1
|
Schmid PJ, Forstner P, Kittinger C. Sliding motility of Bacillus cereus mediates vancomycin pseudo-resistance during antimicrobial susceptibility testing. J Antimicrob Chemother 2024; 79:1628-1636. [PMID: 38785365 PMCID: PMC11215547 DOI: 10.1093/jac/dkae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The glycopeptide vancomycin is the antimicrobial agent-of-choice for the treatment of severe non-gastrointestinal infections with members of Bacillus cereus sensu lato (s.l.). Recently, sporadic detection of vancomycin-resistant phenotypes emerged, mostly for agar diffusion testing such as the disc diffusion method or gradient test (e.g. Etest®) method. RESULTS In this work, we were able to disprove a preliminarily assumed high resistance to vancomycin in an isolate of B. cereus s.l. using broth microdilution and agar dilution. Microscopic imaging during vancomycin susceptibility testing showed spreading towards the inhibition zone, which strongly suggested sliding motility. Furthermore, transcriptomic analysis using RNA-Seq on the nanopore platform revealed several key genes of biofilm formation (e.g. calY, tasA, krsEABC) to be up-regulated in pseudo-resistant cells, substantiating that bacterial sliding is responsible for the observed mobility. Down-regulation of virulence (e.g. hblABCD, nheABC, plcR) and flagellar genes compared with swarming cells also confirmed the non-swarming phenotype of the pseudo-resistant isolate. CONCLUSIONS The results highlight an insufficiency of agar diffusion testing for vancomycin susceptibility in the B. cereus group, and reference methods like broth microdilution are strongly recommended. As currently no guideline mentions interfering phenotypes in antimicrobial susceptibility testing of B. cereus s.l., this knowledge is essential to obtain reliable results on vancomycin susceptibility. In addition, this is the first report of sliding motility undermining accurate antimicrobial susceptibility testing in B. cereus s.l. and may serve as a basis for future studies on bacterial motility in susceptibility testing and its potential impact on treatment efficacy.
Collapse
Affiliation(s)
- Paul J Schmid
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Patrick Forstner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| | - Clemens Kittinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Morandini L, Caulier S, Bragard C, Mahillon J. Bacillus cereus sensu lato antimicrobial arsenal: An overview. Microbiol Res 2024; 283:127697. [PMID: 38522411 DOI: 10.1016/j.micres.2024.127697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/25/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The Bacillus cereus group contains genetically closed bacteria displaying a variety of phenotypic features and lifestyles. The group is mainly known through the properties of three major species: the entomopathogen Bacillus thuringiensis, the animal and human pathogen Bacillus anthracis and the foodborne opportunistic strains of B. cereus sensu stricto. Yet, the actual diversity of the group is far broader and includes multiple lifestyles. Another less-appreciated aspect of B. cereus members lies within their antimicrobial potential which deserves consideration in the context of growing emergence of resistance to antibiotics and pesticides, and makes it crucial to find new sources of antimicrobial molecules. This review presents the state of knowledge on the known antimicrobial compounds of the B. cereus group members, which are grouped according to their chemical features and biosynthetic pathways. The objective is to provide a comprehensive review of the antimicrobial range exhibited by this group of bacteria, underscoring the interest in its potent biocontrol arsenal and encouraging further research in this regard.
Collapse
Affiliation(s)
| | - Simon Caulier
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Claude Bragard
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | | |
Collapse
|
3
|
Dong H, Zhang F, Xu T, Liu Y, Du Y, Wang C, Liu T, Gao J, He Y, Wang X, Sun S, She Y. Culture-dependent and culture-independent methods reveal microbe-clay mineral interactions by dissimilatory iron-reducing bacteria in an integral oilfield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156577. [PMID: 35688243 DOI: 10.1016/j.scitotenv.2022.156577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/19/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Fe(III) may be reasonably considered as one of the most important electron acceptors in petroleum reservoir ecosystems. The microbial mineralization of clay minerals, especially montmorillonite, is also of great significance to the exploration of petroleum and gas reservoirs. The bioreduction mechanisms of iron-poor minerals in petroleum reservoirs have been poorly investigated. This study investigated the bioreduction of montmorillonite by dissimilatory iron-reducing bacteria (DIRB) in petroleum reservoirs based on culture-independent and culture-dependent methods. Microbial diversity analysis revealed that Halolactibacillus, Bacillus, Alkaliphilus, Shewanella, Clostridium, and Pseudomonas were the key genera involved in the bioreduction of Fe(III). Through the traditional culture-dependent method, most of the key genera were isolated from the samples collected from petroleum reservoirs. Traditional culture-dependent methods can be used to reveal the metabolic characteristics of microorganisms (such as iron-reduction efficiency) to further elucidate the roles of different species (B. subtilis and B. alkalitelluris) in the environment. Moreover, many species with high iron-reduction efficiencies and relatively low abundances in the samples, such as Tessaracoccus and Flaviflexus, were isolated from petroleum reservoirs for the first time. The combination of culture-dependent and culture-independent methods can be used to further the understanding of the microbial communities and the metabolic characteristics of DIRB in petroleum reservoirs. Structural alterations that occurred during the interactions of microorganisms and montmorillonite were revealed through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD). The physical and chemical analysis results demonstrated that microorganisms from petroleum reservoirs can dissolve iron-poor montmorillonite and promote the release of interlayer water. The secondary minerals illite and clinoptilolite were observed in bioreduced smectite. The formation of secondary minerals was closely related to the dissolution degrees of minerals based on iron reduction.
