1
|
Tamminen LM, Dicksved J, Eriksson E, Keeling LJ, Emanuelson U. Untangling the role of environmental and host-related determinants for on-farm transmission of verotoxin-producing Escherichia coli O157. Infect Ecol Epidemiol 2024; 14:2406852. [PMID: 39386259 PMCID: PMC11463013 DOI: 10.1080/20008686.2024.2406852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Background: Cattle colonised by the zoonotic pathogen verotoxin-producing Escherichia coli of serotype O157 (VTEC O157) can shed high levels of the pathogen in their faeces. A suggested key for controlling VTEC O157 is preventing colonisation of individuals. Aim: In this study the role of individual super-shedders and factors related to susceptibility and environmental exposure in the transmission of VTEC O157 among dairy calves are explored. Methods: The association between sex, age, pen hygiene, pen type and stocking density and colonisation of individual calves, established by recto-anal mucosal swabs, on farms where pathogenic VTEC O157 had been confirmed was investigated. In a follow-up sampling, the consistency of previously identified risk factors and the role of shedding pen mates was assessed by studying the risk of new/re-colonisation. Results: The results suggest an important role of stocking density that decreases with age, possibly due to increased resistance to colonisation following exposure. However, previous colonisation did not influence the risk of being colonised in the second sampling. Super-shedders (shedding >103 colony forming units/g faeces) significantly increased the risk of colonisation in peers (OR = 10, CI 4.2-52). In addition, environmental factors associated with survival of the bacteria, affected risk. Conclusion: The results confirm the suggested importance of super-shedders but also emphasises the importance of considering the combined exposure from peers and the environment.
Collapse
Affiliation(s)
- Lena-Mari Tamminen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Linda J. Keeling
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ulf Emanuelson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
2
|
Bonardi S, Conter M, Andriani L, Bacci C, Magagna G, Rega M, Lamperti L, Loiudice C, Pierantoni M, Filipello V. Emerging of Shiga toxin-producing Escherichia coli O177:H11 and O177:H25 from cattle at slaughter in Italy. Int J Food Microbiol 2024; 423:110846. [PMID: 39079448 DOI: 10.1016/j.ijfoodmicro.2024.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/18/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens frequently carried by cattle, responsible in humans of mild to bloody diarrhoea, haemolytic uraemic syndrome (HUS) and even death. In 2023-2024, a study on STEC contamination of hide and carcasses of dairy cattle at slaughter was planned in Emilia-Romagna region (northern Italy). When the study was still in progress and 60 animals were sampled, the detection of STEC O177 isolates reached high rates and gained our attention. A total of five O177 STEC strains were detected, namely four from three carcasses (5.0 %) and one from a hide sample (1.7 %). The isolates were typed by WGS as following: 1) STEC O177:H11 sequence type (ST) 765 (stx2a+, eae+), detected from one carcass; 2) STEC O177:H25 ST659 (stx2c+, eae+) detected from three carcasses and one hide sample. One carcass was contaminated by both STEC serotypes. The isolates carried other virulence determinants often found in STEC strains associated with HUS, namely the exha, astA and espP genes, together with genes for adhesion to the epithelial cells of the gut (lpfA, fdeC, fimH) and non-Locus for Enterocyte Effacement (LEE) effector protein genes (nleA, nleB). The STEC O177:H11 isolate harboured antimicrobial resistance (AMR) genes to β-lactams (blaTEM-1A), aminoglycosides (aadA1, aph(3″)-Ib, aph(6)-Id), trimethoprim (dfrA1), sulphonamides (sul1, sul2), tetracyclines (tetA), (tetB), streptothricin (sat2), and quaternary ammonium compounds (qacEdelta1). On the contrary, the STEC O177:H25 isolates carried no AMR genes. Persistent carriage of STEC O177:H25 ST659 (stx2c+, eae+) at farm level was assessed by testing animals of the same herd sent to slaughter. Interestingly, the colonies of STEC O177:H11 and STEC O177:H25 had different morphology on CHROMagar™ STEC plates, being mauve and colourless, respectively. Since mauve is the colour STEC colonies commonly have on the CHROMagar™ STEC medium, our findings can help microbiologists in the selection of uncommon serotypes. To the best of our knowledge, this is the first detection of STEC O177 from carcasses and hides of dairy cattle at slaughter. Noteworthy, the STEC-positive hide was classified as "very dirty" thus stressing the need of clean animals entering the slaughter chain, as required by Regulation (EC) No 853/2004. Since STEC O177 has been responsible of HUS in Europe, our data could add information on the source of uncommon serogroups in human infections.
Collapse
Affiliation(s)
- Silvia Bonardi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Mauro Conter
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Laura Andriani
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Cristina Bacci
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Giulia Magagna
- Department of Food Safety, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy
| | - Martina Rega
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Luca Lamperti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Carlo Loiudice
- National Veterinary Service, Via Vasari 13/A, 43126 Parma, Italy
| | - Marco Pierantoni
- National Veterinary Service, Via Vasari 13/A, 43126 Parma, Italy
| | - Virginia Filipello
- Department of Food Safety, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
3
|
Zhang P, Liu L, Sheng H, Zhang M, Wang T, Chang G, Wang Y, Bai L, Wang X. Antibiotic Resistance and Genomic Analysis of Shiga Toxin-Producing Escherichia coli from Dairy Cattle, Raw Milk, and Farm Environment in Shaanxi Province, China. Foodborne Pathog Dis 2024; 21:624-633. [PMID: 39042484 DOI: 10.1089/fpd.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
To investigate the epidemiology of Shiga toxin-producing Escherichia coli (STEC) in dairy cattle, 975 samples (185 feces, 34 silage, 36 cattle drinking water, 360 raw milk, and 360 teat skin swabs) were collected from two dairy farms in Baoji and Yangling, Shaanxi Province, China, and were screened for STEC. Whole-genome sequencing was used to analyze the genomic characteristics and potential transmission of STEC isolates. A total of 32 samples were contaminated with STEC, including 4.0% (19/479) in Farm A and 2.6% (13/496) in Farm B. Compared with adult cows (4.5%), nonadult cows had a higher rate (21.3%) of STEC colonization. A total of 14 serotypes and 11 multilocus sequence typing were identified in 32 STEC isolates, among which O55:H12 (25.0%) and ST101 (31.3%) were the most predominant, respectively. Six stx subtypes/combinations were identified, including stx1a (53.1%), stx2g (15.6%), stx2d, stx2a+stx2d, stx1a+stx2a (6.3%, for each), and stx2a (3.1%). Of 32 STEC isolates, 159 virulence genes and 27 antibiotic resistance genes were detected. Overall, STEC isolates showed low levels of resistance to the 16 antibiotics tested (0-40.6%), with most common resistance to ampicillin (40.6%). The phylogenetic analysis confirmed that STEC in the gut of cattle can be transmitted through feces. The results of this study help to improve our understanding of the epidemiological aspects of STEC in dairy cattle and provide early warning and control of the prevalence and spread of the bacterium.
