1
|
Dutt TS, Spencer JS, Karger BR, Fox A, Obregon-Henao A, Podell BK, Anderson GB, Henao-Tamayo M. ELISA-R: an R-based method for robust ELISA data analysis. Front Immunol 2024; 15:1427526. [PMID: 39416778 PMCID: PMC11479990 DOI: 10.3389/fimmu.2024.1427526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) is a technique to detect the presence of an antigen or antibody in a sample. ELISA is a simple and cost-effective method that has been used for evaluating vaccine efficacy by detecting the presence of antibodies against viral/bacterial antigens and diagnosis of disease stages. Traditional ELISA data analysis utilizes a standard curve of known analyte, and the concentration of the unknown sample is determined by comparing its observed optical density against the standard curve. However, in the case of vaccine research for complicated bacteria such as Mycobacterium tuberculosis (Mtb), there is no prior information regarding the antigen against which high-affinity antibodies are generated and therefore plotting a standard curve is not feasible. Consequently, the analysis of ELISA data in this instance is based on a comparison between vaccinated and unvaccinated groups. However, to the best of our knowledge, no robust data analysis method exists for "non-standard curve" ELISA. In this paper, we provide a straightforward R-based ELISA data analysis method with open access that incorporates end-point titer determination and curve-fitting models. Our modified method allows for direct measurement data input from the instrument, cleaning and arranging the dataset in the required format, and preparing the final report with calculations while leaving the raw data file unchanged. As an illustration of our method, we provide an example from our published data in which we successfully used our method to compare anti-Mtb antibodies in vaccinated vs non-vaccinated mice.
Collapse
Affiliation(s)
- Taru S. Dutt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - John S. Spencer
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - Burton R. Karger
- College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Amy Fox
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Andres Obregon-Henao
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - Brendan K. Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| | - G. Brooke Anderson
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
- Mycobacterial Research Laboratories, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
2
|
Abbas M, Khan MT, Iqbal Z, Ali A, Eddine BT, Yousaf N, Wei D. Sources, transmission and hospital-associated outbreaks of nontuberculous mycobacteria: a review. Future Microbiol 2024; 19:715-740. [PMID: 39015998 PMCID: PMC11259073 DOI: 10.2217/fmb-2023-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 07/18/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) are widespread environmental organisms found in both natural and man-made settings, such as building plumbing, water distribution networks and hospital water systems. Their ubiquitous presence increases the risk of transmission, leading to a wide range of human infections, particularly in immunocompromised individuals. NTM primarily spreads through environmental exposures, such as inhaling aerosolized particles, ingesting contaminated food and introducing it into wounds. Hospital-associated outbreaks have been linked to contaminated medical devices and water systems. Furthermore, the rising global incidence, prevalence and isolation rates highlight the urgency of addressing NTM infections. Gaining a thorough insight into the sources and epidemiology of NTM infection is crucial for devising novel strategies to prevent and manage NTM transmission and infections.
Collapse
Affiliation(s)
- Munawar Abbas
- College of Food Science & Technology, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Muhammad Tahir Khan
- Institute of Molecular Biology & Biotechnology (IMBB), The University of Lahore, 1KM Defense Road, Lahore, 58810, Pakistan
- Zhongjing Research & Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China
| | - Zafar Iqbal
- School of Life Science, Anhui Normal University, Wuhu, Anhui, China
| | - Arif Ali
- Department of Bioinformatics & Biological Statistics, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Benarfa Taki Eddine
- Echahid Cheikh Larbi Tebessi University Faculty of Exact Sciences & Natural & Life Sciences, Département of Microbiology, Algeria
| | - Numan Yousaf
- Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Dongqing Wei
- College of Food Science & Technology, Henan University of Technology, Zhengzhou, Henan, 450001, China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences & School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China
- Zhongjing Research & Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China
- Henan Biological Industry Group, 41, Nongye East Rd, Jinshui, Zhengzhou, Henan, 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China
| |
Collapse
|
3
|
LeChevallier MW, Prosser T, Stevens M. Opportunistic Pathogens in Drinking Water Distribution Systems-A Review. Microorganisms 2024; 12:916. [PMID: 38792751 PMCID: PMC11124194 DOI: 10.3390/microorganisms12050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
In contrast to "frank" pathogens, like Salmonella entrocolitica, Shigella dysenteriae, and Vibrio cholerae, that always have a probability of disease, "opportunistic" pathogens are organisms that cause an infectious disease in a host with a weakened immune system and rarely in a healthy host. Historically, drinking water treatment has focused on control of frank pathogens, particularly those from human or animal sources (like Giardia lamblia, Cryptosporidium parvum, or Hepatitis A virus), but in recent years outbreaks from drinking water have increasingly been due to opportunistic pathogens. Characteristics of opportunistic pathogens that make them problematic for water treatment include: (1) they are normally present in aquatic environments, (2) they grow in biofilms that protect the bacteria from disinfectants, and (3) under appropriate conditions in drinking water systems (e.g., warm water, stagnation, low disinfectant levels, etc.), these bacteria can amplify to levels that can pose a public health risk. The three most common opportunistic pathogens in drinking water systems are Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. This report focuses on these organisms to provide information on their public health risk, occurrence in drinking water systems, susceptibility to various disinfectants, and other operational practices (like flushing and cleaning of pipes and storage tanks). In addition, information is provided on a group of nine other opportunistic pathogens that are less commonly found in drinking water systems, including Aeromonas hydrophila, Klebsiella pneumoniae, Serratia marcescens, Burkholderia pseudomallei, Acinetobacter baumannii, Stenotrophomonas maltophilia, Arcobacter butzleri, and several free-living amoebae including Naegleria fowleri and species of Acanthamoeba. The public health risk for these microbes in drinking water is still unclear, but in most cases, efforts to manage Legionella, mycobacteria, and Pseudomonas risks will also be effective for these other opportunistic pathogens. The approach to managing opportunistic pathogens in drinking water supplies focuses on controlling the growth of these organisms. Many of these microbes are normal inhabitants in biofilms in water, so the attention is less on eliminating these organisms from entering the system and more on managing their occurrence and concentrations in the pipe network. With anticipated warming trends associated with climate change, the factors that drive the growth of opportunistic pathogens in drinking water systems will likely increase. It is important, therefore, to evaluate treatment barriers and management activities for control of opportunistic pathogen risks. Controls for primary treatment, particularly for turbidity management and disinfection, should be reviewed to ensure adequacy for opportunistic pathogen control. However, the major focus for the utility's opportunistic pathogen risk reduction plan is the management of biological activity and biofilms in the distribution system. Factors that influence the growth of microbes (primarily in biofilms) in the distribution system include, temperature, disinfectant type and concentration, nutrient levels (measured as AOC or BDOC), stagnation, flushing of pipes and cleaning of storage tank sediments, and corrosion control. Pressure management and distribution system integrity are also important to the microbial quality of water but are related more to the intrusion of contaminants into the distribution system rather than directly related to microbial growth. Summarizing the identified risk from drinking water, the availability and quality of disinfection data for treatment, and guidelines or standards for control showed that adequate information is best available for management of L. pneumophila. For L. pneumophila, the risk for this organism has been clearly established from drinking water, cases have increased worldwide, and it is one of the most identified causes of drinking water outbreaks. Water management best practices (e.g., maintenance of a disinfectant residual throughout the distribution system, flushing and cleaning of sediments in pipelines and storage tanks, among others) have been shown to be effective for control of L. pneumophila in water supplies. In addition, there are well documented management guidelines available for the control of the organism in drinking water distribution systems. By comparison, management of risks for Mycobacteria from water are less clear than for L. pneumophila. Treatment of M. avium is difficult due to its resistance to disinfection, the tendency to form clumps, and attachment to surfaces in biofilms. Additionally, there are no guidelines for management of M. avium in drinking water, and one risk assessment study suggested a low risk of infection. The role of tap water in the transmission of the other opportunistic pathogens is less clear and, in many cases, actions to manage L. pneumophila (e.g., maintenance of a disinfectant residual, flushing, cleaning of storage tanks, etc.) will also be beneficial in helping to manage these organisms as well.
Collapse
Affiliation(s)
| | - Toby Prosser
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| | - Melita Stevens
- Melbourne Water, Melbourne, VIC 3001, Australia; (T.P.); (M.S.)
| |
Collapse
|
4
|
Song JJX, Oguma K. Mycobacterial contamination in tap and shower waters in Thailand. Lett Appl Microbiol 2023; 76:ovad090. [PMID: 37528059 DOI: 10.1093/lambio/ovad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Waterborne disease is increasingly becoming associated with opportunistic premise plumbing pathogens (OPPPs), which can resist residual chlorination, regrow throughout drinking water distribution systems, and colonize premise plumbing. Nontuberculous mycobacteria (NTM) include clinically important species and exert a high burden on healthcare systems. We briefly report a qPCR-based survey of Mycobacterium spp. numbers in tap, POU-treated, and shower waters from Bangkok, Thailand. Non-stagnant tap waters and non-stagnant shower waters had mean numbers of 1.3 × 103 and 2.4 × 103 copies/mL, respectively. Water stagnation resulted in mean numbers higher by up to 1.0 log. The lowest number, 25 copies/mL, was obtained from a POU-treated sample, while the highest number, 2.0 × 104 copies/mL, came from a stagnant tap. Comparing with international data, mean numbers in this study were greater than those in nine out of 11 (82%) comparable studies, and the maximum numbers in this study were also high. Our samples of Bangkok waters exhibited relatively high Mycobacterium spp. numbers, suggesting the need for appropriate POU treatment systems where NTM infection is a health concern. This survey data can be used to set inactivation performance targets in POU water disinfection system design and may also lead to quantitative microbial risk assessment (QMRA) studies.
