgaris L. EO (TEO), Rosmarinus officinalis L. EO (REO), and Salvia officinalis L. EO (SEO) against FCV at different time contacts (10, 30 min, 1, 4 and 8 h). At the maximum non-cytotoxic concentration and at 10- and 100- fold concentrations over the cytotoxic threshold, the EOs did not decrease significantly FCV viral titers. However, MEO at 12,302.70 μg/mL exhibited a significant efficacy decreasing the viral titer by 0.75 log10 Tissue Culture Infectious Dose (TCID50)/50 μl after 10 min as compared to virus control. In this study, virucidal activity of four EOs against FCV, was investigated. A lack of virucidal efficacy of TEO, REO and SEO at different compound concentrations and time contacts against FCV was observed whilst MEO was able to significantly decrease FCV titer.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Jolanda Palmisani
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70126, Bari, Italy
| | - Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, 53100, Siena, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010, Valenzano, Bari, Italy
| |
Collapse
|
5
|
Boone SA, Ijaz MK, Bright KR, Silva-Beltran NP, Nims RW, McKinney J, Gerba CP. Antiviral Natural Products, Their Mechanisms of Action and Potential Applications as Sanitizers and Disinfectants. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:265-280. [PMID: 37906416 DOI: 10.1007/s12560-023-09568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023]
Abstract
Plant extracts, natural products and plant oils contain natural virucidal actives that can be used to replace active ingredients in commercial sanitizers and disinfectants. This review focuses on the virucidal mechanisms of natural substances that may exhibit potential for indoor air and fomite disinfection. Review of scientific studies indicates: (1) most natural product studies use crude extracts and do not isolate or identify exact active antiviral substances; (2) many natural product studies contain unclear explanations of virucidal mechanisms of action; (3) natural product evaluations of virucidal activity should include methods that validate efficacy under standardized disinfectant testing procedures (e.g., carrier tests on applicable surfaces or activity against aerosolized viruses, etc.). The development of natural product disinfectants requires a better understanding of the mechanisms of action (MOA), chemical profiles, compound specificities, activity spectra, and the chemical formulations required for maximum activity. Combinations of natural antiviral substances and possibly the addition of synthetic compounds might be needed to increase inactivation of a broader spectrum of viruses, thereby providing the required efficacy for surface and air disinfection.
Collapse
Affiliation(s)
- Stephanie A Boone
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA.
| | - M Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Kelly R Bright
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| | | | | | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, USA
| | - Charles P Gerba
- Department of Environmental Science, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Battistini R, Masotti C, Bianchi DM, Decastelli L, Garcia-Vozmediano A, Maurella C, Fauconnier ML, Paparella A, Serracca L. In Vivo Evaluation of the Potential of Thyme and Lemon Hydrolates as Processing Aids to Reduce Norovirus Concentration during Oyster Depuration. Foods 2023; 12:3976. [PMID: 37959094 PMCID: PMC10647395 DOI: 10.3390/foods12213976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we evaluated the use of hydrolates, co-products of essential oil distillation, as processing aids to improve the depuration process of Pacific oysters (Crassostrea gigas) as a post-harvest method aimed at reducing the norovirus (NoV) viral load. Live oysters were kept in water to which hydrolates of Thymus serpyllum and Citrus limon at 1% were added for 24 h. The concentration of NoV was quantified using the ISO 15216-1 quantitative real-time RT-PCR method in the oyster digestive tissue both before and after the treatment. The results showed a significant reduction of 0.2 log in the NoV GII concentration after 24 h of treatment with 1% C. limon hydrolate. Conversely, treatment with T. serpyllum did not appear to reduce the concentration of NoV compared to the control. Additionally, a sensory analysis was conducted through a blind survey comparing untreated and treated oysters. No changes in the sensory and physical characteristics of the oysters were observed, except for a decrease in the marine flavour intensity, which was positively perceived by consumers. These results indicate that the addition of hydrolates of C. limon at 1% during depuration might represent a promising processing aid for enhancing both the safety and acceptability of live oysters.
Collapse
Affiliation(s)
- Roberta Battistini
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy; (R.B.); (D.M.B.); (L.D.); (A.G.-V.); (C.M.); (L.S.)
| | - Chiara Masotti
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy; (R.B.); (D.M.B.); (L.D.); (A.G.-V.); (C.M.); (L.S.)
| | - Daniela Manila Bianchi
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy; (R.B.); (D.M.B.); (L.D.); (A.G.-V.); (C.M.); (L.S.)
| | - Lucia Decastelli
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy; (R.B.); (D.M.B.); (L.D.); (A.G.-V.); (C.M.); (L.S.)
| | - Aitor Garcia-Vozmediano
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy; (R.B.); (D.M.B.); (L.D.); (A.G.-V.); (C.M.); (L.S.)
| | - Cristiana Maurella
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy; (R.B.); (D.M.B.); (L.D.); (A.G.-V.); (C.M.); (L.S.)
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium;
| | - Antonello Paparella
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy;
| | - Laura Serracca
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d’Aosta, 10154 Turin, Italy; (R.B.); (D.M.B.); (L.D.); (A.G.-V.); (C.M.); (L.S.)
| |
Collapse
|
7
|
Cozzi L, Vicenza T, Battistini R, Masotti C, Suffredini E, Di Pasquale S, Fauconnier ML, Ercolini C, Serracca L. Effects of Essential Oils and Hydrolates on the Infectivity of Murine Norovirus. Viruses 2023; 15:v15030682. [PMID: 36992391 PMCID: PMC10055854 DOI: 10.3390/v15030682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The use of natural substances with antiviral properties might reduce foodborne viral diseases. In this study, we evaluated the virucidal effect of Citrus limon and Thymus serpyllum essential oils (EOs) and of Citrus Limon, Thymus serpyllum and Thymus vulgaris hydrolates on murine norovirus (MNV), a human norovirus surrogate. To assess the virucidal effect of these natural substances, the reduction in viral infectivity was estimated by comparing the TCID50/mL of untreated viral suspension and the viral suspension treated with hydrolates and EOs at different concentrations. The results showed a natural loss of infectivity of the untreated virus after 24 h of approx. 1 log. The EO (1%) of T. serpyllum, and hydrolates (1% and 2%) of T. serpyllum and T. vulgaris immediately caused a reduction in MNV infectivity of about 2 log but did not provide a further significant decrease after 24 h. Instead, the EO (1%) and hydrolate (1% and 2%) of C. limon exerted an immediate reduction in the viral infectivity of about 1.3 log and 1 log, respectively, followed by a further reduction in infectivity of 1 log after 24 h for the hydrolate. These results will allow for the implementation of a depuration treatment based on the use of these natural compounds.
Collapse
Affiliation(s)
- Loredana Cozzi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Teresa Vicenza
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Roberta Battistini
- Department of La Spezia, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via degli Stagnoni 96, 19100 La Spezia, Italy
- Correspondence:
| | - Chiara Masotti
- Department of La Spezia, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via degli Stagnoni 96, 19100 La Spezia, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simona Di Pasquale
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Carlo Ercolini
- Department of La Spezia, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via degli Stagnoni 96, 19100 La Spezia, Italy
| | - Laura Serracca
- Department of La Spezia, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via degli Stagnoni 96, 19100 La Spezia, Italy
| |
Collapse
|
8
|
Wang Y, Xu Y, Liu Z. A review of plant antipathogenic constituents: Source, activity and mechanism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105225. [PMID: 36464345 DOI: 10.1016/j.pestbp.2022.105225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
Green prevention and control of plant pathogens is a development direction of sustainable and low-carbon agriculture given the limitation of traditional chemicals. Plant-derived antipathogenic constituents (PAPCs) exhibit the advantages of being environmental benign and a broad spectrum of target pathogens over traditional chemicals. Here, we review the research advances on plant sources, chemical compositions, activities of antipathogenic constituents in the past 20 years. Reported PAPCs are classified into categories of phenols, flavonoids, terpenoids, alkaloids and antimicrobial peptides. Angiosperms, gymnosperms and some lower plants are the main plant source of detected PAPCs. The PAPCs act on pathogens through multiple pathways including destroying cell structures, blocking key composition synthesis and inhibiting cell metabolism. The development trends of PAPCs are finally prospected. This review serves as a comprehensive review on the study of plant antipathogenic constituents and a key reference for forecasting the source, characteristic and activity of PAPC.