Collapse
Affiliation(s)
- Hao Dong
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China.
| | - Fan Zhang
- The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, College of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ting Xu
- College of Resources and Environment, Yangtze University, Wuhan 430010, China
| | - Yulong Liu
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China
| | - Ying Du
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Chen Wang
- College of Resources and Environment, Yangtze University, Wuhan 430010, China
| | - Tiansheng Liu
- College of Resources and Environment, Yangtze University, Wuhan 430010, China
| | - Ji Gao
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Yanlong He
- College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Xiaotong Wang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Sun
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China
| | - Yuehui She
- Key Laboratory of Drilling and Production Engineering for Oil and Gas, College of Petroleum Engineering, Yangtze University, Wuhan 430010, China.
| |
Collapse
|
4
|
Lin Y, Xu X, Maróti G, Strube ML, Kovács ÁT. Adaptation and phenotypic diversification of Bacillus thuringiensis biofilm are accompanied by fuzzy spreader morphotypes. NPJ Biofilms Microbiomes 2022; 8:27. [PMID: 35418164 PMCID: PMC9007996 DOI: 10.1038/s41522-022-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/19/2022] [Indexed: 11/12/2022] Open
Abstract
Bacillus cereus group (Bacillus cereus sensu lato) has a diverse ecology, including various species that produce biofilms on abiotic and biotic surfaces. While genetic and morphological diversification enables the adaptation of multicellular communities, this area remains largely unknown in the Bacillus cereus group. In this work, we dissected the experimental evolution of Bacillus thuringiensis 407 Cry- during continuous recolonization of plastic beads. We observed the evolution of a distinct colony morphotype that we named fuzzy spreader (FS) variant. Most multicellular traits of the FS variant displayed higher competitive ability versus the ancestral strain, suggesting an important role for diversification in the adaptation of B. thuringiensis to the biofilm lifestyle. Further genetic characterization of FS variant revealed the disruption of a guanylyltransferase gene by an insertion sequence (IS) element, which could be similarly observed in the genome of a natural isolate. The evolved FS and the deletion mutant in the guanylyltransferase gene (Bt407ΔrfbM) displayed similarly altered aggregation and hydrophobicity compared to the ancestor strain, suggesting that the adaptation process highly depends on the physical adhesive forces.
Collapse
Affiliation(s)
- Yicen Lin
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Xinming Xu
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, ELKH, 6726, Szeged, Hungary
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, 2800, Lyngby, Denmark.
| |
Collapse
|
5
|
Dong H, Zheng A, He Y, Wang X, Li Y, Yu G, Gu Y, Banat IM, Sun S, She Y, Zhang F. Optimization and characterization of biosurfactant produced by indigenous Brevibacillus borstelensis isolated from a low permeability reservoir for application in MEOR. RSC Adv 2022; 12:2036-2047. [PMID: 35425221 PMCID: PMC8979201 DOI: 10.1039/d1ra07663a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/19/2021] [Indexed: 11/27/2022] Open
Abstract
Biosurfactants are expected to be a key factor for microbial enhanced oil recovery (MEOR). In this study, we described the novel biosurfactant-producing strain Brevibacillus borstelensis YZ-2 isolated from a low permeability oil reservoir. We purified and characterized the biosurfactants produced by this YZ-2 strain via thin-layer chromatography and MALDI-TOF-MS, revealing them to be fengycins. We additionally used a Box–Behnken design approach to optimize fermentation conditions in order to maximize the biosurfactants production. Core flooding experiments showed that biosurfactants produced by YZ-2 can significantly enhance crude oil recovery. Micro-model tests showed that emulsification and IFT reduction was the main EOR mechanism of the YZ biosurfactant in the oil wet model. In summary, these findings highlight the potential of Brevibacillus borstelensis YZ-2 and its metabolites for MEOR. Biosurfactants are expected to be a key factor for microbial enhanced oil recovery (MEOR).![]()
Collapse
Affiliation(s)
- Hao Dong
- College of Chemistry and Environmental Engineering, Yangtze University Jingzhou 434023 China
| | - Anying Zheng
- College of Petroleum Engineering, Yangtze University Wuhan Hubei 430010 China
| | - Yanlong He
- College of Petroleum Engineering, Xi'an Shiyou University Xi'an 710065 China
| | - Xiaotong Wang
- State Key Laboratory of Microbial Resources, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences Beijing 100101 China.,University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yang Li
- College of Petroleum Engineering, Yangtze University Wuhan Hubei 430010 China
| | - Gaoming Yu
- College of Petroleum Engineering, Yangtze University Wuhan Hubei 430010 China
| | - Yongan Gu
- College of Petroleum Engineering, Yangtze University Wuhan Hubei 430010 China
| | - I M Banat
- Faculty of Life and Health Sciences, School of Biomedical Sciences, University of Ulster Northern Ireland UK
| | - Shanshan Sun
- College of Petroleum Engineering, Yangtze University Wuhan Hubei 430010 China
| | - Yuehui She
- College of Petroleum Engineering, Yangtze University Wuhan Hubei 430010 China
| | - Fan Zhang
