1
|
Tekedar HC, Patel F, Blom J, Griffin MJ, Waldbieser GC, Kumru S, Abdelhamed H, Dharan V, Hanson LA, Lawrence ML. Tad pili contribute to the virulence and biofilm formation of virulent Aeromonas hydrophila. Front Cell Infect Microbiol 2024; 14:1425624. [PMID: 39145307 PMCID: PMC11322086 DOI: 10.3389/fcimb.2024.1425624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/16/2024] Open
Abstract
Type IV pili (T4P) are versatile proteinaceous protrusions that mediate diverse bacterial processes, including adhesion, motility, and biofilm formation. Aeromonas hydrophila, a Gram-negative facultative anaerobe, causes disease in a wide range of hosts. Previously, we reported the presence of a unique Type IV class C pilus, known as tight adherence (Tad), in virulent Aeromonas hydrophila (vAh). In the present study, we sought to functionalize the role of Tad pili in the pathogenicity of A. hydrophila ML09-119. Through a comprehensive comparative genomics analysis of 170 A. hydrophila genomes, the conserved presence of the Tad operon in vAh isolates was confirmed, suggesting its potential contribution to pathogenicity. Herein, the entire Tad operon was knocked out from A. hydrophila ML09-119 to elucidate its specific role in A. hydrophila virulence. The absence of the Tad operon did not affect growth kinetics but significantly reduced virulence in catfish fingerlings, highlighting the essential role of the Tad operon during infection. Biofilm formation of A. hydrophila ML09-119 was significantly decreased in the Tad operon deletant. Absence of the Tad operon had no effect on sensitivity to other environmental stressors, including hydrogen peroxide, osmolarity, alkalinity, and temperature; however, it was more sensitive to low pH conditions. Scanning electron microscopy revealed that the Tad mutant had a rougher surface structure during log phase growth than the wildtype strain, indicating the absence of Tad impacts the outer surface of vAh during cell division, of which the biological consequences are unknown. These findings highlight the role of Tad in vAh pathogenesis and biofilm formation, signifying the importance of T4P in bacterial infections.
Collapse
Affiliation(s)
- Hasan C. Tekedar
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Fenny Patel
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Jochen Blom
- Bioinformatics & Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Matt J. Griffin
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
- Thad Cochran National Warmwater Aquaculture Center, Stoneville, MS, United States
| | | | - Salih Kumru
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Vandana Dharan
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Larry A. Hanson
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Mark L. Lawrence
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
2
|
Bartie KL, Desbois AP. Aeromonas dhakensis: A Zoonotic Bacterium of Increasing Importance in Aquaculture. Pathogens 2024; 13:465. [PMID: 38921763 PMCID: PMC11207067 DOI: 10.3390/pathogens13060465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Aeromonas dhakensis is increasingly recognised to be an important pathogen responsible for disease losses in warm-water aquaculture and, similar to several other Aeromonas species, it can infect humans. Knowledge of A. dhakensis is accumulating, but this species remains relatively under-investigated compared to its close relative, Aeromonas hydrophila. The significance of A. dhakensis may have been overlooked in disease events of aquatic animals due to issues with reliable identification. Critical to appreciating the importance of this pathogen is the application of dependable molecular tools that enable accurate identification and discrimination from A. hydrophila and other motile aeromonads. This review aims to synthesise the key literature on A. dhakensis, particularly with relevance to aquaculture, including knowledge of the bacterium derived from disease case studies in aquatic hosts. Identification methods and strain phylogeny are discussed, with accurate detection important for prompt diagnosis and for distinguishing strains with heightened virulence. Increasing evidence suggests that A. dhakensis may be more virulent than A. hydrophila and correct identification is required to determine the zoonotic risks posed, which includes concerns for antibiotic-resistant strains. This review provides an impetus to improve species identification in the future and screen strain collections of presumptive Aeromonas spp. retrospectively to reveal the true prevalence and impact of A. dhakensis in aquaculture, the environment, and healthcare settings.
Collapse
Affiliation(s)
- Kerry L. Bartie
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4LA, UK;
| | - Andrew P. Desbois
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
3
|
Guo S, Wan Q, Xu M, Chen M, Chen Z. Transcriptome analysis of host anti-Aeromonas hydrophila infection revealed the pathogenicity of A. hydrophila to American eels (Anguilla rostrata). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109504. [PMID: 38508539 DOI: 10.1016/j.fsi.2024.109504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Aeromonas hydrophila is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-A. hydrophila infection remains uncertain. In this study, LD50 of A. hydrophila to American eels was determined and bacterial load in the liver and kidney of eels was assessed post 2.56 doses of LD50 of A. hydrophila infection. The results showed that the LD50 of A. hydrophila to American eels was determined to be 3.9 × 105 cfu/g body weight (7.8 × 106 cfu/fish), and the bacterial load peaked at 36 h post the infection (hpi) in the liver. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes. Additionally, the results of qRT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 10 hub DEGs and 7 encoded proteins play essential role to the anti-A. hydrophila infection in American eels. Pathogenicity of A. hydrophila to American eels and RNA-seq of host anti-A. hydrophila infection were firstly reported in this study, shedding new light on our understanding of the A. hydrophila pathogenesis and the host immune response to the A. hydrophila infection strategies in gene transcript.
Collapse
Affiliation(s)
- Songlin Guo
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China; State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, China.
| | - Qijuan Wan
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Ming Xu
- Fisheries College, Jimei University, China
| | - Minxia Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| | - Zihao Chen
- Fisheries College, Jimei University, China; Engineering Research Center of the Modern Industry Technology for Eel. Ministry of Education of PR China, Xiamen, 361021, China
| |
Collapse
|
4
|
Klemm EJ, Nisar MI, Bawn M, Nasrin D, Qamar FN, Page A, Qadri F, Shakoor S, Zaidi AKM, Levine MM, Dougan G, Kingsley RA. Genomic analysis of clinical Aeromonas isolates reveals genetic diversity but little evidence of genetic determinants for diarrhoeal disease. Microb Genom 2024; 10:001211. [PMID: 38451244 PMCID: PMC10999740 DOI: 10.1099/mgen.0.001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Aeromonas spp. are associated with a number of infectious syndromes in humans including gastroenteritis and dysentery. Our understanding of the genetic diversity, population structure, virulence determinants and antimicrobial resistance of the genus has been limited by a lack of sequenced genomes linked to metadata. We performed a comprehensive analysis of the whole genome sequences of 447 Aeromonas isolates from children in Karachi, Pakistan, with moderate-to-severe diarrhoea (MSD) and from matched controls without diarrhoea that were collected as part of the Global Enteric Multicenter Study (GEMS). Human-associated Aeromonas isolates exhibited high species diversity and extensive antimicrobial and virulence gene content. Aeromonas caviae, A. dhankensis, A. veronii and A. enteropelogenes were all significantly associated with MSD in at least one cohort group. The maf2 and lafT genes that encode components of polar and lateral flagella, respectively, exhibited a weak association with isolates originating from cases of gastroenteritis.
Collapse
Affiliation(s)
| | - Muhammad Imran Nisar
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Matt Bawn
- Quadram Institute Bioscience, Norwich, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Dilruba Nasrin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Farah Naz Qamar
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | | | - Farheen Qadri
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sadia Shakoor
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Anita KM Zaidi
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Myron M. Levine
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, England, UK
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
5
|
Neil B, Cheney GL, Rosenzweig JA, Sha J, Chopra AK. Antimicrobial resistance in aeromonads and new therapies targeting quorum sensing. Appl Microbiol Biotechnol 2024; 108:205. [PMID: 38349402 PMCID: PMC10864486 DOI: 10.1007/s00253-024-13055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Aeromonas species (spp.) are well-known fish pathogens, several of which have been recognized as emerging human pathogens. The organism is capable of causing a wide spectrum of diseases in humans, ranging from gastroenteritis, wound infections, and septicemia to devastating necrotizing fasciitis. The systemic form of infection is often fatal, particularly in patients with underlying chronic diseases. Indeed, recent trends demonstrate rising numbers of hospital-acquired Aeromonas infections, especially in immuno-compromised individuals. Additionally, Aeromonas-associated antibiotic resistance is an increasing challenge in combating both fish and human infections. The acquisition of antibiotic resistance is related to Aeromonas' innate transformative properties including its ability to share plasmids and integron-related gene cassettes between species and with the environment. As a result, alternatives to antibiotic treatments are desperately needed. In that vein, many treatments have been proposed and studied extensively in the fish-farming industry, including treatments that target Aeromonas quorum sensing. In this review, we discuss current strategies targeting quorum sensing inhibition and propose that such studies empower the development of novel chemotherapeutic approaches to combat drug-resistant Aeromonas spp. infections in humans. KEY POINTS: • Aeromonas notoriously acquires and maintains antimicrobial resistance, making treatment options limited. • Quorum sensing is an essential virulence mechanism in Aeromonas infections. • Inhibiting quorum sensing can be an effective strategy in combating Aeromonas infections in animals and humans.
Collapse
Affiliation(s)
- Blake Neil
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Gabrielle L Cheney
- John Sealy School of Medicine, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Jason A Rosenzweig
- Department of Biology, Texas Southern University, Houston, TX, 77004, USA
| | - Jian Sha
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA.
| |
Collapse
|
6
|
Cao H, Liang S, Zhang C, Liu B, Fei Y. Molecular Profiling of a Multi-Strain Hypervirulent Klebsiella pneumoniae Infection Within a Single Patient. Infect Drug Resist 2023; 16:1367-1380. [PMID: 36937147 PMCID: PMC10017834 DOI: 10.2147/idr.s404202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Background The rising prevalence of infections caused by carbapenem-resistant and hypervirulent Klebsiella pneumoniae (CR-hvKP) has outpaced our understanding of their evolutionary diversity. By straining the antimicrobial options and constant horizontal gene transfer of various pathogenic elements, CR-hvKP poses a global health threat. Methods Six KP isolates (KP1~KP6) from urine, sputum and groin infection secretion of a single patient were characterized phenotypically and genotypically. The antimicrobial susceptibility, carbapenemase production, hypermucoviscosity, serum resistance, virulence factors, MLST and serotypes were profiled. Genomic variations were identified by whole-genome sequencing and the phylogenetic differentiation was analyzed by Enterobacterial repetitive intergenic consensus (ERIC)-PCR. Results All KP strains were multi-drug resistant. Four of them (KP1, KP3, KP5 and KP6) belonged to ST11-K64, with high genetic closeness (relatedness coefficient above 0.96), sharing most resistance and virulence genes. Compared with KP1, the later isolates KP3, KP5 and KP6 acquired bla KPC-1 and lost bla SHV-182 genes. KP2 and KP4 had the same clonal origin of ST35-K16 (relatedness coefficient 0.98), containing almost identical genes for resistance and virulence. They were non-mucoid and carried bla NDM-5 gene. Conclusion A co-infection with two types of CR-hvKP affiliated with different clades within a single patient amplified the treatment difficulties. In addition to source control and epidemiological surveillance, investigation of the in-host interactions between CR-hvKP variants may provide valuable treatment solutions.