Collapse
Affiliation(s)
- Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
The Activity of Chelidonium majus L. Latex and Its Components on HPV Reveal Insights into the Antiviral Molecular Mechanism. Int J Mol Sci 2022; 23:ijms23169241. [PMID: 36012505 PMCID: PMC9409487 DOI: 10.3390/ijms23169241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Yellow-orange latex of Chelidonium majus L. has been used in folk medicine as a therapeutic agent against warts and other visible symptoms of human papillomavirus (HPV) infections for centuries. The observed antiviral and antitumor properties of C. majus latex are often attributed to alkaloids contained therein, but recent studies indicate that latex proteins may also play an important role in its pharmacological activities. Therefore, the aim of the study was to investigate the effect of the crude C. majus latex and its protein and alkaloid-rich fractions on different stages of the HPV replication cycle. The results showed that the latex components, such as alkaloids and proteins, decrease HPV infectivity and inhibit the expression of viral oncogenes (E6, E7) on mRNA and protein levels. However, the crude latex and its fractions do not affect the stability of structural proteins in HPV pseudovirions and they do not inhibit the virus from attaching to the cell surface. In addition, the protein fraction causes increased TNFα secretion, which may indicate the induction of an inflammatory response. These findings indicate that the antiviral properties of C. majus latex arise both from alkaloids and proteins contained therein, acting on different stages of the viral replication cycle.
Collapse
|
10
|
Reichling J. Antiviral and Virucidal Properties of Essential Oils and Isolated Compounds - A Scientific Approach. PLANTA MEDICA 2022; 88:587-603. [PMID: 34144626 DOI: 10.1055/a-1382-2898] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Essential oils and isolated essential oil compounds are known to exert various pharmacological effects, such as antibacterial, antifungal, antiviral, anti-inflammatory, anti-immunomodulatory, antioxidant, and wound healing effects. Based on selected articles, this review deals with the potential antiviral and virucidal activities of essential oils and essential oil compounds together with their mechanism of action as well as in silico studies involving viral and host cell-specific target molecules that are indispensable for virus cell adsorption, penetration, and replication. The reported in vitro and in vivo studies highlight the baseline data about the latest findings of essential oils and essential oil compounds antiviral and virucidal effects on enveloped and non-enveloped viruses, taking into account available biochemical and molecular biological tests. The results of many in vitro studies revealed that several essential oils and essential oil compounds from different medicinal and aromatic plants are potent antiviral and virucidal agents that inhibit viral progeny by blocking different steps of the viral infection/replication cycle of DNA and RNA viruses in various host cell lines. Studies in mice infected with viruses causing respiratory diseases showed that different essential oils and essential oil compounds were able to prolong the life of infected animals, reduce virus titers in brain and lung tissues, and significantly inhibit the synthesis of proinflammatory cytokines and chemokines. In addition, some in vitro studies on hydrophilic nano-delivery systems encapsulating essential oils/essential oil compounds exhibited a promising way to improve the chemical stability and enhance the water solubility, bioavailabilty, and antiviral efficacy of essential oils and essential oil compounds.
Collapse
Affiliation(s)
- Jürgen Reichling
- Formerly Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Impact of Theaflavins-Enriched Tea Leaf Extract TY-1 against Surrogate Viruses of Human Norovirus: In Vitro Virucidal Study. Pathogens 2022; 11:pathogens11050533. [PMID: 35631054 PMCID: PMC9147082 DOI: 10.3390/pathogens11050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Using an effective natural virucidal substance may be a feasible approach for preventing food-borne viral contamination. Here, the virucidal efficacy of theaflavins (TFs)-enriched tea leaf extract (TY-1) against feline calicivirus (FCV) and murine norovirus (MNV), surrogates of human norovirus (HuNoV), was evaluated. The virus solutions were mixed with various dosages of TY-1 and incubated at 25 °C for different contact times. TY-1 reduced the viral titer of both surrogate viruses in a time- and dosage-dependent manner. A statistically significant reduction in the viral titer of FCV by 5.0 mg/mL TY-1 and MNV by 25.0 mg/mL TY-1 was observed in 10 s and 1 min, respectively. Furthermore, TY-1 reduced the viral titer of FCV and MNV on the dry surface in 10 min. The multiple compounds in TY-1, including TFs and catechins, contributed to its overall virucidal activity. Furthermore, the effect of TY-1 on viral proteins and genome was analyzed using Western blotting, RT-PCR, and transmission electron microscopy. TY-1 was found to promote the profound disruption of virion structures, including the capsid proteins and genome. Our finding demonstrates the potential of using TY-1 as a nature-derived disinfectant in food processing facilities and healthcare settings to reduce viral load and HuNoV transmission.
Collapse
|
12
|
Virucidal and Immunostimulating Activities of Monogalactosyl Diacylglyceride from Coccomyxa sp. KJ, a Green Microalga, against Murine Norovirus and Feline Calicivirus. Mar Drugs 2022; 20:md20020131. [PMID: 35200660 PMCID: PMC8877313 DOI: 10.3390/md20020131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Human noroviruses are the most common pathogens causing acute gastroenteritis and may lead to more severe illnesses among immunosuppressed people, including elderly and organ transplant recipients. To date, there are no safe and effective vaccines or antiviral agents for norovirus infections. In the present study, we aimed to demonstrate the antiviral activity of monogalactosyl diacylglyceride (MGDG) isolated from a microalga, Coccomyxa sp. KJ, against murine norovirus (MNV) and feline calicivirus (FCV), the surrogates for human norovirus. MGDG showed virucidal activities against these viruses in a dose- and time-dependent manner—MGDG at 100 μg/mL reduced the infectivity of MNV and FCV to approximately 10% after 60 min incubation. In the animal experiments of MNV infection, intraoral administration of MGDG (1 mg/day) exerted a therapeutic effect by suppressing viral shedding in the feces and produced high neutralizing antibody titers in sera and feces. When MGDG was orally administered to immunocompromised mice treated with 5-fluorouracil, the compound exhibited earlier stopping of viral shedding and higher neutralizing antibody titers of sera than those in the control mice administered with distilled water. Thus, MGDG may offer a new therapeutic and prophylactic alternative against norovirus infections.
Collapse
|
13
|
Domingues JM, Teixeira MO, Teixeira MA, Freitas D, da Silva SF, Tohidi SD, Fernandes RDV, Padrão J, Zille A, Silva C, Antunes JC, Felgueiras HP. Inhibition of Escherichia Virus MS2, Surrogate of SARS-CoV-2, via Essential Oils-Loaded Electrospun Fibrous Mats: Increasing the Multifunctionality of Antivirus Protection Masks. Pharmaceutics 2022; 14:303. [PMID: 35214032 PMCID: PMC8875402 DOI: 10.3390/pharmaceutics14020303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
One of the most important measures implemented to reduce SARS-CoV-2 transmission has been the use of face masks. Yet, most mask options available in the market display a passive action against the virus, not actively compromising its viability. Here, we propose to overcome this limitation by incorporating antiviral essential oils (EOs) within polycaprolactone (PCL) electrospun fibrous mats to be used as intermediate layers in individual protection masks. Twenty EOs selected based on their antimicrobial nature were examined for the first time against the Escherichia coli MS2 virus (potential surrogate of SARS-CoV-2). The most effective were the lemongrass (LGO), Niaouli (NO) and eucalyptus (ELO) with a virucidal concentration (VC) of 356.0, 365.2 and 586.0 mg/mL, respectively. PCL was processed via electrospinning, generating uniform, beadless fibrous mats. EOs loading was accomplished via two ways: (1) physisorption on pre-existing mats (PCLaEOs), and (2) EOs blending with the polymer solution prior to fiber electrospinning (PCLbEOs). In both cases, 10% v/v VC was used as loading concentration, so the mats' stickiness and overwhelming smell could be prevented. The EOs presence and release from the mats were confirmed by UV-visible spectroscopy (≈5257-631 µg) and gas chromatography-mass spectrometry evaluations (average of ≈14.3% EOs release over 4 h), respectively. PCLbEOs mats were considered the more mechanically and thermally resilient, with LGO promoting the strongest bonds with PCL (PCLbLGO). On the other hand, PCLaNO and PCLaELO were deemed the least cohesive combinations. Mats modified with the EOs were all identified as superhydrophobic, capable of preventing droplet penetration. Air and water-vapor permeabilities were affected by the mats' porosity (PCL < PCLaEOs < PCLbEOs), exhibiting a similar tendency of increasing with the increase of porosity. Antimicrobial testing revealed the mats' ability to retain the virus (preventing infiltration) and to inhibit its action (log reduction averaging 1). The most effective combination against the MS2 viral particles was the PCLbLGO. These mats' scent was also regarded as the most pleasant during sensory evaluation. Overall, data demonstrated the potential of these EOs-loaded PCL fibrous mats to work as COVID-19 active barriers for individual protection masks.