Collapse
Affiliation(s)
- Jack Jia Xin Song
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kumiko Oguma
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
5
|
Inactivation kinetics of 280 nm UV-LEDs against Mycobacterium abscessus in water. Sci Rep 2023; 13:2186. [PMID: 36750678 PMCID: PMC9905057 DOI: 10.1038/s41598-023-29338-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Nontuberculous mycobacteria (NTM) are opportunistic premise plumbing pathogens (OPPPs) that cause a burdensome waterborne respiratory disease. Due to their resistance to chemical disinfectants and regrowth in biofilms in drinking water distribution systems, treatment can be better performed using small ultraviolet disinfection units at the point-of-use (POU), such as at a tap or showerhead. Ultraviolet light-emitting diodes (UV-LEDs) are well suited for such applications, but fluence-response data are not available for one of the most important NTM, Mycobacterium abscessus. In this study, a bench-scale 280 nm UV-LED apparatus was used to irradiate M. abscessus in a water matrix. The fluence-response profile was sigmoidal, exhibiting both shoulder and tailing phenomena. Simple linear regression and the Geeraerd's inactivation kinetics model yielded k values of 0.36 and 0.37 cm2/mJ, respectively, revealing that M. abscessus is more resistant to UV than Pseudomonas aeruginosa and Legionella pneumophila, which suggests that NTM are among the most UV-resistant OPPPs. Results of this study suggest that 280 nm UV-LED irradiation can be an effective and practical option to inactivate M. abscessus at the POU. Disinfection units that can deliver a fluence of 10 mJ/cm2 are expected to achieve nearly 2 log (99%) inactivation of M. abscessus.
Collapse
|
6
|
Pfaller S, King D, Mistry JH, Donohue M. Occurrence revisited: Mycobacterium avium and Mycobacterium intracellulare in potable water in the USA. Appl Microbiol Biotechnol 2022; 106:2715-2727. [PMID: 35298694 PMCID: PMC9173748 DOI: 10.1007/s00253-022-11849-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/27/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Nontuberculous mycobacterium (NTM) infections are increasing in the USA and have a high cost burden associated with treatment. Thus, it is necessary to understand what changes could be contributing to this increase in NTM disease rate. Water samples from 40 sites were collected from around the USA. They represented three water types: groundwater disinfected with chlorine and surface water disinfected with chlorine or monochloramine. Two methods, culture and qPCR, were used to measure M. avium and M. intracellulare. Heterotrophic bacteria and NTM counts were also measured. M. avium and M. intracellulare were molecularly detected in 25% (73/292) and 35% (102/292) of samples. The mean concentrations of M. avium and M. intracellulare were 2.8 × 103 and 4.0 × 103 genomic units (GU) L-1. The Northeast sites had the highest sample positively rate for both M. avium and M. intracellulare. The highest NTM counts and M. avium concentrations were observed in the surface water treated with chloramine. Geographic location and source water/disinfectant type were observed to significantly influence M. avium and M. intracellulare occurrence rates. These studies can help improve public health risk management by balancing disinfectant treatments and diverse microbial loads in drinking water. KEY POINTS: • M. avium (MA) culture rate increased significantly: 1% (1999) to 13%. • Culture versus qPCR method: 13% vs 31% for MA and 6% vs 35% for MI. • The results of each method type tell two different stories of MA and MI occurrence.
Collapse
Affiliation(s)
- Stacy Pfaller
- Center for Exposure Research and Emergency Response, United States Environmental Protection Agency, 26 W. Martin Luther King Dr., Mail Stop 593, Cincinnati, OH, 45268, USA
| | - Dawn King
- Center for Exposure Research and Emergency Response, United States Environmental Protection Agency, 26 W. Martin Luther King Dr., Mail Stop 593, Cincinnati, OH, 45268, USA
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6, Dallas, TX, USA
| | - Maura Donohue
- Center for Exposure Research and Emergency Response, United States Environmental Protection Agency, 26 W. Martin Luther King Dr., Mail Stop 593, Cincinnati, OH, 45268, USA.
| |
Collapse
|
7
|
Calero Preciado C, Husband S, Boxall J, Del Olmo G, Soria-Carrasco V, Maeng SK, Douterelo I. Intermittent Water Supply Impacts on Distribution System Biofilms and Water Quality. WATER RESEARCH 2021; 201:117372. [PMID: 34198200 DOI: 10.1016/j.watres.2021.117372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Intermittent water supplies (IWS) are routinely experienced by drinking water distribution systems around the world, either due to ongoing operational practices or due to one off interruptions. During IWS events changing conditions may impact the endemic biofilms leading to hydraulic mobilisation of organic and inorganic materials attached to pipes walls with a resulting degradation in water quality. To study the impact of IWS on the microbiological and physico-chemical characteristics of drinking water, an experimental full-scale chlorinated pipe facility was operated over 60 days under realistic hydraulic conditions to allow for biofilm growth and to investigate flow resumption behaviour post-IWS events of 6, 48 and 144 hours. Turbidity and metal concentrations showed significant responses to flow restarting, indicating biofilm changes, with events greater than 6 hours generating more turbidity responses and hence discolouration risk. The increase in pressure when the system was restarted showed a substantial increase in total cell counts, while the subsequent increases in flow led to elevated turbidity and metals concentrations. SUVA254 monitoring indicated that shorter times of non-water supply increased the risk of aromatic organic compounds and hence risk of disinfection-by-products formation. DNA sequencing indicated that increasing IWS times resulted in increased relative abundance of potential pathogenic microorganisms, such as Mycobacterium, Sphingomonas, and the fungi Penicillium and Cladosporium. Overall findings indicate that shorter IWS result in a higher proportion of aromatic organic compounds, which can potentially react with chlorine and increase risk of disinfection-by-products formation. However, by minimising IWS times, biofilm-associated impacts can be reduced, yet these are complex ecosystems and much remains to be understood about how microbial interactions can be managed to best ensure continued water safe supply.
Collapse
Affiliation(s)
- Carolina Calero Preciado
- Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield S1 3JD, UK.; Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK..
| | - Stewart Husband
- Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield S1 3JD, UK
| | - Joby Boxall
- Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield S1 3JD, UK
| | - Gonzalo Del Olmo
- Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield S1 3JD, UK
| | - Víctor Soria-Carrasco
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Sung Kyu Maeng
- Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Republic of Korea
| | - Isabel Douterelo
- Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
8
|
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is one of the most common nontuberculous mycobacterial pathogens responsible for chronic lung disease in humans. It is widely distributed in biofilms in natural and living environments. It is considered to be transmitted from the environment. Despite its importance in public health, the ultrastructure of the MAH biofilm remains largely unknown. The ultrastructure of a MAH-containing multispecies biofilm that formed naturally in a bathtub inlet was herein reported along with those of monoculture biofilms developed from microcolonies and pellicles formed in the laboratory. Scanning electron microscopy revealed an essentially multilayered bathtub biofilm that was packed with cocci and short and long rods connected by an extracellular matrix (ECM). Scattered mycobacterium-like rod-shaped cells were observed around biofilm chunks. The MAH monoculture biofilms that developed from microcolonies in vitro exhibited an assembly of flat layers covered with thin film-like ECM membranes. Numerous small bacterial cells (0.76±0.19 μm in length) were observed, but not embedded in ECM. A glycopeptidolipid-deficient strain did not develop the layered ECM membrane architecture, suggesting its essential role in the development of biofilms. The pellicle biofilm also consisted of flat layered cells covered with an ECM membrane and small cells. MAH alone generated a flat layered biofilm covered with an ECM membrane. This unique structure may be suitable for resistance to water flow and disinfectants and the exclusion of fast-growing competitors, and small cells in biofilms may contribute to the formation and transmission of bioaerosols.