Collapse
Affiliation(s)
- Huijun Cao
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Shiwei Liang
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Chenchen Zhang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Bao Liu
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
| | - Ying Fei
- Centre for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, People’s Republic of China
- Correspondence: Ying Fei, Email
| |
Collapse
|
7
|
Guerra RM, Maleno FD, Figueras MJ, Pujol-Bajador I, Fernández-Bravo A. Potential Pathogenicity of Aeromonas spp. Recovered in River Water, Soil, and Vegetation from a Natural Recreational Area. Pathogens 2022; 11:1382. [PMID: 36422633 PMCID: PMC9696040 DOI: 10.3390/pathogens11111382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
The genus Aeromonas is widely distributed in aquatic environments and is recognized as a potential human pathogen. Some Aeromonas species are able to cause a wide spectrum of diseases, mainly gastroenteritis, skin and soft-tissue infections, bacteremia, and sepsis. Currently, untreated river water is used for irrigation and recreational purposes. In this study, the Aeromonas spp. present in a river recreational environment was investigated by quantifying its presence in water, soil, and vegetation using three techniques: qPCR, plate counting in selective ADA medium, and Most Probable Number, in parallel. The presence of clones in the three types of samples was elucidated through genotyping with the ERIC-PCR technique, whereas the identification of the isolated Aeromonas was carried out by sequencing the rpoD gene. Finally, the pathogenic potential of some of the strains was explored by studying the presence and expression of virulence genes characteristic of the genus, their antimicrobial susceptibility profile, as well as the quantification of their cell damage and intracellular survival in an in vitro macrophages infection model. The results showed the presence of Aeromonas in all samples with the three quantification methods, with Aeromonas popoffii being the most prevalent species. The presence of strains with the same genotype (ERIC-PCR) was also confirmed in different samples. Some of the strains showed a high level of cell damage and intracellular bacterial survival, as well as the presence of various virulence factors. Furthermore, these strains showed resistance to some of the antibiotics tested and used therapeutically in both humans and animals. These results indicate that the presence of Aeromonas in this environment may represent a biosanitary risk that could be a public health problem.
Collapse
|
8
|
Van der Jeugt F, Maertens R, Steyaert A, Verschaffelt P, De Tender C, Dawyndt P, Mesuere B. UMGAP: the Unipept MetaGenomics Analysis Pipeline. BMC Genomics 2022; 23:433. [PMID: 35689184 PMCID: PMC9188040 DOI: 10.1186/s12864-022-08542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background Shotgun metagenomics yields ever richer and larger data volumes on the complex communities living in diverse environments. Extracting deep insights from the raw reads heavily depends on the availability of fast, accurate and user-friendly biodiversity analysis tools. Results Because environmental samples may contain strains and species that are not covered in reference databases and because protein sequences are more conserved than the genes encoding them, we explore the alternative route of taxonomic profiling based on protein coding regions translated from the shotgun metagenomics reads, instead of directly processing the DNA reads. We therefore developed the Unipept MetaGenomics Analysis Pipeline (UMGAP), a highly versatile suite of open source tools that are implemented in Rust and support parallelization to achieve optimal performance. Six preconfigured pipelines with different performance trade-offs were carefully selected, and benchmarked against a selection of state-of-the-art shotgun metagenomics taxonomic profiling tools. Conclusions UMGAP’s protein space detour for taxonomic profiling makes it competitive with state-of-the-art shotgun metagenomics tools. Despite our design choices of an extra protein translation step, a broad spectrum index that can identify both archaea, bacteria, eukaryotes and viruses, and a highly configurable non-monolithic design, UMGAP achieves low runtime, manageable memory footprint and high accuracy. Its interactive visualizations allow for easy exploration and comparison of complex communities. Supplementary Information The online version contains supplementary material available at (10.1186/s12864-022-08542-4).
Collapse
Affiliation(s)
- Felix Van der Jeugt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.
| | - Rien Maertens
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Aranka Steyaert
- Department of Information Technology, IDLab, imec, Ghent, Belgium
| | - Pieter Verschaffelt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Caroline De Tender
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Ghent, Belgium
| | - Peter Dawyndt
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Bart Mesuere
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
9
|
da Silva Filho AC, Marchaukoski JN, Raittz RT, De Pierri CR, de Jesus Soares Machado D, Fadel-Picheth CMT, Picheth G. Prediction and Analysis in silico of Genomic Islands in Aeromonas hydrophila. Front Microbiol 2021; 12:769380. [PMID: 34912316 PMCID: PMC8667584 DOI: 10.3389/fmicb.2021.769380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Aeromonas are Gram-negative rods widely distributed in the environment. They can cause severe infections in fish related to financial losses in the fish industry, and are considered opportunistic pathogens of humans causing infections ranging from diarrhea to septicemia. The objective of this study was to determine in silico the contribution of genomic islands to A. hydrophila. The complete genomes of 17 A. hydrophila isolates, which were separated into two phylogenetic groups, were analyzed using a genomic island (GI) predictor. The number of predicted GIs and their characteristics varied among strains. Strains from group 1, which contains mainly fish pathogens, generally have a higher number of predicted GIs, and with larger size, than strains from group 2 constituted by strains recovered from distinct sources. Only a few predicted GIs were shared among them and contained mostly genes from the core genome. Features related to virulence, metabolism, and resistance were found in the predicted GIs, but strains varied in relation to their gene content. In strains from group 1, O Ag biosynthesis clusters OX1 and OX6 were identified, while strains from group 2 each had unique clusters. Metabolic pathways for myo-inositol, L-fucose, sialic acid, and a cluster encoding QueDEC, tgtA5, and proteins related to DNA metabolism were identified in strains of group 1, which share a high number of predicted GIs. No distinctive features of group 2 strains were identified in their predicted GIs, which are more diverse and possibly better represent GIs in this species. However, some strains have several resistance attributes encoded by their predicted GIs. Several predicted GIs encode hypothetical proteins and phage proteins whose functions have not been identified but may contribute to Aeromonas fitness. In summary, features with functions identified on predicted GIs may confer advantages to host colonization and competitiveness in the environment.
Collapse
Affiliation(s)
| | - Jeroniza Nunes Marchaukoski
- Department of Bioinformatics, Professional and Technical Education Sector, Federal University of Parana, Curitiba, Brazil
| | - Roberto Tadeu Raittz
- Department of Bioinformatics, Professional and Technical Education Sector, Federal University of Parana, Curitiba, Brazil
| | | | - Diogo de Jesus Soares Machado
- Department of Bioinformatics, Professional and Technical Education Sector, Federal University of Parana, Curitiba, Brazil
| | | | - Geraldo Picheth
- Department of Clinical Analysis, Federal University of Parana, Curitiba, Brazil
| |
Collapse
|
10
|
Duarte J, Pereira C, Costa P, Almeida A. Bacteriophages with Potential to Inactivate Aeromonas hydrophila in Cockles: In Vitro and In Vivo Preliminary Studies. Antibiotics (Basel) 2021; 10:antibiotics10060710. [PMID: 34204770 PMCID: PMC8231581 DOI: 10.3390/antibiotics10060710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023] Open
Abstract
The recurrent emergence of infection outbreaks associated with shellfish consumption is of extreme importance for public health. The present study investigated the potential application of phages AH-1, AH-4, and AH-5 to inactivate Aeromonas hydrophila, a causative agent of infections in humans associated with bivalve shellfish consumption. The inactivation of A. hydrophila was assessed in vitro, using a liquid culture medium, and in vivo, using artificially contaminated cockles with A. hydrophila ATCC 7966. In the in vitro experiments, all phages were effective against A. hydrophila, but phage AH-1 (with a maximum reduction of 7.7 log colonies forming units CFU/mL) was more effective than phages AH-4 and AH-5 (with reductions of 4.9 and 4.5 log CFU/mL, respectively). The cocktails AH-1/AH-4, AH-1/AH-5, AH-4/AH-5, and AH-1/AH-4/AH-5 were slightly more effective than the single phage suspensions. The phages presented a low emergence rate of phage-resistant mutants. When artificially contaminated cockles were treated in static seawater with phage AH-1, around 44% of the added A. hydrophila (1.0 log CFU/g) was inactivated. The results of this study suggest that phage therapy can be an effective alternative to control human pathogenic bacteria during depuration.
Collapse
|
11
|
Moriel B, de Campos Prediger K, de Souza EM, Pedrosa FO, Fadel-Picheth CMT, Cruz LM. In silico comparative analysis of Aeromonas Type VI Secretion System. Braz J Microbiol 2021; 52:229-243. [PMID: 33410103 DOI: 10.1007/s42770-020-00405-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
Aeromonas are bacteria broadly spread in the environment, particularly in aquatic habitats and can induce human infections. Several virulence factors have been described associated with bacterial pathogenicity, such as the Type VI Secretion System (T6SS). This system translocates effector proteins into target cells through a bacteriophage-like contractile structure encoded by tss genes. Here, a total of 446 Aeromonas genome sequences were screened for T6SS and the proteins subjected to in silico analysis. The T6SS-encoding locus was detected in 243 genomes and its genes are encoded in a cluster containing 13 core and 5 accessory genes, in highly conserved synteny. The amino acid residues identity of T6SS proteins ranges from 78 to 98.8%. In most strains, a pair of tssD and tssI is located upstream the cluster (tssD-2, tssI-2) and another pair was detected distant from the cluster (tssD-1, tssI-1). Significant variability was seen in TssI (VgrG) C-terminal region, which was sorted in four groups based on its sequence length and protein domains. TssI containing ADP-ribosyltransferase domain are associated exclusively with TssI-1, while genes coding proteins carrying DUF4123 (a conserved domain of unknown function) were observed downstream tssI-1 or tssI-2 and escort of possible effector proteins. Genes coding proteins containing DUF1910 and DUF1911 domains were located only downstream tssI-2 and might represent a pair of toxin/immunity proteins. Nearly all strains display downstream tssI-3, that codes for a lysozyme family domain protein. These data reveal that Aeromonas T6SS cluster synteny is conserved and the low identity observed for some genes might be due to species heterogeneity or its niche/functionality.