Collapse
Affiliation(s)
- Joana M. Domingues
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Marta O. Teixeira
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Marta A. Teixeira
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - David Freitas
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.F.); (C.S.)
| | - Samira F. da Silva
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Shafagh D. Tohidi
- Digital Transformation Colab (DTx), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal;
| | - Rui D. V. Fernandes
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Carla Silva
- Centre of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.F.); (C.S.)
| | - Joana C. Antunes
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Campus de Azurém, University of Minho, 4800-058 Guimaraes, Portugal; (J.M.D.); (M.O.T.); (M.A.T.); (S.F.d.S.); (R.D.V.F.); (J.P.); (A.Z.); (J.C.A.)
| |
Collapse
|
14
|
Rezaei-Chiyaneh E, Mahdavikia H, Hadi H, Alipour H, Kulak M, Caruso G, Siddique KHM. The effect of exogenously applied plant growth regulators and zinc on some physiological characteristics and essential oil constituents of Moldavian balm ( Dracocephalum moldavica L.) under water stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2201-2214. [PMID: 34744361 PMCID: PMC8526650 DOI: 10.1007/s12298-021-01084-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Cost-effective exogenous application of some antioxidant, viz. salicylic acid (SA) and ascorbic acid (AA), and essential micronutrient elements like Zn might alleviate the harmful impacts of drought stress. Here, we evaluated the interaction of foliar-sprayed SA (1 mM), AA (10 mM), and Zn (3 g L-1) and irrigation regime (normal irrigation, moderate water stress, and severe water stress) by assaying an array of agronomic, physiological, analytical and biochemical parameters of Moldavian balm (Dracocephalum moldavica L.). Accordingly, the SA and AA treatments reduced the harmful effects of moderate and severe drought stress. Well-watered plants applied with Zn had the highest biomass yield (4642.5 kg ha-1). Severe water stress decreased plant biomass, essential oil (EO) content, EO yield, relative water content, and chlorophyll a content by 37.6%, 23.3%, 47.5%, 35.3%, and 53%, respectively, relative to normal irrigation. Plants treated with Zn under moderate drought stress had the highest EO content. Moderate and severe water stress increased enzymatic antioxidant (catalase, superoxide dismutase, and peroxidase) activities and total soluble sugars and proline contents. In terms of EO composition, SA-treated plants under moderate water stress contained the most geraniol (22.8%) and geranial (26.3%), while Zn-treated plants under severe water stress contained the most geranyl acetate (48.2%). This study demonstrated that foliar application of Zn and SA significantly improves EO productivity and quality in Moldavian balm under moderate water stress. The relevant findings were supported by heatmap clustering, revealing that irrigation regime had main effect on the essential oil compounds and biochemical and physiological parameters. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01084-1.
Collapse
Affiliation(s)
- Esmaeil Rezaei-Chiyaneh
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Hassan Mahdavikia
- Department of Medicinal Plants, Shahid Bakeri Higher Education Center of Miandoab, Urmia University, Urmia, Iran
| | - Hashem Hadi
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, 76000 Igdir, Turkey
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| |
Collapse
|
15
|
Sarowska J, Wojnicz D, Jama-Kmiecik A, Frej-Mądrzak M, Choroszy-Król I. Antiviral Potential of Plants against Noroviruses. Molecules 2021; 26:molecules26154669. [PMID: 34361822 PMCID: PMC8347075 DOI: 10.3390/molecules26154669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023] Open
Abstract
Human noroviruses, which belong to the enterovirus family, are one of the most common etiological agents of food-borne diseases. In recent years, intensive research has been carried out regarding the antiviral activity of plant metabolites that could be used for the preservation of fresh food, because they are safer for consumption when compared to synthetic chemicals. Plant preparations with proven antimicrobial activity differ in their chemical compositions, which significantly affects their biological activity. Our review aimed to present the results of research related to the characteristics, applicability, and mechanisms of the action of various plant-based preparations and metabolites against norovirus. New strategies to combat intestinal viruses are necessary, not only to ensure food safety and reduce infections in humans but also to lower the direct health costs associated with them.
Collapse
Affiliation(s)
- Jolanta Sarowska
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Dorota Wojnicz
- Department of Biology and Medical Parasitology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland
- Correspondence: ; Tel.: +48-717-841-512
| | - Agnieszka Jama-Kmiecik
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Magdalena Frej-Mądrzak
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| | - Irena Choroszy-Król
- Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (J.S.); (A.J.-K.); (M.F.-M.); (I.C.-K.)
| |
Collapse
|
16
|
Morris JB. Review of Antimicrobial and Other Health Effects in 5 Essential Oil Producing Grass Species. J Diet Suppl 2021; 20:118-131. [PMID: 34219586 DOI: 10.1080/19390211.2021.1944422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The warm season essential oil producing grass species including lemongrass (Cymbopogon citratus), palmarosa grass (C. martini), geranium grass (C. schoenanthus), vetiver grass (Chrysopogon zizanioides), and scented top grass (Capillipedium parviflorum) are used worldwide for their cosmetic and health properties. A discussion providing evidence from literature reviews about the potential uses of these grass species for antimicrobial and other health uses are presented. These species could be used as new therapies for treating microbial infections. The purpose of this study is to discuss in detail, evidence from literature reviews supporting potential health uses and to provide some discussion regarding some agronomic traits for these essential oil producing species.
Collapse
Affiliation(s)
- John Bradley Morris
- United States Department of Agriculture, Agricultural Research Service, Plant Genetic Resources Conservation Unit, Griffin, GA, USA
| |
Collapse
|
17
|
Essential Oil of Cymbopogon Citratus Grown in Umuahia: A Viable Candidate for Anti-Inflammatory and Antioxidant Therapy. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
The essential oils of Cymbopogon citratus (EOCC) has found use in medicine, food and chemical industry. This study attempts to provide evidence of its suitability for antioxidant and anti-inflammatory therapy. Total phenol and total flavonoid of EOCC was 49.83±0.39mg GAE/g of extract and 352.82±3.45 µg QEC/g of extract respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of its essential oil (EOCC) showed 25 peaks with myrcenyl acetate (9.703%), caryophyllene (8.997%), citronella (6.383%) been the most abundant. The in vitro anti-inflammatory assay using human red blood cell (HRBC) membrane stabilization shows that at 200µg/mL, the percentage inhibition of EOCC was significantly higher compared to diclofenac both for heat-induced and hypotonic induced haemolysis. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays showed a comparable and dose-dependent increase from 50 to 400 μg/mL in relation to vitamin C. Half maximal inhibitory concentration (IC50) of EOCC (73.16±12.89 μg/mL and 656.01±0.01 μmol Fe (II)/L) was remarkably higher compared to that of vitamin C (69.09±4.52 μg/mL and 246.79±0.01 μmol Fe (II)/L) both for DPPH and FRAP assays respectively. In conclusion, results from this study establish preliminary evidence on the therapeutic potential of EOCC in managing inflammation and oxidative stress caused by free radicals.