Collapse
Affiliation(s)
- Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Graduate School of Medicine
| |
Collapse
|
9
|
DeFlorio-Barker S, Egorov A, Smith GS, Murphy MS, Stout JE, Ghio AJ, Hudgens EE, Messier KP, Maillard JM, Hilborn ED. Environmental risk factors associated with pulmonary isolation of nontuberculous mycobacteria, a population-based study in the southeastern United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144552. [PMID: 33383509 PMCID: PMC8317204 DOI: 10.1016/j.scitotenv.2020.144552] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The prevalence of pulmonary nontuberculous mycobacteria (NTM) disease is increasing in the United States. Associations were evaluated among residents of central North Carolina between pulmonary isolation of NTM and environmental risk factors including: surface water, drinking water source, urbanicity, and exposures to soils favorable to NTM growth. Reports of pulmonary NTM isolation from patients residing in three counties in central North Carolina during 2006-2010 were collected from clinical laboratories and from the State Laboratory of Public Health. This analysis was restricted to patients residing in single family homes with a valid residential street address and conducted at the census block level (n = 13,495 blocks). Negative binomial regression models with thin-plate spline smoothing function of geographic coordinates were applied to assess effects of census block-level environmental characteristics on pulmonary NTM isolation count. Patients (n = 507) resided in 473 (3.4%) blocks within the study area. Blocks with >20% hydric soils had 26.8% (95% confidence interval (CI): 1.8%, 58.0%), p = 0.03, higher adjusted mean patient counts compared to blocks with ≤20% hydric soil, while blocks with >50% acidic soil had 24.8% (-2.4%, 59.6%), p = 0.08 greater mean patient count compared to blocks with ≤50% acidic soil. Isolation rates varied by county after adjusting for covariates. The effects of using disinfected public water supplies vs. private wells, and of various measures of urbanicity were not significantly associated with NTM. Our results suggest that proximity to certain soil types (hydric and acidic) could be a risk factor for pulmonary NTM isolation in central North Carolina.
Collapse
Affiliation(s)
- Stephanie DeFlorio-Barker
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA.
| | - Andrey Egorov
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| | - Genee S Smith
- Johns Hopkins, Bloomberg School of Public Health, Department of Environmental Health and Engineering, Baltimore, MD, USA
| | - Mark S Murphy
- General Dynamics Information Technology, Durham, NC, USA
| | - Jason E Stout
- Duke University Medical Center, Department of Medicine, Durham, NC, USA
| | - Andrew J Ghio
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| | - Edward E Hudgens
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| | - Kyle P Messier
- National Institute of Environmental Health Sciences, Division of the National Toxicology Program, USA
| | - Jean-Marie Maillard
- North Carolina Department of Health and Human Services, Division of Public Health, Epidemiology Section, Raleigh, NC, USA
| | - Elizabeth D Hilborn
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Niño-Padilla EI, Velazquez C, Garibay-Escobar A. Mycobacterial biofilms as players in human infections: a review. BIOFOULING 2021; 37:410-432. [PMID: 34024206 DOI: 10.1080/08927014.2021.1925886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/18/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
The role of biofilms in pathogenicity and treatment strategies is often neglected in mycobacterial infections. In recent years, the emergence of nontuberculous mycobacterial infections has necessitated the development of novel prophylactic strategies and elucidation of the mechanisms underlying the establishment of chronic infections. More importantly, the question arises whether members of the Mycobacterium tuberculosis complex can form biofilms and contribute to latent tuberculosis and drug resistance because of the long-lasting and recalcitrant nature of its infections. This review discusses some of the molecular mechanisms by which biofilms could play a role in infection or pathological events in humans.
Collapse
Affiliation(s)
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México
| |
Collapse
|
11
|
Association between Mycobacterium avium Complex Pulmonary Disease and Mycobacteria in Home Water and Soil. Ann Am Thorac Soc 2021; 17:57-62. [PMID: 31644315 PMCID: PMC6944351 DOI: 10.1513/annalsats.201812-915oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rationale: Nontuberculous mycobacteria (NTM), including Mycobacterium avium complex (MAC), are emerging pathogens that can opportunistically cause debilitating pulmonary disease in susceptible human hosts. Potential sources of exposure in homes include point-of-use water sources, such as taps and showerheads, as well as gardening soils. The relative human health impacts of NTM in these home environments remain poorly understood.Objectives: This study tested associations between MAC pulmonary disease and NTM colonization of five potential point-of-use sources of pathogen exposure in homes.Methods: A case-control study was conducted of Washington and Oregon residents who had been diagnosed with MAC pulmonary disease, and population controls were matched by age, sex, and geography. Samples were collected from bathroom faucets, kitchen faucets, shower aerosols, indoor soil, and outdoor soil. Mycobacteria in environmental samples were identified in a blinded fashion by using bacteriological culture combined with polymerase chain reaction. The isolation of NTM from case homes (n = 56) versus control homes (n = 51) was quantitatively compared using conditional logistic regression models with adjustment for potential confounding variables.Results: NTM were isolated from shower aerosols collected in case homes more often than in control homes. An adjusted conditional logistic regression analysis showed that NTM isolation from shower aerosols had a high odds ratio associated with disease (odds ratio, 4.0; 95% confidence interval, 1.2-13). Other home environmental samples (tap water, soils) did not exhibit this association.Conclusions: The results implicate shower aerosols as uniquely significant sources of NTM exposure in homes.
Collapse
|
12
|
Satta Y, Yamashita M, Matsuo Y, Kiyokawa H, Sato Y, Takemura H, Kunishima H, Yasuda H, Itoh F. Non-tuberculous Mycobacterial Pseudo-outbreak of an Intestinal Culture Specimen Caused by a Water Tap in an Endoscopy Unit. Intern Med 2020; 59:2811-2815. [PMID: 32641662 PMCID: PMC7725637 DOI: 10.2169/internalmedicine.5188-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective Gastrointestinal lesions of non-tuberculous mycobacteria (NTM) are regarded as opportunistic infections. A large number of positive specimens of NTM were identified in an intestinal fluid culture in the endoscopy unit and it was considered to be a pseudo-outbreak. Methods We reviewed the hospital, laboratory, and colonoscopy records of 263 consecutive patients whose intestinal fluids were analyzed for a mycobacterial culture by colonoscopy at St. Marianna University Hospital, between January 2009 and December 2018. The endoscopy reprocessing procedures were reviewed and samples of water used in the endoscopy unit were cultured. Results An intestinal fluid culture of 154 (58.6%) patients tested positive for NTM (M. intracellulare; 125 cases, M. gordonae; 14 cases, M. avium; 4 cases, M. abscessus; 3 cases, and 8 other cases). In 182 cases (69.2%), an intestinal mucosal culture was performed simultaneously with a fluid culture and tested positive for NTM in 2 cases. Next, we examined the endoscopy unit for any possible environmental contamination. NTM were detected in the tap water used to prepare the antifoaming solution in the endoscopy unit. The water faucets in the endoscopy unit were considered to be the source of the contamination of NTMs. Conclusion We observed that a large number of cases tested positive due to contaminated water that had been used in an endoscopy unit, thus leading to a pseudo-outbreak of NTM.
Collapse
Affiliation(s)
- Yusuke Satta
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Japan
| | - Masaki Yamashita
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Japan
| | - Yasumasa Matsuo
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Japan
| | - Hirofumi Kiyokawa
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Japan
| | - Yoshinori Sato
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Japan
| | - Hiromu Takemura
- Department of Microbiology, St. Marianna University School of Medicine, Japan
| | - Hiroyuki Kunishima
- Department of Infectious Diseases, St. Marianna University School of Medicine, Japan
| | - Hiroshi Yasuda
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Japan
| | - Fumio Itoh
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine, Japan
| |
Collapse
|
13
|
Paharsingh I, Suepaul R, Gyan L, Hosein A, Pargass I. Disseminated Mycobacterium avium subsp. hominissuis infection and ascites in an FIV-positive cat. Vet Clin Pathol 2020; 49:465-469. [PMID: 32966658 DOI: 10.1111/vcp.12897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022]
Abstract
A domestic shorthair cat was presented to the Veterinary Teaching Hospital at The University of the West Indies with a history of anorexia, ataxia, and lethargy. On physical examination, moderate abdominal distension and a palpable abdominal fluid wave were noted. Dark yellow, cloudy fluid was collected via abdominocentesis. Fluid analysis indicated that the effusion was a transudate containing low numbers of macrophages and occasional neutrophils. Some of the macrophages contained rod-shaped nonstaining structures of variable length (2-4 um). These structures were also seen extracellularly in low numbers. The morphology of the structures was suggestive of Mycobacterium. The cat's condition continued to deteriorate, and it died within a few hours of being admitted. Further diagnostic tests revealed feline immunodeficiency virus (FIV) infection with concurrent Mycobacterium avium subsp hominissuis infection. To the authors' knowledge, this is the first reported case of nontubercular mycobacterial-related ascites in a cat.