Collapse
Affiliation(s)
- Barbara Moriel
- Department of Clinical Analysis, Setor de Ciências da Saúde, Curitiba, Brazil
| | | | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas, Curitiba, PR, Brazil
| | - Fábio O Pedrosa
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas, Curitiba, PR, Brazil
| | | | - Leonardo M Cruz
- Department of Biochemistry and Molecular Biology, Setor de Ciências Biológicas, Curitiba, PR, Brazil.
| |
Collapse
|
12
|
Barger PC, Liles MR, Beck BH, Newton JC. Differential production and secretion of potentially toxigenic extracellular proteins from hypervirulent Aeromonas hydrophila under biofilm and planktonic culture. BMC Microbiol 2021; 21:8. [PMID: 33407117 PMCID: PMC7788984 DOI: 10.1186/s12866-020-02065-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Hypervirulent Aeromonas hydrophila (vAh) is an emerging pathogen in freshwater aquaculture that results in the loss of over 3 million pounds of marketable channel catfish, Ictalurus punctatus, and channel catfish hybrids (I. punctatus, ♀ x blue catfish, I. furcatus, ♂) each year from freshwater catfish production systems in Alabama, U.S.A. vAh isolates are clonal in nature and are genetically unique from, and significantly more virulent than, traditional A. hydrophila isolates from fish. Even with the increased virulence, natural infections cannot be reproduced in aquaria challenges making it difficult to determine modes of infection and the pathophysiology behind the devastating mortalities that are commonly observed. Despite the intimate connection between environmental adaptation and plastic response, the role of environmental adaption on vAh pathogenicity and virulence has not been previously explored. In this study, secreted proteins of vAh cultured as free-living planktonic cells and within a biofilm were compared to elucidate the role of biofilm growth on virulence. Results Functional proteolytic assays found significantly increased degradative activity in biofilm secretomes; in contrast, planktonic secretomes had significantly increased hemolytic activity, suggesting higher toxigenic potential. Intramuscular injection challenges in a channel catfish model showed that in vitro degradative activity translated into in vivo tissue destruction. Identification of secreted proteins by HPLC-MS/MS revealed the presence of many putative virulence proteins under both growth conditions. Biofilm grown vAh produced higher levels of proteolytic enzymes and adhesins, whereas planktonically grown cells secreted higher levels of toxins, porins, and fimbrial proteins. Conclusions This study is the first comparison of the secreted proteomes of vAh when grown in two distinct ecological niches. These data on the adaptive physiological response of vAh based on growth condition increase our understanding of how environmental niche partitioning could affect vAh pathogenicity and virulence. Increased secretion of colonization factors and degradative enzymes during biofilm growth and residency may increase bacterial attachment and host invasiveness, while increased secretion of hemolysins, porins, and other potential toxins under planktonic growth (or after host invasion) could result in increased host mortality. The results of this research underscore the need to use culture methods that more closely mimic natural ecological habitat growth to improve our understanding of vAh pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02065-2.
Collapse
Affiliation(s)
- Priscilla C Barger
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA. .,Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, USA.
| | - Mark R Liles
- Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, USA
| | - Benjamin H Beck
- USDA ARS Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - Joseph C Newton
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
13
|
Dong J, Zhang L, Liu Y, Xu N, Zhou S, Yang Y, Yang Q, Ai X. Luteolin decreases the pathogenicity of Aeromonas hydrophila via inhibiting the activity of aerolysin. Virulence 2020; 12:165-176. [PMID: 33372840 PMCID: PMC7781616 DOI: 10.1080/21505594.2020.1867455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aeromonas hydrophila (A. hydrophila) can cause a number of diseases in both human and animals. A. hydrophila-related infections in aquaculture cause severe economic losses every year throughout the world. The emergence of antibiotic resistance that is due to the abuse of antibiotics has limited the application of antibiotics. Thus, novel approaches are needed to combat with treatment failure of antibiotics caused by resistant bacterial strains. Aerolysin plays a critical role in the pathogenesis of A. hydrophila and has been considered as a novel target for developing drugs based on anti-virulence strategies. Here, we reported that luteolin, a natural product with no anti-A. hydrophila activity, could reduce aerolysin-induced hemolysis by inhibiting aerolysin activity. The binding mode was simulated by molecular docking and dynamics simulation. Then the main binding sites were confirmed by fluorescence quenching assays. We found that luteolin could hindered the formation of functional heptamer of aerolysin according to the results of the oligomerization assay. Moreover, luteolin could protect A549 cells from aerolysin mediated cell death and increase the survival rate of A. hydrophila-infected channel catfish. These findings suggest a novel approach to developing drugs fighting against A. hydrophila, and luteolin can be a promising drug candidate for treatment of A. hydrophila-associated infections.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Lushan Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences , Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs , Beijing, China
| |
Collapse
|
14
|
Expansion of Necrosis Depending on Hybrid Motor-Driven Motility of Aeromonas hydrophila in a Murine Wound Infection Model. Microorganisms 2020; 9:microorganisms9010010. [PMID: 33375129 PMCID: PMC7822177 DOI: 10.3390/microorganisms9010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/04/2022] Open
Abstract
The gram-negative bacterium Aeromonas hydrophila is a cause of fulminant and lethal necrotizing soft tissue infections (NSTIs). Suppressing the rapid proliferation of the pathogen and expansion of the necrosis caused in the host is an important issue in clinical practice, but the pathogenic mechanism for the rapid aggravation has not been clarified. In this study, we characterized the function of two types of motor stators in A. hydrophila and explored the role of motility during wound infection. In vitro analysis showed that the motility was reliably maintained while being complemented by the stators. We created a non-motile strain that lacked genes encoding two types of motor stators and analyzed the role of motility in a murine wound infection model. Examination of the bacterial burden in the local infection site and systemic circulation revealed that motility was not essential for the proliferation of A. hydrophila in the host. However, the extent of necrosis at the lesions was lower, and survival times were prolonged in mice infected with the non-motile strain compared with mice infected with the parent strain. These results provide evidence that the rapid expansion of necrosis and the progression to death within a short time period is dependent on the motility of A. hydrophila.
Collapse
|
15
|
Whole-Genome Sequence of Aeromonas hydrophila CVM861 Isolated from Diarrhetic Neonatal Swine. Microorganisms 2020; 8:microorganisms8111648. [PMID: 33114362 PMCID: PMC7690851 DOI: 10.3390/microorganisms8111648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 11/23/2022] Open
Abstract
Aeromonas hydrophila are ubiquitous in the environment and are highly distributed in aquatic habitats. They have long been known as fish pathogens but are opportunistic human pathogens. Aeromonas spp. have persisted through food-processing safeguards and have been isolated from fresh grocery vegetables, dairy, beef, pork, poultry products and packaged ready-to-eat meats, thus providing an avenue to foodborne illness. A beta-hemolytic, putative Escherichia coli strain collected from diarrheic neonatal pigs in Oklahoma was subsequently identified as A. hydrophila, and designated CVM861. Here we report the whole-genome sequence of A. hydrophila CVM861, SRA accession number, SRR12574563; BioSample number, SAMN1590692; Genbank accession number SRX9061579. The sequence data for CVM861 revealed four Aeromonas-specific virulence genes: lipase (lip), hemolysin (hlyA), cytonic enterotoxin (ast) and phospholipid-cholesterolacyltransferase (GCAT). There were no alignments to any virulence genes in VirulenceFinder. CVM861 contained an E. coli resistance plasmid identified as IncQ1_1__M28829. There were five aminoglycoside, three beta-lactam, and one each of macrolide, phenicol, sulfonamide, tetracycline and trimethoprim resistance genes, all with over 95% identity to genes in the ResFinder database. Additionally, there were 36 alignments to mobile genetic elements using MobileElementFinder. This shows that an aquatic pathogen, rarely considered in human disease, contributes to the resistome reservoir and may be capable of transferring resistance and virulence genes to other more prevalent foodborne strains such as E. coli or Salmonella in swine or other food production systems.
Collapse
|
16
|
Complete genome sequence of fish-pathogenic Aeromonas hydrophila HX-3 and a comparative analysis: insights into virulence factors and quorum sensing. Sci Rep 2020; 10:15479. [PMID: 32968153 PMCID: PMC7512022 DOI: 10.1038/s41598-020-72484-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
The gram-negative, aerobic, rod-shaped bacterium Aeromonas hydrophila, the causative agent of motile aeromonad septicaemia, has attracted increasing attention due to its high pathogenicity. Here, we constructed the complete genome sequence of a virulent strain, A. hydrophila HX-3 isolated from Pseudosciaena crocea and performed comparative genomics to investigate its virulence factors and quorum sensing features in comparison with those of other Aeromonas isolates. HX-3 has a circular chromosome of 4,941,513 bp with a 61.0% G + C content encoding 4483 genes, including 4318 protein-coding genes, and 31 rRNA, 127 tRNA and 7 ncRNA operons. Seventy interspersed repeat and 153 tandem repeat sequences, 7 transposons, 8 clustered regularly interspaced short palindromic repeats, and 39 genomic islands were predicted in the A. hydrophila HX-3 genome. Phylogeny and pan-genome were also analyzed herein to confirm the evolutionary relationships on the basis of comparisons with other fully sequenced Aeromonas genomes. In addition, the assembled HX-3 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database (76.03%), Gene Ontology database (18.13%), and Kyoto Encyclopedia of Genes and Genome pathway database (59.68%). Two-component regulatory systems in the HX-3 genome and virulence factors profiles through comparative analysis were predicted, providing insights into pathogenicity. A large number of genes related to the AHL-type 1 (ahyI, ahyR), LuxS-type 2 (luxS, pfs, metEHK, litR, luxOQU) and QseBC-type 3 (qseB, qseC) autoinducer systems were also identified. As a result of the expression of the ahyI gene in Escherichia coli BL21 (DE3), combined UPLC-MS/MS profiling led to the identification of several new N-acyl-homoserine lactone compounds synthesized by AhyI. This genomic analysis determined the comprehensive QS systems of A. hydrophila, which might provide novel information regarding the mechanisms of virulence signatures correlated with QS.