Collapse
Affiliation(s)
- Pengfei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
- College of Food Science, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Lisha Liu
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, Beijing, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Meng Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ting Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yeru Wang
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Li Bai
- National Center for Food Safety Risk Assessment, Beijing, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Bosilevac JM, Katz TS, Arthur TM, Kalchayanand N, Wheeler TL. Proportions and Serogroups of Enterohemorrhagic Shiga Toxin-producing Escherichia coli in Feces of Fed and Cull Beef and Cull Dairy Cattle at Harvest. J Food Prot 2024; 87:100273. [PMID: 38599382 DOI: 10.1016/j.jfp.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cattle are considered a primary reservoir of Shiga toxin (stx)-producing Escherichia coli that cause enterohemorrhagic disease (EHEC), and contaminated beef products are one vehicle of transmission to humans. However, animals entering the beef harvest process originate from differing production systems: feedlots, dairies, and beef breeding herds. The objective of this study was to determine if fed cattle, cull dairy, and or cull beef cattle carry differing proportions and serogroups of EHEC at harvest. Feces were collected via rectoanal mucosal swabs (RAMSs) from 1,039 fed cattle, 1,058 cull dairy cattle, and 1,018 cull beef cattle at harvest plants in seven U.S. states (CA, GA, NE, PA, TX, WA, and WI). The proportion of the stx gene in feces of fed cattle (99.04%) was not significantly different (P > 0.05) than in the feces of cull dairy (92.06%) and cull beef (91.85%) cattle. When two additional factors predictive of EHEC (intimin and ecf1 genes) were considered, EHEC was significantly greater (P < 0.05) in fed cattle (77.29%) than in cull dairy (47.54%) and cull beef (38.51%) cattle. The presence of E. coli O157:H7 and five common non-O157 EHEC of serogroups O26, O103, O111, O121, and O145 was determined using molecular analysis for single nucleotide polymorphisms (SNPs) followed by culture isolation. SNP analysis identified 23.48%, 17.67%, and 10.81% and culture isolation confirmed 2.98%, 3.31%, and 3.00% of fed, cull dairy, and cull beef cattle feces to contain one of these EHEC, respectively. The most common serogroups confirmed by culture isolation were O157, O103, and O26. Potential EHEC of fourteen other serogroups were isolated as well, from 4.86%, 2.46%, and 2.01% of fed, cull dairy, and cull beef cattle feces, respectively; with the most common being serogroups O177, O74, O98, and O84. The identification of particular EHEC serogroups in different types of cattle at harvest may offer opportunities to improve food safety risk management.
Collapse
Affiliation(s)
- Joseph M Bosilevac
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, State Spur 18D, Clay Center, NE 68933, USA.
| | - Tatum S Katz
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, State Spur 18D, Clay Center, NE 68933, USA
| | - Terrance M Arthur
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, State Spur 18D, Clay Center, NE 68933, USA
| | - Norasak Kalchayanand
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, State Spur 18D, Clay Center, NE 68933, USA
| | - Tommy L Wheeler
- United States Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Meat Safety and Quality Research Unit, State Spur 18D, Clay Center, NE 68933, USA
| |
Collapse
|
5
|
Hoyle DV, Wee BA, Macleod K, Chase-Topping ME, Bease AG, Tongue SC, Gally DL, Delannoy S, Fach P, Pearce MC, Gunn GJ, Holmes A, Allison L. Phylogenetic relationship and virulence composition of Escherichia coli O26:H11 cattle and human strain collections in Scotland; 2002-2020. Front Microbiol 2023; 14:1260422. [PMID: 38029122 PMCID: PMC10657854 DOI: 10.3389/fmicb.2023.1260422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
O26 is the commonest non-O157 Shiga toxin (stx)-producing Escherichia coli serogroup reported in human infections worldwide. Ruminants, particularly cattle, are the primary reservoir source for human infection. In this study, we compared the whole genomes and virulence profiles of O26:H11 strains (n = 99) isolated from Scottish cattle with strains from human infections (n = 96) held by the Scottish Escherichia coli O157/STEC Reference Laboratory, isolated between 2002 and 2020. Bovine strains were from two national cross-sectional cattle surveys conducted between 2002-2004 and 2014-2015. A maximum likelihood phylogeny was constructed from a core-genome alignment with the O26:H11 strain 11368 reference genome. Genomes were screened against a panel of 2,710 virulence genes using the Virulence Finder Database. All stx-positive bovine O26:H11 strains belonged to the ST21 lineage and were grouped into three main clades. Bovine and human source strains were interspersed, and the stx subtype was relatively clade-specific. Highly pathogenic stx2a-only ST21 strains were identified in two herds sampled in the second cattle survey and in human clinical infections from 2010 onwards. The closest pairwise distance was 9 single-nucleotide polymorphisms (SNPs) between Scottish bovine and human strains and 69 SNPs between the two cattle surveys. Bovine O26:H11 was compared to public EnteroBase ST29 complex genomes and found to have the greatest commonality with O26:H11 strains from the rest of the UK, followed by France, Italy, and Belgium. Virulence profiles of stx-positive bovine and human strains were similar but more conserved for the stx2a subtype. O26:H11 stx-negative ST29 (n = 17) and ST396 strains (n = 5) were isolated from 19 cattle herds; all were eae-positive, and 10 of these herds yielded strains positive for ehxA, espK, and Z2098, gene markers suggestive of enterohaemorrhagic potential. There was a significant association (p < 0.001) between nucleotide sequence percent identity and stx status for the bacteriophage insertion site genes yecE for stx2 and yehV for stx1. Acquired antimicrobial resistance genes were identified in silico in 12.1% of bovine and 17.7% of human O26:H11 strains, with sul2, tet, aph(3″), and aph(6″) being most common. This study describes the diversity among Scottish bovine O26:H11 strains and investigates their relationship to human STEC infections.
Collapse
Affiliation(s)
- Deborah V. Hoyle
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Bryan A. Wee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Kareen Macleod
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Margo E. Chase-Topping
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Andrew G. Bease
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sue C. Tongue
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - David L. Gally
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sabine Delannoy
- Unité ColiPath – Plateforme IdentyPath, Laboratoire de Sécurité des Aliments, Agence Nationale De Sécurité Sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Maisons-Alfort, France
| | - Patrick Fach
- Unité ColiPath – Plateforme IdentyPath, Laboratoire de Sécurité des Aliments, Agence Nationale De Sécurité Sanitaire de l’alimentation, de l’environnement et du travail (ANSES), Maisons-Alfort, France
| | - Michael C. Pearce
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - George J. Gunn
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College (SRUC), Inverness, United Kingdom
| | - Anne Holmes
- Scottish E. coli O157/STEC Reference Laboratory (SERL), Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Lesley Allison
- Scottish E. coli O157/STEC Reference Laboratory (SERL), Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Mwenifumbo M, Cookson AL, Zhao S, Fayaz A, Browne AS, Benschop J, Burgess SA. The characterisation of antimicrobial resistant Escherichia coli from dairy calves. J Med Microbiol 2023; 72. [PMID: 37578342 DOI: 10.1099/jmm.0.001742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
Introduction. Dairy calves, particularly pre-weaned calves have been identified as a common source of multidrug resistant (MDR) Escherichia coli.Gap statement. E. coli strains isolated from dairy calves and the location of their resistance genes (plasmid or chromosomal) have not been well characterised.Aim. To characterise the phenotypic and genotypic features as well as the population structure of antimicrobial-resistant E. coli isolated from calves located on dairy farms that feed waste-milk to their replacement calves.Methodology. Recto-anal swab enrichments from 40 dairy calves (≤ 14 days old) located on four dairy farms were examined for tetracycline, streptomycin, ciprofloxacin, and third-generation cephalosporin resistant E. coli. Whole genome sequencing was performed using both short- and long-read technologies on selected antimicrobial resistant E. coli.Results. Fifty-eight percent (23/40) of calves harboured antimicrobial resistant E. coli: 43 % (17/40) harboured tetracycline resistant, and 23 % (9/40) harboured chromosomal mediated AmpC producing E. coli. Whole genome sequencing of 27 isolates revealed five sequence types, with ST88 being the dominant ST (17/27, 63 % of the sequenced isolates) followed by ST1308 (3/27, 11 %), along with the extraintestinal pathogenic E. coli lineages ST69 (3/27, 11 %), ST10 (2/27, 7 %), and ST58 (2/27, 7 %). Additionally, 16 isolates were MDR, harbouring additional resistance genes that were not tested phenotypically. Oxford Nanopore long-read sequencing technologies enabled the location of multiple resistant gene cassettes in IncF plasmids to be determined.Conclusion. Our study identified a high incidence of tetracycline and streptomycin-resistant E. coli in dairy calves, and highlighted the presence of multidrug-resistant strains, emphasising the need for further investigation into potential associations with farm management practices.