- The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, College of Energy Resources, China University of Geosciences (Beijing) Beijing 100083 China
| |
Collapse
|
6
|
Capillary bacterial migration on non-nutritive solid surfaces. Arh Hig Rada Toksikol 2020; 71:251-260. [PMID: 33074174 PMCID: PMC7968502 DOI: 10.2478/aiht-2020-71-3436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/01/2020] [Indexed: 12/04/2022] Open
Abstract
Here we describe an additional type of bacterial migration in which bacterial cells migrate vertically across a non-nutritive solid surface carried by capillary forces. Unlike standard motility experiments, these were run on a glass slide inserted into a Falcon tube, partly immersed in a nutrient medium and partly exposed to air. Observations revealed that capillary forces initiated upward cell migration when biofilm was formed at the border between liquid and air. The movement was facilitated by the production of extracellular polymeric substances (EPS). This motility differs from earlier described swarming, twitching, gliding, sliding, or surfing, although these types of movements are not excluded. We therefore propose to call it “capillary movement of biofilm”. This phenomenon may be an ecologically important mode of bacterial motility on solid surfaces.
Collapse
|
7
|
Unique inducible filamentous motility identified in pathogenic Bacillus cereus group species. ISME JOURNAL 2020; 14:2997-3010. [PMID: 32770116 PMCID: PMC7784679 DOI: 10.1038/s41396-020-0728-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023]
Abstract
Active migration across semi-solid surfaces is important for bacterial success by facilitating colonization of unoccupied niches and is often associated with altered virulence and antibiotic resistance profiles. We isolated an atmospheric contaminant, subsequently identified as a new strain of Bacillus mobilis, which showed a unique, robust, rapid, and inducible filamentous surface motility. This flagella-independent migration was characterized by formation of elongated cells at the expanding edge and was induced when cells were inoculated onto lawns of metabolically inactive Campylobacter jejuni cells, autoclaved bacterial biomass, adsorbed milk, and adsorbed blood atop hard agar plates. Phosphatidylcholine (PC), bacterial membrane components, and sterile human fecal extracts were also sufficient to induce filamentous expansion. Screening of eight other Bacillus spp. showed that filamentous motility was conserved amongst B. cereus group species to varying degrees. RNA-Seq of elongated expanding cells collected from adsorbed milk and PC lawns versus control rod-shaped cells revealed dysregulation of genes involved in metabolism and membrane transport, sporulation, quorum sensing, antibiotic synthesis, and virulence (e.g., hblA/B/C/D and plcR). These findings characterize the robustness and ecological significance of filamentous surface motility in B. cereus group species and lay the foundation for understanding the biological role it may play during environment and host colonization.
Collapse
|
8
|
Abstract
The manipulation and engineering of microbiomes could lead to improved human health, environmental sustainability, and agricultural productivity. However, microbiomes have proven difficult to alter in predictable ways, and their emergent properties are poorly understood. The history of biology has demonstrated the power of model systems to understand complex problems such as gene expression or development. Therefore, a defined and genetically tractable model community would be useful to dissect microbiome assembly, maintenance, and processes. We have developed a tractable model rhizosphere microbiome, designated THOR, containing Pseudomonas koreensis, Flavobacterium johnsoniae, and Bacillus cereus, which represent three dominant phyla in the rhizosphere, as well as in soil and the mammalian gut. The model community demonstrates emergent properties, and the members are amenable to genetic dissection. We propose that THOR will be a useful model for investigations of community-level interactions. The quest to manipulate microbiomes has intensified, but many microbial communities have proven to be recalcitrant to sustained change. Developing model communities amenable to genetic dissection will underpin successful strategies for shaping microbiomes by advancing an understanding of community interactions. We developed a model community with representatives from three dominant rhizosphere taxa, the Firmicutes, Proteobacteria, and Bacteroidetes. We chose Bacillus cereus as a model rhizosphere firmicute and characterized 20 other candidates, including “hitchhikers” that coisolated with B. cereus from the rhizosphere. Pairwise analysis produced a hierarchical interstrain-competition network. We chose two hitchhikers, Pseudomonas koreensis from the top tier of the competition network and Flavobacterium johnsoniae from the bottom of the network, to represent the Proteobacteria and Bacteroidetes, respectively. The model community has several emergent properties, induction of dendritic expansion of B. cereus colonies by either of the other members, and production of more robust biofilms by the three members together than individually. Moreover, P. koreensis produces a novel family of alkaloid antibiotics that inhibit growth of F. johnsoniae, and production is inhibited by B. cereus. We designate this community THOR, because the members are the hitchhikers of the rhizosphere. The genetic, genomic, and biochemical tools available for dissection of THOR provide the means to achieve a new level of understanding of microbial community behavior.