Collapse
|
17
|
Ueno M, Iida H, Kaibori M, Komeda K, Takemura S, Noda T, Ikoma H, Nomi T, Hayami S, Hirokawa F, Tanaka S, Matsui K, Ishizaki M, Morimura R, Hokuto D, Eguchi H, Tani M, Yamaue H, Kubo S. Mortality analysis of Aeromonas hydrophila infection in hepato-biliary pancreatic surgery: Multicenter retrospective observational study. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2020; 27:747-755. [PMID: 32692905 DOI: 10.1002/jhbp.805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/PURPOSE Aeromonas hydrophila can cause lethal infectious complications after surgery. There have been no large cohort studies of this specific to the hepato-biliary-pancreatic (HBP) field. We investigate the postoperative influence of A hydrophila infection after HBP surgery. METHODS We retrospectively reviewed patients who underwent HBP surgery between 2008 and 2017 at eight university hospitals. Patients with A hydrophila isolation during perioperative management were extracted, and their postoperative courses were investigated. RESULTS Bacterial culture examination of 10 074 patients was performed as perioperative management. Among them, 76 patients (0.75%) had A hydrophila isolation, most of whom underwent pancreatoduodenectomy (n = 38) or hepatectomy with biliary reconstruction (n = 14). There were seven mortalities after these two procedures (13.5%), five within 3 days after the onset of infection. Bile (n = 48) and abdominal drainage fluid (n = 29) were major sites of A hydrophila isolation. Typical prophylactic antibiotics, cefazolin or flomoxef, were mostly resistant. There was no mortality among patients that received sensitive antibiotics prophylactically. CONCLUSIONS Isolation of A hydrophila was low in our cases of HBP surgery, but the condition of some patients deteriorated rapidly by this infection. Although there could be several bacterial infections during management of HBP surgery, A hydrophila should not be overlooked. Preparation of appropriate prophylactic antibiotics may prevent or reduce mortality.
Collapse
Affiliation(s)
- Masaki Ueno
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hiroya Iida
- Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University Hirakata Hospital, Hirakata, Japan
| | - Koji Komeda
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Shigekazu Takemura
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeo Nomi
- Department of Surgery, Nara Medical University, Kashihara, Japan
| | - Shinya Hayami
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Fumitoshi Hirokawa
- Department of General and Gastroenterological Surgery, Osaka Medical College, Takatsuki, Japan
| | - Shogo Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| | - Kousuke Matsui
- Department of Surgery, Kansai Medical University Hirakata Hospital, Hirakata, Japan
| | - Morihiko Ishizaki
- Department of Surgery, Kansai Medical University Hirakata Hospital, Hirakata, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Hokuto
- Department of Surgery, Nara Medical University, Kashihara, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaji Tani
- Department of Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shoji Kubo
- Department of Hepato-Biliary-Pancreatic Surgery, Osaka City University Graduate School of Medicine, Osaka City, Japan
| |
Collapse
|
18
|
Masuyer G. Crystal Structure of Exotoxin A from Aeromonas Pathogenic Species. Toxins (Basel) 2020; 12:toxins12060397. [PMID: 32549399 PMCID: PMC7354439 DOI: 10.3390/toxins12060397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
Aeromonas exotoxin A (AE) is a bacterial virulence factor recently discovered in a clinical case of necrotising fasciitis caused by the flesh-eating Aeromonas hydrophila. Here, database mining shows that AE is present in the genome of several emerging Aeromonas pathogenic species. The X-ray crystal structure of AE was solved at 2.3 Å and presents all the hallmarks common to diphthamide-specific mono-ADP-ribosylating toxins, suggesting AE is a fourth member of this family alongside the diphtheria toxin, Pseudomonas exotoxin A and cholix. Structural homology indicates AE may use a similar mechanism of cytotoxicity that targets eukaryotic elongation factor 2 and thus inhibition of protein synthesis. The structure of AE also highlights unique features including a metal binding site, and a negatively charged cleft that could play a role in interdomain interactions and may affect toxicity. This study raises new opportunities to engineer alternative toxin-based molecules with pharmaceutical potential.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Pharmacy and Pharmacology, Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
19
|
Fernández-Bravo A, Figueras MJ. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020; 8:microorganisms8010129. [PMID: 31963469 PMCID: PMC7022790 DOI: 10.3390/microorganisms8010129] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The genus Aeromonas belongs to the Aeromonadaceae family and comprises a group of Gram-negative bacteria widely distributed in aquatic environments, with some species able to cause disease in humans, fish, and other aquatic animals. However, bacteria of this genus are isolated from many other habitats, environments, and food products. The taxonomy of this genus is complex when phenotypic identification methods are used because such methods might not correctly identify all the species. On the other hand, molecular methods have proven very reliable, such as using the sequences of concatenated housekeeping genes like gyrB and rpoD or comparing the genomes with the type strains using a genomic index, such as the average nucleotide identity (ANI) or in silico DNA–DNA hybridization (isDDH). So far, 36 species have been described in the genus Aeromonas of which at least 19 are considered emerging pathogens to humans, causing a broad spectrum of infections. Having said that, when classifying 1852 strains that have been reported in various recent clinical cases, 95.4% were identified as only four species: Aeromonas caviae (37.26%), Aeromonas dhakensis (23.49%), Aeromonas veronii (21.54%), and Aeromonas hydrophila (13.07%). Since aeromonads were first associated with human disease, gastroenteritis, bacteremia, and wound infections have dominated. The literature shows that the pathogenic potential of Aeromonas is considered multifactorial and the presence of several virulence factors allows these bacteria to adhere, invade, and destroy the host cells, overcoming the immune host response. Based on current information about the ecology, epidemiology, and pathogenicity of the genus Aeromonas, we should assume that the infections these bacteria produce will remain a great health problem in the future. The ubiquitous distribution of these bacteria and the increasing elderly population, to whom these bacteria are an opportunistic pathogen, will facilitate this problem. In addition, using data from outbreak studies, it has been recognized that in cases of diarrhea, the infective dose of Aeromonas is relatively low. These poorly known bacteria should therefore be considered similarly as enteropathogens like Salmonella and Campylobacter.
Collapse
|
20
|
Fernández-Bravo A, Kilgore PB, Andersson JA, Blears E, Figueras MJ, Hasan NA, Colwell RR, Sha J, Chopra AK. T6SS and ExoA of flesh-eating Aeromonas hydrophila in peritonitis and necrotizing fasciitis during mono- and polymicrobial infections. Proc Natl Acad Sci U S A 2019; 116:24084-24092. [PMID: 31712444 PMCID: PMC6883842 DOI: 10.1073/pnas.1914395116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An earlier report described a human case of necrotizing fasciitis (NF) caused by mixed infection with 4 Aeromonas hydrophila strains (NF1-NF4). While the NF2, NF3, and NF4 strains were clonal and possessed exotoxin A (ExoA), the NF1 strain was determined to be phylogenetically distinct, harboring a unique type 6 secretion system (T6SS) effector (TseC). During NF1 and NF2 mixed infection, only NF1 disseminated, while NF2 was rapidly killed by a contact-dependent mechanism and macrophage phagocytosis, as was demonstrated by using in vitro models. To confirm these findings, we developed 2 NF1 mutants (NF1ΔtseC and NF1ΔvasK); vasK encodes an essential T6SS structural component. NF1 VasK and TseC were proven to be involved in contact-dependent killing of NF2 in vitro, as well as in its elimination at the intramuscular injection site in vivo during mixed infection, with overall reduced mouse mortality. ExoA was shown to have an important role in NF by both NF1-exoA (with cis exoA) and NF2 during monomicrobial infection. However, the contribution of ExoA was more important for NF2 than NF1 in the murine peritonitis model. The NF2∆exoA mutant did not significantly alter animal mortality or NF1 dissemination during mixed infection in the NF model, suggesting that the ExoA activity was significant at the injection site. Immunization of mice to ExoA protected animals from NF2 monomicrobial challenge, but not from polymicrobial infection because of NF2 clearance. This study clarified the roles of T6SS and ExoA in pathogenesis caused by A. hydrophila NF strains in both mouse peritonitis and NF models in monomicrobial and polymicrobial infections.
Collapse
Affiliation(s)
- Ana Fernández-Bravo
- Unidad de Microbiología, Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, Instituto de Investigación Sanitaria Pere Virgili, Universidad Rovira i Virgili, 43201 Reus, Spain
| | - Paul B Kilgore
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555
| | - Jourdan A Andersson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555
- Department of Pathology and Immunology and Texas Children's Microbiome Center, Baylor College of Medicine, Houston, TX, 77030
| | - Elizabeth Blears
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555
| | - Maria José Figueras
- Unidad de Microbiología, Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, Instituto de Investigación Sanitaria Pere Virgili, Universidad Rovira i Virgili, 43201 Reus, Spain
| | - Nur A Hasan
- Research and Development Department, CosmosID Inc., Rockville, MD 20850
- Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742
| | - Rita R Colwell
- Research and Development Department, CosmosID Inc., Rockville, MD 20850
- Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742
- Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21205
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555;
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555;
| |
Collapse
|
21
|
Prediger KDC, Dallagassa CB, Moriel B, Vizzotto BS, Volanski W, Souza EM, Pedrosa FO, Weiss V, Alberton D, Guizelini D, Fadel-Picheth CMT. Virulence characteristics and antimicrobial resistance of Aeromonas veronii biovar sobria 312M, a clinical isolate. Braz J Microbiol 2019; 51:511-518. [PMID: 31707718 DOI: 10.1007/s42770-019-00180-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/21/2019] [Indexed: 01/17/2023] Open
Abstract
Aeromonas are bacteria widely distributed in the environment, and some species are able to cause infections in humans, of which diarrhea is the most common. The objective of this study was to evaluate the presence of virulence and antimicrobial resistance associated characteristics in A. veronii biovar sobria strain 312M isolated from diarrheal stools. For this, the genome sequencing and phenotypical tests were performed. The draft genome annotation revealed several complete pathways associated with carbon metabolism and a mucin-desulfating sulfatase which may contribute to intestine colonization, and a large number of virulence-associated genes encoding structures associated with adhesion, toxins, and secretion systems. The strain exhibited swimming and swarming motility, biofilm formation, and hemolytic activity. It was resistant to ampicillin, ampicillin/sulbactam, and amoxicillin-clavulanic acid. Although a cphA gene encoding a narrow-spectrum carbapenase was identified in the strain genome, no carbapenemase activity was detected in the antimicrobial susceptibility test. When compared with other A. veronii with complete genomes, the main differences in virulence characteristics are related to lateral flagella and type III and VI secretion systems; the antimicrobial resistance spectrum also varied among strains. The results indicated that A. veronii biovar sobria 312M presents high virulence potential and resistance to limited classes of antimicrobials.