Collapse
Affiliation(s)
- India Paharsingh
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, Champs Fleurs, Trinidad and Tobago
| | - Rod Suepaul
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, Champs Fleurs, Trinidad and Tobago
| | - Lana Gyan
- Veterinary Diagnostic Laboratory, Ministry of Agriculture, Land and Fisheries, Champs Fleurs, Trinidad and Tobago
| | - Ansarah Hosein
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, Champs Fleurs, Trinidad and Tobago
| | - Indira Pargass
- School of Veterinary Medicine, Faculty of Medical Sciences, The University of the West Indies, Champs Fleurs, Trinidad and Tobago
| |
Collapse
|
14
|
Shahryari A, Smith CD, Amini A. Degradation of Bacterial Water Quality in Drinking Water after Bottling. Open Microbiol J 2020. [DOI: 10.2174/1874285802014010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The consumption of bottled water globally, including Iran, has increased tremendously in recent years. This study was designed to assess the bacteriological quality of bottled water and its compliance with the drinking water regulations. In addition, we evaluated bottled waters for the presence of a variety of genera of bacteria and the effect of storage duration on the extent of bacterial contamination.
Methods:
Four hundred samples of bottled water belonging to ten different Iranian brands with various production dates were purchased from supermarkets in Gorgan, Iran, from 2017 to 2018. Bacterial quality of bottled water was assessed using heterotrophic plate count (HPC) followed by usual biochemical tests for identification of bacterial genera, and by the API system.
Results:
The average HPC of bottled water was 9974 colony-forming units per milliliter (CFU/ml). Twelve genera were isolated, among which Bacillus spp. and Escherichia coli were the most and least abundant, respectively. Statistical analysis showed that there was a positive association between water quality and storage duration so that the highest microbial load occurred within the first to third months after bottling. Furthermore, the highest rate of contamination was observed in May when ambient air temperatures commonly reached 40 °C.
Conclusion:
The bacterial quality of bottled water was not according to the standard of drinking water quality. This study demonstrated the variation in bacterial levels after bottling, which indicates the presence of waterborne heterotrophic bacteria, some of which can pose severe health risks to consumers.
Collapse
|
15
|
Chin KL, Sarmiento ME, Alvarez-Cabrera N, Norazmi MN, Acosta A. Pulmonary non-tuberculous mycobacterial infections: current state and future management. Eur J Clin Microbiol Infect Dis 2020; 39:799-826. [PMID: 31853742 PMCID: PMC7222044 DOI: 10.1007/s10096-019-03771-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Currently, there is a trend of increasing incidence in pulmonary non-tuberculous mycobacterial infections (PNTM) together with a decrease in tuberculosis (TB) incidence, particularly in developed countries. The prevalence of PNTM in underdeveloped and developing countries remains unclear as there is still a lack of detection methods that could clearly diagnose PNTM applicable in these low-resource settings. Since non-tuberculous mycobacteria (NTM) are environmental pathogens, the vicinity favouring host-pathogen interactions is known as important predisposing factor for PNTM. The ongoing changes in world population, as well as socio-political and economic factors, are linked to the rise in the incidence of PNTM. Development is an important factor for the improvement of population well-being, but it has also been linked, in general, to detrimental environmental consequences, including the rise of emergent (usually neglected) infectious diseases, such as PNTM. The rise of neglected PNTM infections requires the expansion of the current efforts on the development of diagnostics, therapies and vaccines for mycobacterial diseases, which at present, are mainly focused on TB. This review discuss the current situation of PNTM and its predisposing factors, as well as the efforts and challenges for their control.
Collapse
Affiliation(s)
- Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah (UMS), Kota Kinabalu, Sabah, Malaysia.
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Nadine Alvarez-Cabrera
- Center for Discovery and Innovation (CDI), Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
16
|
Revisiting John Snow to Meet the Challenge of Nontuberculous Mycobacterial Lung Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214250. [PMID: 31683836 PMCID: PMC6862550 DOI: 10.3390/ijerph16214250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023]
Abstract
Nontuberculous mycobacteria (NTM) are ubiquitous components of the soil and surface water microbiome. Disparities by sex, age, and geography demonstrate that both host and environmental factors are key determinants of NTM disease in populations, which predominates in the form of chronic pulmonary disease. As the incidence of NTM pulmonary disease rises across the United States, it becomes increasingly evident that addressing this emerging human health issue requires a bold, multi-disciplinary research framework that incorporates host risk factors for NTM pulmonary disease alongside the determinants of NTM residence in the environment. Such a framework should include the assessment of environmental characteristics promoting NTM growth in soil and surface water, detailed evaluations of water distribution systems, direct sampling of water sources for NTM contamination and species diversity, and studies of host and bacterial factors involved in NTM pathogenesis. This comprehensive approach can identify intervention points to interrupt the transmission of pathogenic NTM species from the environment to the susceptible host and to reduce NTM pulmonary disease incidence.
Collapse
|
17
|
Tsao HF, Scheikl U, Herbold C, Indra A, Walochnik J, Horn M. The cooling tower water microbiota: Seasonal dynamics and co-occurrence of bacterial and protist phylotypes. WATER RESEARCH 2019; 159:464-479. [PMID: 31128471 PMCID: PMC6554697 DOI: 10.1016/j.watres.2019.04.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 05/30/2023]
Abstract
Cooling towers for heating, ventilation and air conditioning are ubiquitous in the built environment. Often located on rooftops, their semi-open water basins provide a suitable environment for microbial growth. They are recognized as a potential source of bacterial pathogens and have been associated with disease outbreaks such as Legionnaires' disease. While measures to minimize public health risks are in place, the general microbial and protist community structure and dynamics in these systems remain largely elusive. In this study, we analysed the microbiome of the bulk water from the basins of three cooling towers by 16S and 18S rRNA gene amplicon sequencing over the course of one year. Bacterial diversity in all three towers was broadly comparable to other freshwater systems, yet less diverse than natural environments; the most abundant taxa are also frequently found in freshwater or drinking water. While each cooling tower had a pronounced site-specific microbial community, taxa shared among all locations mainly included groups generally associated with biofilm formation. We also detected several groups related to known opportunistic pathogens, such as Legionella, Mycobacterium, and Pseudomonas species, albeit at generally low abundance. Although cooling towers represent a rather stable environment, microbial community composition was highly dynamic and subject to seasonal change. Protists are important members of the cooling tower water microbiome and known reservoirs for bacterial pathogens. Co-occurrence analysis of bacteria and protist taxa successfully captured known interactions between amoeba-associated bacteria and their hosts, and predicted a large number of additional relationships involving ciliates and other protists. Together, this study provides an unbiased and comprehensive overview of microbial diversity of cooling tower water basins, establishing a framework for investigating and assessing public health risks associated with these man-made freshwater environments.
Collapse
Affiliation(s)
- Han-Fei Tsao
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Ute Scheikl
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Craig Herbold
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alexander Indra
- Department of Mycobacteriology and Clinical Molecular Biology, AGES, Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Loret JF, Dumoutier N. Non-tuberculous mycobacteria in drinking water systems: A review of prevalence data and control means. Int J Hyg Environ Health 2019; 222:628-634. [DOI: 10.1016/j.ijheh.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/22/2018] [Accepted: 01/06/2019] [Indexed: 02/08/2023]
|
19
|
Donohue MJ, King D, Pfaller S, Mistry JH. The sporadic nature of Legionella pneumophila, Legionella pneumophila Sg1 and Mycobacterium avium occurrence within residences and office buildings across 36 states in the United States. J Appl Microbiol 2019; 126:1568-1579. [PMID: 30891905 PMCID: PMC6850209 DOI: 10.1111/jam.14196] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Aim Premise plumbing may disseminate the bacteria Legionella pneumophila and Mycobacterium avium, the causative agents for legionellosis and pulmonary nontuberculous mycobacterium disease respectively. Methods and Results Using quantitative PCR, the occurrence and persistence of L. pneumophila, L. pneumophila serogroup (Sg)1 and M. avium were evaluated in drinking water samples from 108 cold water taps (residences: n = 43) and (office buildings: n = 65). Mycobacterium avium, L. pneumophila and L. pneumophila Sg1 were detected 45, 41 and 25% of all structures respectively. Two occurrence patterns were evaluated: sporadic (a single detection from the three samplings) and persistent (detections in two or more of the three samples). Conclusions The micro‐organism's occurrence was largely sporadic. Office buildings were prone to microbial persistence independent of building age and square footage. Microbial persistence at residences was observed in those older than 40 years for L. pneumophila and was rarely observed for M. avium. The microbial occurrence was evenly distributed between structure types but there were differences in density and persistence. Significance of and Impact of the Study The study is important because residences are often suspected to be the source when a case of disease is reported. These data demonstrate that this may not be the case for a sporadic incidence.