Collapse
Affiliation(s)
- Merning Mwenifumbo
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
- Present address: Faculty of Veterinary Medicine, Lilongwe University of Agriculture & Natural Resources, Lilongwe, Malawi
| | - Adrian L Cookson
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
- Food Systems Integrity, Hopkirk Research Institute, cnr University & Library Rds, AgResearch Ltd, Palmerston North 4442, New Zealand
| | - Shengguo Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ahmed Fayaz
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - A Springer Browne
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - Jackie Benschop
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| | - Sara A Burgess
- School of Veterinary Science, Hopkirk Research Institute, cnr University & Library Rds Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
7
|
Auvray F, Bièche-Terrier C, Um MM, Dupouy V, Nzuzi N, David L, Allais L, Drouet M, Oswald E, Bibbal D, Brugère H. Prevalence and characterization of the seven major serotypes of Shiga toxin-producing Escherichia coli (STEC) in veal calves slaughtered in France. Vet Microbiol 2023; 282:109754. [PMID: 37116423 DOI: 10.1016/j.vetmic.2023.109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023]
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) belonging to the "top 7″ serotypes (i.e. O157:H7, O26:H11, O45:H2, O103:H2, O111:H8, O121:H19 and O145:H28) are considered as the main pathogenic enterohemorrhagic E. coli (EHEC). As ruminants, including calves, are a reservoir of pathogenic STEC, we investigated the prevalence, major virulence genes and genetic relatedness of top7 STEC in veal calves slaughtered in France, through the analysis of 500 fecal samples collected over one year. Thirty top7 STEC isolates were recovered from 28 calves. The two serotypes O103:H2 and O26:H11 accounted for 73% of STEC strains, followed by O145:H28 and O157:H7. STEC super-shedding levels were identified for two calves carrying STEC O103:H2 and O157:H7, respectively. Thirty-nine atypical enteropathogenic E. coli (aEPEC) were also recovered from calves. Overall, a prevalence of 5.6% top7 STEC-positive calves was found, thus higher than that previously determined for the French slaughtered adult cattle (1.8%), confirming the impact of animals age on STEC carriage. Most top7 STEC strains carried the stx1a subtype suggesting a low pathogenicity for humans. Seasonal variation in STEC carriage was also observed, with two peaks of higher prevalence during spring and fall. Genetic similarity of top7 STEC isolates was found for calves originating from the same fattening facilities, reflecting STEC circulation between animals kept in groups. This study indicates that veal calves grown for meat production are at higher risk of shedding top7 STEC compared to adult cattle. They thus represent ideal targets for the implementation of farm interventions aimed at reducing STEC burden in cattle and the food chain.
Collapse
Affiliation(s)
- Frédéric Auvray
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
| | | | - Maryse Michèle Um
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | - Nathalie Nzuzi
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Laure David
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Laurent Allais
- Institut de l'Elevage, Laboratoire Analyse et Technologie des Produits, Villers Bocage, France
| | - Marie Drouet
- Institut de l'Elevage, Service Qualité des Viandes, Villers Bocage, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France; CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Delphine Bibbal
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France; InTheRes, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Hubert Brugère
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
8
|
Dual-Species Biofilms Formed by Escherichia coli and Salmonella Enhance Chlorine Tolerance. Appl Environ Microbiol 2022; 88:e0148222. [PMID: 36300924 PMCID: PMC9680634 DOI: 10.1128/aem.01482-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outbreaks of
Escherichia coli
and
Salmonella
in food might be associated with the cross-contamination of biofilms on food-contact surfaces. The knowledge of the sanitization of mono-species biofilm on the food-contact surface is well established, while mixed-species biofilm occurs more naturally, which could profoundly affect the efficacy of sanitizer.
Collapse
|
9
|
Davis MT, Canning AD, Midwinter AC, Death RG. Nitrate enrichment does not affect enteropathogenic Escherichia coli in aquatic microcosms but may affect other strains present in aquatic habitats. PeerJ 2022; 10:e13914. [PMID: 36187747 PMCID: PMC9524367 DOI: 10.7717/peerj.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/27/2022] [Indexed: 01/19/2023] Open
Abstract
Eutrophication of the planet's aquatic systems is increasing at an unprecedented rate. In freshwater systems, nitrate-one of the nutrients responsible for eutrophication-is linked to biodiversity losses and ecosystem degradation. One of the main sources of freshwater nitrate pollution in New Zealand is agriculture. New Zealand's pastoral farming system relies heavily on the application of chemical fertilisers. These fertilisers in combination with animal urine, also high in nitrogen, result in high rates of nitrogen leaching into adjacent aquatic systems. In addition to nitrogen, livestock waste commonly carries human and animal enteropathogenic bacteria, many of which can survive in freshwater environments. Two strains of enteropathogenic bacteria found in New Zealand cattle, are K99 and Shiga-toxin producing Escherichia coli (STEC). To better understand the effects of ambient nitrate concentrations in the water column on environmental enteropathogenic bacteria survival, a microcosm experiment with three nitrate-nitrogen concentrations (0, 1, and 3 mg NO3-N /L), two enteropathogenic bacterial strains (STEC O26-human, and K99-animal), and two water types (sterile and containing natural microbiota) was run. Both STEC O26 and K99 reached 500 CFU/10 ml in both water types at all three nitrate concentrations within 24 hours and remained at those levels for the full 91 days of the experiment. Although enteropathogenic strains showed no response to water column nitrate concentrations, the survival of background Escherichia coli, imported as part of the in-stream microbiota did, surviving longer in 1 and 3 mg NO3-N/Lconcentrations (P < 0.001). While further work is needed to fully understand how nitrate enrichment and in-stream microbiota may affect the viability of human and animal pathogens in freshwater systems, it is clear that these two New Zealand strains of STEC O26 and K99 can persist in river water for extended periods alongside some natural microbiota.
Collapse
Affiliation(s)
- Meredith T. Davis
- School of Natural Sciences, Massey University, Palmerston North, Manawatu, New Zealand,Molecular Epidemiology and Veterinary Public Health Laboratory—Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, Manawatu, New Zealand
| | - Adam D. Canning
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University of North Queensland, Townsville, Queensland, Australia
| | - Anne C. Midwinter
- Molecular Epidemiology and Veterinary Public Health Laboratory—Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, Manawatu, New Zealand
| | - Russell G. Death
- School of Natural Sciences, Massey University, Palmerston North, Manawatu, New Zealand
| |
Collapse
|
10
|
Onyeka LO, Adesiyun AA, Keddy KH, Hassim A, Smith AM, Thompson PN. CHARACTERIZATION AND EPIDEMIOLOGICAL SUBTYPING OF SHIGA TOXIN-PRODUCING ESCHERICHIA COLI ISOLATED FROM THE BEEF PRODUCTION CHAIN IN GAUTENG, SOUTH AFRICA. Prev Vet Med 2022; 205:105681. [DOI: 10.1016/j.prevetmed.2022.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/16/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
|
11
|
Whole-Genome Sequencing and Virulome Analysis of Escherichia coli Isolated from New Zealand Environments of Contrasting Observed Land Use. Appl Environ Microbiol 2022; 88:e0027722. [PMID: 35442082 PMCID: PMC9088250 DOI: 10.1128/aem.00277-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Generic Escherichia coli is commonly used as an indicator of fecal contamination to assess water quality and human health risk. Where measured E. coli exceedances occur, the presence of other pathogenic microorganisms, such as Shiga toxin-producing E. coli (STEC), is assumed, but confirmatory data are lacking. Putative E. coli isolates (n = 709) were isolated from water, sediment, soil, periphyton, and feces samples (n = 189) from five sites representing native forest and agricultural environments. Ten E. coli isolates (1.41%) were stx2 positive, 19 (2.7%) were eae positive, and stx1-positive isolates were absent. At the sample level, stx2-positive E. coli (5 of 189, 2.6%) and eae-positive isolates (16 of 189, 8.5%) were rare. Using real-time PCR, these STEC-associated virulence factors were determined to be more prevalent in sample enrichments (stx1, 23.9%; stx2, 31.4%; eae, 53.7%) and positively correlated with generic E. coli isolate numbers (P < 0.05) determined using culture-based methods. Whole-genome sequencing (WGS) was undertaken on a subset of 238 isolates with assemblies representing seven E. coli phylogroups (A, B1, B2, C, D, E, and F), 22 Escherichia marmotae isolates, and 1 Escherichia ruysiae isolate. Virulence factors, including those from extraintestinal pathogenic E. coli, were extremely diverse in isolates from the different locations and were more common in phylogroup B2. Analysis of the virulome from WGS data permitted the identification of gene repertoires that may be involved in environmental fitness and broadly align with phylogroup. Although recovery of STEC isolates was low, our molecular data indicate that they are likely to be widely present in environmental samples containing diverse E. coli phylogroups. IMPORTANCE This study takes a systematic sampling approach to assess the public health risk of Escherichia coli recovered from freshwater sites within forest and farmland. The New Zealand landscape is dominated by livestock farming, and previous work has demonstrated that "recreational exposure to water" is a risk factor for human infection by Shiga toxin-producing Escherichia coli (STEC). Though STEC isolates were rarely isolated from water samples, STEC-associated virulence factors were identified more commonly from water sample culture enrichments and were associated with increased generic E. coli concentrations. Whole-genome sequencing data from both E. coli and newly described Escherichia spp. demonstrated the presence of virulence factors from E. coli pathotypes, including extraintestinal pathogenic E. coli. This has significance for understanding and interpreting the potential health risk from E. coli where water quality is poor and suggests a role of virulence factors in survival and persistence of E. coli and Escherichia spp.