Collapse
Affiliation(s)
- Karoline de C Prediger
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Av. Prefeito Lothário Meisner 635, Curitiba, Paraná, CEP 80.210-170, Brazil
| | - Cibelle B Dallagassa
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Av. Prefeito Lothário Meisner 635, Curitiba, Paraná, CEP 80.210-170, Brazil
| | - Bárbara Moriel
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Av. Prefeito Lothário Meisner 635, Curitiba, Paraná, CEP 80.210-170, Brazil
| | - Bruno Stefanello Vizzotto
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Av. Prefeito Lothário Meisner 635, Curitiba, Paraná, CEP 80.210-170, Brazil.,Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil
| | - Waldemar Volanski
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Av. Prefeito Lothário Meisner 635, Curitiba, Paraná, CEP 80.210-170, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Av. Coronel Francisco H. dos Santos 100, Curitiba, Paraná, CEP 81.531-980, Brazil
| | - Fábio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Av. Coronel Francisco H. dos Santos 100, Curitiba, Paraná, CEP 81.531-980, Brazil
| | - Vinícius Weiss
- Programa de Pós-Graduação em Bioinformática, Universidade Federal do Paraná, Rua Alcides Vieira Arcoverde 1225, Curitiba, Paraná, CEP 81.520-260, Brazil
| | - Dayane Alberton
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Av. Prefeito Lothário Meisner 635, Curitiba, Paraná, CEP 80.210-170, Brazil
| | - Dieval Guizelini
- Programa de Pós-Graduação em Bioinformática, Universidade Federal do Paraná, Rua Alcides Vieira Arcoverde 1225, Curitiba, Paraná, CEP 81.520-260, Brazil
| | - Cyntia M T Fadel-Picheth
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Av. Prefeito Lothário Meisner 635, Curitiba, Paraná, CEP 80.210-170, Brazil.
| |
Collapse
|
22
|
Comprehensive Analysis Reveals the Evolution and Pathogenicity of Aeromonas, Viewed from Both Single Isolated Species and Microbial Communities. mSystems 2019; 4:4/5/e00252-19. [PMID: 31641046 PMCID: PMC6811364 DOI: 10.1128/msystems.00252-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The genus Aeromonas is a common gastrointestinal pathogen associated with human and animal infections. Due to the high level of cross-species similarity, their evolutionary dynamics and genetic diversity are still fragmented. Hereby, we investigated the pan-genomes of 29 Aeromonas species, as well as Aeromonas species in microbial communities, to clarify their evolutionary dynamics and genetic diversity, with special focus on virulence factors and horizontal gene transfer events. Our study revealed an open pan-genome of Aeromonas containing 10,144 gene families. These Aeromonas species exhibited different functional constraints, with the single-copy core genes and most accessory genes experiencing purifying selection. The significant congruence between core genome and pan-genome trees revealed that core genes mainly affected evolutionary divergences of Aeromonas species. Gene gains and losses revealed a high level of genome plasticity, exhibited by hundreds of gene expansions and contractions, horizontally transferred genes, and mobile genetic elements. The selective constraints shaped virulence gene pools of these Aeromonas strains, where genes encoding hemolysin were ubiquitous. Of these strains, Aeromonas aquatica MX16A seemed to be more resistant, as it harbored most resistance genes. Finally, the virulence factors of Aeromonas in microbial communities were quite dynamic in response to environment changes. For example, the virulence diversity of Aeromonas in microbial communities could reach levels that match some of the most virulent Aeromonas species (such as A. hydrophila) in penetrated-air and modified-air packaging. Our work shed some light onto genetic diversity, evolutionary history, and functional features of Aeromonas, which could facilitate the detection and prevention of infections.IMPORTANCE Aeromonas has long been known as a gastrointestinal pathogen, yet it has many species whose evolutionary dynamics and genetic diversity had been unclear until now. We have conducted pan-genome analysis for 29 Aeromonas species and revealed a high level of genome plasticity exhibited by hundreds of gene expansions and contractions, horizontally transferred genes, and mobile genetic elements. These species also contained many virulence factors both identified from single isolated species and microbial community. This pan-genome study could elevate the level for detection and prevention of Aeromonas infections.
Collapse
|
23
|
|
24
|
Hoel S, Vadstein O, Jakobsen AN. The Significance of Mesophilic Aeromonas spp. in Minimally Processed Ready-to-Eat Seafood. Microorganisms 2019; 7:E91. [PMID: 30909614 PMCID: PMC6463141 DOI: 10.3390/microorganisms7030091] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Minimally processed and ready-to-eat (RTE) seafood products are gaining popularity because of their availability in retail stores and the consumers' perception of convenience. Products that are subjected to mild processing and products that do not require additional heating prior to consumption are eaten by an increasing proportion of the population, including people that are more susceptible to foodborne disease. Worldwide, seafood is an important source of foodborne outbreaks, but the exact burden is not known. The increased interest in seafood products for raw consumption introduces new food safety issues that must be addressed by all actors in the food chain. Bacteria belonging to genus Aeromonas are ubiquitous in marine environments, and Aeromonas spp. has held the title "emerging foodborne pathogen" for more than a decade. Given its high prevalence in seafood and in vegetables included in many RTE seafood meals, the significance of Aeromonas as a potential foodborne pathogen and a food spoilage organism increases. Some Aeromonas spp. can grow relatively uninhibited in food during refrigeration under a broad range of pH and NaCl concentrations, and in various packaging atmospheres. Strains of several Aeromonas species have shown spoilage potential by the production of spoilage associated metabolites in various seafood products, but the knowledge on spoilage in cold water fish species is scarce. The question about the significance of Aeromonas spp. in RTE seafood products is challenged by the limited knowledge on how to identify the truly virulent strains. The limited information on clinically relevant strains is partly due to few registered outbreaks, and to the disputed role as a true foodborne pathogen. However, it is likely that illness caused by Aeromonas might go on undetected due to unreported cases and a lack of adequate identification schemes. A rather confusing taxonomy and inadequate biochemical tests for species identification has led to a biased focus towards some Aeromonas species. Over the last ten years, several housekeeping genes has replaced the 16S rRNA gene as suitable genetic markers for phylogenetic analysis. The result is a more clear and robust taxonomy and updated knowledge on the currently circulating environmental strains. Nevertheless, more knowledge on which factors that contribute to virulence and how to control the potential pathogenic strains of Aeromonas in perishable RTE seafood products are needed.
Collapse
Affiliation(s)
- Sunniva Hoel
- Department of Biotechnology and Food Science, NTNU⁻Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Olav Vadstein
- Department of Biotechnology and Food Science, NTNU⁻Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | - Anita N Jakobsen
- Department of Biotechnology and Food Science, NTNU⁻Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| |
Collapse
|
25
|
Tekedar HC, Abdelhamed H, Kumru S, Blom J, Karsi A, Lawrence ML. Comparative Genomics of Aeromonas hydrophila Secretion Systems and Mutational Analysis of hcp1 and vgrG1 Genes From T6SS. Front Microbiol 2019; 9:3216. [PMID: 30687246 PMCID: PMC6333679 DOI: 10.3389/fmicb.2018.03216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Virulent Aeromonas hydrophila causes severe motile Aeromonas septicemia in warmwater fishes. In recent years, channel catfish farming in the U.S.A. and carp farming in China have been affected by virulent A. hydrophila, and genome comparisons revealed that these virulent A. hydrophila strains belong to the same clonal group. Bacterial secretion systems are often important virulence factors; in the current study, we investigated whether secretion systems contribute to the virulent phenotype of these strains. Thus, we conducted comparative secretion system analysis using 55 A. hydrophila genomes, including virulent A. hydrophila strains from U.S.A. and China. Interestingly, tight adherence (TaD) system is consistently encoded in all the vAh strains. The majority of U.S.A. isolates do not possess a complete type VI secretion system, but three core elements [tssD (hcp), tssH, and tssI (vgrG)] are encoded. On the other hand, Chinese isolates have a complete type VI secretion system operon. None of the virulent A. hydrophila isolates have a type III secretion system. Deletion of two genes encoding type VI secretion system proteins (hcp1 and vgrG1) from virulent A. hydrophila isolate ML09-119 reduced virulence 2.24-fold in catfish fingerlings compared to the parent strain ML09-119. By determining the distribution of genes encoding secretion systems in A. hydrophila strains, our study clarifies which systems may contribute to core A. hydrophila functions and which may contribute to more specialized adaptations such as virulence. Our study also clarifies the role of type VI secretion system in A. hydrophila virulence.
