1
|
Watts D, Palombo EA, Jaimes Castillo A, Zaferanloo B. Endophytes in Agriculture: Potential to Improve Yields and Tolerances of Agricultural Crops. Microorganisms 2023; 11:1276. [PMID: 37317250 DOI: 10.3390/microorganisms11051276] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Endophytic fungi and bacteria live asymptomatically within plant tissues. In recent decades, research on endophytes has revealed that their significant role in promoting plants as endophytes has been shown to enhance nutrient uptake, stress tolerance, and disease resistance in the host plants, resulting in improved crop yields. Evidence shows that endophytes can provide improved tolerances to salinity, moisture, and drought conditions, highlighting the capacity to farm them in marginal land with the use of endophyte-based strategies. Furthermore, endophytes offer a sustainable alternative to traditional agricultural practices, reducing the need for synthetic fertilizers and pesticides, and in turn reducing the risks associated with chemical treatments. In this review, we summarise the current knowledge on endophytes in agriculture, highlighting their potential as a sustainable solution for improving crop productivity and general plant health. This review outlines key nutrient, environmental, and biotic stressors, providing examples of endophytes mitigating the effects of stress. We also discuss the challenges associated with the use of endophytes in agriculture and the need for further research to fully realise their potential.
Collapse
Affiliation(s)
- Declan Watts
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Alex Jaimes Castillo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
2
|
Wang K, Peng XP, Feng D, Tian C, Wan WL, Lou HX, Li G. Metabolic Profiling for the Discovery of Structurally Diverse Gibberellins and Their Precursors from the Endophytic Fungus Fusarium sp. NJ-F5. ACS OMEGA 2022; 7:45624-45635. [PMID: 36530227 PMCID: PMC9753110 DOI: 10.1021/acsomega.2c06454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Gibberellins (GAs) are well-known tetracyclic diterpenoid phytohormones since the 1950s. In this work, eight skeletally diverse GAs (1-8) including four new compounds (1-4), and three known ent-kaurene diterpenoids (9-11), were isolated from the endophytic fungus Fusarium sp. NJ-F5 by integrating mass spectrometry (MS)- and nuclear magnetic resonance (NMR)-based metabolic profiling. Their planar structures and stereochemistry were determined by extensive spectroscopic analyses including MS, NMR, as well as electronic circular dichroism and their calculations, together with single-crystal X-ray diffraction studies. As far as we know, this is a rare report of naturally occurring GAs and their detailed spectroscopic data including MS and NMR in recent decades. Compound 1, as a new member of GAs family, showed an obvious promoting effect on the seedling's growth ofArabidopsis thaliana.
Collapse
Affiliation(s)
- Ke Wang
- Department
of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People’s Republic of China
| | - Xiao-Ping Peng
- Department
of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People’s Republic of China
| | - Dan Feng
- Department
of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People’s Republic of China
| | - Chuan Tian
- Department
of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People’s Republic of China
| | - Wen-Long Wan
- Department
of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People’s Republic of China
| | - Hong-Xiang Lou
- Department
of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People’s Republic of China
- Department
of Natural Product Chemistry, Key Laboratory of Chemical Biology of
Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People’s
Republic of China
| | - Gang Li
- Department
of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People’s Republic of China
| |
Collapse
|
3
|
Lastochkina O, Aliniaeifard S, SeifiKalhor M, Bosacchi M, Maslennikova D, Lubyanova A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. HORTICULTURAE 2022; 8:910. [DOI: 10.3390/horticulturae8100910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Reduction of plant growth, yield and quality due to diverse environmental constrains along with climate change significantly limit the sustainable production of horticultural crops. In this review, we highlight the prospective impacts that are positive challenges for the application of beneficial microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial light in sustainable production of horticultural crops. The benefits of such applications are often evaluated by measuring their impact on the metabolic, morphological and biochemical parameters of a variety of cultures, which typically results in higher yields with efficient use of resources when applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants using CRISPR, including its role in modulating gene expression/transcription factors in improving crop production and tolerance, was also reviewed.
Collapse
|
4
|
Baron NC, Rigobelo EC. Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology 2022. [PMID: 35186412 DOI: 10.1080/215012031945699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.
Collapse
Affiliation(s)
- Noemi Carla Baron
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| |
Collapse
|
5
|
Abstract
Endophytic fungi are found in most, if not all, plant species on the planet. They colonise inner plant tissues without causing symptoms of disease, thus providing benefits to the host plant while also benefiting from this interaction. The global concern for the development of more sustainable agriculture has increased in recent years, and research has been performed to decipher ecology and explore the potential of endophytic interactions in plant growth. To date, many studies point to the positive aspects of endophytic colonisation, and in this review, such research is summarised based on the direct (acquisition of nutrients and phytohormone production) and indirect (induced resistance, production of antibiotics and secondary metabolites, production of siderophores and protection for abiotic and biotic stresses) benefits of endophytic colonisation. An in-depth discussion of the mechanisms is also presented.
Collapse
Affiliation(s)
- Noemi Carla Baron
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| | - Everlon Cid Rigobelo
- Agricultural and Livestock Microbiology Post Graduation Program, Department of Plant Production Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Way Prof. Paulo Donato Castellane, São Paulo, Brazil
| |
Collapse
|
6
|
Keswani C, Singh SP, García-Estrada C, Mezaache-Aichour S, Glare TR, Borriss R, Rajput VD, Minkina TM, Ortiz A, Sansinenea E. Biosynthesis and beneficial effects of microbial gibberellins on crops for sustainable agriculture. J Appl Microbiol 2021; 132:1597-1615. [PMID: 34724298 DOI: 10.1111/jam.15348] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 01/08/2023]
Abstract
Soil microbes promote plant growth through several mechanisms such as secretion of chemical compounds including plant growth hormones. Among the phytohormones, auxins, ethylene, cytokinins, abscisic acid and gibberellins are the best understood compounds. Gibberellins were first isolated in 1935 from the fungus Gibberella fujikuroi and are synthesized by several soil microbes. The effect of gibberellins on plant growth and development has been studied, as has the biosynthesis pathways, enzymes, genes and their regulation. This review revisits the history of gibberellin research highlighting microbial gibberellins and their effects on plant health with an emphasis on the early discoveries and current advances that can find vital applications in agricultural practices.