Collapse
|
12
|
Davis M, Midwinter AC, Cosgrove R, Death RG. Detecting genes associated with antimicrobial resistance and pathogen virulence in three New Zealand rivers. PeerJ 2021; 9:e12440. [PMID: 34950535 PMCID: PMC8647715 DOI: 10.7717/peerj.12440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
The emergence of clinically significant antimicrobial resistance (AMR) in bacteria is frequently attributed to the use of antimicrobials in humans and livestock and is often found concurrently with human and animal pathogens. However, the incidence and natural drivers of antimicrobial resistance and pathogenic virulence in the environment, including waterways and ground water, are poorly understood. Freshwater monitoring for microbial pollution relies on culturing bacterial species indicative of faecal pollution, but detection of genes linked to antimicrobial resistance and/or those linked to virulence is a potentially superior alternative. We collected water and sediment samples in the autumn and spring from three rivers in Canterbury, New Zealand; sites were above and below reaches draining intensive dairy farming. Samples were tested for loci associated with the AMR-related group 1 CTX-M enzyme production (blaCTX-M) and Shiga toxin producing Escherichia coli (STEC). The blaCTX-M locus was only detected during spring and was more prevalent downstream of intensive dairy farms. Loci associated with STEC were detected in both the autumn and spring, again predominantly downstream of intensive dairying. This cross-sectional study suggests that targeted testing of environmental DNA is a useful tool for monitoring waterways. Further studies are now needed to extend our observations across seasons and to examine the relationship between the presence of these genetic elements and the incidence of disease in humans.
Collapse
Affiliation(s)
- Meredith Davis
- School of Agriculture and the Environment, Massey University, Palmerston North, Manawatu, New Zealand.,Molecular Epidemiology and Veterinary Public Health Laboratory - Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, Manawatu, New Zealand
| | - Anne C Midwinter
- Molecular Epidemiology and Veterinary Public Health Laboratory - Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, Manawatu, New Zealand
| | | | - Russell G Death
- School of Agriculture and the Environment, Massey University, Palmerston North, Manawatu, New Zealand
| |
Collapse
|
13
|
Galarce N, Sánchez F, Escobar B, Lapierre L, Cornejo J, Alegría-Morán R, Neira V, Martínez V, Johnson T, Fuentes-Castillo D, Sano E, Lincopan N. Genomic Epidemiology of Shiga Toxin-Producing Escherichia coli Isolated from the Livestock-Food-Human Interface in South America. Animals (Basel) 2021; 11:ani11071845. [PMID: 34206206 PMCID: PMC8300192 DOI: 10.3390/ani11071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens that cause food-borne diseases in humans, where cattle and derived products play a key role as reservoirs and vehicles. We analyzed the genomic data of STEC strains circulating at the livestock-food-human interface in South America, extracting clinically and epidemiologically relevant information (serotypes, virulome, resistance genes, sequence types, and phylogenomics). This study included 130 STEC genomes obtained from cattle (n = 51), beef (n = 48), and human (n = 31) samples. The successful expansion of O157:H7 (ST11) and non-O157 (ST16, ST21, ST223, ST443, ST677, ST679, ST2388) clones is highlighted, suggesting common activities, such as multilateral trade and travel. Circulating STEC strains analyzed exhibit high genomic diversity and harbor several genetic determinants associated with severe illness in humans, highlighting the need to establish official surveillance of this pathogen that should be focused on detecting molecular determinants of virulence and clonal relatedness, in the whole beef production chain. Abstract Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens responsible for causing food-borne diseases in humans. While South America has the highest incidence of human STEC infections, information about the genomic characteristics of the circulating strains is scarce. The aim of this study was to analyze genomic data of STEC strains isolated in South America from cattle, beef, and humans; predicting the antibiotic resistome, serotypes, sequence types (STs), clonal complexes (CCs) and phylogenomic backgrounds. A total of 130 whole genome sequences of STEC strains were analyzed, where 39.2% were isolated from cattle, 36.9% from beef, and 23.8% from humans. The ST11 was the most predicted (20.8%) and included O-:H7 (10.8%) and O157:H7 (10%) serotypes. The successful expansion of non-O157 clones such as ST16/CC29-O111:H8 and ST21/CC29-O26:H11 is highlighted, suggesting multilateral trade and travel. Virulome analyses showed that the predominant stx subtype was stx2a (54.6%); most strains carried ehaA (96.2%), iha (91.5%) and lpfA (77.7%) genes. We present genomic data that can be used to support the surveillance of STEC strains circulating at the livestock-food-human interface in South America, in order to control the spread of critical clones “from farm to table”.
Collapse
Affiliation(s)
- Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Correspondence:
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Javiera Cornejo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Pedro de Valdivia, Santiago 8370007, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Víctor Martínez
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Danny Fuentes-Castillo
- Departamento de Patología, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil;
| | - Elder Sano
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| | - Nilton Lincopan
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| |
Collapse
|
14
|
Transmission Dynamics of Shiga Toxin-Producing Escherichia coli in New Zealand Cattle from Farm to Slaughter. Appl Environ Microbiol 2021; 87:AEM.02907-20. [PMID: 33771782 PMCID: PMC8208155 DOI: 10.1128/aem.02907-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Cattle are asymptomatic carriers of Shiga toxin-producing Escherichia coli (STEC) strains that can cause serious illness or death in humans. In New Zealand, contact with cattle feces and living near cattle populations are known risk factors for human STEC infection. Contamination of fresh meat with STEC strains also leads to the potential for rejection of consignments by importing countries. We used a combination of PCR/matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and whole-genome sequencing (WGS) to evaluate the presence and transmission of STEC on farms and in processing plants to better understand the potential pathways for human exposure and thus mitigate risk. Animal and environmental samples (n = 2,580) were collected from six farms and three meat processing plants in New Zealand during multiple sampling sessions in spring of 2015 and 2016. PCR/MALDI-TOF analysis revealed that 6.2% were positive for "Top 7" STEC. Top 7 STEC strains were identified in all sample sources (n = 17) tested. A marked increase in Top 7 STEC prevalence was observed between calf hides on farm (6.3% prevalence) and calf hides at processing plants (25.1% prevalence). Whole-genome sequencing was performed on Top 7 STEC bacterial isolates (n = 40). Analysis of STEC O26 (n = 25 isolates) revealed relatively low genetic diversity on individual farms, consistent with the presence of a resident strain disseminated within the farm environment. Public health efforts should focus on minimizing human contact with fecal material on farms and during handling, transport, and slaughter of calves. Meat processing plants should focus on minimizing cross-contamination between the hides of calves in a cohort during transport, lairage, and slaughter.IMPORTANCE Cattle are asymptomatic carriers of Shiga toxin-producing E. coli (STEC) strains, which can cause serious illness or death in humans. Contact with cattle feces and living near cattle are known risk factors for human STEC infection. This study evaluated STEC carriage in young calves and the farm environment with an in-depth evaluation of six farms and three meat processing plants over 2 years. An advanced molecular detection method and whole-genome sequencing were used to provide a detailed evaluation of the transmission of STEC both within and between farms. The study revealed widespread STEC contamination within the farm environment, but no evidence of recent spread between farms. Contamination of young dairy calf hides increased following transport and holding at meat processing plants. The elimination of STEC in farm environments may be very difficult given the multiple transmission routes; interventions should be targeted at decreasing fecal contamination of calf hides during transport, lairage, and processing.
