1
|
Fan S, Shen Y, Qian L. Social life of free-living amoebae in aquatic environment- comprehensive insights into interactions of free-living amoebae with neighboring microorganisms. Front Microbiol 2024; 15:1382075. [PMID: 38962117 PMCID: PMC11220160 DOI: 10.3389/fmicb.2024.1382075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Free-living amoebae (FLA) are prevalent in nature and man-made environments, and they can survive in harsh conditions by forming cysts. Studies have discovered that some FLA species are able to show pathogenicity to human health, leading to severe infections of central nervous systems, eyes, etc. with an extremely low rate of recovery. Therefore, it is imperative to establish a surveillance framework for FLA in environmental habitats. While many studies investigated the risks of independent FLA, interactions between FLA and surrounding microorganisms determined microbial communities in ecosystems and further largely influenced public health. Here we systematically discussed the interactions between FLA and different types of microorganisms and corresponding influences on behaviors and health risks of FLA in the environment. Specifically, bacteria, viruses, and eukaryotes can interact with FLA and cause either enhanced or inhibited effects on FLA infectivity, along with microorganism community changes. Therefore, considering the co-existence of FLA and other microorganisms in the environment is of great importance for reducing environmental health risks.
Collapse
Affiliation(s)
| | | | - Li Qian
- Department of Civil and Environmental Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, United States
| |
Collapse
|
2
|
Proctor C, Garner E, Hamilton KA, Ashbolt NJ, Caverly LJ, Falkinham JO, Haas CN, Prevost M, Prevots DR, Pruden A, Raskin L, Stout J, Haig SJ. Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. WATER RESEARCH 2022; 211:117997. [PMID: 34999316 PMCID: PMC8821414 DOI: 10.1016/j.watres.2021.117997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/10/2023]
Abstract
In recent years, drinking water-associated pathogens that can cause infections in immunocompromised or otherwise susceptible individuals (henceforth referred to as DWPI), sometimes referred to as opportunistic pathogens or opportunistic premise plumbing pathogens, have received considerable attention. DWPI research has largely been conducted by experts focusing on specific microorganisms or within silos of expertise. The resulting mitigation approaches optimized for a single microorganism may have unintended consequences and trade-offs for other DWPI or other interests (e.g., energy costs and conservation). For example, the ecological and epidemiological issues characteristic of Legionella pneumophila diverge from those relevant for Mycobacterium avium and other nontuberculous mycobacteria. Recent advances in understanding DWPI as part of a complex microbial ecosystem inhabiting drinking water systems continues to reveal additional challenges: namely, how can all microorganisms of concern be managed simultaneously? In order to protect public health, we must take a more holistic approach in all aspects of the field, including basic research, monitoring methods, risk-based mitigation techniques, and policy. A holistic approach will (i) target multiple microorganisms simultaneously, (ii) involve experts across several disciplines, and (iii) communicate results across disciplines and more broadly, proactively addressing source water-to-customer system management.
Collapse
Affiliation(s)
- Caitlin Proctor
- Department of Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Emily Garner
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Centre for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Nicholas J Ashbolt
- Faculty of Science and Engineering, Southern Cross University, Gold Coast. Queensland, Australia
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Charles N Haas
- Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Michele Prevost
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - D Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Lutgarde Raskin
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Janet Stout
- Department of Civil & Environmental Engineering, University of Pittsburgh, and Special Pathogens Laboratory, Pittsburgh, PA, USA
| | - Sarah-Jane Haig
- Department of Civil & Environmental Engineering, and Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Cullom AC, Martin RL, Song Y, Williams K, Williams A, Pruden A, Edwards MA. Critical Review: Propensity of Premise Plumbing Pipe Materials to Enhance or Diminish Growth of Legionella and Other Opportunistic Pathogens. Pathogens 2020; 9:E957. [PMID: 33212943 PMCID: PMC7698398 DOI: 10.3390/pathogens9110957] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Growth of Legionella pneumophila and other opportunistic pathogens (OPs) in drinking water premise plumbing poses an increasing public health concern. Premise plumbing is constructed of a variety of materials, creating complex environments that vary chemically, microbiologically, spatially, and temporally in a manner likely to influence survival and growth of OPs. Here we systematically review the literature to critically examine the varied effects of common metallic (copper, iron) and plastic (PVC, cross-linked polyethylene (PEX)) pipe materials on factors influencing OP growth in drinking water, including nutrient availability, disinfectant levels, and the composition of the broader microbiome. Plastic pipes can leach organic carbon, but demonstrate a lower disinfectant demand and fewer water chemistry interactions. Iron pipes may provide OPs with nutrients directly or indirectly, exhibiting a high disinfectant demand and potential to form scales with high surface areas suitable for biofilm colonization. While copper pipes are known for their antimicrobial properties, evidence of their efficacy for OP control is inconsistent. Under some circumstances, copper's interactions with premise plumbing water chemistry and resident microbes can encourage growth of OPs. Plumbing design, configuration, and operation can be manipulated to control such interactions and health outcomes. Influences of pipe materials on OP physiology should also be considered, including the possibility of influencing virulence and antibiotic resistance. In conclusion, all known pipe materials have a potential to either stimulate or inhibit OP growth, depending on the circumstances. This review delineates some of these circumstances and informs future research and guidance towards effective deployment of pipe materials for control of OPs.