Collapse
Affiliation(s)
- Chetan Keswani
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Satyendra P Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Carlos García-Estrada
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, León, Spain.,Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
| | | | - Travis R Glare
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Rainer Borriss
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana M Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aurelio Ortiz
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, Puebla, México
| |
Collapse
|
7
|
Hedden P. The Current Status of Research on Gibberellin Biosynthesis. PLANT & CELL PHYSIOLOGY 2020; 61:1832-1849. [PMID: 32652020 PMCID: PMC7758035 DOI: 10.1093/pcp/pcaa092] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/21/2020] [Indexed: 05/23/2023]
Abstract
Gibberellins are produced by all vascular plants and several fungal and bacterial species that associate with plants as pathogens or symbionts. In the 60 years since the first experiments on the biosynthesis of gibberellic acid in the fungus Fusarium fujikuroi, research on gibberellin biosynthesis has advanced to provide detailed information on the pathways, biosynthetic enzymes and their genes in all three kingdoms, in which the production of the hormones evolved independently. Gibberellins function as hormones in plants, affecting growth and differentiation in organs in which their concentration is very tightly regulated. Current research in plants is focused particularly on the regulation of gibberellin biosynthesis and inactivation by developmental and environmental cues, and there is now considerable information on the molecular mechanisms involved in these processes. There have also been recent advances in understanding gibberellin transport and distribution and their relevance to plant development. This review describes our current understanding of gibberellin metabolism and its regulation, highlighting the more recent advances in this field.
Collapse
Affiliation(s)
- Peter Hedden
- Laboratory of Growth Regulators, Palack� University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
8
|
Vicente I, Baroncelli R, Morán-Diez ME, Bernardi R, Puntoni G, Hermosa R, Monte E, Vannacci G, Sarrocco S. Combined Comparative Genomics and Gene Expression Analyses Provide Insights into the Terpene Synthases Inventory in Trichoderma. Microorganisms 2020; 8:E1603. [PMID: 33081019 PMCID: PMC7603203 DOI: 10.3390/microorganisms8101603] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Trichoderma is a fungal genus comprising species used as biocontrol agents in crop plant protection and with high value for industry. The beneficial effects of these species are supported by the secondary metabolites they produce. Terpenoid compounds are key players in the interaction of Trichoderma spp. with the environment and with their fungal and plant hosts; however, most of the terpene synthase (TS) genes involved in their biosynthesis have yet not been characterized. Here, we combined comparative genomics of TSs of 21 strains belonging to 17 Trichoderma spp., and gene expression studies on TSs using T. gamsii T6085 as a model. An overview of the diversity within the TS-gene family and the regulation of TS genes is provided. We identified 15 groups of TSs, and the presence of clade-specific enzymes revealed a variety of terpenoid chemotypes evolved to cover different ecological demands. We propose that functional differentiation of gene family members is the driver for the high number of TS genes found in the genomes of Trichoderma. Expression studies provide a picture in which different TS genes are regulated in many ways, which is a strong indication of different biological functions.
Collapse
Affiliation(s)
- Isabel Vicente
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Riccardo Baroncelli
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - María Eugenia Morán-Diez
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Rodolfo Bernardi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Grazia Puntoni
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Campus Villamayor, 37185 Salamanca, Spain; (R.B.); (M.E.M.-D.); (R.H.); (E.M.)
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (R.B.); (G.P.); (G.V.); (S.S.)
| |
Collapse
|
9
|
Lubna, Asaf S, Hamayun M, Khan AL, Waqas M, Khan MA, Jan R, Lee IJ, Hussain A. Salt tolerance of Glycine max.L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:13-23. [PMID: 29751251 DOI: 10.1016/j.plaphy.2018.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 05/22/2023]
Abstract
Abiotic stress resistance strategies are powerful approaches to sustainable agriculture because they reduce chemical input and enhance plant productivity. In current study, an endophytic fungus, Aspergillus flavus CHS1 was isolated from Chenopodium album Roots. CHS1 was initially screened for growth promoting activities like siderphore, phosphate solubilization, and the production of indole acetic acid and gibberellins and were further assayed for its ability to promote the growth of mutant Waito-C rice. The results revealed that different plant growth characteristic such as chlorophyll content, root-shoot length, and biomass production were significantly promoted during CHS1 treatment. This growth promotion action was due to the presence of various types of GAs and IAA in the endophyte culture filtrate. Significant up regulation with respect to levels in the control was observed in all endogenous plant GAs, after treatment with CHS1. Furthermore, to evaluate the potential of CHS1 against NaCl stress up to 400 mM, it was tested for its ability to improve soybean plant growth under NaCl stress. In endophyte-soybean interaction, CHS1 association significantly increased plant growth and attenuated the NaCl stress by down regulating ABA and JA synthesis. Similarly, it significantly elevated antioxidant activities of enzymes catalase, polyphenoloxidase, superoxide dismutase and peroxidase as compared to non-inoculated salt stress plants. Thus, CHS1 ameliorated the adverse effect of high NaCl stress and rescued soybean plant growth by regulating the endogenous plant hormones and antioxidative system. We conclude that CHS1 isolate could be exploited to increase salt resistant and yield in crop plants.
Collapse
Affiliation(s)
- Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Pakistan
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Pakistan
| | - Abdul Latif Khan
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Waqas
- Department of Agriculture Extension, Government of Khyber Pakhtunkhwa, Buner, Pakistan
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rahmatullah Jan
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea; Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, Republic of Korea.