Collapse
|
15
|
Prevalence and Epidemiology of Non-O157 Escherichia coli Serogroups O26, O103, O111, and O145 and Shiga Toxin Gene Carriage in Scottish Cattle, 2014-2015. Appl Environ Microbiol 2021; 87:AEM.03142-20. [PMID: 33712425 PMCID: PMC8117755 DOI: 10.1128/aem.03142-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023] Open
Abstract
Cattle are reservoirs for Shiga toxin Escherichia coli (STEC), bacteria shed in animal feces. Humans are infected through consumption of contaminated food or water and by direct contact, causing serious disease and kidney failure in the most vulnerable. Cattle are a reservoir for Shiga toxin-producing Escherichia coli (STEC), zoonotic pathogens that cause serious clinical disease. Scotland has a higher incidence of STEC infection in the human population than the European average. The aim of this study was to investigate the prevalence and epidemiology of non-O157 serogroups O26, O103, O111, and O145 and Shiga toxin gene carriage in Scottish cattle. Fecal samples (n = 2783) were collected from 110 herds in 2014 and 2015 and screened by real-time PCR. Herd-level prevalence (95% confidence interval [CI]) for O103, O26, and O145 was estimated as 0.71 (0.62, 0.79), 0.43 (0.34, 0.52), and 0.23 (0.16, 0.32), respectively. Only two herds were positive for O111. Shiga toxin prevalence was high in both herds and pats, particularly for stx2 (herd level: 0.99; 95% CI: 0.94, 1.0). O26 bacterial strains were isolated from 36 herds on culture. Fifteen herds yielded O26 stx-positive isolates that additionally harbored the intimin gene; six of these herds shed highly pathogenic stx2-positive strains. Multiple serogroups were detected in herds and pats, with only 25 herds negative for all serogroups. Despite overlap in detection, regional and seasonal effects were observed. Higher herd prevalence for O26, O103, and stx1 occurred in the South West, and this region was significant for stx2 at the pat level (P = 0.015). Significant seasonal variation was observed for O145 prevalence, with the highest prevalence in autumn (P = 0.032). Negative herds were associated with Central Scotland and winter. Herds positive for all serogroups were associated with autumn and larger herd size and were not housed at sampling. IMPORTANCE Cattle are reservoirs for Shiga toxin-producing Escherichia coli (STEC), bacteria shed in animal feces. Humans are infected through consumption of contaminated food or water and by direct contact, resulting in serious disease and kidney failure in the most vulnerable. The contribution of non-O157 serogroups to STEC illness was underestimated for many years due to the lack of specific tests. Recently, non-O157 human cases have increased, with O26 STEC of particular note. It is therefore vital to investigate the level and composition of non-O157 in the cattle reservoir and to compare them historically and by the clinical situation. In this study, we found cattle prevalence high for toxin, as well as for O103 and O26 serogroups. Pathogenic O26 STEC were isolated from 14% of study herds, with toxin subtypes similar to those seen in Scottish clinical cases. This study highlights the current risk to public health from non-O157 STEC in Scottish cattle.
Collapse
|
16
|
Engelen F, Thiry D, Devleesschauwer B, Heyndrickx M, Mainil J, De Zutter L, Cox E. Pathogenic potential of Escherichia coli O157 and O26 isolated from young Belgian dairy calves by recto-anal mucosal swab culturing. J Appl Microbiol 2021; 131:964-972. [PMID: 33103320 DOI: 10.1111/jam.14909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 01/17/2023]
Abstract
AIMS The purpose of this study was to investigate the occurrence of Escherichia coli O157 and O26 on Belgian dairy cattle farms, the presence of virulence genes in the confirmed isolates and the association of E. coli O26 presence with calf diarrhoea. METHODS AND RESULTS In total, 233 recto-anal mucosal swabs (RAMS) were obtained from healthy and diarrheic dairy calves on three farms, each alternately visited three consecutive times. RAMS were analysed for presence of E. coli O157 and O26, and stx1, stx2 and eae virulence genes. Overall, 19% of RAMS tested positive for E. coli O157, while 31% tested positive for E. coli O26. The majority of isolates possessed both stx and eae, denoting a high pathogenic potential to humans. While both serogroups persisted at farm level, persistence within the same animal over time appeared to be relatively rare. Interestingly, E. coli O26 was already abundantly present at a younger age compared to E. coli O157. Calf diarrhoea could not be associated with presence of E. coli O26. CONCLUSIONS Young dairy calves are important on-farm reservoirs of potentially pathogenic E. coli O157 and O26. A role of E. coli O26 in calf diarrhoea could not be confirmed. SIGNIFICANCE AND IMPACT OF THE STUDY O157 and O26 are responsible for the majority of human STEC infections. Gaining more epidemiological information regarding their occurrence and persistence on cattle farms will contribute to a better understanding of STEC ecology and risk of human transmission.
Collapse
Affiliation(s)
- F Engelen
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University (UGent), Merelbeke, Belgium
| | - D Thiry
- Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège (ULiège), Liège, Belgium
| | - B Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium.,Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - M Heyndrickx
- Unit Technology and Food, Institute for Agricultural and Fisheries Research (ILVO), Melle, Belgium
| | - J Mainil
- Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège (ULiège), Liège, Belgium
| | - L De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University (UGent), Merelbeke, Belgium
| |
Collapse
|
17
|
Rapp D, Ross CM, Maclean P, Cave VM, Brightwell G. Investigation of On-Farm Transmission Routes for Contamination of Dairy Cows with Top 7 Escherichia coli O-Serogroups. MICROBIAL ECOLOGY 2021; 81:67-77. [PMID: 32561945 DOI: 10.1007/s00248-020-01542-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne bacterial pathogens, with cattle a significant reservoir for human infection. This study evaluated environmental reservoirs, intermediate hosts and key pathways that could drive the presence of Top 7 STEC (O157:H7, O26, O45, O103, O111, O121 and O145) on pasture-based dairy herds, using molecular and culture-based methods. A total of 235 composite environmental samples (including soil, bedding, pasture, stock drinking water, bird droppings and flies and faecal samples of dairy animals) were collected from two dairy farms, with four sampling events on each farm. Molecular detection revealed O26, O45, O103 and O121 as the most common O-serogroups, with the greatest occurrence in dairy animal faeces (> 91%), environments freshly contaminated with faeces (> 73%) and birds and flies (> 71%). STEC (79 isolates) were a minor population within the target O-serogroups in all sample types but were widespread in the farm environment in the summer samplings. Phylogenetic analysis of whole genome sequence data targeting single nucleotide polymorphisms revealed the presence of several clonal strains on a farm; a single STEC clonal strain could be found in several sample types concurrently, indicating the existence of more than one possible route for transmission to dairy animals and a high rate of transmission of STEC between dairy animals and wildlife. Overall, the findings improved the understanding of the ecology of the Top 7 STEC in open farm environments, which is required to develop on-farm intervention strategies controlling these zoonoses.