Collapse
Affiliation(s)
- Abraham C. Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Rebekah L. Martin
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
- Civil and Environmental Engineering, Virginia Military Institute, Lexington, VA 24450, USA
| | - Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | | | - Amanda Williams
- c/o Marc Edwards, Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA;
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| |
Collapse
|
4
|
Juniper and immortelle essential oils synergistically inhibit adhesion of nontuberculous mycobacteria to Acanthamoeba castellanii. Arh Hig Rada Toksikol 2020; 71:223-230. [PMID: 33074171 PMCID: PMC7968501 DOI: 10.2478/aiht-2020-71-3442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 12/03/2022] Open
Abstract
Acanthamoeba is an opportunistic protozoon, widespread in the aquatic environment, where it can be in endosymbiosis with over 30 pathogenic bacteria, including nontuberculous mycobacteria (NTM). Protozoa play a crucial role in mycobacterial pathogenesis and serve as a reservoir of infection. Since the first step in bacteria making contact with amoebae is adhesion, we were interested in investigating whether essential oils (EOs) can affect it. To that end we investigated the effects of juniper (Juniperus communis) and immortelle (Helichrysum italicum) EOs against Mycobacterium avium, M. intracellulare, and M. gordonae in tap water and against their adhesion to Acanthamoeba castellanii by combining them in synergistic EO concentrations. M. avium and M. intracellulare adhered to A. castellanii to a greater extent than M. gordonae. The adhesion of all NTMs was prevented by the subinhibitory concentrations of EOs. When comparing the effect of synergistic combinations of EOs and the effect of a single concentration from a combination, a higher percentage of adhesion inhibition in all synergistic combinations observed, except against M. gordonae. Neither oil was cytotoxic to A. castellanii. Our findings suggest that the EOs or their components weaken the contact of environmental NTMs and free-living amoebae and indirectly diminish their pathogenic potential, which could be of value in developing strategies for maintenance of water supply systems.
Collapse
|
5
|
Milanez G, Masangkay F, Hapan F, Bencito T, Lopez M, Soriano J, Ascaño A, Lizarondo L, Santiago J, Somsak V, Kotepui M, Tsiami A, Tangpong J, Karanis P. Detection of Acanthamoeba spp. in two major water reservoirs in the Philippines. JOURNAL OF WATER AND HEALTH 2020; 18:118-126. [PMID: 32300086 DOI: 10.2166/wh.2020.190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water reservoirs are important manmade structures providing water security to deliver clean and safe water for drinking and other purposes to the community. Eighty water samples were collected from Magat and Ipo water reservoirs using purposive sampling between November 2018 and January 2019. Water samples were collected in sterile containers for testing. The samples were cultured in non-nutrient agar and lawned with Escherichia coli and incubated at 33 °C. Twelve out of the 80 (15%) water samples were positive for amoebic growth. Light and scanning electron microscopy (SEM) revealed double-walled cystic stages and were initially identified as Acanthamoeba spp. based on morphological characteristic in reference to Page's established criteria. Their extracted DNAs were used in polymerase chain reaction using JDP1 and JDP2 primers and confirmed the presence of Acanthamoeba DNA in agarose gel electrophoresis. Aligned sequences from PCR products were deposited in GenBank under accession numbers MK886460, MK909919, MK905437, MK910997, MK911021 and MK886514. The presence of potentially pathogenic Acanthamoeba spp. in water reservoirs is considered a potential risk for public health, requiring appropriate processing of water in treatment plants.
Collapse
Affiliation(s)
- Giovanni Milanez
- Biomedical Science Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 8016, Thailand E-mail: ; Department of Medical Technology, Far Eastern University, Manila, Philippines
| | - Frederick Masangkay
- Biomedical Science Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 8016, Thailand E-mail: ; Department of Medical Technology, Far Eastern University, Manila, Philippines
| | - Frieda Hapan
- Department of Medical Technology, Faculty of Pharmacy, Royal and Pontifical University of Santo Tomas, Manila, Philippines
| | - Thea Bencito
- Department of Medical Technology, Faculty of Pharmacy, Royal and Pontifical University of Santo Tomas, Manila, Philippines
| | - Marcus Lopez
- Department of Medical Technology, Faculty of Pharmacy, Royal and Pontifical University of Santo Tomas, Manila, Philippines
| | - Jeffrey Soriano
- Department of Medical Technology, Faculty of Pharmacy, Royal and Pontifical University of Santo Tomas, Manila, Philippines
| | - Abdee Ascaño
- Department of Medical Technology, Faculty of Pharmacy, Royal and Pontifical University of Santo Tomas, Manila, Philippines
| | - Louella Lizarondo
- Department of Medical Technology, Faculty of Pharmacy, Royal and Pontifical University of Santo Tomas, Manila, Philippines
| | - Joseph Santiago
- Department of Medical Technology, Faculty of Pharmacy, Royal and Pontifical University of Santo Tomas, Manila, Philippines
| | - Voravuth Somsak
- Biomedical Science Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 8016, Thailand E-mail:
| | - Manas Kotepui
- Biomedical Science Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 8016, Thailand E-mail:
| | - Amalia Tsiami
- London Geller College of Hospitality and Tourism, University of West London, London, UK
| | - Jitbanjong Tangpong
- Biomedical Science Program, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 8016, Thailand E-mail:
| | | |
Collapse
|
6
|
König L, Wentrup C, Schulz F, Wascher F, Escola S, Swanson MS, Buchrieser C, Horn M. Symbiont-Mediated Defense against Legionella pneumophila in Amoebae. mBio 2019; 10:e00333-19. [PMID: 31088922 PMCID: PMC6520448 DOI: 10.1128/mbio.00333-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Legionella pneumophila is an important opportunistic pathogen for which environmental reservoirs are crucial for the infection of humans. In the environment, free-living amoebae represent key hosts providing nutrients and shelter for highly efficient intracellular proliferation of L. pneumophila, which eventually leads to lysis of the protist. However, the significance of other bacterial players for L. pneumophila ecology is poorly understood. In this study, we used a ubiquitous amoeba and bacterial endosymbiont to investigate the impact of this common association on L. pneumophila infection. We demonstrate that L. pneumophila proliferation was severely suppressed in Acanthamoeba castellanii harboring the chlamydial symbiont Protochlamydia amoebophila The amoebae survived the infection and were able to resume growth. Different environmental amoeba isolates containing the symbiont were equally well protected as different L. pneumophila isolates were diminished, suggesting