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Pakistan.
| |
Collapse
|
10
|
Xu G, Yang S, Meng L, Wang BG. The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Sci Rep 2018; 8:6504. [PMID: 29695775 PMCID: PMC5916901 DOI: 10.1038/s41598-018-24770-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/10/2018] [Indexed: 01/14/2023] Open
Abstract
Plant hormones are well known chemical signals that regulate plant growth, development, and adaptation. However, after comparative transcriptome and metabolite analysis, we found that the plant hormone abscisic acid (ABA) also affect the growth and metabolism of endophytic fungus Aspergillus nidulans. There were 3148 up-regulated and 3160 down-regulated genes identified during 100 nM ABA induction. These differentially expressed genes (DEGs) were mainly involved in: RNA polymerase and basal transcription factors; ribosome biogenesis, protein processing, proteasome, and ubiquitin mediated proteolysis; nucleotide metabolism and tri-carboxylic acid (TCA) cycle; cell cycle and biosynthesis of secondary metabolites. Production of mycotoxins, which have insect-resistance or anti-pathogen activity, was also changed with ABA induction. This study provides the first global view of ABA induced transcription and metabolite changes in endophytic fungus, which might suggest a potential fungus-plant cross-talk via ABA.
Collapse
Affiliation(s)
- Gangming Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China. .,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, People's Republic of China.
| | - Suiqun Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Linghong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China.,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, People's Republic of China
| | - Bin-Gui Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071, People's Republic of China. .,Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Nanhai Road 7, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
11
|
Yue C, Cao H, Hao X, Zeng J, Qian W, Guo Y, Ye N, Yang Y, Wang X. Differential expression of gibberellin- and abscisic acid-related genes implies their roles in the bud activity-dormancy transition of tea plants. PLANT CELL REPORTS 2018; 37:425-441. [PMID: 29214380 DOI: 10.1007/s00299-017-2238-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/20/2017] [Indexed: 05/20/2023]
Abstract
Thirty genes involved in GA and ABA metabolism and signalling were identified, and the expression profiles indicated that they play crucial roles in the bud activity-dormancy transition in tea plants. Gibberellin (GA) and abscisic acid (ABA) are fundamental phytohormones that extensively regulate plant growth and development, especially bud dormancy and sprouting transition in perennial plants. However, there is little information on GA- and ABA-related genes and their expression profiles during the activity-dormancy transition in tea plants. In the present study, 30 genes involved in the metabolism and signalling pathways of GA and ABA were first identified, and their expression patterns in different tissues were assessed. Further evaluation of the expression patterns of selected genes in response to GA3 and ABA application showed that CsGA3ox, CsGA20ox, CsGA2ox, CsZEP and CsNCED transcripts were differentially expressed after exogenous treatment. The expression profiles of the studied genes during winter dormancy and spring sprouting were investigated, and somewhat diverse expression patterns were found for GA- and ABA-related genes. This diversity was associated with the bud activity-dormancy cycle of tea plants. These results indicate that the genes involved in the metabolism and signalling of GA and ABA are important for regulating the bud activity-dormancy transition in tea plants.
Collapse
Affiliation(s)
- Chuan Yue
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Hongli Cao
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Xinyuan Hao
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Jianming Zeng
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Wenjun Qian
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Yuqiong Guo
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Naixing Ye
- College of Horticulture, Key Laboratory of Tea Science in Universities of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yajun Yang
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| | - Xinchao Wang
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China.
| |
Collapse
|
12
|
Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 2018. [DOI: 10.1007/s13199-018-0545-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Salazar-Cerezo S, Martínez-Montiel N, García-Sánchez J, Pérez-Y-Terrón R, Martínez-Contreras RD. Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiol Res 2018; 208:85-98. [PMID: 29551215 DOI: 10.1016/j.micres.2018.01.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 11/26/2022]
Abstract
Gibberellins (GAs) are natural complex biomolecules initially identified as secondary metabolites in the fungus Gibberella fujikuroi with strong implications in plant physiology. GAs have been identified in different fungal and bacterial species, in some cases related to virulence, but the full understanding of the role of these metabolites in the different organisms would need additional investigation. In this review, we summarize the current evidence regarding a common pathway for GA synthesis in fungi, bacteria and plant from the genes depicted as part of the GA production cluster to the enzymes responsible for the catalytic transformations and the biosynthetical routes involved. Moreover, we present the relationship between these observations and the biotechnological applications of GAs in plants, which has shown an enormous commercial impact.
Collapse
Affiliation(s)
- Sonia Salazar-Cerezo
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | - Nancy Martínez-Montiel
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | - Jenny García-Sánchez
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico
| | | | - Rebeca D Martínez-Contreras
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edif 103J, Ciudad Universitaria, Col. San Manuel, CP 72570, Puebla, Mexico.
| |
Collapse
|
14
|
Xu M, Hillwig ML, Tiernan MS, Peters RJ. Probing Labdane-Related Diterpenoid Biosynthesis in the Fungal Genus Aspergillus. JOURNAL OF NATURAL PRODUCTS 2017; 80:328-333. [PMID: 28140586 PMCID: PMC5330306 DOI: 10.1021/acs.jnatprod.6b00764] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 06/06/2023]
Abstract
While terpenoid production is generally associated with plants, a variety of fungi contain operons predicted to lead to such biosynthesis. Notably, fungi contain a number of cyclases characteristic of labdane-related diterpenoid metabolism, which have not been much explored. These also are often found near cytochrome P450 (CYP) mono-oxygenases that presumably further decorate the ensuing diterpene, suggesting that these fungi might produce more elaborate diterpenoids. To probe the functional diversity of such biosynthetic capacity, an investigation of the phylogenetically diverse cyclases and associated CYPs from the fungal genus Aspergillus was undertaken, revealing their ability to produce isopimaradiene-derived diterpenoids. Intriguingly, labdane-related diterpenoid biosynthetic genes are largely found in plant-associated fungi, hinting that these natural products may play a role in such interactions. Accordingly, it is hypothesized here that isopimarane production may assist the plant-saprophytic lifestyle of Aspergillus fungi.