Collapse
|
9
|
Nkhalambayausi Chirwa EM, Mampholo CT, Fayemiwo OM, Bezza FA. Biosurfactant assisted recovery of the C 5-C 11 hydrocarbon fraction from oily sludge using biosurfactant producing consortium culture of bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 196:261-269. [PMID: 28288360 DOI: 10.1016/j.jenvman.2017.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
A biosurfactant producing culture of bacteria was isolated from an automobile engine oil dump site which was later used as an inoculum in batch and continuous flow oil recovery from oily sludge. Initially, an emulsion of oily sludge was prepared by mixing 5% m/v solids: 21% v/v bituminous sludge: 77% v/v water. The isolated cultures were added to vessels with stable emulsions to facilitate the separation of oil droplets from the sludge matrix. In batches with live cultures, up to 35% oil recovery was achieved after incubation for 10 days. Further investigations were conducted in a semi-continuous feed, fed-batch plug flow reactor (FB-PFR) system. Up to 99.7% was achieved in the FB-PFR after operation for 10 days, much higher than the recovery achieved in the pure batch systems where only 35% oil was recovered after incubation for 10 days. The improved performance in the FB-PFR was attributed to differential separation of particles under variable velocity along the reactor. The culture in the reactor was predominated by Klebsiellae, Enterobacteriaceae and Bacilli throughout the experiment. A crude biosurfactant produced by the cultures was partially purified and analyzed using the liquid chromatograph coupled to a tandem mass spectrometer (LC-MS/MS) which showed that the molecular structure of the biosurfactant produced closely matched the structure of lipopeptides identified in earlier studies. This process is aimed at recovering useful oil from oily waste sludge with the added advantage of degrading aromatic organic impurities in the oil to produce a cleaner oil product. The further advantage of the FB-PFR system was that, the bacteria discharged together with effluent sludge residue further degraded chemical oxygen demand (COD) in the treated sludge thereby reducing the polluting potential of the final disposed sludge.
Collapse
Affiliation(s)
| | - Chidinyane T Mampholo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| | | | - Fisseha A Bezza
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
10
|
Correction: Necrotrophism Is a Quorum-Sensing-Regulated Lifestyle in Bacillus thuringiensis. PLoS Pathog 2016; 12:e1006049. [PMID: 27898733 PMCID: PMC5127582 DOI: 10.1371/journal.ppat.1006049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Li Z, Hwang S, Bar-Peled M. Discovery of a Unique Extracellular Polysaccharide in Members of the Pathogenic Bacillus That Can Co-form with Spores. J Biol Chem 2016; 291:19051-67. [PMID: 27402849 DOI: 10.1074/jbc.m116.724708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Indexed: 11/06/2022] Open
Abstract
An exopolysaccharide, produced during the late stage of stationary growth phase, was discovered and purified from the culture medium of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis when strains were grown in a defined nutrient medium that induces biofilm. Two-dimensional NMR structural characterization of the polysaccharide, named pzX, revealed that it is composed of an unusual three amino-sugar sequence repeat of [-3)XylNAc4OAc(α1-3)GlcNAcA4OAc(α1-3)XylNAc(α1-]n The sugar residue XylNAc had never been described previously in any glycan structure. The XNAC operon that contains the genes for the assembly of pzX is also unique and so far has been identified only in members of the Bacillus cereus sensu lato group. Microscopic and biochemical analyses indicate that pzX co-forms during sporulation, so that upon the release of the spore to the extracellular milieu it becomes surrounded by pzX. The relative amounts of pzX produced can be manipulated by specific nutrients in the medium, but rich medium appears to suppress pzX formation. pzX has the following unique characteristics: a surfactant property that lowers surface tension, a cell/spore antiaggregant, and an adherence property that increases spores binding to surfaces. pzX in Bacillus could represent a trait shared by many spore-producing microorganisms. It suggests pzX is an active player in spore physiology and may provide new insights to the successful survival of the B. cereus species in natural environments or in the hosts.