ecological relevance of this symbiont-mediated defense. Furthermore, protection was not mediated by impaired L. pneumophila uptake. Instead, we observed reduced virulence of L. pneumophila released from symbiont-containing amoebae. Pronounced gene expression changes in the presence of the symbiont indicate that interference with the transition to the transmissive phase impedes the L. pneumophila infection. Finally, our data show that the defensive response of amoebae harboring P. amoebophila leaves the amoebae with superior fitness reminiscent of immunological memory. Given that mutualistic associations between bacteria and amoebae are widely distributed, P. amoebophila and potentially other amoeba endosymbionts could be key in shaping environmental survival, abundance, and virulence of this important pathogen, thereby affecting the frequency of human infection.IMPORTANCE Bacterial pathogens are generally investigated in the context of disease. To prevent outbreaks, it is essential to understand their lifestyle and interactions with other microbes in their natural environment. Legionella pneumophila is an important human respiratory pathogen that survives and multiplies in biofilms or intracellularly within protists, such as amoebae. Importantly, transmission to humans occurs from these environmental sources. Legionella infection generally leads to rapid host cell lysis. It was therefore surprising to observe that amoebae, including fresh environmental isolates, were well protected during Legionella infection when the bacterial symbiont Protochlamydia amoebophila was also present. Legionella was not prevented from invading amoebae but was impeded in its ability to develop fully virulent progeny and were ultimately cleared in the presence of the symbiont. This study highlights how ecology and virulence of an important human pathogen is affected by a defensive amoeba symbiont, with possibly major consequences for public health.
Collapse
Affiliation(s)
- Lena König
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Cecilia Wentrup
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Biologie des Bactéries Intracellulaires, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
| | - Frederik Schulz
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Florian Wascher
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sarah Escola
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Carmen Buchrieser
- Biologie des Bactéries Intracellulaires, Institut Pasteur, Paris, France
- CNRS, UMR 3525, Paris, France
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Loret JF, Dumoutier N. Non-tuberculous mycobacteria in drinking water systems: A review of prevalence data and control means. Int J Hyg Environ Health 2019; 222:628-634. [DOI: 10.1016/j.ijheh.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 02/08/2023]
|
8
|
Dowdell K, Haig SJ, Caverly LJ, Shen Y, LiPuma JJ, Raskin L. Nontuberculous mycobacteria in drinking water systems - the challenges of characterization and risk mitigation. Curr Opin Biotechnol 2019; 57:127-136. [PMID: 31003169 DOI: 10.1016/j.copbio.2019.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
Nontuberculous mycobacteria (NTM) pulmonary infections are a growing concern worldwide, with a disproportionate incidence in persons with pre-existing health conditions. NTM have frequently been found in municipally-treated drinking water and building plumbing, leading to the hypothesis that an important source of NTM exposure is drinking water. The identification and quantification of NTM in environmental samples are complicated by genetic variability among NTM species, making it challenging to determine if clinically relevant NTM are present. Additionally, their unique cellular features and lifestyles make NTM and their nucleic acids difficult to recover. This review highlights a recent work focused on quantification and characterization of NTM and on understanding the influence of source water, treatment plants, distribution systems, and building plumbing on the abundance of NTM in drinking water.
Collapse
Affiliation(s)
- Katherine Dowdell
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Yun Shen
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
A High-Throughput Approach for Identification of Nontuberculous Mycobacteria in Drinking Water Reveals Relationship between Water Age and Mycobacterium avium. mBio 2018; 9:mBio.02354-17. [PMID: 29440575 PMCID: PMC5821076 DOI: 10.1128/mbio.02354-17] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) frequently detected in drinking water (DW) include species associated with human infections, as well as species rarely linked to disease. Methods for improved the recovery of NTM DNA and high-throughput identification of NTM are needed for risk assessment of NTM infection through DW exposure. In this study, different methods of recovering bacterial DNA from DW were compared, revealing that a phenol-chloroform DNA extraction method yielded two to four times as much total DNA and eight times as much NTM DNA as two commercial DNA extraction kits. This method, combined with high-throughput, single-molecule real-time sequencing of NTM rpoB genes, allowed the identification of NTM to the species, subspecies, and (in some cases) strain levels. This approach was applied to DW samples collected from 15 households serviced by a chloraminated distribution system, with homes located in areas representing short (<24 h) and long (>24 h) distribution system residence times. Multivariate statistical analysis revealed that greater water age (i.e., combined distribution system residence time and home plumbing stagnation time) was associated with a greater relative abundance of Mycobacterium avium subsp. avium, one of the most prevalent NTM causing infections in humans. DW from homes closer to the treatment plant (with a shorter water age) contained more diverse NTM species, including Mycobacterium abscessus and Mycobacterium chelonae. Overall, our approach allows NTM identification to the species and subspecies levels and can be used in future studies to assess the risk of waterborne infection by providing insight into the similarity between environmental and infection-associated NTM. An extraction method for improved recovery of DNA from nontuberculous mycobacteria (NTM), combined with single-molecule real-time sequencing (PacBio) of NTM rpoB genes, was used for high-throughput characterization of NTM species and in some cases strains in drinking water (DW). The extraction procedure recovered, on average, eight times as much NTM DNA and three times as much total DNA from DW as two widely used commercial DNA extraction kits. The combined DNA extraction and sequencing approach allowed high-throughput screening of DW samples to identify NTM, revealing that the relative abundance of Mycobacterium avium subsp. avium increased with water age. Furthermore, the two-step barcoding approach developed as part of the PacBio sequencing method makes this procedure highly adaptable, allowing it to be used for other target genes and species.