Collapse
|
15
|
Edwards J, Auer D, de Alwis SK, Summerell B, Aoki T, Proctor RH, Busman M, O’Donnell K. Fusarium agapanthi sp. nov., a novel bikaverin and fusarubin-producing leaf and stem spot pathogen of Agapanthus praecox (African lily) from Australia and Italy. Mycologia 2017; 108:981-992. [DOI: 10.3852/15-333] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/13/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Sri-Kanthi de Alwis
- AgriBio Centre for AgriBiosciences, Department of Economic Development, Jobs, Transport & Resources, 5 Ring Road, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Brett Summerell
- Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia
| | - Takayuki Aoki
- Genetic Resources Center (MAFF), National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | - Kerry O’Donnell
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, Illinois 60604-3999
| |
Collapse
|
16
|
Leitão AL, Enguita FJ. Gibberellins in Penicillium strains: Challenges for endophyte-plant host interactions under salinity stress. Microbiol Res 2016; 183:8-18. [DOI: 10.1016/j.micres.2015.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/14/2015] [Indexed: 01/01/2023]
|
17
|
Matsuda Y, Quan Z, Mitsuhashi T, Li C, Abe I. Cytochrome P450 for Citreohybridonol Synthesis: Oxidative Derivatization of the Andrastin Scaffold. Org Lett 2016; 18:296-9. [DOI: 10.1021/acs.orglett.5b03465] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yudai Matsuda
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Zhiyang Quan
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chang Li
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical
Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Le Fevre R, Evangelisti E, Rey T, Schornack S. Modulation of host cell biology by plant pathogenic microbes. Annu Rev Cell Dev Biol 2015; 31:201-29. [PMID: 26436707 DOI: 10.1146/annurev-cellbio-102314-112502] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.
Collapse
Affiliation(s)
- Ruth Le Fevre
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Thomas Rey
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| | - Sebastian Schornack
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, United Kingdom; , , ,
| |
Collapse
|
19
|
Mafu S, Potter KC, Hillwig ML, Schulte S, Criswell J, Peters RJ. Efficient heterocyclisation by (di)terpene synthases. Chem Commun (Camb) 2015; 51:13485-13487. [PMID: 26214384 PMCID: PMC4543578 DOI: 10.1039/c5cc05754j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While cyclic ether forming terpene synthases are known, the basis for such heterocyclisation is unclear. Here it is reported that numerous (di)terpene synthases, particularly including the ancestral ent-kaurene synthase, efficiently produce isomers of manoyl oxide from the stereochemically appropriate substrate. Accordingly, such heterocyclisation is easily accomplished by terpene synthases. Indeed, the use of single residue changes to induce production of the appropriate substrate in the upstream active site leads to efficient bifunctional enzymes producing isomers of manoyl oxide, representing novel enzymatic activity.
Collapse
Affiliation(s)
- S Mafu
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | - K C Potter
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | - M L Hillwig
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | - S Schulte
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | - J Criswell
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | - R J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
20
|
Khan AL, Waqas M, Lee IJ. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. JOURNAL OF PLANT RESEARCH 2015; 128:259-68. [PMID: 25537300 DOI: 10.1007/s10265-014-0688-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/02/2014] [Indexed: 05/13/2023]
Abstract
Understanding how endophytic fungi mitigate abiotic stresses in plants will be important in a changing global climate. A few endophytes can produce phytohormones, but their ability to induce physiological changes in host plants during extreme environmental conditions are largely unexplored. In the present study, we investigated the ability of Penicillium resedanum LK6 to produce gibberellins and its role in improving the growth of Capsicum annuum L. under salinity, drought, and heat stresses. These effects were compared with exogenous application of gibberellic acid (GA3). Endophyte treatment significantly increased shoot length, biomass, chlorophyll content, and the photosynthesis rate compared with the uninfected control during abiotic stresses. The endophyte and combined endophyte + GA3 treatments significantly ameliorated the negative effects of stresses compared with the control. Stress-responsive endogenous abscisic acid and its encoding genes, such as zeaxanthin epoxidase, 9-cis-epoxycarotenoid dioxygenase 3, and ABA aldehyde oxidase 3, were significantly reduced in endophyte-treated plants under stress. Conversely, salicylic acid and biosynthesis-related gene (isochorismate synthase) had constitutive expressions while pathogenesis related (PR1 and PR5) genes showed attenuated responses during endophyte treatment under abiotic stresses. The present findings suggest that endophytes have effects comparable to those of exogenous GA3; both can significantly increase plant growth and yield under changing environmental conditions by reprogramming the host plant's physiological responses.
Collapse
Affiliation(s)
- Abdul Latif Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea,
| | | | | |
Collapse
|
21
|
Lysøe E, Harris LJ, Walkowiak S, Subramaniam R, Divon HH, Riiser ES, Llorens C, Gabaldón T, Kistler HC, Jonkers W, Kolseth AK, Nielsen KF, Thrane U, Frandsen RJN. The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS One 2014; 9:e112703. [PMID: 25409087 PMCID: PMC4237347 DOI: 10.1371/journal.pone.0112703] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/13/2014] [Indexed: 12/03/2022] Open
Abstract
Fusarium avenaceum is a fungus commonly isolated from soil and associated with a wide range of host plants. We present here three genome sequences of F. avenaceum, one isolated from barley in Finland and two from spring and winter wheat in Canada. The sizes of the three genomes range from 41.6–43.1 MB, with 13217–13445 predicted protein-coding genes. Whole-genome analysis showed that the three genomes are highly syntenic, and share>95% gene orthologs. Comparative analysis to other sequenced Fusaria shows that F. avenaceum has a very large potential for producing secondary metabolites, with between 75 and 80 key enzymes belonging to the polyketide, non-ribosomal peptide, terpene, alkaloid and indole-diterpene synthase classes. In addition to known metabolites from F. avenaceum, fuscofusarin and JM-47 were detected for the first time in this species. Many protein families are expanded in F. avenaceum, such as transcription factors, and proteins involved in redox reactions and signal transduction, suggesting evolutionary adaptation to a diverse and cosmopolitan ecology. We found that 20% of all predicted proteins were considered to be secreted, supporting a life in the extracellular space during interaction with plant hosts.