Collapse
Affiliation(s)
- Zi Li
- From the Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| | - Soyoun Hwang
- From the Complex Carbohydrate Research Center and
| | - Maor Bar-Peled
- From the Complex Carbohydrate Research Center and Department of Plant Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
12
|
Hsueh YH, Lin KS, Ke WJ, Hsieh CT, Chiang CL, Tzou DY, Liu ST. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions. PLoS One 2015; 10:e0144306. [PMID: 26669836 PMCID: PMC4682921 DOI: 10.1371/journal.pone.0144306] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023] Open
Abstract
The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation.
Collapse
Affiliation(s)
- Yi-Huang Hsueh
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
- * E-mail:
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Wan-Ju Ke
- Graduate Institute of Biomedical Sciences, and Research Center for Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Chao-Lung Chiang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Dong-Ying Tzou
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Shih-Tung Liu
- Graduate Institute of Biomedical Sciences, and Research Center for Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
13
|
Hayrapetyan H, Tempelaars M, Nierop Groot M, Abee T. Bacillus cereus ATCC 14579 RpoN (Sigma 54) Is a Pleiotropic Regulator of Growth, Carbohydrate Metabolism, Motility, Biofilm Formation and Toxin Production. PLoS One 2015; 10:e0134872. [PMID: 26241851 PMCID: PMC4524646 DOI: 10.1371/journal.pone.0134872] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/14/2015] [Indexed: 12/16/2022] Open
Abstract
Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B. cereus ATCC 14579 WT, a markerless rpoN deletion mutant, and its complemented strain. The mutant was impaired in many different cellular functions including low temperature and anaerobic growth, carbohydrate metabolism, sporulation and toxin production. Additionally, the mutant showed lack of motility and biofilm formation at air-liquid interphase, and this correlated with absence of flagella, as flagella staining showed only WT and complemented strain to be highly flagellated. Comparative transcriptome analysis of cells harvested at selected time points during growth in aerated and static conditions in BHI revealed large differences in gene expression associated with loss of phenotypes, including significant down regulation of genes in the mutant encoding enzymes involved in degradation of branched chain amino acids, carbohydrate transport and metabolism, flagella synthesis and virulence factors. Our study provides evidence for a pleiotropic role of Sigma 54 in B. cereus supporting its adaptive response and survival in a range of conditions and environments.
Collapse
Affiliation(s)
- Hasmik Hayrapetyan
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
| | - Marcel Tempelaars
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
| | - Masja Nierop Groot
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- Food and Biobased research, Wageningen UR, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Bornse Weilanden 9, 6708 WG Wageningen University, Wageningen, The Netherlands
- Top Institute of Food and Nutrition (TIFN), Nieuwe Kanaal 9A, 6709 PA, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Hsueh YH, Ke WJ, Hsieh CT, Lin KS, Tzou DY, Chiang CL. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation. PLoS One 2015; 10:e0128457. [PMID: 26039692 PMCID: PMC4454653 DOI: 10.1371/journal.pone.0128457] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/27/2015] [Indexed: 11/24/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.
Collapse
Affiliation(s)
- Yi-Huang Hsueh
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan
- * E-mail:
| | - Wan-Ju Ke
- Graduate Institute of Biomedical Sciences, and Research Center for Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Te Hsieh
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Kuen-Song Lin
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Dong-Ying Tzou
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Chao-Lung Chiang
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| |
Collapse
|
15
|
Bishop AH. Germination and persistence of Bacillus anthracis and Bacillus thuringiensis in soil microcosms. J Appl Microbiol 2014; 117:1274-82. [PMID: 25099131 DOI: 10.1111/jam.12620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 11/30/2022]
Abstract
AIMS Decontaminating large, outdoor spaces of Bacillus anthracis spores presents significant problems, particularly in soil. Proof was sought that the addition of germinant chemicals could cause spores of B. anthracis and Bacillus thuringiensis, a commonly used simulant of the threat agent, to convert to the less resistant vegetative form in a microcosm. METHODS AND RESULTS Nonsterile plant/soil microcosms were inoculated with spores of B. thuringiensis and two nonpathogenic strains of B. anthracis. A combination of L-alanine (100 mmol l(-1)) and inosine (10 mmol l(-1)) resulted in a 6 log decrease in spore numbers in both strains of B. anthracis over 2 weeks at 22°C; a 3 log decrease in B. anthracis Sterne spore numbers was observed after incubation for 2 weeks at 10°C. Negligible germination nor a decrease in viable count occurred in either strain when the concentration of L-alanine was decreased to 5 mmol l(-1). Germinated spores of B. thuringiensis were able to persist in vegetative form in the microcosms, whereas those of B. anthracis rapidly disappeared. The pleiotropic regulator PlcR, which B. anthracis lacks, does not contribute to the persistence of B. thuringiensis in vegetative form in soil. CONCLUSIONS The principle of adding germinants to soil to trigger the conversion of spores to vegetative form has been demonstrated. Bacillus anthracis failed to persist in vegetative form or resporulate in the microcosms after it had been induced to germinate. SIGNIFICANCE AND IMPACT OF THE STUDY The large scale, outdoor decontamination of B. anthracis spores may be facilitated by the application of simple, defined combinations of germinants.