Collapse
|
10
|
Qin K, Struewing I, Domingo JS, Lytle D, Lu J. Opportunistic Pathogens and Microbial Communities and Their Associations with Sediment Physical Parameters in Drinking Water Storage Tank Sediments. Pathogens 2017; 6:pathogens6040054. [PMID: 29072631 PMCID: PMC5715195 DOI: 10.3390/pathogens6040054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/26/2022] Open
Abstract
The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management within a distribution system.
Collapse
Affiliation(s)
- Ke Qin
- ORISE, Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | | | - Jorge Santo Domingo
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | - Darren Lytle
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| | - Jingrang Lu
- Office of Research and Development, U. S. Environmental Protection Agency, Cincinnati, OH 45268, USA.
| |
Collapse
|
11
|
Ma X, Vikram A, Casson L, Bibby K. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7648-7657. [PMID: 28562026 DOI: 10.1021/acs.est.7b00768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Civil and Environmental Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Amit Vikram
- Department of Civil and Environmental Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Leonard Casson
- Department of Civil and Environmental Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
- Graduate School of Public Health, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
- Department of Computational and Systems Biology, University of Pittsburgh Medical School , Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
12
|
Mycobacterium llatzerense, a waterborne Mycobacterium, that resists phagocytosis by Acanthamoeba castellanii. Sci Rep 2017; 7:46270. [PMID: 28393860 PMCID: PMC5385496 DOI: 10.1038/srep46270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are environmental bacteria increasingly associated to public health problems. In water systems, free-living amoebae (FLA) feed on bacteria by phagocytosis, but several bacteria, including many NTM, are resistant to this predation. Thus, FLA can be seen as a training ground for pathogenic bacteria. Mycobacterium llatzerense was previously described as frequently associated with FLA in a drinking water network. The present study aimed to characterize the interactions between M. llatzerense and FLA. M. llatzerense was internalised by phagocytosis and featured lipid inclusions, suggesting a subversion of host resources. Moreover, M. llatzerense survived and even multiplied in presence of A. castellanii. Using a genomic-based comparative approach, twelve genes involved in phagocytosis interference, described in M. tuberculosis, were identified in the M. llatzerense genome sequenced in this study. Transcriptomic analyses showed that ten genes were significantly upregulated during the first hours of the infection, which could partly explain M. llatzerense resistance. Additionally, M. llatzerense was shown to actively inhibit phagosome acidification. In conclusion, M. llatzerense presents a high degree of resistance to phagocytosis, likely explaining its frequent occurrence within FLA in drinking water networks. It underscores that NTM should be carefully monitored in water networks to prevent human health concerns.
Collapse
|
13
|
Hamilton KA, Weir MH, Haas CN. Dose response models and a quantitative microbial risk assessment framework for the Mycobacterium avium complex that account for recent developments in molecular biology, taxonomy, and epidemiology. WATER RESEARCH 2017; 109:310-326. [PMID: 27915187 DOI: 10.1016/j.watres.2016.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Mycobacterium avium complex (MAC) is a group of environmentally-transmitted pathogens of great public health importance. This group is known to be harbored, amplified, and selected for more human-virulent characteristics by amoeba species in aquatic biofilms. However, a quantitative microbial risk assessment (QMRA) has not been performed due to the lack of dose response models resulting from significant heterogeneity within even a single species or subspecies of MAC, as well as the range of human susceptibilities to mycobacterial disease. The primary human-relevant species and subspecies responsible for the majority of the human disease burden and present in drinking water, biofilms, and soil are M. avium subsp. hominissuis, M. intracellulare, and M. chimaera. A critical review of the published literature identified important health endpoints, exposure routes, and susceptible populations for MAC risk assessment. In addition, data sets for quantitative dose-response functions were extracted from published in vivo animal dosing experiments. As a result, seven new exponential dose response models for human-relevant species of MAC with endpoints of lung lesions, death, disseminated infection, liver infection, and lymph node lesions are proposed. Although current physical and biochemical tests used in clinical settings do not differentiate between M. avium and M. intracellulare, differentiating between environmental species and subspecies of the MAC can aid in the assessment of health risks and control of MAC sources. A framework is proposed for incorporating the proposed dose response models into susceptible population- and exposure route-specific QMRA models.