Collapse
Affiliation(s)
- Erik Lysøe
- Department of Plant Health and Plant Protection, Bioforsk - Norwegian Institute of Agricultural and Environmental Research, Ås, Norway
- * E-mail:
| | - Linda J. Harris
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Sean Walkowiak
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Rajagopal Subramaniam
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Hege H. Divon
- Section of Mycology, Norwegian Veterinary Institute, Oslo, Norway
| | - Even S. Riiser
- Department of Plant Health and Plant Protection, Bioforsk - Norwegian Institute of Agricultural and Environmental Research, Ås, Norway
| | | | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - H. Corby Kistler
- ARS-USDA, Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - Wilfried Jonkers
- ARS-USDA, Cereal Disease Laboratory, St. Paul, Minnesota, United States of America
| | - Anna-Karin Kolseth
- Department of Crop Production Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kristian F. Nielsen
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Ulf Thrane
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
22
|
Abstract
Fungi (Ascomycota and Basidiomycota) are prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identified in fungi include the sesqui-, di- and triterpenoids. Biosynthetic pathways and enzymes to terpenoids from each of these classes have been described. These typically involve the scaffold generating terpene synthases and cyclases, and scaffold tailoring enzymes such as e.g. cytochrome P450 monoxygenases, NAD(P)+ and flavin dependent oxidoreductases, and various group transferases that generate the final bioactive structures. The biosynthesis of several sesquiterpenoid mycotoxins and bioactive diterpenoids has been well-studied in Ascomycota (e.g. filamentous fungi). Little is known about the terpenoid biosynthetic pathways in Basidiomycota (e.g. mushroom forming fungi), although they produce a huge diversity of terpenoid natural products. Specifically, many trans-humulyl cation derived sesquiterpenoid natural products with potent bioactivities have been isolated. Biosynthetic gene clusters responsible for the production of trans-humulyl cation derived protoilludanes, and other sesquiterpenoids, can be rapidly identified by genome sequencing and bioinformatic methods. Genome mining combined with heterologous biosynthetic pathway refactoring has the potential to facilitate discovery and production of pharmaceutically relevant fungal terpenoids.
Collapse
Affiliation(s)
- Maureen B Quin
- University of Minnesota, Dept. of Biochemistry, Molecular Biology and Biophysics, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
23
|
Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung HY, Lee IJ. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 2014; 52:689-95. [PMID: 24994010 DOI: 10.1007/s12275-014-4002-7] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 11/27/2022]
Abstract
Plant growth promoting endophytic bacteria have been identified as potential growth regulators of crops. Endophytic bacterium, Sphingomonas sp. LK11, was isolated from the leaves of Tephrosia apollinea. The pure culture of Sphingomonas sp. LK11 was subjected to advance chromatographic and spectroscopic techniques to extract and isolate gibberellins (GAs). Deuterated standards of [17, 17-(2)H2]-GA4, [17, 17-(2)H2]-GA9 and [17, 17-(2)H2]-GA20 were used to quantify the bacterial GAs. The analysis of the culture broth of Sphingomonas sp. LK11 revealed the existence of physiologically active gibberellins (GA4: 2.97 ± 0.11 ng/ml) and inactive GA9 (0.98 ± 0.15 ng/ml) and GA20 (2.41 ± 0.23). The endophyte also produced indole acetic acid (11.23 ± 0.93 μM/ml). Tomato plants inoculated with endophytic Sphingomonas sp. LK11 showed significantly increased growth attributes (shoot length, chlorophyll contents, shoot, and root dry weights) compared to the control. This indicated that such phyto-hormones-producing strains could help in increasing crop growth.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ma LJ, Geiser DM, Proctor RH, Rooney AP, O'Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K. Fusarium pathogenomics. Annu Rev Microbiol 2014; 67:399-416. [PMID: 24024636 DOI: 10.1146/annurev-micro-092412-155650] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fusarium is a genus of filamentous fungi that contains many agronomically important plant pathogens, mycotoxin producers, and opportunistic human pathogens. Comparative analyses have revealed that the Fusarium genome is compartmentalized into regions responsible for primary metabolism and reproduction (core genome), and pathogen virulence, host specialization, and possibly other functions (adaptive genome). Genes involved in virulence and host specialization are located on pathogenicity chromosomes within strains pathogenic to tomato (Fusarium oxysporum f. sp. lycopersici) and pea (Fusarium 'solani' f. sp. pisi). The experimental transfer of pathogenicity chromosomes from F. oxysporum f. sp. lycopersici into a nonpathogen transformed the latter into a tomato pathogen. Thus, horizontal transfer may explain the polyphyletic origins of host specificity within the genus. Additional genome-scale comparative and functional studies are needed to elucidate the evolution and diversity of pathogenicity mechanisms, which may help inform novel disease management strategies against fusarial pathogens.
Collapse
Affiliation(s)
- Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis 2014. [DOI: 10.1007/s13199-014-0273-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Méndez C, Baginsky C, Hedden P, Gong F, Carú M, Rojas MC. Gibberellin oxidase activities in Bradyrhizobium japonicum bacteroids. PHYTOCHEMISTRY 2014; 98:101-9. [PMID: 24378220 DOI: 10.1016/j.phytochem.2013.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 05/28/2023]
Abstract
Bradyrhizobium japonicum bacteroids isolated from root nodules of soybean (Glycine max.) plants converted the gibberellin (GA) precursor [(14)C1]GA12 into several products identified by combined gas chromatography-mass spectrometry as [(14)C1]GA24, [(14)C1]GA9, [(14)C1]GA15, GA9 17-nor-16-one and unidentified products. The oxidation of GA12, catalyzed by the GA 20-oxidase, was present in symbiotic bacteroids from plants around flowering, but not in bacteroids from plants at either an early vegetative stage or at late growth stages. Expression of cps and ks genes, involved in ent-kaurene biosynthesis, was also demonstrated in bacteroids from soybean plants around flowering. Earlier precursors of the GA pathway, ent-[(14)C1]kaurenoic acid or [(14)C4]GA12-aldehyde, were efficiently utilized by B. japonicum bacteroids to give labelled GA9 plus intermediates partially oxidized at C-20, as well as GA9 17-nor-16-one and an unidentified product. No 3β or 13-hydroxylated [(14)C]GAs were detected in any of the incubations. Moreover the C19-GAs [(14)C1]GA4 or [(14)C1]GA20 were recovered unconverted upon incubation with the bacteroids which supports the absence of GA 3β-hydroxylase activity in B. japonicum. The bacterial 20-oxidase utilized the 13-hydroxylated substrates [(14)C1]GA53, [(14)C1]GA44 or [(14)C1]GA19, although with less efficiency than [(14)C1]GA12 to give [(14)C1]GA20 as final product, while the 3β-hydroxylated substrate [(14)C1]GA14 was converted to [(14)C1]GA4 to a very small extent. Endogenous GA9 and GA24 were identified by GC-MS in methanolic nodule extracts. These results suggest that B. japonicum bacteroids would synthesize GA9 under the symbiotic conditions present in soybean root nodules.