Collapse
Affiliation(s)
- M J Donohue
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - D King
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - S Pfaller
- National Exposure Research Laboratory, United States Environmental Protection Agency, Cincinnati, OH, USA
| | - J H Mistry
- Region 6, United States Environmental Protection Agency, Dallas, TX, USA
| |
Collapse
|
20
|
Schiavano GF, De Santi M, Sisti M, Amagliani G, Brandi G. Disinfection of Mycobacterium avium subspecies hominissuis in drinking tap water using ultraviolet germicidal irradiation. ENVIRONMENTAL TECHNOLOGY 2018; 39:3221-3227. [PMID: 28862077 DOI: 10.1080/09593330.2017.1375028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
Nontuberculous mycobacteria are resistant to conventional water treatments, and are opportunistic human pathogen, particularly in hospitalized patients. The aim of this investigation was to assess the effectiveness of an ultraviolet UV-C lamp treatment against Mycobacterium avium subspecies hominissuis in drinking tap water. Ultraviolet treatments (0-192 mJ/cm2) were performed using UV lamp immerged onto cylindrical glass tubes containing artificially contaminated water. The results showed that susceptibility to UV varied considerably according to the strains and the diameter of the tube. With a dose of 32 mJ/cm2, a significant inactivation (p < .05) of 3 log (99.9%) or more was obtained in only 5 of the 14 strains. To obtain a complete inactivation of all strains an irradiation of 192 mJ/cm2 was needed, a dose that is much higher than the limits recommended by the international standards for UV disinfection of drinking water. In conclusion, it may be difficult to standardize a UV dose for the elimination of waterborne mycobacteria.
Collapse
Affiliation(s)
- Giuditta Fiorella Schiavano
- a Department of Biomolecular Science, Toxicological, Hygiene and Environmental Sciences Unit , University of Urbino Carlo Bo , Urbino , PU , Italy
| | - Mauro De Santi
- a Department of Biomolecular Science, Toxicological, Hygiene and Environmental Sciences Unit , University of Urbino Carlo Bo , Urbino , PU , Italy
| | - Maurizio Sisti
- a Department of Biomolecular Science, Toxicological, Hygiene and Environmental Sciences Unit , University of Urbino Carlo Bo , Urbino , PU , Italy
| | - Giulia Amagliani
- a Department of Biomolecular Science, Toxicological, Hygiene and Environmental Sciences Unit , University of Urbino Carlo Bo , Urbino , PU , Italy
| | - Giorgio Brandi
- a Department of Biomolecular Science, Toxicological, Hygiene and Environmental Sciences Unit , University of Urbino Carlo Bo , Urbino , PU , Italy
| |
Collapse
|
21
|
Effect of Cetylpyridinium Chloride (CPC) on Colony Formation of Common Nontuberculous Mycobacteria. Pathogens 2018; 7:pathogens7040079. [PMID: 30301158 PMCID: PMC6313301 DOI: 10.3390/pathogens7040079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 11/18/2022] Open
Abstract
Cetylpyridinium chloride (CPC) is widely used to decontaminate water samples for the cultivation of nontuberculous mycobacteria (NTM). The rationale for using CPC is that it kills more non mycobacteria than NTM and thereby prevents the outgrowth and detection of mycobacterial colonies on solid media. The few CPC-susceptibility measurements that have been published, suggest that CPC-decontamination does kill significant numbers of NTM. We confirm that observation here and further demonstrate that CPC-susceptibility varied significantly by one log between representative NTM species and between strains of the same species. CPC-susceptibility was the same for cells collected from cultures or water-acclimated (P = 0.6485, T-test) and CPC-susceptibility was relatively similar over the range of commonly employed CPC dosages. We conclude that use of CPC as decontaminating agent may lead to failure to recover an NTM isolate and considerable underestimates of NTM numbers.
Collapse
|
22
|
Adam EA, Collier SA, Fullerton KE, Gargano JW, Beach MJ. Prevalence and direct costs of emergency department visits and hospitalizations for selected diseases that can be transmitted by water, United States. JOURNAL OF WATER AND HEALTH 2017; 15:673-683. [PMID: 29040071 DOI: 10.2166/wh.2017.083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
National emergency department (ED) visit prevalence and costs for selected diseases that can be transmitted by water were estimated using large healthcare databases (acute otitis externa, campylobacteriosis, cryptosporidiosis, Escherichia coli infection, free-living ameba infection, giardiasis, hepatitis A virus (HAV) infection, Legionnaires' disease, nontuberculous mycobacterial (NTM) infection, Pseudomonas-related pneumonia or septicemia, salmonellosis, shigellosis, and vibriosis or cholera). An estimated 477,000 annual ED visits (95% CI: 459,000-494,000) were documented, with 21% (n = 101,000, 95% CI: 97,000-105,000) resulting in immediate hospital admission. The remaining 376,000 annual treat-and-release ED visits (95% CI: 361,000-390,000) resulted in $194 million in annual direct costs. Most treat-and-release ED visits (97%) and costs ($178 million/year) were associated with acute otitis externa. HAV ($5.5 million), NTM ($2.3 million), and salmonellosis ($2.2 million) were associated with next highest total costs. Cryptosporidiosis ($2,035), campylobacteriosis ($1,783), and NTM ($1,709) had the highest mean costs per treat-and-release ED visit. Overall, the annual hospitalization and treat-and-release ED visit costs associated with the selected diseases totaled $3.8 billion. As most of these diseases are not solely transmitted by water, an attribution process is needed as a next step to determine the proportion of these visits and costs attributable to waterborne transmission.
Collapse
Affiliation(s)
- E A Adam
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - S A Collier
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - K E Fullerton
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - J W Gargano
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| | - M J Beach
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, MS C-09, Atlanta, GA, USA E-mail:
| |
Collapse
|
23
|
Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes. Appl Microbiol Biotechnol 2017; 101:5531-5541. [DOI: 10.1007/s00253-017-8258-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 01/27/2023]
|
24
|
Nishiuchi Y, Iwamoto T, Maruyama F. Infection Sources of a Common Non-tuberculous Mycobacterial Pathogen, Mycobacterium avium Complex. Front Med (Lausanne) 2017; 4:27. [PMID: 28326308 PMCID: PMC5339636 DOI: 10.3389/fmed.2017.00027] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Numerous studies have revealed a continuous increase in the worldwide incidence and prevalence of non-tuberculous mycobacteria (NTM) diseases, especially pulmonary Mycobacterium avium complex (MAC) diseases. Although it is not clear why NTM diseases have been increasing, one possibility is an increase of mycobacterial infection sources in the environment. Thus, in this review, we focused on the infection sources of pathogenic NTM, especially MAC. The environmental niches for MAC include water, soil, and dust. The formation of aerosols containing NTM arising from shower water, soil, and pool water implies that these niches can be infection sources. Furthermore, genotyping has shown that clinical isolates are identical to environmental ones from household tap water, bathrooms, potting soil, and garden soil. Therefore, to prevent and treat MAC diseases, it is essential to identify the infection sources for these organisms, because patients with these diseases often suffer from reinfections and recurrent infections with them. In the environmental sources, MAC and other NTM organisms can form biofilms, survive within amoebae, and exist in a free-living state. Mycobacterial communities are also likely to occur in these infection sources in households. Water distribution systems are a transmission route from natural water reservoirs to household tap water. Other infection sources include areas with frequent human contact, such as soil and bathrooms, indicating that individuals may carry NTM organisms that concomitantly attach to their household belongings. To explore the mechanisms associated with the global spread of infection and MAC transmission routes, an epidemiological population-wide genotyping survey would be very useful. A good example of the power of genotyping comes from M. avium subsp. hominissuis, where close genetic relatedness was found between isolates of it from European patients and pigs in Japan and Europe, implying global transmission of this bacterium. It is anticipated that whole genome sequencing technologies will improve NTM surveys so that the mechanisms for the global spread of MAC disease will become clearer in the near future. Better understanding of the niches exploited by MAC and its ecology is essential for preventing MAC infections and developing new methods for its effective treatment and elimination.
Collapse
Affiliation(s)
- Yukiko Nishiuchi
- Toneyama Institute for Tuberculosis Research, Osaka City University Medical School , Toyonaka , Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health , Kobe , Japan
| | - Fumito Maruyama
- Section of Microbiology, Graduate School of Medicine and Faculty of Medicine, Kyoto University , Kyoto , Japan
| |
Collapse
|
25
|
Biofilms on Hospital Shower Hoses: Characterization and Implications for Nosocomial Infections. Appl Environ Microbiol 2016; 82:2872-2883. [PMID: 26969701 DOI: 10.1128/aem.03529-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022] Open
Abstract
Although the source of drinking water (DW) used in hospitals is commonly disinfected, biofilms forming on water pipelines are a refuge for bacteria, including possible pathogens that survive different disinfection strategies. These biofilm communities are only beginning to be explored by culture-independent techniques that circumvent the limitations of conventional monitoring efforts. Hence, theories regarding the frequency of opportunistic pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both 16S rRNA gene sequencing of bacterial isolates and whole-genome shotgun metagenome sequencing. The resulting data revealed a Mycobacterium-like population, closely related to Mycobacterium rhodesiae and Mycobacterium tusciae, to be the predominant taxon in all five samples, and its nearly complete draft genome sequence was recovered. In contrast, the fraction recovered by culture was mostly affiliated with Proteobacteria, including members of the genera Sphingomonas, Blastomonas, and Porphyrobacter.The biofilm community harbored genes related to disinfectant tolerance (2.34% of the total annotated proteins) and a lower abundance of virulence determinants related to colonization and evasion of the host immune system. Additionally, genes potentially conferring resistance to β-lactam, aminoglycoside, amphenicol, and quinolone antibiotics were detected. Collectively, our results underscore the need to understand the microbiome of DW biofilms using metagenomic approaches. This information might lead to more robust management practices that minimize the risks associated with exposure to opportunistic pathogens in hospitals.