Collapse
Affiliation(s)
- Kerry A Hamilton
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - Mark H Weir
- Division of Environmental Health Sciences and Department of Civil Environmental and Geodetic Engineering, The Ohio State University, USA
| | - Charles N Haas
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Lu J, Struewing I, Vereen E, Kirby AE, Levy K, Moe C, Ashbolt N. Molecular Detection of Legionella
spp. and their associations with Mycobacterium
spp., Pseudomonas aeruginosa
and amoeba hosts in a drinking water distribution system. J Appl Microbiol 2016; 120:509-21. [DOI: 10.1111/jam.12996] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/08/2015] [Accepted: 10/27/2015] [Indexed: 01/12/2023]
Affiliation(s)
- J. Lu
- U.S. EPA National Exposure Research Laboratory; Cincinnati OH USA
| | | | - E. Vereen
- Center for Global Safe Water; Sanitation and Hygiene; Emory University; Atlanta GA USA
| | - A. E. Kirby
- Center for Global Safe Water; Sanitation and Hygiene; Emory University; Atlanta GA USA
| | - K. Levy
- Center for Global Safe Water; Sanitation and Hygiene; Emory University; Atlanta GA USA
| | - C. Moe
- Center for Global Safe Water; Sanitation and Hygiene; Emory University; Atlanta GA USA
| | - N. Ashbolt
- School of Public Health; University of Alberta; Edmonton AB Canada
| |
Collapse
|
15
|
Wang H, Masters S, Falkinham JO, Edwards MA, Pruden A. Distribution System Water Quality Affects Responses of Opportunistic Pathogen Gene Markers in Household Water Heaters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8416-24. [PMID: 26121595 DOI: 10.1021/acs.est.5b01538] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Illustrative distribution system operation and management practices shaped the occurrence and persistence of Legionella spp., nontuberculous mycobacteria (NTM), Pseudomonas aeruginosa, and two amoebae host (Acanthamoeba spp., Vermamoeba vermiformis) gene markers in the effluent of standardized simulated household water heaters (SWHs). The interplay between disinfectant type (chlorine or chloramine), water age (2.3-5.7 days) and materials (polyvinyl chloride (PVC), cement or iron) in upstream simulated distribution systems (SDSs) profoundly influenced levels of pathogen gene markers in corresponding SWH bulk waters. For example, Legionella spp. were 3-4 log higher in SWHs receiving water from chloraminated vs chlorinated SDSs, because of disinfectant decay from nitrification. By contrast, SWHs fed with chlorinated PVC SDS water not only harbored the lowest levels of all pathogen markers, but effluent from the chlorinated SWHs were even lower than influent levels in several instances (e.g., 2 log less Legionella spp. and NTM for PVC and 3-5 log less P. aeruginosa for cement). However, pathogen gene marker influent levels correlated positively to effluent levels in the SWHs (P < 0.05). Likewise, microbial community structures were similar between SWHs and the corresponding SDS feed waters. This study highlights the importance and challenges of distribution system management/operation to help control opportunistic pathogens.
Collapse
Affiliation(s)
- Hong Wang
- †State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Sheldon Masters
- ‡Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Joseph O Falkinham
- §Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- ‡Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- ‡Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
16
|
Baron JL, Vikram A, Duda S, Stout JE, Bibby K. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system. PLoS One 2014; 9:e102679. [PMID: 25033448 PMCID: PMC4102543 DOI: 10.1371/journal.pone.0102679] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/22/2014] [Indexed: 01/14/2023] Open
Abstract
Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.
Collapse
Affiliation(s)
- Julianne L. Baron
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
- Special Pathogens Laboratory, Pittsburgh, Pennsylvania, United States of America
| | - Amit Vikram
- Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States of America
| | - Scott Duda
- Special Pathogens Laboratory, Pittsburgh, Pennsylvania, United States of America
| | - Janet E. Stout
- Special Pathogens Laboratory, Pittsburgh, Pennsylvania, United States of America
- Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States of America
| | - Kyle Bibby
- Department of Civil and Environmental Engineering, University of Pittsburgh, Swanson School of Engineering, Pittsburgh, Pennsylvania, United States of America
- Department of Computational and Systems Biology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
17
|
Spatial-temporal survey and occupancy-abundance modeling to predict bacterial community dynamics in the drinking water microbiome. mBio 2014; 5:e01135-14. [PMID: 24865557 PMCID: PMC4045074 DOI: 10.1128/mbio.01135-14] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Bacterial communities migrate continuously from the drinking water treatment plant through the drinking water distribution system and into our built environment. Understanding bacterial dynamics in the distribution system is critical to ensuring that safe drinking water is being supplied to customers. We present a 15-month survey of bacterial community dynamics in the drinking water system of Ann Arbor, MI. By sampling the water leaving the treatment plant and at nine points in the distribution system, we show that the bacterial community spatial dynamics of distance decay and dispersivity conform to the layout of the drinking water distribution system. However, the patterns in spatial dynamics were weaker than those for the temporal trends, which exhibited seasonal cycling correlating with temperature and source water use patterns and also demonstrated reproducibility on an annual time scale. The temporal trends were driven by two seasonal bacterial clusters consisting of multiple taxa with different networks of association within the larger drinking water bacterial community. Finally, we show that the Ann Arbor data set robustly conforms to previously described interspecific occupancy abundance models that link the relative abundance of a taxon to the frequency of its detection. Relying on these insights, we propose a predictive framework for microbial management in drinking water systems. Further, we recommend that long-term microbial observatories that collect high-resolution, spatially distributed, multiyear time series of community composition and environmental variables be established to enable the development and testing of the predictive framework. IMPORTANCE Safe and regulation-compliant drinking water may contain up to millions of microorganisms per liter, representing phylogenetically diverse groups of bacteria, archaea, and eukarya that affect public health, water infrastructure, and the aesthetic quality of water. The ability to predict the dynamics of the drinking water microbiome will ensure that microbial contamination risks can be better managed. Through a spatial-temporal survey of drinking water bacterial communities, we present novel insights into their spatial and temporal community dynamics and recommend steps to link these insights in a predictive framework for microbial management of drinking water systems. Such a predictive framework will not only help to eliminate microbial risks but also help to modify existing water quality monitoring efforts and make them more resource efficient. Further, a predictive framework for microbial management will be critical if we are to fully anticipate the risks and benefits of the beneficial manipulation of the drinking water microbiome.