Collapse
Affiliation(s)
- Constanza Méndez
- Laboratorio de Bioorgánica, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Cecilia Baginsky
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Casilla 1004, Santiago, Chile.
| | - Peter Hedden
- Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom.
| | - Fan Gong
- Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom.
| | - Margarita Carú
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - María Cecilia Rojas
- Laboratorio de Bioorgánica, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
27
|
|
28
|
Khan AL, Hussain J, Al-Harrasi A, Al-Rawahi A, Lee IJ. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance. Crit Rev Biotechnol 2013; 35:62-74. [DOI: 10.3109/07388551.2013.800018] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity. World J Microbiol Biotechnol 2013; 29:2133-44. [DOI: 10.1007/s11274-013-1378-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/13/2013] [Indexed: 01/07/2023]
|
30
|
Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus EM, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf HU, Güldener U, Tudzynski B. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 2013; 9:e1003475. [PMID: 23825955 PMCID: PMC3694855 DOI: 10.1371/journal.ppat.1003475] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/18/2013] [Indexed: 12/17/2022] Open
Abstract
The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen.
Collapse
Affiliation(s)
- Philipp Wiemann
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Christian M. K. Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Katharina W. von Bargen
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Lena Studt
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Eva-Maria Niehaus
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jose J. Espino
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kathleen Huß
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Caroline B. Michielse
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sabine Albermann
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Dominik Wagner
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sonja V. Bergner
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lanelle R. Connolly
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Andreas Fischer
- Institut of Genetics/Developmental Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Gunter Reuter
- Institut of Genetics/Developmental Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Karin Kleigrewe
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Till Bald
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Brenda D. Wingfield
- Department of Genetics, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Ron Ophir
- Institute of Plant Sciences, Genomics, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Stanley Freeman
- Department of Plant Pathology, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kristina M. Smith
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Daren W. Brown
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Robert H. Proctor
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
31
|
Khan AL, Waqas M, Hamayun M, Al-Harrasi A, Al-Rawahi A, Lee IJ. Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiol 2013; 13:51. [PMID: 23452409 PMCID: PMC3599947 DOI: 10.1186/1471-2180-13-51] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/20/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Water-deficiency adversely affects crop growth by generating reactive oxygen species (ROS) at cellular level. To mitigate such stressful events, it was aimed to investigate the co-synergism of exogenous salicylic acid (SA) and symbiosis of endophytic fungus with Capsicum annuum L. (pepper). RESULTS The findings of the study showed that exogenous SA (10⁻⁶ M) application to endophyte (Penicillium resedanum LK6) infected plants not only increased the shoot length and chlorophyll content but also improved the biomass recovery of pepper plants under polyethylene glycol (15%) induced osmotic stress (2, 4 and 8 days). Endophyte-infected plants had low cellular injury and high photosynthesis rate. SA also enhanced the colonization rate of endophyte in the host-plant roots. Endophyte and SA, in combination, reduced the production of ROS by increasing the total polyphenol, reduce glutathione, catalase, peroxidase and polyphenol oxidase as compared to control plants. Osmotic stress pronounced the lipid peroxidation and superoxide anions formation in control plants as compared to endophyte and SA-treated plants. The endogenous SA contents were significantly higher in pepper plants treated with endophyte and SA under osmotic stress as compared to control. CONCLUSION Endophytic fungal symbiosis and exogenous SA application can help the plants to relieve the adverse effects of osmotic stress by decreasing losses in biomass as compared to non-inoculated plants. These findings suggest that SA application positively impact microbial colonization while in combination, it reprograms the plant growth under various intervals of drought stress. Such symbiotic strategy can be useful for expanding agriculture production in drought prone lands.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Kohat University of Science & Technology, Kohat, Pakistan
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Ahmed Al-Harrasi
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Rawahi
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
32
|
Guo CJ, Knox BP, Chiang YM, Lo HC, Sanchez JF, Lee KH, Oakley BR, Bruno KS, Wang CCC. Molecular genetic characterization of a cluster in A. terreus for biosynthesis of the meroterpenoid terretonin. Org Lett 2012; 14:5684-7. [PMID: 23116177 DOI: 10.1021/ol302682z] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meroterpenoids are natural products produced from polyketide and terpenoid precursors. A gene targeting system for A. terreus NIH2624 was developed, and a gene cluster for terretonin biosynthesis was characterized. The intermediates and shunt products were isolated from the mutant strains, and a pathway for terretonin biosynthesis is proposed. Analysis of two meroterpenoid pathways corresponding to terretonin in A. terreus and austinol in A. nidulans reveals that they are closely related evolutionarily.