Collapse
Affiliation(s)
- A H Bishop
- Detection Department, Defence Science and Technology Laboratory, Salisbury, Wiltshire, UK
| |
Collapse
|
16
|
Singh AK, Dhanjal S, Cameotra SS. Surfactin restores and enhances swarming motility under heavy metal stress. Colloids Surf B Biointerfaces 2013; 116:26-31. [PMID: 24441179 DOI: 10.1016/j.colsurfb.2013.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
Abstract
The present work reports the importance of lipopeptide biosurfactant on swarming motility of multi-metal resistant (MMR) bacterium under heavy metal stress. The MMR bacteria strain CM100B, identified as Bacillus cereus, was isolated from the coal mine sample. The strain was able to grow and reduce several metals namely Cd(2+), Co(2+), Cu(2+), Ni(2+), Mn(2+) and Pb(2+) ions which are common environmental pollutants. Presence of toxic heavy metal ions in the swarming medium significantly altered the motility of CM100B. Presence of Cd(2+) and Pb(2+) ions inhibited development of peritrichous flagella, thus inhibiting swarming motility. However, the addition of anionic biosurfactant surfactin restored (in case of Cd(2+) and Pb(2+) ions) or enhanced (in case of Co(2+), Cu(2+), Ni(2+) and Mn(2+)) the swarming ability of CM100B. Zeta potential studies for determining bacterial cell surface charge indicated that surfactin provided a suitable swarming environment to bacteria even under metal stress by chelating to cationic metal ions. Non-ionic surfactant Triton X-100 was unable to restore swarming under Cd(2+) and Pb(2+) ion stress. Thus, suggesting that surfactin can aid in motility not only by reducing the surface tension of swarming medium but also by binding to metal ions in the presence of metal ions stress.
Collapse
Affiliation(s)
- Anil Kumar Singh
- Environmental Biotechnology and Microbial Biochemistry Laboratory, Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160 036, India
| | - Soniya Dhanjal
- Environmental Biotechnology and Microbial Biochemistry Laboratory, Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160 036, India
| | - Swaranjit Singh Cameotra
- Environmental Biotechnology and Microbial Biochemistry Laboratory, Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160 036, India.
| |
Collapse
|
17
|
Janek T, Lukaszewicz M, Krasowska A. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids Surf B Biointerfaces 2013; 110:379-86. [PMID: 23751417 DOI: 10.1016/j.colsurfb.2013.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/23/2013] [Accepted: 05/07/2013] [Indexed: 11/28/2022]
Abstract
One hundred and thirty bacterial strains, isolated from Arctic soil on the Svalbard Archipelago, were screened for biosurfactant production. Among them, an isolate identified as Pseudomonas putida BD2 was selected as a potential biosurfactant-producer based on the surface/interfacial activity of the culture supernatant. The ability of the strain to produce simultaneously phosphatidylethanolamines and rhamnolipid, using glucose as a sole carbon source, was demonstrated. The rhamnolipid Rha-Rha-C10-C10 and two homologs of phosphatidylethanolamine were extracted from cell-free supernatant of P. putida BD2 culture with ethyl acetate and identified by UPLC-MS analysis. For Rha-Rha-C10-C10 the surface tension decreased from 72 to 31mN/m and the critical micelle concentration was 0.130mg/mL. The Rha-Rha-C10-C10 was able to form stable aggregates (80-121nm). Pretreatment of a polystyrene surface with 0.5mg/mL rhamnolipid inhibited bacterial adhesion by 43-79% and that of the pathogenic fungal species C. albicans by 89-90%. The same concentration of phosphatidylethanolamines inhibited bacterial adhesion by 23-72% and that of C. albicans by 96-98%. To our knowledge, this is the first report where one type rhamnolipid and two homologs of phospholipid biosurfactants were produced by P. putida isolated from Arctic soil.