Collapse
|
18
|
Wang H, Masters S, Edwards MA, Falkinham JO, Pruden A. Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1426-35. [PMID: 24401122 DOI: 10.1021/es402636u] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Availability of safe, pathogen-free drinking water is vital to public health; however, it is impossible to deliver sterile drinking water to consumers. Recent microbiome research is bringing new understanding to the true extent and diversity of microbes that inhabit water distribution systems. The purpose of this study was to determine how water chemistry in main distribution lines shape the microbiome in drinking water biofilms and to explore potential associations between opportunistic pathogens and indigenous drinking water microbes. Effects of disinfectant (chloramines, chlorine), water age (2.3 days, 5.7 days), and pipe material (cement, iron, PVC) were compared in parallel triplicate simulated water distribution systems. Pyrosequencing was employed to characterize bacteria and terminal restriction fragment polymorphism was used to profile both bacteria and eukaryotes inhabiting pipe biofilms. Disinfectant and water age were both observed to be strong factors in shaping bacterial and eukaryotic community structures. Pipe material only influenced the bacterial community structure (ANOSIM test, P < 0.05). Interactive effects of disinfectant, pipe material, and water age on both bacteria and eukaryotes were noted. Disinfectant concentration had the strongest effect on bacteria, while dissolved oxygen appeared to be a major driver for eukaryotes (BEST test). Several correlations of similarity metrics among populations of bacteria, eukaryotes, and opportunistic pathogens, as well as one significant association between mycobacterial and proteobacterial operational taxonomic units, provides insight into means by which manipulating the microbiome may lead to new avenues for limiting the growth of opportunistic pathogens (e.g., Legionella) or other nuisance organisms (e.g., nitrifiers).
Collapse
Affiliation(s)
- Hong Wang
- Via Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, Virginia 24061, United States
| | | | | | | | | |
Collapse
|
19
|
Lambrecht E, Baré J, Van Damme I, Bert W, Sabbe K, Houf K. Behavior of Yersinia enterocolitica in the presence of the bacterivorous Acanthamoeba castellanii. Appl Environ Microbiol 2013; 79:6407-13. [PMID: 23934496 PMCID: PMC3811209 DOI: 10.1128/aem.01915-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/06/2013] [Indexed: 12/20/2022] Open
Abstract
Free-living protozoa play an important role in the ecology and epidemiology of human-pathogenic bacteria. In the present study, the interaction between Yersinia enterocolitica, an important food-borne pathogen, and the free-living amoeba Acanthamoeba castellanii was studied. Several cocultivation assays were set up to assess the resistance of Y. enterocolitica to A. castellanii predation and the impact of environmental factors and bacterial strain-specific characteristics. Results showed that all Y. enterocolitica strains persist in association with A. castellanii for at least 14 days, and associations with A. castellanii enhanced survival of Yersinia under nutrient-rich conditions at 25°C and under nutrient-poor conditions at 37°C. Amoebae cultivated in the supernatant of one Yersinia strain showed temperature- and time-dependent permeabilization. Intraprotozoan survival of Y. enterocolitica depended on nutrient availability and temperature, with up to 2.8 log CFU/ml bacteria displaying intracellular survival at 7°C for at least 4 days in nutrient-rich medium. Transmission electron microscopy was performed to locate the Yersinia cells inside the amoebae. As Yersinia and Acanthamoeba share similar ecological niches, this interaction identifies a role of free-living protozoa in the ecology and epidemiology of Y. enterocolitica.
Collapse
Affiliation(s)
- E. Lambrecht
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - J. Baré
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - I. Van Damme
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - W. Bert
- Nematology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - K. Sabbe
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - K. Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
20
|
Wang H, Pryor MA, Edwards MA, Falkinham JO, Pruden A. Effect of GAC pre-treatment and disinfectant on microbial community structure and opportunistic pathogen occurrence. WATER RESEARCH 2013; 47:5760-72. [PMID: 23906775 DOI: 10.1016/j.watres.2013.06.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 05/10/2023]
Abstract
Opportunistic pathogens in potable water systems are an emerging health concern; however, the factors influencing their proliferation are poorly understood. Here we investigated the effects of prior granular activated carbon (GAC) biofiltration [GAC-filtered water, unfiltered water, and a blend (30% GAC filtered and 70% unfiltered water)] and disinfectant type (chlorine, chloramine) on opportunistic pathogen occurrence using five annular reactors (ARs) to simulate water distribution systems, particularly premise plumbing. GAC pre-treatment effectively reduced total organic carbon (TOC), resulting in three levels of influent TOC investigated. Quantitative polymerase chain reaction (q-PCR) provided molecular evidence of natural colonization of Legionella spp., Mycobacterium spp., Acanthamoeba spp., Hartmannella vermiformis and Mycobacterium avium on AR coupons. Cultivable mycobacteria and amoeba, including pathogenic species, were also found in bulk water and biofilm samples. While q-PCR tends to overestimate live cells, it provided a quantitative comparison of target organisms colonizing the AR biofilms in terms of gene copy numbers. In most cases, total bacteria and opportunistic pathogens were higher in the three undisinfected ARs, but the levels were not proportional to the level of GAC pre-treatment/TOC. Chlorine was more effective for controlling mycobacteria and Acanthamoeba, whereas chloramine was more effective for controlling Legionella. Both chlorine and chloramine effectively inhibited M. avium and H. vermiformis colonization. Pyrosequencing of 16S rRNA genes in coupon biofilms revealed a significant effect of GAC pre-treatment and disinfectant type on the microbial community structure. Overall, this study provides insights into the potential of different disinfectants and GAC biofilters at the treatment plant and in buildings to control downstream opportunistic pathogens and broader drinking water microbial communities.
Collapse
Affiliation(s)
- Hong Wang
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
21
|
Wang S, Huang J, Yang Y, Hui Y, Ge Y, Larssen T, Yu G, Deng S, Wang B, Harman C. First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10117-28. [PMID: 23952109 DOI: 10.1021/es402455r] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This is the first report on the environmental occurrence of a chlorinated polyfluorinated ether sulfonate (locally called F-53B, C8ClF16O4SK). It has been widely applied as a mist suppressant by the chrome plating industry in China for decades but has evaded the attention of environmental research and regulation. In this study, F-53B was found in high concentrations (43-78 and 65-112 μg/L for the effluent and influent, respectively) in wastewater from the chrome plating industry in the city of Wenzhou, China. F-53B was not successfully removed by the wastewater treatments in place. Consequently, it was detected in surface water that receives the treated wastewater at similar levels to PFOS (ca. 10-50 ng/L) and the concentration decreased with the increasing distance from the wastewater discharge point along the river. Initial data presented here suggest that F-53B is moderately toxic (Zebrafish LC50-96 h 15.5 mg/L) and is as resistant to degradation as PFOS. While current usage is limited to the chrome plating industry, the increasing demand for PFOS alternatives in other sectors may result in expanded usage. Collectively, the results of this work call for future assessments on the effects of this overlooked contaminant and its presence and fate in the environment.