Collapse
Affiliation(s)
- Chun-Jun Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bhattacharya A, Kourmpetli S, Ward DA, Thomas SG, Gong F, Powers SJ, Carrera E, Taylor B, de Caceres Gonzalez FN, Tudzynski B, Phillips AL, Davey MR, Hedden P. Characterization of the fungal gibberellin desaturase as a 2-oxoglutarate-dependent dioxygenase and its utilization for enhancing plant growth. PLANT PHYSIOLOGY 2012; 160:837-45. [PMID: 22911627 PMCID: PMC3461559 DOI: 10.1104/pp.112.201756] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/20/2012] [Indexed: 05/19/2023]
Abstract
The biosynthesis of gibberellic acid (GA(3)) by the fungus Fusarium fujikuroi is catalyzed by seven enzymes encoded in a gene cluster. While four of these enzymes are characterized as cytochrome P450 monooxygenases, the nature of a fifth oxidase, GA(4) desaturase (DES), is unknown. DES converts GA(4) to GA(7) by the formation of a carbon-1,2 double bond in the penultimate step of the pathway. Here, we show by expression of the des complementary DNA in Escherichia coli that DES has the characteristics of a 2-oxoglutarate-dependent dioxygenase. Although it has low amino acid sequence homology with known 2-oxoglutarate-dependent dioxygenases, putative iron- and 2-oxoglutarate-binding residues, typical of such enzymes, are apparent in its primary sequence. A survey of sequence databases revealed that homologs of DES are widespread in the ascomycetes, although in most cases the homologs must participate in non-gibberellin (GA) pathways. Expression of des from the cauliflower mosaic virus 35S promoter in the plant species Solanum nigrum, Solanum dulcamara, and Nicotiana sylvestris resulted in substantial growth stimulation, with a 3-fold increase in height in S. dulcamara compared with controls. In S. nigrum, the height increase was accompanied by a 20-fold higher concentration of GA(3) in the growing shoots than in controls, although GA(1) content was reduced. Expression of des was also shown to partially restore growth in plants dwarfed by ectopic expression of a GA 2-oxidase (GA-deactivating) gene, consistent with GA(3) being protected from 2-oxidation. Thus, des has the potential to enable substantial growth increases, with practical implications, for example, in biomass production.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Agrobacterium tumefaciens/metabolism
- Caulimovirus/enzymology
- Caulimovirus/genetics
- Caulimovirus/metabolism
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Databases, Genetic
- Enzyme Assays/methods
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/isolation & purification
- Fungal Proteins/metabolism
- Fusarium/enzymology
- Fusarium/genetics
- Genetic Vectors
- Gibberellins/biosynthesis
- Gibberellins/genetics
- Gibberellins/metabolism
- Ketoglutaric Acids/metabolism
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/isolation & purification
- Mixed Function Oxygenases/metabolism
- Molecular Sequence Data
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/metabolism
- Promoter Regions, Genetic
- Sequence Alignment
- Sequence Homology, Amino Acid
- Solanum/genetics
- Solanum/growth & development
- Solanum/metabolism
- Substrate Specificity
- Nicotiana/genetics
- Nicotiana/growth & development
- Nicotiana/metabolism
Collapse
Affiliation(s)
| | | | - Dennis A. Ward
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Stephen G. Thomas
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Fan Gong
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Stephen J. Powers
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Esther Carrera
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Benjamin Taylor
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Francisco Nuñez de Caceres Gonzalez
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Bettina Tudzynski
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Andrew L. Phillips
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Michael R. Davey
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| | - Peter Hedden
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom (A.B., S.K., B.T., F.N.d.C.G., M.R.D.); Rothamsted Research, Harpenden AL5 2JQ, United Kingdom (D.A.W., F.G., S.G.T., S.J.P., E.C., A.L.P., P.H.); and Institüt für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität, D–48153, Muenster, Germany (B.T.)
| |
Collapse
|
34
|
Abstract
The GAs (gibberellins) comprise a large group of diterpenoid carboxylic acids that are ubiquitous in higher plants, in which certain members function as endogenous growth regulators, promoting organ expansion and developmental changes. These compounds are also produced by some species of lower plants, fungi and bacteria, although, in contrast to higher plants, the function of GAs in these organisms has only recently been investigated and is still unclear. In higher plants, GAs are synthesized by the action of terpene cyclases, cytochrome P450 mono-oxygenases and 2-oxoglutarate-dependent dioxygenases localized, respectively, in plastids, the endomembrane system and the cytosol. The concentration of biologically active GAs at their sites of action is tightly regulated and is moderated by numerous developmental and environmental cues. Recent research has focused on regulatory mechanisms, acting primarily on expression of the genes that encode the dioxygenases involved in biosynthesis and deactivation. The present review discusses the current state of knowledge on GA metabolism with particular emphasis on regulation, including the complex mechanisms for the maintenance of GA homoeostasis.
Collapse
|
35
|
Lo HC, Entwistle R, Guo CJ, Ahuja M, Szewczyk E, Hung JH, Chiang YM, Oakley BR, Wang CCC. Two separate gene clusters encode the biosynthetic pathway for the meroterpenoids austinol and dehydroaustinol in Aspergillus nidulans. J Am Chem Soc 2012; 134:4709-20. [PMID: 22329759 DOI: 10.1021/ja209809t] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Meroterpenoids are a class of fungal natural products that are produced from polyketide and terpenoid precursors. An understanding of meroterpenoid biosynthesis at the genetic level should facilitate engineering of second-generation molecules and increasing production of first-generation compounds. The filamentous fungus Aspergillus nidulans has previously been found to produce two meroterpenoids, austinol and dehydroaustinol. Using targeted deletions that we created, we have determined that, surprisingly, two separate gene clusters are required for meroterpenoid biosynthesis. One is a cluster of four genes including a polyketide synthase gene, ausA. The second is a cluster of 10 additional genes including a prenyltransferase gene, ausN, located on a separate chromosome. Chemical analysis of mutant extracts enabled us to isolate 3,5-dimethylorsellinic acid and 10 additional meroterpenoids that are either intermediates or shunt products from the biosynthetic pathway. Six of them were identified as novel meroterpenoids in this study. Our data, in aggregate, allow us to propose a complete biosynthetic pathway for the A. nidulans meroterpenoids.
Collapse
Affiliation(s)
- Hsien-Chun Lo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 2012; 12:3. [PMID: 22235902 PMCID: PMC3268082 DOI: 10.1186/1471-2180-12-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions. RESULTS We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF) on gibberellins (GAs) deficient mutant rice cultivar Waito-C and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of Waito-C and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA1, GA3, GA4, GA8, GA9, GA12, GA20 and GA24) and indole acetic acid. The endophyte CSH-6H was identified as a strain of Paecilomyces formosus LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, P. formosus inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of P. formosus was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. P. formosus association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA3, GA4, GA12 and GA20) contents in endophyte-associated cucumber plants evidenced salinity stress modulation. CONCLUSION The results reveal that mutualistic interactions of phytohormones secreting endophytic fungi can ameliorate host plant growth and alleviate adverse effects of salt stress. Such fungal strain could be used for further field trials to improve agricultural productivity under saline conditions.