Collapse
Affiliation(s)
- Tomasz Janek
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
| | | | | |
Collapse
|
18
|
Kheiralla ZH, Ashour SM, Rushdy AA, Ahmed HA. Characterization of biosurfactants produced by Halobacillus dabanensis and Pontibacillus chungwhensi isolated from oil-contaminated mangrove ecosystem in Egypt. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813030186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Shanks RMQ, Lahr RM, Stella NA, Arena KE, Brothers KM, Kwak DH, Liu X, Kalivoda EJ. A Serratia marcescens PigP homolog controls prodigiosin biosynthesis, swarming motility and hemolysis and is regulated by cAMP-CRP and HexS. PLoS One 2013; 8:e57634. [PMID: 23469212 PMCID: PMC3585978 DOI: 10.1371/journal.pone.0057634] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/24/2013] [Indexed: 11/25/2022] Open
Abstract
Swarming motility and hemolysis are virulence-associated determinants for a wide array of pathogenic bacteria. The broad host-range opportunistic pathogen Serratia marcescens produces serratamolide, a small cyclic amino-lipid, that promotes swarming motility and hemolysis. Serratamolide is negatively regulated by the transcription factors HexS and CRP. Positive regulators of serratamolide production are unknown. Similar to serratamolide, the antibiotic pigment, prodigiosin, is regulated by temperature, growth phase, HexS, and CRP. Because of this co-regulation, we tested the hypothesis that a homolog of the PigP transcription factor of the atypical Serratia species ATCC 39006, which positively regulates prodigiosin biosynthesis, is also a positive regulator of serratamolide production in S. marcescens. Mutation of pigP in clinical, environmental, and laboratory strains of S. marcescens conferred pleiotropic phenotypes including the loss of swarming motility, hemolysis, and severely reduced prodigiosin and serratamolide synthesis. Transcriptional analysis and electrophoretic mobility shift assays place PigP in a regulatory pathway with upstream regulators CRP and HexS. The data from this study identifies a positive regulator of serratamolide production, describes novel roles for the PigP transcription factor, shows for the first time that PigP directly regulates the pigment biosynthetic operon, and identifies upstream regulators of pigP. This study suggests that PigP is important for the ability of S. marcescens to compete in the environment.
Collapse
Affiliation(s)
- Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh Eye Center, Pittsburgh, Pennsylvania, United States of America
| | - Roni M. Lahr
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh Eye Center, Pittsburgh, Pennsylvania, United States of America
| | - Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh Eye Center, Pittsburgh, Pennsylvania, United States of America
| | - Kristin E. Arena
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh Eye Center, Pittsburgh, Pennsylvania, United States of America
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh Eye Center, Pittsburgh, Pennsylvania, United States of America
| | - Daniel H. Kwak
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xinyu Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Eric J. Kalivoda
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh Eye Center, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
20
|
Serratamolide is a hemolytic factor produced by Serratia marcescens. PLoS One 2012; 7:e36398. [PMID: 22615766 PMCID: PMC3353980 DOI: 10.1371/journal.pone.0036398] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/05/2012] [Indexed: 12/03/2022] Open
Abstract
Serratia marcescens is a common contaminant of contact lens cases and lenses. Hemolytic factors of S. marcescens contribute to the virulence of this opportunistic bacterial pathogen. We took advantage of an observed hyper-hemolytic phenotype of crp mutants to investigate mechanisms of hemolysis. A genetic screen revealed that swrW is necessary for the hyper-hemolysis phenotype of crp mutants. The swrW gene is required for biosynthesis of the biosurfactant serratamolide, previously shown to be a broad-spectrum antibiotic and to contribute to swarming motility. Multicopy expression of swrW or mutation of the hexS transcription factor gene, a known inhibitor of swrW expression, led to an increase in hemolysis. Surfactant zones and expression from an swrW-transcriptional reporter were elevated in a crp mutant compared to the wild type. Purified serratamolide was hemolytic to sheep and murine red blood cells and cytotoxic to human airway and corneal limbal epithelial cells in vitro. The swrW gene was found in the majority of contact lens isolates tested. Genetic and biochemical analysis implicate the biosurfactant serratamolide as a hemolysin. This novel hemolysin may contribute to irritation and infections associated with contact lens use.
Collapse
|
21
|
Senesi S, Salvetti S, Celandroni F, Ghelardi E. Features of Bacillus cereus swarm cells. Res Microbiol 2010; 161:743-9. [PMID: 21035546 DOI: 10.1016/j.resmic.2010.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/21/2010] [Indexed: 11/16/2022]
Abstract
When propagated on solid surfaces, Bacillus cereus can produce differentiated swarm cells under a wide range of growth conditions. This behavioural versatility is ecologically relevant, since it allows this bacterium to adapt swarming to environmental changes. Swarming by B. cereus is medically important: swarm cells are more virulent and particularly prone to invade host tissues. Characterisation of swarming-deficient mutants highlights that flagellar genes as well as genes governing different metabolic pathways are involved in swarm-cell differentiation. In this review, the environmental and genetic requirements for swarming and the role played by swarm cells in the virulence this pathogen exerts will be outlined.