Collapse
Affiliation(s)
- Hasan C Tekedar
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Hossam Abdelhamed
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Salih Kumru
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Attila Karsi
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Mark L Lawrence
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
26
|
Dong J, Liu Y, Xu N, Yang Q, Ai X. Morin Protects Channel Catfish From Aeromonas hydrophila Infection by Blocking Aerolysin Activity. Front Microbiol 2018; 9:2828. [PMID: 30519232 PMCID: PMC6258893 DOI: 10.3389/fmicb.2018.02828] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Aeromonas hydrophila (A. hydrophila) is an opportunistic bacterial pathogen widely distributed in the environments, particular aquatic environment. The pathogen can cause a range of infections in both human and animals including fishes. However, the application of antibiotics in treatment of A. hydrophila infections leads to the emergence of resistant strains. Consequently, new approaches need to be developed in fighting this pathogen. Aerolysin, the chief virulence factor produced by pathogenic A. hydrophila strains has been employed as target identifying new drugs. In our present study, we found that morin, a flavonoid without anti-bacterial activity isolated from traditional Chinese medicine, could directly inhibit the hemolytic activity of aerolysin. To determine the binding sites and the action of mechanism of morin against AerA, several assays were performed. Ser36, Pro347, and Arg356 were identified as the main binding sites affecting the conformation of AerA and resulted in block of the heptameric formation. Moreover, morin could protect Vero cells from cell injury mediated by aerolysin. In vivo study showed that morin could provide a protection to channel catfish against A. hydrophila infection. These results demonstrated that morin could be developed as a promising candidate for the treatment of A. hydrophila infections by decreasing the pathogenesis of A. hydrophila.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| |
Collapse
|
27
|
Ugarte-Torres A, Perry S, Franko A, Church DL. Multidrug-resistant Aeromonas hydrophila causing fatal bilateral necrotizing fasciitis in an immunocompromised patient: a case report. J Med Case Rep 2018; 12:326. [PMID: 30382899 PMCID: PMC6211551 DOI: 10.1186/s13256-018-1854-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 09/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aeromonas hydrophila is a water-dwelling, gram-negative rod-shaped bacterium, associated with diarrheal illness and, less commonly, necrotizing skin and soft tissue infections, especially among immunocompromised patients. Necrotizing fasciitis is associated with a high mortality rate, especially when caused by Aeromonas spp. Our patient was infected with an extremely aggressive form of multidrug-resistant Aeromonas spp. that produced both an extended-spectrum β-lactamase and an AmpC enzyme. Aeromonads are being recognized as important emerging pathogens because of their inherent antibiotic resistance profiles compounded by other virulence factors. These difficult-to-treat organisms can have significant implications in both clinical and public health settings. CASE PRESENTATION A 37-year-old Caucasian male with immunosuppression due to aplastic anemia being treated with cyclosporine, presented to hospital with relapsed disease. While in hospital, he subsequently developed overwhelming sepsis secondary to bilateral lower extremity necrotizing fasciitis. The necrotizing fasciitis was caused by a multidrug-resistant strain of A. hydrophila. Despite broad-spectrum antibiotics and aggressive surgical debridement, he succumbed to this severe invasive infection. CONCLUSIONS Necrotizing fasciitis caused by Aeromonas spp. is a rare infection that may have a poor clinical outcome, particularly if the diagnosis is delayed and/or the organism is highly virulent and multidrug resistant. Enhanced education of clinicians and microbiologists is required to prevent unnecessary complications and improve survival.
Collapse
Affiliation(s)
- Alejandra Ugarte-Torres
- Department of Medicine, University of Calgary, 9-3535 Research Rd NW, Calgary, AB, T2L 2K8, Canada
| | - Sarah Perry
- Department of Medicine, University of Calgary, 9-3535 Research Rd NW, Calgary, AB, T2L 2K8, Canada
| | - Angela Franko
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Deirdre L Church
- Department of Medicine, University of Calgary, 9-3535 Research Rd NW, Calgary, AB, T2L 2K8, Canada. .,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada. .,Department of Medicine, Snyder Institute for Chronic Diseases, Cummings School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
28
|
Dallagassa CB, Surek M, Vizzotto BS, Prediger KC, Moriel B, Wolf S, Weiss V, Cruz LM, Assis FEA, Paludo KS, Rego FGM, Farah SMSS, Picheth G, Souza EM, Pedrosa FO, Chubatsu LS, Fadel-Picheth CMT. Characteristics of an Aeromonas trota strain isolated from cerebrospinal fluid. Microb Pathog 2018; 116:109-112. [PMID: 29355700 DOI: 10.1016/j.micpath.2018.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/26/2017] [Accepted: 01/11/2018] [Indexed: 11/30/2022]
Abstract
Aeromonas are ubiquitous in aquatic habitats. However some species can cause infections in humans, but rarely meningitis. Here we describe the isolation and characterization of an Aeromonas strain from cerebrospinal fluid of a meningitis patient. The isolate, identified as A. trota by biochemical and molecular methods, was susceptible to ampicillin but resistant to cephalothin and cefazolin. Genome sequencing revealed virulence factor genes such as type VI secretion system, aerolysin and lateral flagella. The isolate exhibited swarming motility, hemolytic activity and adhesion and cytotoxicity on HeLa cells. This is the first report of A. trota associated with meningitis and its virulence characteristics.
Collapse
Affiliation(s)
- Cibelle B Dallagassa
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, PR, CEP 80.210-170, Brazil
| | - Monica Surek
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, PR, CEP 80.210-170, Brazil
| | - Bruno S Vizzotto
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, PR, CEP 80.210-170, Brazil
| | - Karoline C Prediger
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, PR, CEP 80.210-170, Brazil
| | - Bárbara Moriel
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, PR, CEP 80.210-170, Brazil
| | - Suélen Wolf
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, PR, CEP 80.210-170, Brazil
| | - Vinícius Weiss
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, CEP 81.531-980, Brazil
| | - Leonardo M Cruz
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, CEP 81.531-980, Brazil
| | - Flávia E A Assis
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, PR, CEP 80.210-170, Brazil
| | - Katia S Paludo
- Departamento de Biologia Estrutural Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, CEP 84.030-900, Brazil
| | - Fabiane G M Rego
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, PR, CEP 80.210-170, Brazil
| | - Sônia M S S Farah
- Laboratório Central do Estado do Paraná, Curitiba, PR, CEP 80.045-150, Brazil
| | - Geraldo Picheth
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, PR, CEP 80.210-170, Brazil
| | - Emanuel M Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, CEP 81.531-980, Brazil
| | - Fábio O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, CEP 81.531-980, Brazil
| | - Leda S Chubatsu
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, CEP 81.531-980, Brazil
| | - Cyntia M T Fadel-Picheth
- Departamento de Análises Clínicas, Universidade Federal do Paraná, Curitiba, PR, CEP 80.210-170, Brazil.
| |
Collapse
|
29
|
Andersson JA, Sha J, Erova TE, Fitts EC, Ponnusamy D, Kozlova EV, Kirtley ML, Chopra AK. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis. Front Cell Infect Microbiol 2017; 7:448. [PMID: 29090192 PMCID: PMC5650977 DOI: 10.3389/fcimb.2017.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE), and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884-encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55-100% protected upon subsequent re-challenge with wild-type CO92 in a pneumonic model. Further, evaluation of the attenuated T6SS mutant strains in vitro revealed significant alterations in phagocytosis, intracellular survival in murine macrophages, and their ability to induce cytotoxic effects on macrophages. The results reported here provide further evidence of the utility of the STM screening approach for the identification of novel virulence factors and to possibly target such genes for the development of novel live-attenuated vaccine candidates for plague.
Collapse
Affiliation(s)
- Jourdan A Andersson
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Tatiana E Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Elena V Kozlova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ashok K Chopra
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States.,WHO Collaborating Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
30
|
Pang M, Xie X, Dong Y, Du H, Wang N, Lu C, Liu Y. Identification of novel virulence-related genes in Aeromonas hydrophila by screening transposon mutants in a Tetrahymena infection model. Vet Microbiol 2016; 199:36-46. [PMID: 28110783 DOI: 10.1016/j.vetmic.2016.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/24/2016] [Accepted: 12/17/2016] [Indexed: 11/24/2022]
Abstract
Outbreaks of motile Aeromonad septicemia (MAS) in fish caused by sequence type (ST) 251 Aeromonas hydrophila have become a prominent problem for the aquaculture industry. The pathogenesis of A. hydrophila is very complicated, and some virulence factors remain to be identified. In this study, to identify novel virulence-related factors, ST251 A. hydrophila strain NJ-35 was used as the parental strain to construct a mutant library comprising 1030 mutant strains by transposon insertion mutagenesis. Subsequently, 33 virulence-attenuated transposon insertion mutants were identified using Tetrahymena and zebrafish as model hosts in sequence. Thermal asymmetric interlaced (Tail)-PCR and Southern blot analysis identified 21 single transposon insertion sites. Seven of the insertion sites are located in non-coding regions, whereas the other 14 insertion sites are located in genes, including aroA, rmlA, rtxA, chiA and plc. All insertion mutants exhibited attenuated virulence in Tetrahymena and zebrafish. Furthermore, the relationship of two genes, chiA and trkH, to virulence was confirmed by gene inactivation and subsequent restoration assays. This study provides new information about the genetic determinants of A. hydrophila pathogenicity and validates the Aeromonas-Tetrahymena co-culture model for high-throughput screening of A. hydrophila virulence factors.
Collapse
Affiliation(s)
- Maoda Pang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhao Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hechao Du
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nannan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
31
|
Teunis P, Figueras MJ. Reassessment of the Enteropathogenicity of Mesophilic Aeromonas Species. Front Microbiol 2016; 7:1395. [PMID: 27708621 PMCID: PMC5030306 DOI: 10.3389/fmicb.2016.01395] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022] Open
Abstract
Cases of Aeromonas diarrhea have been described all over the world. The genus Aeromonas includes ca. 30 species, of which 10 have been isolated in association with gastroenteritis. The dominating species that account for ca. 96% of the identified strains are Aeromonas caviae, A. veronii, A. dhakensis, and A. hydrophila. However, the role of Aeromonas as a true enteropathogen has been questioned on the basis of the lack of outbreaks, the non-fulfillment of Koch's postulates and the low numbers of acute illnesses in the only existing human challenge study. In the present study we reassess the enteropathogenicity of Aeromonas using dose response models for microbial infection and acute illness. The analysis uses the data from the human challenge study and additional data from selected outbreak investigations where the numbers exposed and the dose were reported, allowing their inclusion as "natural experiments". In the challenge study several cases of asymptomatic shedding were found (26.3%, 15/57), however, only 3.5% (2/57) of those challenged with Aeromonas developed acute enteric symptoms (i.e., diarrhea). The "natural experiments" showed a much higher risk of illness associated with exposure to Aeromonas, even at moderate to low doses. The median dose required for 1% illness risk, was ~1.4 × 104 times higher in the challenge study (1.24 × 104 cfu) compared to natural exposure events (0.9 cfu). The dose response assessment presented in this study shows that the combined challenge and outbreak data are consistent with high infectivity of Aeromonas, and a wide range of susceptibility to acute enteric illness. To illustrate the outcomes, we simulate the risk associated with concentrations of Aeromonas found in different water and food matrices, indicating the disease burden potentially associated with these bacteria. In conclusion this study showed that Aeromonas is highly infectious, and that human susceptibility to illness may be high, similar to undisputed enteropathogens like Campylobacter or Salmonella.