Collapse
Affiliation(s)
- Abdul Latif Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Khan AL, Hamayun M, Ahmad N, Waqas M, Kang SM, Kim YH, Lee IJ. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. PHYSIOLOGIA PLANTARUM 2011; 143:329-43. [PMID: 21883250 DOI: 10.1111/j.1399-3054.2011.01508.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endophytic fungi are potential sources of secondary metabolites; however, they are little known for phytohormones secretion and amelioration of plant growth under abiotic stresses. We isolated a novel endophyte from the roots of Cucumis sativus and identified it as a strain of Exophiala sp. by sequencing internal transcribed spacer/large subunit rDNA and phylogenetic analysis. Prior to identification, culture filtrate (CF) of Exophiala sp. has shown significant growth promotion of Waito-C [a gibberellins (GAs)-deficient mutant cultivar] and Dongjin-byeo (normal GAs biosynthesis cultivar) rice seedlings. CF analysis of Exophiala sp. showed the presence of physiologically active GAs (GA₁, GA₃, GA₄ and GA₇) and inactive GAs (GA₅, GA₈, GA₉, GA₁₂ and GA₂₀). Exophiala sp. had higher GAs in its CF than wild-type strain of Gibberella fujikuroi except GA₃. Influence of Exophiala sp. was assessed on cucumber plant's growth and endogenous abscisic acid (ABA), salicylic acid (SA) and bioactive GAs under salinity and drought stresses. Exophiala sp.-treated plants have shown significantly higher growth and rescued the host plants from stress promulgated water deficit, osmotic and cellular damage. The altered levels of stress-responsive ABA showed low level of stress confined to endophyte-applied plants than control. Elevated levels of SA and bioactive GAs (GA₃ and GA₄) in endophyte-associated plants suggest stress-modulating response toward salinity and drought. In conclusion, symbiotic relations between Exophiala and cucumber have reprogrammed the host plant growth under abiotic stresses, thus indicating a possible threshold role of endophytic fungi in stress alleviation. This study could be extended for improving agricultural productivity under extreme environmental conditions.
Collapse
Affiliation(s)
- Abdul L Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
A new aminopeptidase inhibitor from Streptomyces strain HCCB10043 found by UPLC–MS. Anal Bioanal Chem 2011; 401:699-706. [DOI: 10.1007/s00216-011-5093-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 11/25/2022]
|
39
|
Cloning and characterization of squalene synthase gene from Fusarium fujikuroi (Saw.) Wr. J Ind Microbiol Biotechnol 2010; 37:1171-82. [DOI: 10.1007/s10295-010-0764-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
|
40
|
Bömke C, Tudzynski B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. PHYTOCHEMISTRY 2009; 70:1876-93. [PMID: 19560174 DOI: 10.1016/j.phytochem.2009.05.020] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/05/2009] [Accepted: 05/23/2009] [Indexed: 05/07/2023]
Abstract
Bioactive gibberellins (GAs) are diterpene plant hormones that are biosynthesized through complex pathways and control diverse aspects of growth and development. GAs were first isolated as metabolites of a fungal rice pathogen, Gibberella fujikuroi, since renamed Fusarium fujikuroi. Although higher plants and the fungus produce structurally identical GAs, significant differences in their GA pathways, enzymes involved and gene regulation became apparent with the identification of GA biosynthetic genes in Arabidopsis thaliana and F. fujikuroi. Recent identifications of GA biosynthetic gene clusters in two other fungi, Phaeosphaeria spp. and Sphaceloma manihoticola, and the high conservation of GA cluster organization in these distantly related fungal species indicate that fungi evolved GA and other diterpene biosynthetic pathways independently from plants. Furthermore, the occurrence of GAs and recent identification of the first GA biosynthetic genes in the bacterium Bradyrhizobium japonicum make it possible to study evolution of GA pathways in general. In this review, we summarize our current understanding of the GA biosynthesis pathway, specifically the genes and enzymes involved as well as gene regulation and localization in the genomes of different fungi and compare it with that in higher and lower plants and bacteria.
Collapse
Affiliation(s)
- Christiane Bömke
- Institut für Botanik der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | | |
Collapse
|
41
|
Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ. Gibberellin biosynthesis in bacteria: Separateent-copalyl diphosphate andent-kaurene synthases inBradyrhizobium japonicum. FEBS Lett 2008; 583:475-80. [DOI: 10.1016/j.febslet.2008.12.052] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
|
42
|
Loss of gibberellin production in Fusarium verticillioides (Gibberella fujikuroi MP-A) is due to a deletion in the gibberellic acid gene cluster. Appl Environ Microbiol 2008; 74:7790-801. [PMID: 18952870 PMCID: PMC2607190 DOI: 10.1128/aem.01819-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fusarium verticillioides (Gibberella fujikuroi mating population A [MP-A]) is a widespread pathogen on maize and is well-known for producing fumonisins, mycotoxins that cause severe disease in animals and humans. The species is a member of the Gibberella fujikuroi species complex, which consists of at least 11 different biological species, termed MP-A to -K. All members of this species complex are known to produce a variety of secondary metabolites. The production of gibberellins (GAs), a group of diterpenoid plant hormones, is mainly restricted to Fusarium fujikuroi (G. fujikuroi MP-C) and Fusarium konzum (MP-I), although most members of the G. fujikuroi species complex contain the GA biosynthesis gene cluster or parts of it. In this work, we show that the inability to produce GAs in F. verticillioides (MP-A) is due to the loss of a majority of the GA gene cluster as found in F. fujikuroi. The remaining part of the cluster consists of the full-length F. verticillioides des gene (Fvdes), encoding the GA(4) desaturase, and the coding region of FvP450-4, encoding the ent-kaurene oxidase. Both genes share a high degree of sequence identity with the corresponding genes of F. fujikuroi. The GA production capacity of F. verticillioides was restored by transforming a cosmid with the entire GA gene cluster from F. fujikuroi, indicating the existence of an active regulation system in F. verticillioides. Furthermore, the GA(4) desaturase gene des from F. verticillioides encodes an active enzyme which was able to restore the GA production in a corresponding des deletion mutant of F. fujikuroi.
Collapse
|