Collapse
Affiliation(s)
- Siwen Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), School of Environment, POPs Research Centre, Tsinghua University , Beijing 100084, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sixt BS, Kostanjšek R, Mustedanagic A, Toenshoff ER, Horn M. Developmental cycle and host interaction of Rhabdochlamydia porcellionis, an intracellular parasite of terrestrial isopods. Environ Microbiol 2013; 15:2980-93. [PMID: 24024954 DOI: 10.1111/1462-2920.12252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 12/01/2022]
Abstract
Environmental chlamydiae are a diverse group of obligate intracellular bacteria related to well-known pathogens of humans. To date, only very little is known about chlamydial species infecting arthropods. In this study, we used cocultivation with insect cells for recovery and maintenance of Rhabdochlamydia porcellionis, a parasite of the crustacean host Porcellio scaber. In vitro, the infection cycle of R. porcellionis was completed within 7 days, resulting in the release of infectious particles by host cell lysis. Lack of apoptosis induction during the entire course of infection, combined with a reduced sensitivity of infected cultures to experimentally induced programmed cell death, indicates that R. porcellionis like its human pathogenic relatives counteracts this host defence mechanism. Interestingly, the rod-shaped variant of R. porcellionis, proposed to represent their mature infective stage, was not detected in cell culture, suggesting that its development may require prolonged maturation or may be triggered by specific conditions encountered only in the animal host. This first cell culture-based system for the cultivation and investigation of an arthropod-associated chlamydial species will help to better understand the biology of a so far neglected group of chlamydiae and its recently suggested potential to cause disease in humans.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Azra Mustedanagic
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Elena R Toenshoff
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Jakubek D, Guillaume C, Binet M, Leblon G, DuBow M, Le Brun M. Susceptibility of Legionella strains to the chlorinated biocide, monochloramine. Microbes Environ 2013; 28:336-45. [PMID: 24005820 PMCID: PMC4070956 DOI: 10.1264/jsme2.me12205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Members of the Legionella genus find suitable conditions for their growth and survival in nuclear power plant cooling circuits. To limit the proliferation of Legionella pathogenic bacteria in nuclear power plant cooling circuits, and ensure that levels remain below regulatory thresholds, monochloramine treatment can be used. Although the treatment is highly effective, i.e. it reduces Legionella numbers by over 99%, Legionella bacteria can still be detected at low concentrations and rapid re-colonisation of circuits can occur after the treatment has ceased. The aim of this study was to develop an in vitro methodology for determining the intrinsic susceptibility of L. pneumophila strains, collected from various nuclear power plant cooling circuits subjected to different treatment conditions. The methodology was developed by using an original approach based on response surface methodology (RSM) combined with a multifactorial experimental design. The susceptibility was evaluated by the Ct factor. The susceptibility of environmental strains varies widely and is, for some strains, greater than that of known tolerant species; however, strain susceptibility was not related to treatment conditions. Selection pressure induced by monochloramine use did not result in the selection of more tolerant Legionella strains and did not explain the detection of Legionella during treatment or the rapid re-colonisation of cooling circuits after disinfection has ceased.
Collapse
|
24
|
Revetta RP, Gomez-Alvarez V, Gerke TL, Curioso C, Santo Domingo JW, Ashbolt NJ. Establishment and early succession of bacterial communities in monochloramine-treated drinking water biofilms. FEMS Microbiol Ecol 2013; 86:404-14. [PMID: 23789638 DOI: 10.1111/1574-6941.12170] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/27/2022] Open
Abstract
Monochloramine is an increasingly used drinking water disinfectant and has been shown to increase nitrifying bacteria and mycobacteria in drinking waters. The potential successions and development of these bacteria were examined by 16S rRNA gene clone libraries generated from various biofilms within a water distribution system simulator. Biofilms were obtained from in-line and off-line devices using borosilicate glass beads, along with polycarbonate coupons from annular reactors incubated for up to 8 months in monochloramine-treated drinking water. No significant difference in community structures was observed between biofilm devices and coupon material; however, all biofilm communities that developed on different devices underwent similar successions over time. Early stages of biofilm formation were dominated by Serratia (29%), Cloacibacterium (23%), Diaphorobacter (16%), and Pseudomonas (7%), while Mycobacterium-like phylotypes were the most predominant populations (> 27%) in subsequent months. The development of members of the nontuberculous mycobacteria (NTM) after 3 months may impact individuals with predisposing conditions, while nitrifiers (related to Nitrospira moscoviensis and Nitrosospira multiformis) could impact water quality. Overall, 90% of the diversity in all the clone library samples was associated with the phyla Proteobacteria, Actinobacteria, and Bacteroidetes. These results provide an ecological insight into biofilm bacterial successions in monochloramine-treated drinking water.