Collapse
|
18
|
Salem MA, Ezzat SM. The use of aromatic plants and their therapeutic potential as antiviral agents: A hope for finding anti-COVID 19 essential oils. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1886187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mohamed A. Salem
- Department of Pharmacognosy, Menoufia University, Shibin Elkom, Menoufia, Egypt
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th October, Egypt
| |
Collapse
|
19
|
Rose Flowers-A Delicate Perfume or a Natural Healer? Biomolecules 2021; 11:biom11010127. [PMID: 33478154 PMCID: PMC7835869 DOI: 10.3390/biom11010127] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022] Open
Abstract
Plants from the Rosacea family are rich in natural molecules with beneficial biological properties, and they are widely appreciated and used in the food industry, perfumery, and cosmetics. In this review, we are considering Rosa damascena Mill., Rosa alba L., Rosa centifolia L., and Rosa gallica L. as raw materials important for producing commercial products, analyzing and comparing the main biological activities of their essential oils, hydrolates, and extracts. A literature search was performed to find materials describing (i) botanical characteristics; (ii) the phytochemical profile; and (iii) biological properties of the essential oil sand extracts of these so called “old roses” that are cultivated in Bulgaria, Turkey, India, and the Middle East. The information used is from databases PubMed, Science Direct, and Google Scholar. Roses have beneficial healing properties due to their richness of beneficial components, the secondary metabolites as flavonoids (e.g., flavones, flavonols, anthocyanins), fragrant components (essential oils, e.g., monoterpenes, sesquiterpenes), and hydrolysable and condensed tannins. Rose essential oils and extracts with their therapeutic properties—as respiratory antiseptics, anti-inflammatories, mucolytics, expectorants, decongestants, and antioxidants—are able to act as symptomatic prophylactics and drugs, and in this way alleviate dramatic sufferings during severe diseases.
Collapse
|
20
|
Gobeil A, Maherani B, Lacroix M. Norovirus elimination on the surface of fresh foods. Crit Rev Food Sci Nutr 2020; 62:1822-1837. [DOI: 10.1080/10408398.2020.1848784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Alexandra Gobeil
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| | - Behnoush Maherani
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| | - Monique Lacroix
- Research Laboratories in Sciences, Applied to Food, Canadian Irradiation Centre, Nutraceuticals and Functional Foods, Laval, Québec, Canada
| |
Collapse
|
21
|
Solis-Sanchez D, Rivera-Piza A, Lee S, Kim J, Kim B, Choi JB, Kim YW, Ko GP, Song MJ, Lee SJ. Antiviral Effects of Lindera obtusiloba Leaf Extract on Murine Norovirus-1 (MNV-1), a Human Norovirus Surrogate, and Potential Application to Model Foods. Antibiotics (Basel) 2020; 9:antibiotics9100697. [PMID: 33066532 PMCID: PMC7602249 DOI: 10.3390/antibiotics9100697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 01/14/2023] Open
Abstract
Noroviruses are the leading cause of acute gastroenteritis and food poisoning worldwide. In this study, we investigated the anti-noroviral activity of Lindera obtusiloba leaf extract (LOLE) using murine norovirus (MNV-1), a surrogate of human norovirus. Preincubation of MNV-1 with LOLE at 4, 8, or 12 mg/mL for 1 h at 25 °C significantly reduced viral infectivity, by 51.8%, 64.1%, and 71.2%, respectively. Among LOLE single compounds, β-pinene (49.7%), α-phellandrene (26.2%), and (+)-limonene (17.0%) demonstrated significant inhibitory effects on viral infectivity after pretreatment with MNV-1, suggesting that the anti-noroviral effects of LOLE may be due to the synergetic activity of several compounds, with β-pinene as a key molecule. The inhibitory effect of LOLE was tested on the edible surfaces of lettuce, cabbage, and oysters, as well as on stainless steel. After one hour of incubation at 25°C, LOLE (12 mg/mL) pretreatment significantly reduced MNV-1 plaque formation on lettuce (76.4%), cabbage (60.0%), oyster (38.2%), and stainless-steel (62.8%). These results suggest that LOLE effectively inhibits norovirus on food and metal surfaces. In summary, LOLE, including β-pinene, may inactivate norovirus and could be used as a natural agent promoting food safety and hygiene.
Collapse
Affiliation(s)
- Diana Solis-Sanchez
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Adriana Rivera-Piza
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Soyoung Lee
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Jia Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Bomi Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Joo Bong Choi
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Ye Won Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
| | - Gwang Pyo Ko
- Institute of Health and Environment, Department of Environmental Health, Center for Human and Environmental Microbiome, Graduate School of Public Health, Seoul National University, Seoul 151-742, Korea;
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Department of Biosystems and Biotechnology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
| | - Sung-Joon Lee
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Korea; (D.S.-S.); (A.R.-P.); (S.L.); (J.K.); (B.K.); (J.B.C.); (Y.W.K.)
- Correspondence: ; Tel.: +82-2-3290-3029
| |
Collapse
|
22
|
Potential Role of Plant Extracts and Phytochemicals Against Foodborne Pathogens. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134597] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Foodborne diseases are one of the major causes of morbidity and mortality, especially in low-income countries with poor sanitation and inadequate healthcare facilities. The foremost bacterial pathogens responsible for global outbreaks include Salmonella species, Campylobacter jejuni, Escherichia coli, Shigella sp., Vibrio, Listeria monocytogenes and Clostridium botulinum. Among the viral and parasitic pathogens, norovirus, hepatitis A virus, Giardia lamblia, Trichinella spiralis, Toxoplasma and Entamoeba histolytica are commonly associated with foodborne diseases. The toxins produced by Staphylococcus aureus, Bacillus cereus and Clostridium perfringens also cause these infections. The currently available therapies for these infections are associated with various limited efficacy, high cost and side-effects. There is an urgent need for effective alternative therapies for the prevention and treatment of foodborne diseases. Several plant extracts and phytochemicals were found to be highly effective to control the growth of these pathogens causing foodborne infections in in vitro systems. The present review attempts to provide comprehensive scientific information on major foodborne pathogens and the potential role of phytochemicals in the prevention and treatment of these infections. Further detailed studies are necessary to evaluate the activities of these extracts and phytochemicals along with their mechanism of action using in vivo models.
Collapse
|
23
|
Kadoya SS, Urayama SI, Nunoura T, Hirai M, Takaki Y, Kitajima M, Nakagomi T, Nakagomi O, Okabe S, Nishimura O, Sano D. Bottleneck Size-Dependent Changes in the Genetic Diversity and Specific Growth Rate of a Rotavirus A Strain. J Virol 2020; 94:e02083-19. [PMID: 32132235 PMCID: PMC7199400 DOI: 10.1128/jvi.02083-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
RNA viruses form a dynamic distribution of mutant swarms (termed "quasispecies") due to the accumulation of mutations in the viral genome. The genetic diversity of a viral population is affected by several factors, including a bottleneck effect. Human-to-human transmission exemplifies a bottleneck effect, in that only part of a viral population can reach the next susceptible hosts. In the present study, two lineages of the rhesus rotavirus (RRV) strain of rotavirus A were serially passaged five times at a multiplicity of infection (MOI) of 0.1 or 0.001, and three phenotypes (infectious titer, cell binding ability, and specific growth rate) were used to evaluate the impact of a bottleneck effect on the RRV population. The specific growth rate values of lineages passaged under the stronger bottleneck (MOI of 0.001) were higher after five passages. The nucleotide diversity also increased, which indicated that the mutant swarms of the lineages under the stronger bottleneck effect were expanded through the serial passages. The random distribution of synonymous and nonsynonymous substitutions on rotavirus genome segments indicated that almost all mutations were selectively neutral. Simple simulations revealed that the presence of minor mutants could influence the specific growth rate of a population in a mutant frequency-dependent manner. These results indicate a stronger bottleneck effect can create more sequence spaces for minor sequences.IMPORTANCE In this study, we investigated a bottleneck effect on an RRV population that may drastically affect the viral population structure. RRV populations were serially passaged under two levels of a bottleneck effect, which exemplified human-to-human transmission. As a result, the genetic diversity and specific growth rate of RRV populations increased under the stronger bottleneck effect, which implied that a bottleneck created a new space in a population for minor mutants originally existing in a hidden layer, which includes minor mutations that cannot be distinguished from a sequencing error. The results of this study suggest that the genetic drift caused by a bottleneck in human-to-human transmission explains the random appearance of new genetic lineages causing viral outbreaks, which can be expected according to molecular epidemiology using next-generation sequencing in which the viral genetic diversity within a viral population is investigated.