Collapse
Affiliation(s)
- D Rapp
- Food & Bio-based Products, AgResearch, Hopkirk Research Institute, Palmerston North, 4442, New Zealand.
| | - C M Ross
- Food & Bio-based Products, AgResearch, Hopkirk Research Institute, Palmerston North, 4442, New Zealand
| | - P Maclean
- Bioinformatics & Statistics, AgResearch, Grasslands Research Centre, Palmerston North, 4410, New Zealand
| | - V M Cave
- Bioinformatics & Statistics, AgResearch, Ruakura Agricultural Centre, Hamilton, 3214, New Zealand
| | - G Brightwell
- Food & Bio-based Products, AgResearch, Hopkirk Research Institute, Palmerston North, 4442, New Zealand
- New Zealand Food Safety Science & Research Centre, Hopkirk Research Institute, Palmerston North, 4442, New Zealand
| |
Collapse
|
18
|
Hadi J, Wu S, Brightwell G. Antimicrobial Blue Light versus Pathogenic Bacteria: Mechanism, Application in the Food Industry, Hurdle Technologies and Potential Resistance. Foods 2020; 9:E1895. [PMID: 33353056 PMCID: PMC7767196 DOI: 10.3390/foods9121895] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Blue light primarily exhibits antimicrobial activity through the activation of endogenous photosensitizers, which leads to the formation of reactive oxygen species that attack components of bacterial cells. Current data show that blue light is innocuous on the skin, but may inflict photo-damage to the eyes. Laboratory measurements indicate that antimicrobial blue light has minimal effects on the sensorial and nutritional properties of foods, although future research using human panels is required to ascertain these findings. Food properties also affect the efficacy of antimicrobial blue light, with attenuation or enhancement of the bactericidal activity observed in the presence of absorptive materials (for example, proteins on meats) or photosensitizers (for example, riboflavin in milk), respectively. Blue light can also be coupled with other treatments, such as polyphenols, essential oils and organic acids. While complete resistance to blue light has not been reported, isolated evidence suggests that bacterial tolerance to blue light may occur over time, especially through gene mutations, although at a slower rate than antibiotic resistance. Future studies can aim at characterizing the amount and type of intracellular photosensitizers across bacterial species and at assessing the oxygen-independent mechanism of blue light-for example, the inactivation of spoilage bacteria in vacuum-packed meats.
Collapse
Affiliation(s)
- Joshua Hadi
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
| | - Gale Brightwell
- AgResearch Ltd., Hopkirk Research Institute, Cnr University and Library Road, Massey University, Palmerston North 4442, New Zealand; (J.H.); (S.W.)
- New Zealand Food Safety Science and Research Centre, Tennent Drive, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
19
|
Engelen F, Thiry D, Devleesschauwer B, Mainil J, De Zutter L, Cox E. Occurrence of 'gang of five' Shiga toxin-producing Escherichia coli serogroups on Belgian dairy cattle farms by overshoe sampling. Lett Appl Microbiol 2020; 72:415-419. [PMID: 33277712 DOI: 10.1111/lam.13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens responsible for global outbreaks. This study was conducted to investigate the occurrence of 'gang of five' STEC serogroups (O26, O103, O111, O145, O157) on Belgian dairy cattle farms by overshoe (OVS) sampling, and to evaluate the presence of virulence genes in the obtained isolates. A total of 88 OVS, collected from the pen beddings of 19 Belgian dairy cattle farms, were selectively enriched in mTSBn, followed by immunomagnetic separation and plating onto CT-SMAC for O157 STEC isolation, as well as in Brila broth, followed by a selective acid treatment and plating onto CHROMagarTM STEC and chromIDTM EHEC for non-O157 STEC isolation. Overall, 11 of 19 farms (58%) tested positive for presence of 'gang of five' STEC. O26 STEC was most frequently isolated from OVS (11/88; 12·5%), followed by O157 (10/88; 11·5%), O145 (3/88; 3·5%) and O103 (3/88; 3·5%). Additionally, 35% of the OVS collected from pens housing young cattle 1-24 months of age tested positive for 'gang of five' STEC, indicating that this age category is more likely to harbour STEC compared to new-born and adult cattle. Importantly, half of the obtained 'gang of five' STEC isolates (48%) possessed the eae and stx2 gene, suggesting a high pathogenic potential to humans.
Collapse
Affiliation(s)
- F Engelen
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University (UGent), Merelbeke, Belgium
| | - D Thiry
- Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège (ULiège), Liège, Belgium
| | - B Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium.,Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - J Mainil
- Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège (ULiège), Liège, Belgium
| | - L De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University (UGent), Merelbeke, Belgium
| |
Collapse
|
20
|
Habets A, Engelen F, Duprez JN, Devleesschauwer B, Heyndrickx M, De Zutter L, Thiry D, Cox E, Mainil J. Identification of Shigatoxigenic and Enteropathogenic Escherichia coli Serotypes in Healthy Young Dairy Calves in Belgium by Recto-Anal Mucosal Swabbing. Vet Sci 2020; 7:vetsci7040167. [PMID: 33142734 PMCID: PMC7712179 DOI: 10.3390/vetsci7040167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/04/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC), enteropathogenic E. coli (EPEC), and Shigatoxigenic E. coli (STEC) are carried by healthy adult cattle and even more frequently by young calves in their intestinal tract, especially at the height of the recto-anal junction. The purpose of the present study was to assess the presence of ten EHEC, EPEC, and/or STEC O serotypes (O5, O26, O80, O103, O111, O118, O121, O145, O157, and O165) in calves sampled via recto-anal mucosal swabs (RAMS) at three dairy farms in Belgium. A total of 233 RAMS were collected on three consecutive occasions from healthy <6-month-old Holstein-Friesian calves and submitted to a PCR targeting the eae, stx1, and stx2 genes after non-selective overnight enrichment growth. The 148 RAMS testing positive were streaked on four (semi-)selective agar media; of the 2146 colonies tested, 294 from 69 RAMS were PCR-confirmed as EHEC, EPEC, or STEC. The most frequent virulotype was eae+ EPEC and the second one was stx1+ stx2+ STEC, while the eae+ stx1+ and eae+ stx1+ stx2+ virulotypes were the most frequent among EHEC. The majority of EHEC (73%) tested positive for one of the five O serotypes detected (O26, O103, O111, O145, or O157) vs. 23% of EPEC and 45% of STEC. Similarly, more RAMS (73%) harbored EHEC isolates positive for those five serotypes compared to EPEC (53%) or STEC (52%). This survey confirms that (i) healthy young dairy calves are asymptomatic carriers of EHEC and EPEC in Belgium; (ii) the carrier state rates, the virulotypes, and the identified O serotypes differ between farms and in time; and (iii) a majority of EPEC belong to so far unidentified O serotypes.
Collapse
Affiliation(s)
- Audrey Habets
- Laboratory of Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège, Quartier Vallée II, Avenue de Cureghem 6, B-4000 Liège, Belgium; (A.H.); (J.-N.D.); (J.M.)
| | - Frederik Engelen
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium; (F.E.); (E.C.)
| | - Jean-Noël Duprez
- Laboratory of Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège, Quartier Vallée II, Avenue de Cureghem 6, B-4000 Liège, Belgium; (A.H.); (J.-N.D.); (J.M.)
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Rue Juliette Wytsmanstraat 14, B-1050 Brussels, Belgium;
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium;
| | - Marc Heyndrickx
- Institute for Agricultural and Fisheries Research, Unit Technology and Food, Brusselsesteenweg 370, B-9090 Melle, Belgium;
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Lieven De Zutter
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium;
| | - Damien Thiry
- Laboratory of Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège, Quartier Vallée II, Avenue de Cureghem 6, B-4000 Liège, Belgium; (A.H.); (J.-N.D.); (J.M.)