Collapse
Affiliation(s)
- Peter Teunis
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, BilthovenNetherlands
- Center for Global Safe WASH, Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GAUSA
| | - Maria J. Figueras
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, Pere Virgili Institute for Health Research, Universitat Rovira i Virgili, ReusSpain
| |
Collapse
|
32
|
Rasmussen-Ivey CR, Figueras MJ, McGarey D, Liles MR. Virulence Factors of Aeromonas hydrophila: In the Wake of Reclassification. Front Microbiol 2016; 7:1337. [PMID: 27610107 PMCID: PMC4997093 DOI: 10.3389/fmicb.2016.01337] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/12/2016] [Indexed: 12/19/2022] Open
Abstract
The ubiquitous "jack-of-all-trades," Aeromonas hydrophila, is a freshwater, Gram-negative bacterial pathogen under revision in regard to its phylogenetic and functional affiliation with other aeromonads. While virulence factors are expectedly diverse across A. hydrophila strains and closely related species, our mechanistic knowledge of the vast majority of these factors is based on the molecular characterization of the strains A. hydrophila AH-3 and SSU, which were reclassified as A. piscicola AH-3 in 2009 and A. dhakensis SSU in 2013. Individually, these reclassifications raise important questions involving the applicability of previous research on A. hydrophila virulence mechanisms; however, this issue is exacerbated by a lack of genomic data on other research strains. Collectively, these changes represent a fundamental gap in the literature on A. hydrophila and confirm the necessity of biochemical, molecular, and morphological techniques in the classification of research strains that are used as a foundation for future research. This review revisits what is known about virulence in A. hydrophila and the feasibility of using comparative genomics in light of this phylogenetic revision. Conflicting data between virulence factors, secretion systems, quorum sensing, and their effect on A. hydrophila pathogenicity appears to be an artifact of inappropriate taxonomic comparisons and/or be due to the fact that these properties are strain-specific. This review audits emerging data on dominant virulence factors that are present in both A. dhakensis and A. hydrophila in order to synthesize existing data with the aim of locating where future research is needed.
Collapse
Affiliation(s)
| | - Maria J Figueras
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina y Ciencias de la Salud, Institut d'Investigació Sanitària Pere Virgili, Universidad Rovira i Virgili, Reus Spain
| | - Donald McGarey
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA USA
| | - Mark R Liles
- Department of Biological Sciences, Auburn University, Auburn, AL USA
| |
Collapse
|
33
|
Chen PL, Lamy B, Ko WC. Aeromonas dhakensis, an Increasingly Recognized Human Pathogen. Front Microbiol 2016; 7:793. [PMID: 27303382 PMCID: PMC4882333 DOI: 10.3389/fmicb.2016.00793] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022] Open
Abstract
Aeromonas dhakensis was first isolated from children with diarrhea in Dhaka, Bangladesh and described in 2002. In the past decade, increasing evidence indicate this species is widely distributed in the environment and can cause a variety of infections both in human and animals, especially in coastal areas. A. dhakensis is often misidentified as A. hydrophila, A. veronii, or A. caviae by commercial phenotypic tests in the clinical laboratory. Correct identification relies on molecular methods. Increasingly used matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) may be able to identify Aeromonas specie rapidly and accurately. A. dhakensis has shown its potent virulence in different animal models and clinical infections. Although several virulence factors had been reported, no single mechanism is conclusive. Characteristically A. dhakensis is the principal species causing soft tissue infection and bacteremia, especially among patients with liver cirrhosis or malignancy. Of note, A. dhakensis bacteremia is more lethal than bacteremia due to other Aeromonas species. The role of this species in gastroenteritis remains controversial. Third generation cephalosporins and carbapenems should be used cautiously in the treatment of severe A. dhakensis infection due to the presence of AmpC ββ-lactamase and metallo-β-lactamase genes, and optimal regimens may be cefepime or fluoroquinolones. Studies of bacterial virulence factors and associated host responses may provide the chance to understand the heterogeneous virulence between species. The hypothesis A. dhakensis with varied geographic prevalence and enhanced virulence that compared to other Aeromonas species warrants more investigations.
Collapse
Affiliation(s)
- Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Center for Infection Control, National Cheng Kung University HospitalTainan, Taiwan
| | - Brigitte Lamy
- Laboratoire de Bactériologie-Virologie, Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HydroSciences Montpellier, Université de MontpellierMontpellier, France; Laboratoire de Bactériologie, Centre Hospitalier Régional Universitaire de MontpellierMontpellier, France
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Center for Infection Control, National Cheng Kung University HospitalTainan, Taiwan
| |
Collapse
|
34
|
Sinclair HA, Heney C, Sidjabat HE, George NM, Bergh H, Anuj SN, Nimmo GR, Paterson DL. Genotypic and phenotypic identification of Aeromonas species and CphA-mediated carbapenem resistance in Queensland, Australia. Diagn Microbiol Infect Dis 2016; 85:98-101. [DOI: 10.1016/j.diagmicrobio.2016.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022]
|
35
|
Ghatak S, Blom J, Das S, Sanjukta R, Puro K, Mawlong M, Shakuntala I, Sen A, Goesmann A, Kumar A, Ngachan SV. Pan-genome analysis of Aeromonas hydrophila, Aeromonas veronii and Aeromonas caviae indicates phylogenomic diversity and greater pathogenic potential for Aeromonas hydrophila. Antonie van Leeuwenhoek 2016; 109:945-56. [PMID: 27075453 DOI: 10.1007/s10482-016-0693-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/30/2016] [Indexed: 11/26/2022]
Abstract
Aeromonas species are important pathogens of fishes and aquatic animals capable of infecting humans and other animals via food. Due to the paucity of pan-genomic studies on aeromonads, the present study was undertaken to analyse the pan-genome of three clinically important Aeromonas species (A. hydrophila, A. veronii, A. caviae). Results of pan-genome analysis revealed an open pan-genome for all three species with pan-genome sizes of 9181, 7214 and 6884 genes for A. hydrophila, A. veronii and A. caviae, respectively. Core-genome: pan-genome ratio (RCP) indicated greater genomic diversity for A. hydrophila and interestingly RCP emerged as an effective indicator to gauge genomic diversity which could possibly be extended to other organisms too. Phylogenomic network analysis highlighted the influence of homologous recombination and lateral gene transfer in the evolution of Aeromonas spp. Prediction of virulence factors indicated no significant difference among the three species though analysis of pathogenic potential and acquired antimicrobial resistance genes revealed greater hazards from A. hydrophila. In conclusion, the present study highlighted the usefulness of whole genome analyses to infer evolutionary cues for Aeromonas species which indicated considerable phylogenomic diversity for A. hydrophila and hitherto unknown genomic evidence for pathogenic potential of A. hydrophila compared to A. veronii and A. caviae.
Collapse
Affiliation(s)
- Sandeep Ghatak
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India.
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Samir Das
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Rajkumari Sanjukta
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Kekungu Puro
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | | | - Ingudam Shakuntala
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Arnab Sen
- Division of Animal Health, ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Ashok Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - S V Ngachan
- ICAR Research Complex for NEH Region, Umiam, Meghalaya, 793103, India
| |
Collapse
|
36
|
Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. Proc Natl Acad Sci U S A 2016; 113:722-7. [PMID: 26733683 DOI: 10.1073/pnas.1523817113] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Necrotizing fasciitis (NF) caused by flesh-eating bacteria is associated with high case fatality. In an earlier study, we reported infection of an immunocompetent individual with multiple strains of Aeromonas hydrophila (NF1-NF4), the latter three constituted a clonal group whereas NF1 was phylogenetically distinct. To understand the complex interactions of these strains in NF pathophysiology, a mouse model was used, whereby either single or mixed A. hydrophila strains were injected intramuscularly. NF2, which harbors exotoxin A (exoA) gene, was highly virulent when injected alone, but its virulence was attenuated in the presence of NF1 (exoA-minus). NF1 alone, although not lethal to animals, became highly virulent when combined with NF2, its virulence augmented by cis-exoA expression when injected alone in mice. Based on metagenomics and microbiological analyses, it was found that, in mixed infection, NF1 selectively disseminated to mouse peripheral organs, whereas the other strains (NF2, NF3, and NF4) were confined to the injection site and eventually cleared. In vitro studies showed NF2 to be more effectively phagocytized and killed by macrophages than NF1. NF1 inhibited growth of NF2 on solid media, but ExoA of NF2 augmented virulence of NF1 and the presence of NF1 facilitated clearance of NF2 from animals either by enhanced priming of host immune system or direct killing via a contact-dependent mechanism.
Collapse
|
37
|
Mosser T, Talagrand-Reboul E, Colston SM, Graf J, Figueras MJ, Jumas-Bilak E, Lamy B. Exposure to pairs of Aeromonas strains enhances virulence in the Caenorhabditis elegans infection model. Front Microbiol 2015; 6:1218. [PMID: 26583012 PMCID: PMC4631986 DOI: 10.3389/fmicb.2015.01218] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Aeromonad virulence remains poorly understood, and is difficult to predict from strain characteristics. In addition, infections are often polymicrobial (i.e., are mixed infections), and 5-10% of such infections include two distinct aeromonads, which has an unknown impact on virulence. In this work, we studied the virulence of aeromonads recovered from human mixed infections. We tested them individually and in association with other strains with the aim of improving our understanding of aeromonosis. Twelve strains that were recovered in pairs from six mixed infections were tested in a virulence model of the worm Caenorhabditis elegans. Nine isolates were weak worm killers (median time to death, TD50, ≥7 days) when administered alone. Two pairs showed enhanced virulence, as indicated by a significantly shortened TD50 after co-infection vs. infection with a single strain. Enhanced virulence was also observed for five of the 14 additional experimental pairs, and each of these pairs included one strain from a natural synergistic pair. These experiments indicated that synergistic effects were frequent and were limited to pairs that were composed of strains belonging to different species. The genome content of virulence-associated genes failed to explain virulence synergy, although some virulence-associated genes that were present in some strains were absent from their companion strain (e.g., T3SS). The synergy observed in virulence when two Aeromonas isolates were co-infected stresses the idea that consideration should be given to the fact that infection does not depend only on single strain virulence but is instead the result of a more complex interaction between the microbes involved, the host and the environment. These results are of interest for other diseases in which mixed infections are likely and in particular for water-borne diseases (e.g., legionellosis, vibriosis), in which pathogens may display enhanced virulence in the presence of the right partner. This study contributes to the current shift in infectiology paradigms from a premise that assumes a monomicrobial origin for infection to one more in line with the current pathobiome era.