Collapse
Affiliation(s)
- Syun-Suke Kadoya
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Syun-Ichi Urayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Miho Hirai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toyoko Nakagomi
- Department of Molecular Microbiology and Immunology, Nagasaki University, Nagasaki, Japan
| | - Osamu Nakagomi
- Department of Molecular Microbiology and Immunology, Nagasaki University, Nagasaki, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Osamu Nishimura
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Department of Environmental Studies, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
24
|
El-Saber Batiha G, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020; 10:E202. [PMID: 32019140 PMCID: PMC7072209 DOI: 10.3390/biom10020202] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
Herbal medicinal products have been documented as a significant source for discovering new pharmaceutical molecules that have been used to treat serious diseases. Many plant species have been reported to have pharmacological activities attributable to their phytoconstituents such are glycosides, saponins, flavonoids, steroids, tannins, alkaloids, terpenes, etc. Syzygium aromaticum (clove) is a traditional spice that has been used for food preservation and possesses various pharmacological activities. S. aromaticum is rich in many phytochemicals as follows: sesquiterpenes, monoterpenes, hydrocarbon, and phenolic compounds. Eugenyl acetate, eugenol, and β-caryophyllene are the most significant phytochemicals in clove oil. Pharmacologically, S. aromaticum has been examined toward various pathogenic parasites and microorganisms, including pathogenic bacteria, Plasmodium, Babesia, Theileria parasites, Herpes simplex, and hepatitis C viruses. Several reports documented the analgesic, antioxidant, anticancer, antiseptic, anti-depressant, antispasmodic, anti-inflammatory, antiviral, antifungal, and antibacterial activity of eugenol against several pathogenic bacteria including methicillin-resistant Staphylococcusepidermidis and S. aureus. Moreover, eugenol was found to protect against CCl4-induced hepatotoxicity and showed a potential lethal efficacy against the multiplication of various parasites including Giardia lamblia, Fasciolagigantica, Haemonchuscontortus, and Schistosomamansoni. This review examines the phytochemical composition and biological activities of clove extracts along with clove essential oil and the main active compound, eugenol, and implicates new findings from gas chromatography-mass spectroscopy (GC-MS) analysis.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
| | - Luay M. Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Lamiaa G. Wasef
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt;
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, Obihiro 080-8555, Hokkaido, Japan;
| | - Eman H. Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72345, Saudi Arabia;
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza 12613, Egypt
| | - Eman K. Rashwan
- Department of Physiology, College of Medicine, Al-Azhar University, Assuit 71524, Egypt;
- Department of Physiology, College of Medicine, Jouf University, Sakaka 42421, Saudi Arabia
| |
Collapse
|
25
|
Gobeil A, Shankar S, Lacroix M. Radiosensitivity increase in FCV-F9 virus using combined treatments with natural antimicrobials and γ-irradiation. J Appl Microbiol 2020; 128:1534-1546. [PMID: 31991509 DOI: 10.1111/jam.14596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 11/27/2022]
Abstract
AIMS The objective was to evaluate the possible synergistic effect of cranberry juice (CJ) and commercial citrus extract (BS) against FCV-F9 viral titre in vitro in combination with γ-irradiation and to determinate the D10 values and radiosensitivity increase. METHODS AND RESULTS Virus samples were treated with a formulation containing a mixture of BS or CJ. Results showed a D10 of 0·05, 0·42% and 1·34 kGy for the virus treated with the BS, the CJ and the irradiation alone respectively. Concentrations needed to reduce 6 log TCID50 ml-1 of viral titre were BS-0·3%, CJ-2·52% and 8·04 kGy. Irradiation combined with BS-0·01% and CJ-0·1% against FCV-F9 virus showed D10 values of 0·74 and 0·72 kGy, respectively, resulting in a viral radiosensitization of 1·28 and 1·50 for respective treatments. CONCLUSION The higher viral radiosensitization observed after combining γ-irradiation with BS-0·01% and CJ-0·1% indicates that CJ and BS could be used as antiviral agents alone or in combination with γ-irradiation to prevent NoV outbreaks. SIGNIFICANCE AND IMPACT OF THE STUDY Cranberry juice and BS could be used in hurdle approaches in combined treatment with γ-irradiation to assure food safety without a detrimental effect on nutritional value and maintain low processing cost.
Collapse
Affiliation(s)
- A Gobeil
- INRS-Armand-Frappier, Health and Biotechnology Centre, Research Laboratories in Sciences, Applied to Food, Nutraceutical Institute and Functional Foods, Canadian Irradiation Centre, Laval, QC, Canada
| | - S Shankar
- INRS-Armand-Frappier, Health and Biotechnology Centre, Research Laboratories in Sciences, Applied to Food, Nutraceutical Institute and Functional Foods, Canadian Irradiation Centre, Laval, QC, Canada
| | - M Lacroix
- INRS-Armand-Frappier, Health and Biotechnology Centre, Research Laboratories in Sciences, Applied to Food, Nutraceutical Institute and Functional Foods, Canadian Irradiation Centre, Laval, QC, Canada
| |
Collapse
|
26
|
Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity. J Virol 2019; 93:JVI.01282-19. [PMID: 31462558 PMCID: PMC6819921 DOI: 10.1128/jvi.01282-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/17/2019] [Indexed: 12/23/2022] Open
Abstract
In this article, we consider a role for bacteria in shaping coronavirus infection. Taking cues from studies of enteric viruses, we initially investigated how bacterial surface components might improve CoV infection. Instead, we found that peptidoglycan-associated surfactin is a potent viricidal compound that disrupts virion integrity with broad activity against enveloped viruses. Our results indicate that interactions with commensal bacterial may improve or disrupt viral infections, highlighting the importance of understanding these microbial interactions and their implications for viral pathogenesis and treatment. Enteric viruses exploit bacterial components, including lipopolysaccharides (LPS) and peptidoglycan (PG), to facilitate infection in humans. Because of their origin in the bat enteric system, we wondered if severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle East respiratory syndrome CoV (MERS-CoV) also use bacterial components to modulate infectivity. To test this question, we incubated CoVs with LPS and PG and evaluated infectivity, finding no change following LPS treatment. However, PG from Bacillus subtilis reduced infection >10,000-fold, while PG from other bacterial species failed to recapitulate this. Treatment with an alcohol solvent transferred inhibitory activity to the wash, and mass spectrometry revealed surfactin, a cyclic lipopeptide antibiotic, as the inhibitory compound. This antibiotic had robust dose- and temperature-dependent inhibition of CoV infectivity. Mechanistic studies indicated that surfactin disrupts CoV virion integrity, and surfactin treatment of the virus inoculum ablated infection in vivo. Finally, similar cyclic lipopeptides had no effect on CoV infectivity, and the inhibitory effect of surfactin extended broadly to enveloped viruses, including influenza, Ebola, Zika, Nipah, chikungunya, Una, Mayaro, Dugbe, and Crimean-Congo hemorrhagic fever viruses. Overall, our results indicate that peptidoglycan-associated surfactin has broad viricidal activity and suggest that bacteria by-products may negatively modulate virus infection. IMPORTANCE In this article, we consider a role for bacteria in shaping coronavirus infection. Taking cues from studies of enteric viruses, we initially investigated how bacterial surface components might improve CoV infection. Instead, we found that peptidoglycan-associated surfactin is a potent viricidal compound that disrupts virion integrity with broad activity against enveloped viruses. Our results indicate that interactions with commensal bacterial may improve or disrupt viral infections, highlighting the importance of understanding these microbial interactions and their implications for viral pathogenesis and treatment.
Collapse
|
27
|
Gilling DH, Ravishankar S, Bright KR. Antimicrobial efficacy of plant essential oils and extracts against Escherichia coli. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:608-616. [PMID: 30821189 DOI: 10.1080/10934529.2019.1574153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
The efficacies of 11 plant-derived antimicrobials were evaluated against Escherichia coli in vitro in solution at room temperature. These included lemongrass, cinnamon, and oregano essential oils and their active components (citral, cinnamaldehyde, and carvacrol, respectively). Allspice and clove bud oils and olive, green tea, and grape seed extracts were also studied. The efficacies of the antimicrobials were both concentration- and exposure time-dependent. The essential oils and their active components demonstrated statistically significant >5.0-log10 reductions within 1-10 min. The plant extracts were less effective; green tea and grape seed extracts required 24 h before significant reductions were observed (1.93-log10 and 5.05-log10, respectively). Nevertheless, olive extract exhibited a reduction of ∼5-log10 within 30 min. Most of these plant-derived compounds exhibited strong bactericidal activity and can potentially be applied as alternatives to chemicals for foods/food contact surfaces since they are generally recognized as safe (GRAS) for human consumption. They may also be useful in applications in which other antimicrobials have reduced efficacy (e.g., in the presence of organics) or used with sensitive populations that are unable to tolerate exposure to harsher chemicals (e.g., elderly care facilities). These compounds could be used alone, in combination, or with fast-acting antimicrobials to provide a long-lasting residual.