- Correspondence:
| | - Eric Cox
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium; (F.E.); (E.C.)
| | - Jacques Mainil
- Laboratory of Bacteriology, Department of Infectious Diseases, Institute for Fundamental and Applied Research in Animals and Health (FARAH) and Faculty of Veterinary Medicine, University of Liège, Quartier Vallée II, Avenue de Cureghem 6, B-4000 Liège, Belgium; (A.H.); (J.-N.D.); (J.M.)
| |
Collapse
|
21
|
Kang S, Ravensdale JT, Coorey R, Dykes GA, Barlow RS. Analysis of Bacterial Diversity in Relation to the Presence of the Top 7 Shiga Toxin-Producing Escherichia coli throughout Australian Beef Abattoirs. J Food Prot 2020; 83:1812-1821. [PMID: 32502254 DOI: 10.4315/jfp-20-109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/02/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT There is increasing evidence that diversity changes in bacterial communities of beef cattle correlate to the presence of Shiga toxin-producing Escherichia coli (STEC). However, studies that found an association between STEC and bacterial diversity have been focused on preslaughter stages in the beef supply chain. This study was designed to test a hypothesis that there are no differences in bacterial diversity between samples with and those without the presence of the top 7 STEC (O26, O45, O103, O111, O121, O145, and O157) throughout processing in an integrated (abattoir A) and a fragmented (abattoir B) Australian beef abattoir. Slaughter and boning room surface samples from each abattoir were analyzed using 16S rRNA amplicon sequencing and tested for the top 7 STEC following the Food Safety and Inspection Service protocol. Potential positives through slaughter were similar between the abattoirs (64 to 81%). However, abattoir B had substantially reduced potential positives in the boning room compared with abattoir A (abattoir A: 23 and 48%; abattoir B: 2 and 7%). Alpha diversity between the sample groups was not significantly different (P > 0.05) regardless of different STEC markers. Nonmetric multidimensional scaling of slaughter samples showed that the bacterial composition in fecal and hide samples shared the least similarity with the communities in carcass and environmental samples. Surface samples from slaughter (carcass and environmental) and boning (carcass, beef trim, and environmental) all appeared randomly plotted on the scale. This indicated that the STEC presence also did not have a significant effect (P > 0.05) on beta diversity. Although presence of STEC appeared to correlate with changes in diversity of fecal and hide bacterial communities in previous studies, it did not appear to have the same effect on other samples throughout processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Sanga Kang
- School of Public Health, Queensland, Australia.,CSIRO Agriculture and Food, Coopers Plains, Queensland, Australia.,(ORCID: https://orcid.org/0000-0002-9074-5043 [S.K.])
| | | | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | | | - Robert S Barlow
- CSIRO Agriculture and Food, Coopers Plains, Queensland, Australia
| |
Collapse
|
22
|
Collis RM, Biggs PJ, Midwinter AC, Browne AS, Wilkinson DA, Irshad H, French NP, Brightwell G, Cookson AL. Genomic epidemiology and carbon metabolism of Escherichia coli serogroup O145 reflect contrasting phylogenies. PLoS One 2020; 15:e0235066. [PMID: 32584859 PMCID: PMC7316241 DOI: 10.1371/journal.pone.0235066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a leading cause of foodborne outbreaks of human disease, but they reside harmlessly as an asymptomatic commensal in the ruminant gut. STEC serogroup O145 are difficult to isolate as routine diagnostic methods are unable to distinguish non-O157 serogroups due to their heterogeneous metabolic characteristics, resulting in under-reporting which is likely to conceal their true prevalence. In light of these deficiencies, the purpose of this study was a twofold approach to investigate enhanced STEC O145 diagnostic culture-based methods: firstly, to use a genomic epidemiology approach to understand the genetic diversity and population structure of serogroup O145 at both a local (New Zealand) (n = 47) and global scale (n = 75) and, secondly, to identify metabolic characteristics that will help the development of a differential media for this serogroup. Analysis of a subset of E. coli serogroup O145 strains demonstrated considerable diversity in carbon utilisation, which varied in association with eae subtype and sequence type. Several carbon substrates, such as D-serine and D-malic acid, were utilised by the majority of serogroup O145 strains, which, when coupled with current molecular and culture-based methods, could aid in the identification of presumptive E. coli serogroup O145 isolates. These carbon substrates warrant subsequent testing with additional serogroup O145 strains and non-O145 strains. Serogroup O145 strains displayed extensive genetic heterogeneity that was correlated with sequence type and eae subtype, suggesting these genetic markers are good indicators for distinct E. coli phylogenetic lineages. Pangenome analysis identified a core of 3,036 genes and an open pangenome of >14,000 genes, which is consistent with the identification of distinct phylogenetic lineages. Overall, this study highlighted the phenotypic and genotypic heterogeneity within E. coli serogroup O145, suggesting that the development of a differential media targeting this serogroup will be challenging.
Collapse
Affiliation(s)
- Rose M. Collis
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - A. Springer Browne
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - David A. Wilkinson
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Hamid Irshad
- Animal Health Programme, National Agricultural Research Centre, Islamabad, Pakistan
| | - Nigel P. French
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Veterinary Public Health Laboratory (EpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- * E-mail:
| |
Collapse
|
23
|
McAuliffe GN, Tse F, Qiao H, Moore S, Bissessor L, Thompson B, McLaughlin V, Upton A, Taylor SL. Isolate independent molecular typing improves the yield of O typing of infections due to Shiga toxin producing Escherichia coli. Pathology 2020; 52:460-465. [PMID: 32317174 DOI: 10.1016/j.pathol.2020.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/05/2020] [Accepted: 02/21/2020] [Indexed: 11/19/2022]
Abstract
Molecular screening has increased detection of Shiga-toxin producing Escherichia coli (STEC). However, it is difficult to isolate the organism for epidemiological typing. We applied a molecular method for direct detection of nine O types from 110 stx positive faeces samples and compared the results with conventional isolate based methods. Using conventional methods 55/110 (50%) samples were O typed. Using the molecular method, 72/110 (65%) were O typed, including 23/38 (61%) culture negative samples. Combining both techniques typed 88/110 (80%) of samples. Molecular typing increased detection of O128 (2-25%, p<0.001), O26 (11-16%) O45 (0-6%) and O103 (1-6%) infections. Molecular typing of STEC direct from faecal samples improved O type yield; risk of bias in epidemiological and surveillance activities may be reduced by inclusion of culture independent typing methods.
Collapse
Affiliation(s)
| | - Fifi Tse
- Department of Microbiology, Middlemore Hospital, Auckland, New Zealand
| | - Helen Qiao
- Department of Microbiology, Middlemore Hospital, Auckland, New Zealand
| | - Sharon Moore
- Department of Microbiology, Labtests, Auckland, New Zealand
| | | | - Bryn Thompson
- Auckland Regional Public Health Service, Auckland, New Zealand
| | | | - Arlo Upton
- Department of Microbiology, Labtests, Auckland, New Zealand
| | - Susan L Taylor
- Department of Microbiology, Middlemore Hospital, Auckland, New Zealand
| |
Collapse
|
24
|
Dixon A, Cernicchiaro N, Amachawadi RG, Shi X, Cull CA, Renter DG. Longitudinal Characterization of Prevalence and Concentration of Shiga Toxin-Producing Escherichia coli Serogroups in Feces of Individual Feedlot Cattle. Foodborne Pathog Dis 2020; 17:631-639. [PMID: 32191498 DOI: 10.1089/fpd.2019.2777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to quantify the frequency, distribution, and variability of fecal shedding and super-shedding of Shiga toxin-producing Escherichia coli (STEC) serogroups O26, O45, O103, O111, O121, O145, and O157 in feedlot cattle over time. A total of 750 fecal grab samples were collected over a 5-week period (June-July 2017) from 150 cattle housed in 10 pens at a commercial feedlot operation. Samples were subjected to culture-based methods and real-time quantitative polymerase chain reaction for STEC detection and quantification. Cumulative animal-level prevalence estimates were 9.5%, 5.2%, and 15.8% for STEC O157, non-O157 STEC serogroups only (STEC-6), and for all STEC serogroups tested (STEC-7), respectively, with the prevalence of STEC O157 and STEC-7 significantly differing between weeks (p < 0.01). Most of the variability in fecal shedding for STEC O157, STEC-6, and STEC-7 was between pens, rather than between cattle. Over the 5-week period, 10 animals (6.7%) persistently shed STEC non-O157 over 3 or more consecutive weeks, whereas 2 animals (1.3%) intermittently shed STEC non-O157 on nonconsecutive weeks. Fifteen animals (10.0%) shed multiple STEC serogroups within the same fecal sample and five animals (3.3%) shed multiple serogroups at super-shedding levels, higher than 104 CFU (colony-forming units)/g, in the same sample. The presence of a super-shedder in a pen was significantly associated with a greater within pen-level prevalence of STEC-6 (p = 0.01). This study gives further insights into intermittent and persistent shedding and super-shedding patterns of STEC serogroups in individual feedlot cattle, which can enable the development and effective application of preharvest and periharvest interventions, as well as surveillance strategies, for these pathogens.