Collapse
Affiliation(s)
- Sonia Senesi
- Dipartimento di Biologia, Via San Zeno, 37-39, 56127 Pisa, Pisa University, Italy.
| | | | | | | |
Collapse
|
22
|
Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 2010; 87:427-44. [PMID: 20424836 DOI: 10.1007/s00253-010-2589-0] [Citation(s) in RCA: 685] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
Microorganisms synthesise a wide range of surface-active compounds (SAC), generally called biosurfactants. These compounds are mainly classified according to their molecular weight, physico-chemical properties and mode of action. The low-molecular-weight SACs or biosurfactants reduce the surface tension at the air/water interfaces and the interfacial tension at oil/water interfaces, whereas the high-molecular-weight SACs, also called bioemulsifiers, are more effective in stabilising oil-in-water emulsions. Biosurfactants are attracting much interest due to their potential advantages over their synthetic counterparts in many fields spanning environmental, food, biomedical, and other industrial applications. Their large-scale application and production, however, are currently limited by the high cost of production and by limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential.
Collapse
Affiliation(s)
- Ibrahim M Banat
- School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Salvetti S, Celandroni F, Ceragioli M, Senesi S, Ghelardi E. Identification of non-flagellar genes involved in swarm cell differentiation using a Bacillus thuringiensis mini-Tn10 mutant library. MICROBIOLOGY-SGM 2009; 155:912-921. [PMID: 19246762 DOI: 10.1099/mic.0.021741-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Swarming is a social phenomenon that enables motile bacteria to move co-ordinately over solid surfaces. The molecular basis regulating this process is not completely known and may vary among species. Insertional mutagenesis of a swarming-proficient Bacillus thuringiensis strain was performed, by use of the transposon mini-Tn10, to identify novel genetic determinants of swarming that are dispensable for flagellation, swimming motility, chemotaxis and active growth. Among the 67 non-swarming mutants obtained, six were selected that showed no defect in flagellar assembly and function, chemotaxis or growth rate. Sequence analysis of DNA flanking the transposon insertion led to the identification of previously uncharacterized genes that are involved in the development of swarming colonies by B. thuringiensis and that are highly conserved in all members of the Bacillus cereus sensu lato group. These genes encode non-flagellar proteins with putative activity as sarcosine oxidase, catalase-2, amino acid permease, ATP-binding cassette transporter, dGTP triphosphohydrolase and acetyltransferase. Functional analysis of two of the isolated mutants demonstrated that swarming differentiation depends on the intracellular levels of the osmoprotectant glycine betaine and on the quantity of synthesized phenazine secondary metabolites. The finding that proteins involved in diverse physiological processes have a role in swarming motility underlines the complexity of the molecular mechanisms governing this behaviour in B. thuringiensis.
Collapse
Affiliation(s)
- Sara Salvetti
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, Università di Pisa, via San Zeno 35-39, 56127 Pisa, Italy
| | - Francesco Celandroni
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, Università di Pisa, via San Zeno 35-39, 56127 Pisa, Italy
| | - Mara Ceragioli
- Dipartimento di Biologia, Sezione di Microbiologia, Università di Pisa, via San Zeno 35-39, 56127 Pisa, Italy
| | - Sonia Senesi
- Dipartimento di Biologia, Sezione di Microbiologia, Università di Pisa, via San Zeno 35-39, 56127 Pisa, Italy
| | - Emilia Ghelardi
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, Università di Pisa, via San Zeno 35-39, 56127 Pisa, Italy
| |
Collapse
|
24
|
Surface translocation by Legionella pneumophila: a form of sliding motility that is dependent upon type II protein secretion. J Bacteriol 2008; 191:1537-46. [PMID: 19114479 DOI: 10.1128/jb.01531-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila exhibits surface translocation when it is grown on a buffered charcoal yeast extract (BCYE) containing 0.5 to 1.0% agar. After 7 to 22 days of incubation, spreading legionellae appear in an amorphous, lobed pattern that is most manifest at 25 to 30 degrees C. All nine L. pneumophila strains examined displayed the phenotype. Surface translocation was also exhibited by some, but not all, other Legionella species examined. L. pneumophila mutants that were lacking flagella and/or type IV pili behaved as the wild type did when plated on low-percentage agar, indicating that the surface translocation is not swarming or twitching motility. A translucent film was visible atop the BCYE agar, advancing ahead of the spreading legionellae. Based on its abilities to disperse water droplets and to promote the spreading of heterologous bacteria, the film appeared to manipulate surface tension and, as such, acted like a surfactant. Indeed, a sample obtained from the film rapidly dispersed when it was spotted onto a plastic surface. L. pneumophila type II secretion (Lsp) mutants, but not their complemented derivatives, were defective for both surface translocation and film production. In contrast, mutants defective for type IV secretion exhibited normal surface translocation. When lsp mutants were spotted onto film produced by the wild type, they were able to spread, suggesting that type II secretion promotes the elaboration of the Legionella surfactant. Together, these data indicate that L. pneumophila exhibits a form of surface translocation that is most akin to "sliding motility" and uniquely dependent upon type II secretion.
Collapse
|