Collapse
Affiliation(s)
- Damian H Gilling
- a Department of Soil, Water and Environmental Science , Water and Energy Sustainable Technology Center, The University of Arizona , Tucson , Arizona , USA
- b School of Animal and Comparative Biomedical Sciences , The University of Arizona , Tucson , Arizona , USA
| | - Sadhana Ravishankar
- b School of Animal and Comparative Biomedical Sciences , The University of Arizona , Tucson , Arizona , USA
| | - Kelly R Bright
- a Department of Soil, Water and Environmental Science , Water and Energy Sustainable Technology Center, The University of Arizona , Tucson , Arizona , USA
| |
Collapse
|
28
|
Sicairos-Ruelas EE, Gerba CP, Bright KR. Efficacy of copper and silver as residual disinfectants in drinking water. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:146-155. [PMID: 30686111 DOI: 10.1080/10934529.2018.1535160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 06/09/2023]
Abstract
Contamination events and biofilms can decrease the amount of free chlorine available in drinking water systems. The efficacy of 100 μg/L silver and 400 μg/L copper, individually and combined, were evaluated as secondary, longer-lasting residual disinfectants against Salmonella enterica serovar Typhimurium, Escherichia coli, Listeria monocytogenes, and Mycobacterium fortuitum at 24 °C and 4 °C. A >5.0-log10 reduction was observed in E. coli and L. monocytogenes after three hours and S. Typhimurium following seven hours of exposure to silver. M. fortuitum was the most resistant species to silver (1.11-log10 after seven hours). Copper did not significantly reduce S. Typhimurium and E. coli at 24 °C; ≥2.80-log10 reductions were observed in the Gram-positive L. monocytogenes and M. fortuitum. Longer exposure times were required at 4 °C to achieve significant reductions in all species. A synergistic effect was observed when silver and copper were combined at 24 °C. In addition, silver was not affected by the presence of organic matter at concentrations that completely inhibited 0.2 mg/L chlorine. The results of this study suggest that combinations of silver and copper show promise as secondary residual disinfectants. They may also be used in conjunction with low chlorine levels or other disinfectants to provide additional, long-lasting residuals in distribution systems.
Collapse
Affiliation(s)
- Enue E Sicairos-Ruelas
- a Water and Energy Sustainable Technology Center , The University of Arizona , Tucson , Arizona , USA
| | - Charles P Gerba
- a Water and Energy Sustainable Technology Center , The University of Arizona , Tucson , Arizona , USA
| | - Kelly R Bright
- a Water and Energy Sustainable Technology Center , The University of Arizona , Tucson , Arizona , USA
| |
Collapse
|
29
|
Chiamenti L, Silva FPD, Schallemberger K, Demoliner M, Rigotto C, Fleck JD. Cytotoxicity and antiviral activity evaluation of Cymbopogon spp hydroethanolic extracts. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000118063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
30
|
Kamarasu P, Hsu HY, Moore MD. Research Progress in Viral Inactivation Utilizing Human Norovirus Surrogates. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
31
|
Bosch A, Gkogka E, Le Guyader FS, Loisy-Hamon F, Lee A, van Lieshout L, Marthi B, Myrmel M, Sansom A, Schultz AC, Winkler A, Zuber S, Phister T. Foodborne viruses: Detection, risk assessment, and control options in food processing. Int J Food Microbiol 2018; 285:110-128. [PMID: 30075465 PMCID: PMC7132524 DOI: 10.1016/j.ijfoodmicro.2018.06.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023]
Abstract
In a recent report by risk assessment experts on the identification of food safety priorities using the Delphi technique, foodborne viruses were recognized among the top rated food safety priorities and have become a greater concern to the food industry over the past few years. Food safety experts agreed that control measures for viruses throughout the food chain are required. However, much still needs to be understood with regard to the effectiveness of these controls and how to properly validate their performance, whether it is personal hygiene of food handlers or the effects of processing of at risk foods or the interpretation and action required on positive virus test result. This manuscript provides a description of foodborne viruses and their characteristics, their responses to stress and technologies developed for viral detection and control. In addition, the gaps in knowledge and understanding, and future perspectives on the application of viral detection and control strategies for the food industry, along with suggestions on how the food industry could implement effective control strategies for viruses in foods. The current state of the science on epidemiology, public health burden, risk assessment and management options for viruses in food processing environments will be highlighted in this review.
Collapse
Affiliation(s)
- Albert Bosch
- University of Barcelona, Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, and Institute of Nutrition and Food Safety, Diagonal 643, 8028 Barcelona, Spain.
| | - Elissavet Gkogka
- Arla Innovation Centre, Arla R&D, Agro Food Park 19, 8200 Aarhus N, Denmark,.
| | - Françoise S Le Guyader
- IFREMER, Environment and Microbiology Laboratory, Rue de l'Ile d'Yeu, BP 21103, 44311 Nantes, France.
| | - Fabienne Loisy-Hamon
- bioMérieux, Centre Christophe Mérieux, 5 rue des berges, 38025 Grenoble, France.
| | - Alvin Lee
- Illinois Institute of Technology, Moffett Campus, 6502 South Archer Road, 60501-1957 Bedford Park, IL, United States.
| | - Lilou van Lieshout
- The International Life Sciences Institute, Av. E. Mounier 83/B.6, 1200 Brussels, Belgium.
| | - Balkumar Marthi
- Unilever R&D Vlaardingen, Olivier van Noortlaan 120, 3133 AT Vlaardingen, The Netherlands; DaQsh Consultancy Services, 203, Laxmi Residency, Kothasalipeta, Visakhapatnam 530 002, India
| | - Mette Myrmel
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, P.O. Box 8146, 0033 Oslo, Norway.
| | - Annette Sansom
- Campden BRI Group, Station Road, Chipping Campden, GL55 6LD Gloucestershire, United Kingdom.
| | - Anna Charlotte Schultz
- National Food Institute Technical University of Denmark, Mørkhøj Bygade 19, Building H, Room 204, 2860 Søborg, Denmark.
| | - Anett Winkler
- Cargill Deutschland GmbH, Cerestarstr. 2, 47809 Krefeld, Germany.
| | - Sophie Zuber
- Nestlé Research Centre, Institute of Food Safety and Analytical Science, Vers-chez-les-Blanc, Box 44, 1000 Lausanne, Switzerland.
| | - Trevor Phister
- PepsiCo Europe, Beaumont Park 4, Leycroft Road, LE4 1ET Leicester, United Kingdom.
| |
Collapse
|
32
|
Pereira E, Pimenta AI, Barros L, Calhelha RC, Antonio AL, Cabo Verde S, Ferreira ICFR. Effects of gamma radiation on the bioactivity of medicinal and aromatic plants: Mentha × piperita L., Thymus vulgaris L. and Aloysia citrodora Paláu as case studies. Food Funct 2018; 9:5150-5161. [PMID: 30209463 DOI: 10.1039/c8fo01558a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Irradiation is a feasible and safe decontamination technique, being applied to several types of foods including edible and medicinal plants. The aim of this study was to evaluate the effects of different gamma radiation doses (1, 5 and 10 kGy) on the individual profile of phenolic compounds determined by HPLC-DAD-ESI/MS, and the bioactive potential (cytotoxic, virucidal, and antimicrobial activities) of Aloysia citrodora Paláu (lemon verbena), Mentha × piperita L. (peppermint) and Thymus vulgaris L. (thyme). The observed cytotoxic activity varied with the plant and with the applied dose, being higher in Thymus vulgaris irradiated with 10 kGy. The virucidal activity was also dependent on the radiation dose, but was preserved with irradiation treatment. Gamma rays had no effect on the antimicrobial activity of the studied plants. Otherwise, the effects of gamma radiation on the phenolic profile were heterogeneous, with an increase in some compounds and decrease in others, depending on the species and on the radiation dose.