Collapse
Affiliation(s)
- Andrea Dixon
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Raghavendra G Amachawadi
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Charley A Cull
- Midwest Veterinary Services, Inc., Oakland, Nebraska, USA
| | - David G Renter
- Center for Outcomes Research and Epidemiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
25
|
Zhang Y, Liao YT, Salvador A, Sun X, Wu VCH. Prediction, Diversity, and Genomic Analysis of Temperate Phages Induced From Shiga Toxin-Producing Escherichia coli Strains. Front Microbiol 2020; 10:3093. [PMID: 32038541 PMCID: PMC6986202 DOI: 10.3389/fmicb.2019.03093] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a notorious foodborne pathogen containing stx genes located in the sequence region of Shiga toxin (Stx) prophages. Stx prophages, as one of the mobile elements, are involved in the transfer of virulence genes to other strains. However, little is known about the diversity of prophages among STEC strains. The objectives of this study were to predict various prophages from different STEC genomes and to evaluate the effect of different stress factors on Stx prophage induction. Forty bacterial whole-genome sequences of STEC strains obtained from National Center for Biotechnology Information (NCBI) were used for the prophage prediction using PHASTER webserver. Eight of the STEC strains from different serotypes were subsequently selected to quantify the induction of Stx prophages by various treatments, including antibiotics, temperature, irradiation, and antimicrobial agents. After induction, Stx1-converting phage Lys8385Vzw and Stx2-converting phage Lys12581Vzw were isolated and further confirmed for the presence of stx genes using conventional PCR. Phage morphology was observed by transmission electron microscopy. The prediction results showed an average of 8–22 prophages, with one or more encoding stx, were predicted from each STEC genome obtained in this study. Additionally, the phylogenetic analysis revealed high genetic diversity of Stx prophages among the 40 STEC genomes. However, the sequences of Stx prophages in the genomes of STEC O45, O111, and O121 strains, in general, shared higher genetic homology than those in other serotypes. Interestingly, most STEC strains with two or more stx genes carried at least one each of Stx1 and Stx2 prophages. The induction results indicated EDTA and UV were the most effective inducers of Stx1 and Stx2 prophages of the 8 selected STECs, respectively. Additionally, both Stx-converting phages could infect non-pathogenic E. coli (WG5, DH5α, and MG1655) and form new lysogens. The findings of this study confirm that Stx prophages can be induced by environmental stress, such as exposure to solar radiation, and lysogenize other commensal E. coli strains.
Collapse
Affiliation(s)
- Yujie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Yen-Te Liao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
26
|
Glaize A, Gutierrez-Rodriguez E, Hanning I, Díaz-Sánchez S, Gunter C, van Vliet AHM, Watson W, Thakur S. Transmission of antimicrobial resistant non-O157 Escherichia coli at the interface of animal-fresh produce in sustainable farming environments. Int J Food Microbiol 2019; 319:108472. [PMID: 31901751 DOI: 10.1016/j.ijfoodmicro.2019.108472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/24/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
Abstract
The interaction of typical host adapted enteric bacterial pathogens with fresh produce grown in fields is complex. These interactions can be more pronounced in co-managed or sustainable farms where animal operations are, by design, close to fresh produce, and growers frequently move between the two production environments. The primary objectives of this study were to 1) determine the transmission of STEC or enteric pathogens from small and large animal herds or operations to fresh produce on sustainable farms in TN and NC, 2) identify the possible sources that impact transmission of AMR E. coli, specifically STEC on these systems, and 3) WGS to characterize recovered E. coli from these sources. Samples were collected from raw and composted manure, environment, and produce sources. The serotype, virulence, and genotypic resistance profile were determined using the assembled genome sequences sequenced by Illumina technology. Broth microdilution was used to determine the antimicrobial susceptibility of each isolate against a panel of fourteen antimicrobials. The prevalence of E. coli increased during the summer season for all sources tested. ParSNP trees generated demonstrated that the transmission of AMR E. coli is occurring between animal feeding operations and fresh produce. Ten isolates were identified as serotype O45, a serotype that is associated with the "Big Six" group that is frequently linked with foodborne outbreaks caused by non-O157 E. coli. However, these isolates did not possess the stx gene. The highest frequency of resistance was detected against streptomycin (n = 225), ampicillin (n = 190) and sulfisoxazole FIS (n = 140). A total of 35 (13.7%) isolates from two TN farms were positive for the blaCMY (n = 5) and blaTEM (n = 32) genes. The results of this study show the potential of AMR E. coli transmission between animal feeding operations and fresh produce, and more studies are recommended to study this interaction and prevent dissemination in sustainable farming systems.
Collapse
Affiliation(s)
- Ayanna Glaize
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Eduardo Gutierrez-Rodriguez
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Irene Hanning
- College of Genome Sciences and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Sandra Díaz-Sánchez
- College of Genome Sciences and Technology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chris Gunter
- Extension Vegetable Production Specialist, Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7AL, UK
| | - Wes Watson
- Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Siddhartha Thakur
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
27
|
Cui Z, Guo X, Feng T, Li L. Exploring the whole standard operating procedure for phage therapy in clinical practice. J Transl Med 2019; 17:373. [PMID: 31727099 PMCID: PMC6857313 DOI: 10.1186/s12967-019-2120-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/31/2019] [Indexed: 12/23/2022] Open
Abstract
We have entered the post-antibiotic era. Phage therapy has recently been given renewed attention because bacteriophages are easily available and can kill bacteria. Many reports have demonstrated successful phage treatment of bacterial infection, whereas some studies have shown that phage therapy is not as effective as expected. In general, establishment of a standard operating procedure will ensure the success of phage therapy. In this paper, the whole operating procedure for phage therapy in clinical practice is explored and analyzed to comprehensively understand the success of using phage for the treatment of bacterial infectious disease in the future. The procedure includes the following: enrollment of patients for phage therapy; establishment of phage libraries; pathogenic bacterial isolation and identification; screening for effective phages against pathogenic bacteria; phage formulation preparation; phage preparation administration strategy and route; monitoring the efficacy of phage therapy; and detection of the emergence of phage-resistant strains. Finally, we outline the whole standard operating procedure for phage therapy in clinical practice. It is believed that phage therapy will be used successfully, especially in personalized medicine for the treatment of bacterial infectious diseases. Hopefully, this procedure will provide support for the entry of phage therapy into the clinic as soon as possible.
Collapse
Affiliation(s)
- Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, 6th Floor, No. 3 Building, 100# Haining Road, Shanghai, 200080, China. .,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, PA, 19104, USA.
| | - Xiaokui Guo
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tingting Feng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai, 200080, China
| | - Li Li
- Department of Laboratory Medicine, Shanghai General Hospital, 6th Floor, No. 3 Building, 100# Haining Road, Shanghai, 200080, China.
| |
Collapse
|
28
|
Browne AS, Biggs PJ, Wilkinson DA, Cookson AL, Midwinter AC, Bloomfield SJ, Hranac CR, Rogers LE, Marshall JC, Benschop J, Withers H, Hathaway S, George T, Jaros P, Irshad H, Fong Y, Dufour M, Karki N, Winkleman T, French NP. Use of Genomics to Investigate Historical Importation of Shiga Toxin-Producing Escherichia coli Serogroup O26 and Nontoxigenic Variants into New Zealand. Emerg Infect Dis 2019; 25:489-500. [PMID: 30789138 PMCID: PMC6390770 DOI: 10.3201/eid2503.180899] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Shiga toxin-producing Escherichia coli serogroup O26 is an important public health pathogen. Phylogenetic bacterial lineages in a country can be associated with the level and timing of international imports of live cattle, the main reservoir. We sequenced the genomes of 152 E. coli O26 isolates from New Zealand and compared them with 252 E. coli O26 genomes from 14 other countries. Gene variation among isolates from humans, animals, and food was strongly associated with country of origin and stx toxin profile but not isolation source. Time of origin estimates indicate serogroup O26 sequence type 21 was introduced at least 3 times into New Zealand from the 1920s to the 1980s, whereas nonvirulent O26 sequence type 29 strains were introduced during the early 2000s. New Zealand's remarkably fewer introductions of Shiga toxin-producing Escherichia coli O26 compared with other countries (such as Japan) might be related to patterns of trade in live cattle.
Collapse
|