Collapse
Affiliation(s)
- Randy P Revetta
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
25
|
Cooccurrence of free-living amoebae and nontuberculous Mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl Environ Microbiol 2013; 79:3185-92. [PMID: 23475613 DOI: 10.1128/aem.03823-12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The incidence of lung and other diseases due to nontuberculous mycobacteria (NTM) is increasing. NTM sources include potable water, especially in households where NTM populate pipes, taps, and showerheads. NTM share habitats with free-living amoebae (FLA) and can grow in FLA as parasites or as endosymbionts. FLA containing NTM may form cysts that protect mycobacteria from disinfectants and antibiotics. We first assessed the presence of FLA and NTM in water and biofilm samples collected from a hospital, confirming the high prevalence of NTM and FLA in potable water systems, particularly in biofilms. Acanthamoeba spp. (genotype T4) were mainly recovered (8/17), followed by Hartmannella vermiformis (7/17) as well as one isolate closely related to the genus Flamella and one isolate only distantly related to previously described species. Concerning mycobacteria, Mycobacterium gordonae was the most frequently found isolate (9/17), followed by Mycobacterium peregrinum (4/17), Mycobacterium chelonae (2/17), Mycobacterium mucogenicum (1/17), and Mycobacterium avium (1/17). The propensity of Mycobacterium avium hospital isolate H87 and M. avium collection strain 104 to survive and replicate within various FLA was also evaluated, demonstrating survival of both strains in all amoebal species tested but high replication rates only in Acanthamoeba lenticulata. As A. lenticulata was frequently recovered from environmental samples, including drinking water samples, these results could have important consequences for the ecology of M. avium in drinking water networks and the epidemiology of disease due to this species.
Collapse
|
26
|
Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in The Netherlands. Appl Environ Microbiol 2012; 79:825-34. [PMID: 23160134 DOI: 10.1128/aem.02748-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multiplication of opportunistic pathogens in drinking water supplies might pose a threat to public health. In this study, distributed unchlorinated drinking water from eight treatment plants in the Netherlands was sampled and analyzed for fungi, nontuberculous mycobacteria (NTM), and several opportunistic pathogens by using selective quantitative PCR methods. Fungi and NTM were detected in all drinking water samples, whereas Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Aspergillus fumigatus were sporadically observed. Mycobacterium avium complex and Acanthamoeba spp. were not detected. Season had no influence on the occurrence of these organisms, except for NTM and S. maltophilia, which were present in higher numbers in the summer. Opportunistic pathogens were more often observed in premise plumbing water samples than in samples from the distribution system. The lowest number of these organisms was observed in the finished water at the plant. Thus, fungi, NTM, and some of the studied opportunistic pathogens can multiply in the distribution and premise plumbing systems. Assimilable organic carbon (AOC) and/or total organic carbon (TOC) had no clear effects on fungal and NTM numbers or on P. aeruginosa- and S. maltophilia-positive samples. However, L. pneumophila was detected more often in water with AOC concentrations above 10 μg C liter(-1) than in water with AOC levels below 5 μg C liter(-1). Finally, samples that contained L. pneumophila, P. aeruginosa, or S. maltophilia were more frequently positive for a second opportunistic pathogen, which shows that certain drinking water types and/or sampling locations promote the growth of multiple opportunistic pathogens.
Collapse
|
27
|
Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl Environ Microbiol 2012; 78:6285-94. [PMID: 22752174 DOI: 10.1128/aem.01492-12] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spread of opportunistic pathogens via public water systems is of growing concern. The purpose of this study was to identify patterns of occurrence among three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa) relative to biotic and abiotic factors in two representative chloraminated drinking water distribution systems using culture-independent methods. Generally, a high occurrence of Legionella (≥69.0%) and mycobacteria (100%), lower occurrence of L. pneumophila (≤20%) and M. avium (≤33.3%), and rare detection of Pseudomonas aeruginosa (≤13.3%) were observed in both systems according to quantitative PCR. Also, Hartmanella vermiformis was more prevalent than Acanthamoeba, both of which are known hosts for opportunistic pathogen amplification, the latter itself containing pathogenic members. Three-minute flushing served to distinguish distribution system water from plumbing in buildings (i.e., premise plumbing water) and resulted in reduced numbers of copies of Legionella, mycobacteria, H. vermiformis, and 16S rRNA genes (P < 0.05) while yielding distinct terminal restriction fragment polymorphism (T-RFLP) profiles of 16S rRNA genes. Within certain subgroups of samples, some positive correlations, including correlations of numbers of mycobacteria and total bacteria (16S rRNA genes), H. vermiformis and total bacteria, mycobacteria and H. vermiformis, and Legionella and H. vermiformis, were noted, emphasizing potential microbial ecological relationships. Overall, the results provide insight into factors that may aid in controlling opportunistic pathogen proliferation in real-world water systems.
Collapse
|
28
|
Cellular response of the amoeba Acanthamoeba castellanii to chlorine, chlorine dioxide, and monochloramine treatments. Appl Environ Microbiol 2011; 77:4974-80. [PMID: 21602398 DOI: 10.1128/aem.00234-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acanthamoeba castellanii is a free-living amoebae commonly found in water systems. Free-living amoebae might be pathogenic but are also known to bear phagocytosis-resistant bacteria, protecting these bacteria from water treatments. The mode of action of these treatments is poorly understood, particularly on amoebae. It is important to examine the action of these treatments on amoebae in order to improve them. The cellular response to chlorine, chlorine dioxide, and monochloramine was tested on A. castellanii trophozoites. Doses of disinfectants leading to up to a 3-log reduction were compared by flow cytometry and electron microscopy. Chlorine treatment led to size reduction, permeabilization, and retraction of pseudopods. In addition, treatment with chlorine dioxide led to a vacuolization of the cytoplasm. Monochloramine had a dose-dependent effect. At the highest doses monochloramine treatment resulted in almost no changes in cell size and permeability, as shown by flow cytometry, but the cell surface became smooth and dense, as seen by electron microscopy. We show that these disinfectants globally induced size reduction, membrane permeabilization, and morphological modifications but that they have a different mode of action on A. castellanii.
Collapse
|