Collapse
Affiliation(s)
- Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | | | | | | | | | | | | |
Collapse
|
33
|
Free-Chlorine Disinfection as a Selection Pressure on Norovirus. Appl Environ Microbiol 2018; 84:AEM.00244-18. [PMID: 29703740 PMCID: PMC6007107 DOI: 10.1128/aem.00244-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/20/2018] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses are excreted in feces from infected individuals and included in wastewater. It is critical to remove/inactivate them in wastewater treatment processes, particularly in the disinfection step, before release to aquatic environments. However, the high mutation rates of human noroviruses raise concerns about the emergence of strains that are less susceptible to disinfectants and can survive even after wastewater treatment. This study aimed to demonstrate the strain-dependent susceptibility of norovirus to free chlorine. A population originated from the murine norovirus strain S7-PP3, a surrogate for human noroviruses in environmental testing, was exposed to free chlorine and then propagated in a host cell. This cycle of free chlorine exposure followed by propagation in cells was repeated 10 times, and populations with lower susceptibility to free chlorine were obtained from two independent trials of chlorine exposure cycles. Open reading frame 2 (ORF2) and ORF3 of the murine norovirus genome were analyzed by next-generation sequencing, and a unique nonsynonymous mutation (corresponding to a change from phenylalanine to serine) at nucleotide (nt) 7280 in ORF3, which encodes the minor capsid protein VP2, was found in chlorine-exposed populations from both trials. It was confirmed that all of the clones from the chlorine-treated population had lower susceptibility to free chlorine than those from the control population. These results indicate that exposure to free chlorine and dilution exert different driving forces to form murine norovirus (MNV) quasispecies, and that there is a selective force to form MNV quasispecies under free chlorine exposure.IMPORTANCE This study showed that free chlorine disinfection exerted a selection pressure for murine norovirus (MNV). The strain-dependent viral susceptibility to the disinfectant elucidated in this study highlights the importance of employing less susceptible strains as representative viruses in disinfection tests, because the disinfection rate values obtained from more susceptible strains would be less useful in predicting the virus inactivation efficiency of circulating strains under practical disinfection conditions.
Collapse
|
34
|
Haramoto E, Kitajima M, Hata A, Torrey JR, Masago Y, Sano D, Katayama H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. WATER RESEARCH 2018; 135:168-186. [PMID: 29471200 DOI: 10.1016/j.watres.2018.02.004] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/17/2023]
Abstract
Waterborne human enteric viruses, such as noroviruses and adenoviruses, are excreted in the feces of infected individuals and transmitted via the fecal-oral route including contaminated food and water. Since viruses are normally present at low concentrations in aquatic environments, they should be concentrated into smaller volumes prior to downstream molecular biological applications, such as quantitative polymerase chain reaction (qPCR). This review describes recent progress made in the development of concentration and detection methods of human enteric viruses in water, and discusses their applications for providing a better understanding of the prevalence of the viruses in various types of water worldwide. Maximum concentrations of human enteric viruses in water that have been reported in previous studies are summarized to assess viral abundances in aquatic environments. Some descriptions are also available on recent applications of sequencing analyses used to determine the genetic diversity of viral genomes in water samples, including those of novel viruses. Furthermore, the importance and significance of utilizing appropriate process controls during viral analyses are discussed, and three types of process controls are considered: whole process controls, molecular process controls, and (reverse transcription (RT)-)qPCR controls. Although no standards have been established for acceptable values of virus recovery and/or extraction-(RT-)qPCR efficiency, use of at least one of these appropriate control types is highly recommended for more accurate interpretation of observed data.
Collapse
Affiliation(s)
- Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Akihiko Hata
- Integrated Research System for Sustainability Science, Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Jason R Torrey
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Yoshifumi Masago
- Institute for the Advanced Study of Sustainability, United Nations University, 5-53-70 Jingumae, Shibuya-ku, Tokyo 150-8925, Japan.
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Vietnam Japan University, Luu Huu Phuoc Road, My Dinh 1 Ward, Nam Tu Liem District, Ha Noi, Vietnam.
| |
Collapse
|
35
|
Dutta S, Celestine MJ, Khanal S, Huddleston A, Simms C, Arca JF, Mitra A, Heller L, Kraj PJ, Ledizet M, Anderson JF, Neelakanta G, Holder AA, Sultana H. Coordination of different ligands to copper(II) and cobalt(III) metal centers enhances Zika virus and dengue virus loads in both arthropod cells and human keratinocytes. Biochim Biophys Acta Gen Subj 2017; 1862:40-50. [PMID: 29030319 DOI: 10.1016/j.bbagen.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/01/2017] [Accepted: 10/06/2017] [Indexed: 11/17/2022]
Abstract
Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen)2]Cl2, (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen)3]Cl3, (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl2·2H2O) or cobalt(II) chloride hexahydrate (CoCl2·6H2O) alone had no effects as "free" cations. Taken together, these findings suggest that use of Cu(II) or Co(III) conjugation to organic compounds, in insect repellents and/or food additives could enhance DENV2/ZIKV loads in human cells and perhaps induce pathogenesis in infected individuals or individuals pre-exposed to such conjugated complexes. IMPORTANCE Mosquito-borne diseases are of great concern to the mankind. Use of chemicals/repellents against mosquito bites and transmission of microbes has been the topic of interest for many years. Here, we show that thiosemicarbazone ligand(s) derived from 2-acetylethiazole or citral or 1,10-phenanthroline upon conjugation with copper(II) or cobalt(III) metal centers enhances dengue virus (serotype 2; DENV2) and/or Zika virus (ZIKV) infections in mosquito, mouse and human cells. Enhanced ZIKV/DENV2 capsid mRNA or envelope protein loads were evident in mosquito cells and human keratinocytes, when treated with compounds before/after infections. Also, treatment with copper(II) or cobalt(III) conjugated compounds increased viral titers and number of plaque formations. These studies suggest that conjugation of compounds in repellents/essential oils/natural products/food additives with copper(II) or cobalt(III) metal centers may not be safe, especially in tropical and subtropical places, where several dengue infection cases and deaths are reported annually or in places with increased ZIKV caused microcephaly.
Collapse
Affiliation(s)
- Shovan Dutta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Michael J Celestine
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Supreet Khanal
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Alexis Huddleston
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Colin Simms
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Jessa Faye Arca
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Amlan Mitra
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Loree Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; School of Medical Diagnostic & Translational Sciences College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Piotr J Kraj
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA; Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | | | - John F Anderson
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA; Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Alvin A Holder
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA; Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
36
|
Kim YW, You HJ, Lee S, Kim B, Kim DK, Choi JB, Kim JA, Lee HJ, Joo IS, Lee JS, Kang DH, Lee G, Ko GP, Lee SJ. Inactivation of Norovirus by Lemongrass Essential Oil Using a Norovirus Surrogate System. J Food Prot 2017; 80:1293-1302. [PMID: 28699786 DOI: 10.4315/0362-028x.jfp-16-162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study investigated the effect of lemongrass essential oil (LGEO) on the infectivity and viral replication of norovirus. Murine norovirus 1 (MNV-1), a surrogate of human norovirus, was preincubated with LGEO and then used to infect RAW 264.7 cells in a plaque reduction assay. LGEO exhibited a significant reduction in MNV-1 plaque formation in both time- and dose-dependent manners. The quantification of viral genome by quantitative real-time PCR showed similar results in line with those of the plaque reduction assay. It was revealed that citral, a single compound in LGEO, showed dramatic reduction in MNV-1 infectivity (-73.09% when using a treatment of 0.02%, v/v). The inhibitory activity of LGEO on viral replication was further investigated in HG23 cells that harbored a human norovirus replicon. LGEO treatment significantly reduced viral replication in HG23 cells, which suggests that LGEO may have dual inhibitory activities that inactivate viral coat proteins required for viral infection and suppress norovirus genome replication in host cells. In animal experiments, oral administration of murine norovirus preincubated with LGEO significantly suppressed virus infectivity in vivo. Collectively, these results suggest that LGEO, in particular the LGEO component citral, inactivates the norovirus and its subsequent replication in host cells. Thus, LGEO shows promise as a method of inhibiting norovirus within the food industry.