Collapse
|
26
|
Cruz-Aguilar M, Castillo-Rodal AI, Schcolnik-Cabrera A, Bonifaz LC, Molina G, López-Vidal Y. TLR4 and DC-SIGN receptors recognized Mycobacterium scrofulaceum promoting semi-activated phenotype on bone marrow dendritic cells. Tuberculosis (Edinb) 2016; 99:31-40. [PMID: 27450002 DOI: 10.1016/j.tube.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/18/2016] [Accepted: 04/05/2016] [Indexed: 01/25/2023]
Abstract
Nontuberculous mycobacteria (NTM) are recognized as emerging pathogens and their immune regulatory mechanisms are not well described yet. From them, Mycobacterium avium is known to be a weak activator of dendritic cells (DCs) that impairs the response induced by BCG vaccine. However, whether other NTM such as Mycobacterium scrofulaceum may modulate the activation of DCs, has not been extensively studied. Here, we exposed bone marrow-derived DCs (BMDCs) to M. scrofulaceum and we analyzed the effect on the activation of DCs. We found that M. scrofulaceum has a comparable ability to induce a semi-mature DC phenotype, which was produced by its interaction with DC-SIGN and TLR4 receptors in a synergic effect. BMDCs exposed to M. scrofulaceum showed high expression of PD-L2 and production of IL-10, as well as low levels of co-stimulatory molecules and pro-inflammatory cytokines. In addition to immunophenotype induced on DCs, changes in morphology, re-organization of cytoskeleton and decreased migratory capacity are consistent with a semi-mature phenotype. However, unlike other pathogenic mycobacteria, the DC-semi-mature phenotype induced by M. scrofulaceum was reversed after re-exposure to BCG, suggesting that modulation mechanisms of DC-activation used by M. scrofulaceum are different to other known pathogenic mycobacteria. This is the first report about the immunophenotypic characterization of DC stimulated by M. scrofulaceum.
Collapse
Affiliation(s)
- Marisa Cruz-Aguilar
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Antonia I Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Alejandro Schcolnik-Cabrera
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Instituto Mexicano del Seguro Social, México, DF, Mexico.
| | - Gabriela Molina
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| |
Collapse
|
27
|
Dovriki E, Gerogianni I, Petinaki E, Hadjichristodoulou C, Papaioannou A, Gourgoulianis K. Isolation and identification of nontuberculous mycobacteria from hospitalized patients and drinking water samples--examination of their correlation by chemometrics. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:247. [PMID: 27021690 DOI: 10.1007/s10661-016-5258-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
Nontuberculous mycobacteria (NTM) have been found to be widely dispersed in the environment and are being considered potentially pathogenic for humans and animals, while reports of their human to human transmission are absent. Water and aerosols are potential transmission modes of NTM to humans. Hospitalized patients with NTM infections were studied together with drinking water samples from their respective residence areas during 2003-2013. Cluster analysis and factor analysis were used to analyze the data matrix. A total of 367 hospitalized patients living in 30 localities in the Prefecture of Larissa were tested positive for NTM. The most frequently isolated NTM species of the 383 NTM isolates from the clinical specimens were Mycobacterium fortuitum (n = 118, 30.8 %), M. gordonae (n = 87, 22.7 %), M. peregrinum (n = 46, 12.0 %), M. chelonae (n = 11, 2.9 %), M. avium (n = 8, 2.1 %), and M. intracellulare (n = 7, 1.8 %), while 88 (23.0 %) of these isolates were not identified. It is noted that in 8 patients, M. tuberculosis was isolated simultaneously with one NTM, in 15 patients, together with two types of NTM, while in 1 patient, it was found at the same time as three different NTM. In addition, 3360 drinking water samples were collected from 30 localities and analyzed during 2010 to 2013; they were found 11.2 % NTM positive. Cluster analysis and factor analysis results confirm that NTM strains are correlated to each other in both isolated samples from patients and drinking water, while the strength of their correlation varied from weak to moderate (e.g., factor loadings ranged from 0.69 to 0.74 when all data are considered). These results provide indications that drinking water could be linked with NTM cases in humans.
Collapse
Affiliation(s)
- Eleni Dovriki
- Department of Respiratory Medicine, Medical School, University of Thessaly, Larissa, Greece.
| | - Irini Gerogianni
- Department of Respiratory Medicine, Medical School, University of Thessaly, Larissa, Greece
| | - Efi Petinaki
- Department of Microbiology, Medical School, University of Larissa, Larissa, Greece
| | | | - Agelos Papaioannou
- Department of Medical Laboratories, Technological Education Institution of Thessaly, Larissa, Greece
| | - Kostas Gourgoulianis
- Department of Respiratory Medicine, Medical School, University of Thessaly, Larissa, Greece
| |
Collapse
|
28
|
Falkinham JO, Hilborn ED, Arduino MJ, Pruden A, Edwards MA. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:749-58. [PMID: 25793551 PMCID: PMC4529011 DOI: 10.1289/ehp.1408692] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 03/17/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexisting risk factors and frequently require hospitalization. OBJECTIVES The objectives of this report are to alert professionals of the impact of OPPPs, the fact that 30% of the population may be exposed to OPPPs, and the need to develop means to reduce OPPP exposure. We herein present a review of the epidemiology and ecology of these three bacterial OPPPs, specifically to identify common and unique features. METHODS A Water Research Foundation-sponsored workshop gathered experts from across the United States to review the characteristics of OPPPs, identify problems, and develop a list of research priorities to address critical knowledge gaps with respect to increasing OPPP-associated disease. DISCUSSION OPPPs share the common characteristics of disinfectant resistance and growth in biofilms in water distribution systems or premise plumbing. Thus, they share a number of habitats with humans (e.g., showers) that can lead to exposure and infection. The frequency of OPPP-infected individuals is rising and will likely continue to rise as the number of at-risk individuals is increasing. Improved reporting of OPPP disease and increased understanding of the genetic, physiologic, and structural characteristics governing the persistence and growth of OPPPs in drinking water distribution systems and premise plumbing is needed. CONCLUSIONS Because broadly effective community-level engineering interventions for the control of OPPPs have yet to be identified, and because the number of at-risk individuals will continue to rise, it is likely that OPPP-related infections will continue to increase. However, it is possible that individuals can take measures (e.g., raise hot water heater temperatures and filter water) to reduce home exposures.
Collapse
Affiliation(s)
- Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | | | | |
Collapse
|
29
|
Donohue MJ, Mistry JH, Donohue JM, O'Connell K, King D, Byran J, Covert T, Pfaller S. Increased Frequency of Nontuberculous Mycobacteria Detection at Potable Water Taps within the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6127-6133. [PMID: 25902261 DOI: 10.1021/acs.est.5b00496] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nontuberculous mycobacteria (NTMs) are environmental microorganisms that can cause infections in humans, primarily in the lung and soft tissue. The prevalence of NTM-associated diseases is increasing in the United States. Exposure to NTMs occurs primarily through human interactions with water (especially aerosolized). Potable water from sites across the U.S. was collected to investigate the presence of NTM. Water from 68 taps was sampled 4 times over the course of 2 years. In total, 272 water samples were examined for NTM using a membrane filtration, culture method. Identification of NTM isolates was accomplished by polymerase chain reaction (PCR) amplification of the 16S rRNA and hsp65 genes. NTMs were detected in 78% of the water samples. The NTM species detected most frequently were: Mycobacterium mucogenicum (52%), Mycobacterium avium (30%), and Mycobacterium gordonae (25%). Of the taps that were repeatedly positive for NTMs, the species M. avium, M. mucogenicum, and Mycobacterium abscessus were found to persist most frequently. This study also observed statistically significant higher levels of NTM in chloraminated water than in chlorinated water.