Collapse
Affiliation(s)
- Thomas Mosser
- Laboratoire de Bactériologie-Virologie, Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HydroSciences Montpellier, Université de Montpellier Montpellier, France
| | - Emilie Talagrand-Reboul
- Laboratoire de Bactériologie-Virologie, Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HydroSciences Montpellier, Université de Montpellier Montpellier, France ; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France
| | - Sophie M Colston
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA ; Institute for Systems Genomics, University of Connecticut Storrs, CT, USA
| | - Maria J Figueras
- Unidad de Microbiología, Facultad de Medicina y Ciencias de la Salud, Universidad Rovira i Virgili Reus, Spain
| | - Estelle Jumas-Bilak
- Laboratoire de Bactériologie-Virologie, Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HydroSciences Montpellier, Université de Montpellier Montpellier, France ; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France
| | - Brigitte Lamy
- Laboratoire de Bactériologie-Virologie, Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HydroSciences Montpellier, Université de Montpellier Montpellier, France ; Laboratoire de Bactériologie, Centre Hospitalier Régional Universitaire de Montpellier Montpellier, France
| |
Collapse
|
38
|
Gavin HE, Satchell KJF. MARTX toxins as effector delivery platforms. Pathog Dis 2015; 73:ftv092. [PMID: 26472741 DOI: 10.1093/femspd/ftv092] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Bacteria frequently manipulate their host environment via delivery of microbial 'effector' proteins to the cytosol of eukaryotic cells. In the case of the multifunctional autoprocessing repeats-in-toxins (MARTX) toxin, this phenomenon is accomplished by a single, >3500 amino acid polypeptide that carries information for secretion, translocation, autoprocessing and effector activity. MARTX toxins are secreted from bacteria by dedicated Type I secretion systems. The released MARTX toxins form pores in target eukaryotic cell membranes for the delivery of up to five cytopathic effectors, each of which disrupts a key cellular process. Targeted cellular processes include modulation or modification of small GTPases, manipulation of host cell signaling and disruption of cytoskeletal integrity. More recently, MARTX toxins have been shown to be capable of heterologous protein translocation. Found across multiple bacterial species and genera--frequently in pathogens lacking Type 3 or Type 4 secretion systems--MARTX toxins in multiple cases function as virulence factors. Innovative research at the intersection of toxin biology and bacterial genetics continues to elucidate the intricacies of the toxin as well as the cytotoxic mechanisms of its diverse effector collection.
Collapse
Affiliation(s)
- Hannah E Gavin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Ji Y, Li J, Qin Z, Li A, Gu Z, Liu X, Lin L, Zhou Y. Contribution of nuclease to the pathogenesis of Aeromonas hydrophila. Virulence 2015; 6:515-22. [PMID: 26039879 DOI: 10.1080/21505594.2015.1049806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aeromonas hydrophila is a gram-negative bacterium that is widely distributed in aquatic environments and can cause septicemia in both fish and humans. However, the underlying mechanisms leading to severe infection are not well understood. In this study, an A. hydrophila nuclease (ahn) deletion mutant was constructed to investigate its contribution to pathogenesis. This mutant did not differ from the wild-type strain in terms of its growth or hemolytic phenotype. However, the ahn-deficient mutant was more susceptible to being killed by fish macrophages and mouse blood in vitro. Furthermore, evidence obtained using both fish and murine infection models strongly indicated that the inactivation of Ahn impaired the ability of A. hydrophila to evade innate immune clearance in vivo. More importantly, the virulence of the mutant was attenuated in both fish and mice, with reductions in dissemination capacities and mortality rates. These findings implicate Ahn in A. hydrophila virulence, with important functions in evading innate immune defenses.
Collapse
Affiliation(s)
- Yachan Ji
- a Department of Aquatic Animal Medicine; College of Fisheries; Huazhong Agricultural University ; Wuhan , China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun 2015; 83:2065-81. [PMID: 25754198 DOI: 10.1128/iai.02913-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/26/2015] [Indexed: 12/18/2022] Open
Abstract
The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s).
Collapse
|
41
|
Beaz-Hidalgo R, Hossain MJ, Liles MR, Figueras MJ. Strategies to avoid wrongly labelled genomes using as example the detected wrong taxonomic affiliation for aeromonas genomes in the GenBank database. PLoS One 2015; 10:e0115813. [PMID: 25607802 PMCID: PMC4301921 DOI: 10.1371/journal.pone.0115813] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/01/2014] [Indexed: 11/28/2022] Open
Abstract
Around 27,000 prokaryote genomes are presently deposited in the Genome database of GenBank at the National Center for Biotechnology Information (NCBI) and this number is exponentially growing. However, it is not known how many of these genomes correspond correctly to their designated taxon. The taxonomic affiliation of 44 Aeromonas genomes (only five of these are type strains) deposited at the NCBI was determined by a multilocus phylogenetic analysis (MLPA) and by pairwise average nucleotide identity (ANI). Discordant results in relation to taxa assignation were found for 14 (35.9%) of the 39 non-type strain genomes on the basis of both the MLPA and ANI results. Data presented in this study also demonstrated that if the genome of the type strain is not available, a genome of the same species correctly identified can be used as a reference for ANI calculations. Of the three ANI calculating tools compared (ANI calculator, EzGenome and JSpecies), EzGenome and JSpecies provided very similar results. However, the ANI calculator provided higher intra- and inter-species values than the other two tools (differences within the ranges 0.06–0.82% and 0.92–3.38%, respectively). Nevertheless each of these tools produced the same species classification for the studied Aeromonas genomes. To avoid possible misinterpretations with the ANI calculator, particularly when values are at the borderline of the 95% cutoff, one of the other calculation tools (EzGenome or JSpecies) should be used in combination. It is recommended that once a genome sequence is obtained the correct taxonomic affiliation is verified using ANI or a MLPA before it is submitted to the NCBI and that researchers should amend the existing taxonomic errors present in databases.
Collapse
Affiliation(s)
- Roxana Beaz-Hidalgo
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Mohammad J. Hossain
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Mark R. Liles
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Maria-Jose Figueras
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
- * E-mail:
| |
Collapse
|
42
|
Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. mBio 2014; 5:e02136. [PMID: 25406383 PMCID: PMC4251997 DOI: 10.1128/mbio.02136-14] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Prokaryotic taxonomy is the underpinning of microbiology, as it provides a framework for the proper identification and naming of organisms. The “gold standard” of bacterial species delineation is the overall genome similarity determined by DNA-DNA hybridization (DDH), a technically rigorous yet sometimes variable method that may produce inconsistent results. Improvements in next-generation sequencing have resulted in an upsurge of bacterial genome sequences and bioinformatic tools that compare genomic data, such as average nucleotide identity (ANI), correlation of tetranucleotide frequencies, and the genome-to-genome distance calculator, or in silico DDH (isDDH). Here, we evaluate ANI and isDDH in combination with phylogenetic studies using Aeromonas, a taxonomically challenging genus with many described species and several strains that were reassigned to different species as a test case. We generated improved, high-quality draft genome sequences for 33 Aeromonas strains and combined them with 23 publicly available genomes. ANI and isDDH distances were determined and compared to phylogenies from multilocus sequence analysis of housekeeping genes, ribosomal proteins, and expanded core genes. The expanded core phylogenetic analysis suggested relationships between distant Aeromonas clades that were inconsistent with studies using fewer genes. ANI values of ≥96% and isDDH values of ≥70% consistently grouped genomes originating from strains of the same species together. Our study confirmed known misidentifications, validated the recent revisions in the nomenclature, and revealed that a number of genomes deposited in GenBank are misnamed. In addition, two strains were identified that may represent novel Aeromonas species. Improvements in DNA sequencing technologies have resulted in the ability to generate large numbers of high-quality draft genomes and led to a dramatic increase in the number of publically available genomes. This has allowed researchers to characterize microorganisms using genome data. Advantages of genome sequence-based classification include data and computing programs that can be readily shared, facilitating the standardization of taxonomic methodology and resolving conflicting identifications by providing greater uniformity in an overall analysis. Using Aeromonas as a test case, we compared and validated different approaches. Based on our analyses, we recommend cutoff values for distance measures for identifying species. Accurate species classification is critical not only to obviate the perpetuation of errors in public databases but also to ensure the validity of inferences made on the relationships among species within a genus and proper identification in clinical and veterinary diagnostic laboratories.
Collapse
|
43
|
Virulence diversity among bacteremic Aeromonas isolates: ex vivo, animal, and clinical evidences. PLoS One 2014; 9:e111213. [PMID: 25375798 PMCID: PMC4222899 DOI: 10.1371/journal.pone.0111213] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/09/2014] [Indexed: 11/26/2022] Open
Abstract
Background The objective of this study was to compare virulence among different Aeromonas species causing bloodstream infections. Methodology/Principal Findings Nine of four species of Aeromonas blood isolates, including A. dhakensis, A. hydrophila, A. veronii and A. caviae were randomly selected for analysis. The species was identified by the DNA sequence matching of rpoD. Clinically, the patients with A. dhakensis bacteremia had a higher sepsis-related mortality rate than those with other species (37.5% vs. 0%, P = 0.028). Virulence of different Aeromonas species were tested in C. elegans, mouse fibroblast C2C12 cell line and BALB/c mice models. C. elegans fed with A. dhakensis and A. caviae had the lowest and highest survival rates compared with other species, respectively (all P values <0.0001). A. dhakensis isolates also exhibited more cytotoxicity in C2C12 cell line (all P values <0.0001). Fourteen-day survival rate of mice intramuscularly inoculated with A. dhakensis was lower than that of other species (all P values <0.0001). Hemolytic activity and several virulence factor genes were rarely detected in the A. caviae isolates. Conclusions/Significance Clinical data, ex vivo experiments, and animal studies suggest there is virulence variation among clinically important Aeromonas species.
Collapse
|