Collapse
Affiliation(s)
- Ye Won Kim
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Ju You
- 2 Institute of Health and Environment, Department of Environmental Health, Center for Human and Environmental Microbiome, Graduate School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Soyoung Lee
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Bomi Kim
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Do Kyung Kim
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Joo-Bong Choi
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Ah Kim
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| | - Hee Jung Lee
- 3 Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong 28159, Republic of Korea; and
| | - In Sun Joo
- 3 Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong 28159, Republic of Korea; and
| | - Jeong Su Lee
- 3 Food Microbiology Division, Food Safety Evaluation Department, National Institute of Food and Drug Safety Evaluation, Osong 28159, Republic of Korea; and
| | - Dong Hyun Kang
- 4 Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Institute of GreenBio Science and Technology, Seoul National University, Seoul 136-713, Republic of Korea
| | - Giljae Lee
- 2 Institute of Health and Environment, Department of Environmental Health, Center for Human and Environmental Microbiome, Graduate School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Gwang Pyo Ko
- 2 Institute of Health and Environment, Department of Environmental Health, Center for Human and Environmental Microbiome, Graduate School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung-Joon Lee
- 1 Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
37
|
Curcumin Shows Antiviral Properties against Norovirus. Molecules 2016; 21:molecules21101401. [PMID: 27775614 PMCID: PMC6274093 DOI: 10.3390/molecules21101401] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 11/17/2022] Open
Abstract
Phytochemicals provide environmentally friendly and relatively inexpensive natural products, which could potentially benefit public health by controlling human norovirus (HuNoV) infection. In this study, 18 different phytochemicals were evaluated for antiviral effects against norovirus using murine norovirus (MNV) as a model for norovirus biology. Among these phytochemicals, curcumin (CCM) was the most potent anti-noroviral phytochemical, followed by resveratrol (RVT). In a cell culture infection model, exposure to CCM or RVT for 3 days reduced infectivity of norovirus by 91% and 80%, respectively. To confirm the antiviral capability of CCM, we further evaluated its antiviral efficacy at various doses (0.25, 0.5, 0.75, 1, and 2 mg/mL) and durations (short-term: 10, 30, 60, and 120 min; long-term: 1, 3, 7, and 14 days). The anti-noroviral effect of CCM was verified to occur in a dose-dependent manner. Additionally, we evaluated the inhibitory effect of each phytochemical on the replication of HuNoV using a HuNoV replicon-bearing cell line (HG23). Neither CCM nor RVT had a strong inhibitory effect on HuNoV replication, which suggests that their antiviral mechanism may involve viral entry or other life cycle stages rather than the replication of viral RNA. Our results demonstrated that CCM may be a promising candidate for development as an anti-noroviral agent to prevent outbreaks of foodborne illness.
Collapse
|
38
|
Abstract
Many plant essential oils, extracts, and individual chemical components have been demonstrated to possess antiviral efficacy against enveloped and/or non-enveloped viruses. In general, plant antimicrobials exhibit greater antiviral efficacy against enveloped viruses than non-enveloped viruses (though not in all cases). There appear to be multiple mechanisms of antiviral action for plant antimicrobials; nevertheless, the majority of antimicrobials appear to act either directly on the virus itself (e.g., on the envelope or capsid) or during the early stages of virus replication following internalization of the virus into its host cell.
Collapse
|
39
|
Pourghanbari G, Nili H, Moattari A, Mohammadi A, Iraji A. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2). Virusdisease 2016; 27:170-8. [PMID: 27366768 DOI: 10.1007/s13337-016-0321-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
Lemon balm derivatives are going to acquire a novelty as natural and potent remedy for treatment of viral infections since the influenza viruses are developing resistance to the current antivirals widely. Oseltamivir, Melissa officinalis essential oil (MOEO) and their synergistic efficacy against avian influenza virus (AIV) subtype H9N2 were evaluated in vitro in MDCK cells at different time exposure by using TCID50, HA, Real Time PCR and HI assay. The results showed that MOEO could inhibit replication of AVI through the different virus replication phase (P ≤ 0.05). Also the highest antiviral activity of MOEO was seen when AIV incubated with MOEO before cell infection. The TCID50/ml was reduced 1.3-2.1, 2.3-2.8, 3.7-4.5 log 10 than control group (5.6 log 10), HAU/50 µl was decreased 85-94, 71.4-94, 71.4-94 % and viral genome copy number/µl was brought down 68-95, 90-100, 89.6-99.9 % at pre-infection, post-infection and simultaneous stage, respectively. Hemagglutination inhibition result showed the MOEO was not able to inhibit agglutination of the chicken red blood cell (cRBC). Replication of the AVI was suppressed by the different concentration of oseltamivir completely or near 100 %. Also oseltamivir showed a synergistic activity with MOEO especially when oseltamivir concentration reduced under 0.005 mg/ml. The chemical composition was examined by GC-MS analysis and Its main constituents were identified as monoterpenaldehydes citral a, citral b. In conclusion, the findings of the study showed that lemon balm essential oil could inhibit influenza virus replication through different replication cycle steps especially throughout the direct interaction with the virus particles.
Collapse
Affiliation(s)
- Gholamhosein Pourghanbari
- Department of Clinical Science, School of Veterinary Medicine, Ardakan University, Ardakan, Yazd Iran ; Avian Disease Research Center, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Hasan Nili
- Avian Disease Research Center, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Afagh Moattari
- Department of Bacteriology and Virology, Shiraz University of Medical Science, Shiraz, Iran
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Aida Iraji
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
40
|
Sánchez G, Aznar R. Evaluation of Natural Compounds of Plant Origin for Inactivation of Enteric Viruses. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:183-187. [PMID: 25636749 DOI: 10.1007/s12560-015-9181-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
Essential oils (EOs) and some of their main compounds have demonstrated extensive antimicrobial activity in a wide range of food spoilage or pathogenic fungi, yeast and bacteria. The aim of this study was to assess the antiviral activity of Zataria multiflora Boiss. (zataria) and Origanum vulgare (oregano) EOs on hepatitis A virus (HAV) and the effect of thymol, an active compound of Thymus vulgaris and oregano, on norovirus surrogates, feline calicivirus (FCV) and murine norovirus (MNV), and HAV. Initially, each virus at titers of ca. 6 log TCID50/ml was exposed to different concentrations of natural compounds and incubated for 2 h at 37 °C. Treatment with oregano and zataria EOs resulted in slight reductions on HAV infectivity with a maximum reduction of less than 0.5 log TCID50/ml at 0.1 % zataria EO. Thymol was effective in reducing the titers of norovirus surrogates in a dose-dependent manner. Concentrations of thymol at 0.5 and 1 % reduced FCV titers to undetectable levels, while for MNV, thymol at concentrations of 1 and 2 % resulted in reductions of 1.66 and 2.45 log TCID50/ml, respectively. However, for HAV, no effect was observed at any of the concentrations tested. These results improve the knowledge about the antiviral activity of EO and their compounds and their potential in food sanitation.
Collapse
Affiliation(s)
- G Sánchez
- Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, 46100, Burjassot, Valencia, Spain,
| | | |
Collapse
|
41
|
Sánchez C, Aznar R, Sánchez G. The effect of carvacrol on enteric viruses. Int J Food Microbiol 2015; 192:72-6. [PMID: 25310265 DOI: 10.1016/j.ijfoodmicro.2014.09.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/18/2014] [Accepted: 09/27/2014] [Indexed: 02/07/2023]
Abstract
Carvacrol, a monoterpenic phenol, is said to have extensive antimicrobial activity in a wide range of food spoilage or pathogenic fungi, yeast and bacteria. The aim of this study was to assess its antiviral activity on norovirus surrogates, feline calicivirus (FCV), murine norovirus (MNV), and hepatitis A virus (HAV), as well as its potential in food applications. Initially, different concentrations of carvacrol (0.25, 0.5, 1%) were individually mixed with each virus at titers of ca. 6-7 log TCID50/ml and incubated 2h at 37°C. Carvacrol at 0.5% completely inactivated the two norovirus surrogates, whereas 1% concentration was required to achieve ca. 1 log reduction of HAV. In lettuce wash water, carvacrol efficacy on MNV was dependent on the chemical oxygen demand (COD), with no effect over 300 ppm. A 4 log reduction in FCV infectivity was observed when 0.5% carvacrol was used to sanitize lettuce wash water, regardless of COD. Carvacrol was also evaluated as a natural disinfectant of produce, showing 1% carvacrol reduced inoculated NoV surrogates titers in lettuce by 1 log after 30 min contact. These results represent a step forward in improving food safety by using carvacrol as an alternative natural additive to reduce viral contamination in the fresh vegetable industry.
Collapse
Affiliation(s)
- C Sánchez
- Departament of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100 Valencia, Spain
| | - R Aznar
- Departament of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100 Valencia, Spain; Departament of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain
| | - G Sánchez
- Departament of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100 Valencia, Spain; Departament of Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain.
| |
Collapse
|