Collapse
|
30
|
Comparison of methods for the isolation of mycobacteria from water treatment plant sludge. Antonie van Leeuwenhoek 2015; 107:1165-79. [DOI: 10.1007/s10482-015-0408-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/18/2015] [Indexed: 11/25/2022]
|
31
|
Holinger EP, Ross KA, Robertson CE, Stevens MJ, Harris JK, Pace NR. Molecular analysis of point-of-use municipal drinking water microbiology. WATER RESEARCH 2014; 49:225-35. [PMID: 24333849 DOI: 10.1016/j.watres.2013.11.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 05/25/2023]
Abstract
Little is known about the nature of the microbiology in tap waters delivered to consumers via public drinking water distribution systems (DWDSs). In order to establish a broader understanding of the microbial complexity of public drinking waters we sampled tap water from seventeen different cities between the headwaters of the Arkansas River and the mouth of the Mississippi River and determined the bacterial compositions by pyrosequencing small subunit rRNA genes. Nearly 98% of sequences observed among all systems fell into only 5 phyla: Proteobacteria (35%), Cyanobacteria (29%, including chloroplasts), Actinobacteria (24%, of which 85% were Mycobacterium spp.), Firmicutes (6%), and Bacteroidetes (3.4%). The genus Mycobacterium was the most abundant taxon in the dataset, detected in 56 of 63 samples (16 of 17 cities). Among the more rare phylotypes, considerable variation was observed between systems, and was sometimes associated with the type of source water, the type of disinfectant, or the concentration of the environmental pollutant nitrate. Abundant taxa (excepting Cyanobacteria and chloroplasts) were generally similar from system to system, however, regardless of source water type or local land use. The observed similarity among the abundant taxa between systems may be a consequence of the selective influence of chlorine-based disinfection and the common local environments of DWDS and premise plumbing pipes.
Collapse
Affiliation(s)
- Eric P Holinger
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, CB 347, Boulder, CO 80309-0347, USA
| | - Kimberly A Ross
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, CB 347, Boulder, CO 80309-0347, USA
| | - Charles E Robertson
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, CB 347, Boulder, CO 80309-0347, USA
| | - Mark J Stevens
- Dept. of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - J Kirk Harris
- Dept. of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Norman R Pace
- Dept. of Molecular, Cellular, and Developmental Biology, University of Colorado, CB 347, Boulder, CO 80309-0347, USA.
| |
Collapse
|
32
|
Rindi L, Garzelli C. Genetic diversity and phylogeny of Mycobacterium avium. INFECTION GENETICS AND EVOLUTION 2013; 21:375-83. [PMID: 24345519 DOI: 10.1016/j.meegid.2013.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 02/02/2023]
Abstract
Mycobacterium avium, one of the species of the M. avium complex (MAC), includes 4 subspecies, i.e., M. avium subsp. hominissuis (MAH), M. avium subsp. avium (MAA), M. avium subsp. silvaticum (MAS) and M. avium subsp. paratuberculosis (MAP), in turn classified into the S (sheep) and C (cattle) types. These subspecies, although closely related, represent distinct organisms, each endowed with specific pathogenetic and host range characteristics, ranging from environmental opportunistic bacteria that cause infections in swine and immunocompromised patients to pathogens of birds and ruminants. The present review summarizes the basic epidemiological and pathological features of the M. avium subspecies, describes the major genomic events responsible of M. avium subspecies diversity (insertion sequences, sequence variations in specific chromosome loci or genes, deletions, duplications and insertions of large genomic regions) and then reconstructs the phylogenetic relationships among the M. avium subspecies.
Collapse
Affiliation(s)
- Laura Rindi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, I-56127 Pisa, Italy.
| | - Carlo Garzelli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, I-56127 Pisa, Italy
| |
Collapse
|
33
|
Microbiologic Trends and Biofilm Growth on Explanted Periorbital Biomaterials. Ophthalmic Plast Reconstr Surg 2013; 29:376-81. [DOI: 10.1097/iop.0b013e31829a7313] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Pyrosequence analysis of the hsp65 genes of nontuberculous mycobacterium communities in unchlorinated drinking water in the Netherlands. Appl Environ Microbiol 2013; 79:6160-6. [PMID: 23913420 DOI: 10.1128/aem.01591-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Studies have shown that certain opportunistic pathogenic species of nontuberculous mycobacteria (NTM) can be present in distributed drinking water. However, detailed information about NTM population composition in drinking water is lacking. Therefore, NTM communities in unchlorinated drinking water from the distribution system of five treatment plants in the Netherlands were characterized using 454 pyrosequencing of the hsp65 gene. Results showed high diversities in unchlorinated drinking water, with up to 28 different NTM operational taxonomic units (OTUs) in a single sample. Each drinking water sample had a unique NTM community, and most (81.1%) OTUs were observed only once. One OTU was observed in 14 of 16 drinking water samples, indicating that this NTM species is well adapted to unchlorinated drinking water conditions. A clear influence of season, source type (groundwater, surface water), easily assimilable organic carbon (AOC) concentration, biofilm formation rate, and active biomass in treated water on the establishment of an NTM community in drinking water was not observed. Apparently, local conditions are more important for the development of a specific NTM community in the drinking water distribution system. A low (4.2%) number of hsp65 gene sequences showed more than 97% similarity to sequences of the opportunistic pathogens M. avium, M. genavense, and M. gordonae. However, most (95.8%) NTM hsp65 gene sequences were related to not-yet-described NTM species that have not been linked to disease, indicating that most NTM species in unchlorinated drinking water from distribution systems in the Netherlands have a low public health significance.
Collapse
|
35
|
Shared Mycobacterium avium genotypes observed among unlinked clinical and environmental isolates. Appl Environ Microbiol 2013; 79:5601-7. [PMID: 23851084 DOI: 10.1128/aem.01443-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our understanding of the sources of Mycobacterium avium infection is partially based on genotypic matching of pathogen isolates from cases and environmental sources. These approaches assume that genotypic identity is rare in isolates from unlinked cases or sources. To test this assumption, a high-resolution PCR-based genotyping approach, large-sequence polymorphism (LSP)-mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR), was selected and used to analyze clinical and environmental isolates of M. avium from geographically diverse sources. Among 127 clinical isolates from seven locations in North America, South America, and Europe, 42 genotypes were observed. Among 12 of these genotypes, matches were seen in isolates from apparently unlinked patients in two or more geographic locations. Six of the 12 were also observed in environmental isolates. A subset of these isolates was further analyzed by alternative strain genotyping methods, pulsed-field gel electrophoresis and MIRU-VNTR, which confirmed the existence of geographically dispersed strain genotypes. These results suggest that caution should be exercised in interpreting high-resolution genotypic matches as evidence for an acquisition event.
Collapse
|
36
|
Diversity, community composition, and dynamics of nonpigmented and late-pigmenting rapidly growing mycobacteria in an urban tap water production and distribution system. Appl Environ Microbiol 2013; 79:5498-508. [PMID: 23835173 DOI: 10.1128/aem.00900-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) have been reported to commonly colonize water production and distribution systems. However, there is little information about the nature and distribution of RGM species within the different parts of such complex networks or about their clustering into specific RGM species communities. We conducted a large-scale survey between 2007 and 2009 in the Parisian urban tap water production and distribution system. We analyzed 1,418 water samples from 36 sites, covering all production units, water storage tanks, and distribution units; RGM isolates were identified by using rpoB gene sequencing. We detected 18 RGM species and putative new species, with most isolates being Mycobacterium chelonae and Mycobacterium llatzerense. Using hierarchical clustering and principal-component analysis, we found that RGM were organized into various communities correlating with water origin (groundwater or surface water) and location within the distribution network. Water treatment plants were more specifically associated with species of the Mycobacterium septicum group. On average, M. chelonae dominated network sites fed by surface water, and M. llatzerense dominated those fed by groundwater. Overall, the M. chelonae prevalence index increased along the distribution network and was associated with a correlative decrease in the prevalence index of M. llatzerense, suggesting competitive or niche exclusion between these two dominant species. Our data describe the great diversity and complexity of RGM species living in the interconnected environments that constitute the water production and distribution system of a large city and highlight the prevalence index of the potentially pathogenic species M. chelonae in the distribution network.
Collapse
|
37
|
Genc GE, Richter E, Erturan Z. Isolation of nontuberculous mycobacteria from hospital waters in Turkey. APMIS 2013; 121:1192-7. [DOI: 10.1111/apm.12066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/11/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Gonca Erkose Genc
- Istanbul Faculty of Medicine; Department of Medical Microbiology; Istanbul University; Istanbul Turkey
| | - Elvira Richter
- Forschungszentrum Borstel; National Reference Center for Mycobacteria; Borstel Germany
| | - Zayre Erturan
- Istanbul Faculty of Medicine; Department of Medical Microbiology; Istanbul University; Istanbul Turkey
| |
Collapse
|
38
|
Williams MM, Armbruster CR, Arduino MJ. Plumbing of hospital premises is a reservoir for opportunistically pathogenic microorganisms: a review. BIOFOULING 2013; 29:147-62. [PMID: 23327332 PMCID: PMC9326810 DOI: 10.1080/08927014.2012.757308] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Several bacterial species that are natural inhabitants of potable water distribution system biofilms are opportunistic pathogens important to sensitive patients in healthcare facilities. Waterborne healthcare-associated infections (HAI) may occur during the many uses of potable water in the healthcare environment. Prevention of infection is made more challenging by lack of data on infection rate and gaps in understanding of the ecology, virulence, and infectious dose of these opportunistic pathogens. Some healthcare facilities have been successful in reducing infections by following current water safety guidelines. This review describes several infections, and remediation steps that have been implemented to reduce waterborne HAIs.
Collapse
Affiliation(s)
- Margaret M Williams
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | |
Collapse
|
39
|
Guirado E, Arcos J, Knaup R, Reeder R, Betz B, Cotton C, Patel T, Pfaller S, Torrelles JB, Schlesinger LS. Characterization of clinical and environmental Mycobacterium avium spp. isolates and their interaction with human macrophages. PLoS One 2012; 7:e45411. [PMID: 23028991 PMCID: PMC3446901 DOI: 10.1371/journal.pone.0045411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 08/21/2012] [Indexed: 11/19/2022] Open
Abstract
Members of the Mycobacterium avium complex (MAC) are naturally occurring bacteria in the environment. A link has been suggested between M. avium strains in drinking water and clinical isolates from infected individuals. There is a need to develop new screening methodologies that can identify specific virulence properties of M. avium isolates found in water that predict a level of risk to exposed individuals. In this work we have characterized 15 clinical and environmental M. avium spp. isolates provided by the US Environmental Protection Agency (EPA) to improve our understanding of the key processes involved in the binding, uptake and survival of these isolates in primary human macrophages. M. avium serovar 8 was predominant among the isolates studied. Different amounts and exposure of mannose-capped lipoarabinomannan (ManLAM) and glycopeptidolipids (GPLs), both major mycobacterial virulence factors, were found among the isolates studied. Reference clinical isolate 104 serovar 1 and clinical isolates 11 and 14 serovar 8 showed an increased association with macrophages. Serum opsonization increased the cell association and survival at 2 h post infection for all isolates. However, only the clinical isolates 104 and 3 among those tested showed an increased growth in primary human macrophages. The other isolates varied in their survival in these cells. Thus we conclude that the amounts of cell envelope ManLAM and GPL, as well as GPL serovar specificity are not the only important bacterial factors for dictating the early interactions of M. avium with human macrophages.
Collapse
Affiliation(s)
- Evelyn Guirado
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- Departments of Microbial Infection and Immunity, and Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jesus Arcos
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- Departments of Microbial Infection and Immunity, and Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Rose Knaup
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Rebecca Reeder
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Bret Betz
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Cassie Cotton
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Tejal Patel
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Stacy Pfaller
- United States Environmental Protection Agency, Cincinnati, Ohio, United States of America
| | - Jordi B. Torrelles
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- Departments of Microbial Infection and Immunity, and Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Larry S. Schlesinger
- Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- Departments of Microbial Infection and Immunity, and Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
40
|
Roupie V, Viart S, Leroy B, Romano M, Trinchero N, Govaerts M, Letesson JJ, Wattiez R, Huygen K. Immunogenicity of eight Mycobacterium avium subsp. paratuberculosis specific antigens in DNA vaccinated and Map infected mice. Vet Immunol Immunopathol 2012; 145:74-85. [DOI: 10.1016/j.vetimm.2011.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/17/2011] [Accepted: 10/21/2011] [Indexed: 01/10/2023]
|
41
|
Castillo-Rodal AI, Mazari-Hiriart M, Lloret-Sánchez LT, Sachman-Ruiz B, Vinuesa P, López-Vidal Y. Potentially pathogenic nontuberculous mycobacteria found in aquatic systems. Analysis from a reclaimed water and water distribution system in Mexico City. Eur J Clin Microbiol Infect Dis 2011; 31:683-94. [PMID: 21805195 DOI: 10.1007/s10096-011-1359-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 07/05/2011] [Indexed: 11/26/2022]
Abstract
We investigated the presence of nontuberculous mycobacteria (NTM) in three Mexican aquatic systems to evaluate the prevalence with the distribution of NTM species. Key physicochemical parameters of the water samples were determined to find correlations with the species' distributions. We used multilocus sequence analysis (MLSA) based on hsp65, rpoB, and 16S rRNA fragments to determine their taxonomic affiliations. NTM were recovered from water distribution systems and reclaimed water from the Mexico City Metropolitan Area (MCMA). The isolated species were associated with a temperature of 21°C and pH >7.7. The phylogenetic analysis showed that eight of the 14 different NTM strains were unambiguously classifiable: Mycobacterium peregrinum, M. nonchromogenicum (2), M. smegmatis (2), M. fortuitum, M. avium ssp. hominissuis, M. arupense, M. gordonae, and M. chitae. One strain was tentatively identified as M. mantenni/ scrofulaceum and another strain was related to M. porcinum/M. septicum. All NTM species identified in the water distribution system were also detected in the reclaimed water, but some species from the reclaimed water were not found in the water distribution systems. Two of the identified species found in the reclaimed water, M. avium and M. fortuitum, are considered important human opportunistic pathogens.
Collapse
Affiliation(s)
- A I Castillo-Rodal
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México City, DF, Mexico
| | | | | | | | | | | |
Collapse
|
42
|
Falkinham JO. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis 2011; 17:419-24. [PMID: 21392432 PMCID: PMC3166028 DOI: 10.3201/eid1703.101510] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To determine whether plumbing could be a source of nontuberculous mycobacteria (NTM) infection, during 2007–2009 I isolated NTM from samples from household water systems of NTM patients. Samples from 22/37 (59%) households and 109/394 (28%) total samples yielded NTM. Seventeen (46%) of the 37 households yielded >1 Mycobacterium spp. isolate of the same species as that found in the patient; in 7 of those households, the patient isolate and 1 plumbing isolate exhibited the same repetitive sequence-based PCR DNA fingerprint. Households with water heater temperatures <125°C (<50°C) were significantly more likely to harbor NTM compared with households with hot water temperatures >130°F (>55°C) (p = 0.0107). Although households with water from public or private water systems serving multiple households were more likely to have NTM (19/27, 70%) compared with households with a well providing water to only 1 household (5/12, 42%), that difference was not significant (p = 0.1532).
Collapse
Affiliation(s)
- Joseph O Falkinham
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA.
| |
Collapse
|
43
|
Pierce ES. Ulcerative colitis and Crohn's disease: is Mycobacterium avium subspecies paratuberculosis the common villain? Gut Pathog 2010; 2:21. [PMID: 21167058 PMCID: PMC3031217 DOI: 10.1186/1757-4749-2-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/17/2010] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium avium, subspecies paratuberculosis (MAP) causes a chronic disease of the intestines in dairy cows and a wide range of other animals, including nonhuman primates, called Johne's ("Yo-knee's") disease. MAP has been consistently identified by a variety of techniques in humans with Crohn's disease. The research investigating the presence of MAP in patients with Crohn's disease has often identified MAP in the "negative" ulcerative colitis controls as well, suggesting that ulcerative colitis is also caused by MAP. Like other infectious diseases, dose, route of infection, age, sex and genes influence whether an individual infected with MAP develops ulcerative colitis or Crohn's disease. The apparently opposite role of smoking, increasing the risk of Crohn's disease while decreasing the risk of ulcerative colitis, is explained by a more careful review of the literature that reveals smoking causes an increase in both diseases but switches the phenotype from ulcerative colitis to Crohn's disease. MAP as the sole etiologic agent of both ulcerative colitis and Crohn's disease explains their common epidemiology, geographic distribution and familial and sporadic clusters, providing a unified hypothesis for the prevention and cure of the no longer "idiopathic" inflammatory bowel diseases.
Collapse
|
44
|
Abstract
Nontuberculous mycobacteria (NTM) are generally hardy, ubiquitous environmental bacteria that vary in geographic distribution and pulmonary pathogenicity. Relatively few of the more than 115 species of NTM have been associated with lung disease. Diagnosis of disease due to NTM relies on a combination of clinical, imaging, and microbiologic data. Because NTM may present as acid-fast bacilli in respiratory secretions of patients with clinical and radiologic features that mimic tuberculosis, laboratory discrimination of NTM from Mycobacterium tuberculosis is a priority. This discrimination is now often rapidly achievable using molecular techniques, although some tests have limited sensitivity. NTM species have different antibiotic response patterns, and success with medical treatment alone varies. Macrolides are an essential component of therapy for many species but must be combined with other drugs.
Collapse
Affiliation(s)
- Babafemi Taiwo
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
45
|
Falkinham JO. Hospital water filters as a source of Mycobacterium avium complex. J Med Microbiol 2010; 59:1198-1202. [DOI: 10.1099/jmm.0.022376-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bronchoscopes and the filters used for washing them were found to yield high numbers of Mycobacterium avium isolates sharing the same repetitive sequence-based PCR (rep-PCR) fingerprint pattern as M. avium isolates recovered from patient samples collected by bronchoscopy. Water and biofilm samples collected from the bronchoscopy preparation laboratory yielded M. avium, Mycobacterium intracellulare, Mycobacterium malmoense and Mycobacterium gordonae. Several M. avium and M. intracellulare isolates from water samples in the bronchoscopy laboratory had rep-PCR patterns matching those of patient bronchoscopy isolates. Five of the 22 (23 %) M. avium patient bronchoscopy isolates and 42 of the 56 (75 %) M. intracellulare patient bronchoscopy isolates could have been due to contamination from the water supply.
Collapse
Affiliation(s)
- Joseph O. Falkinham
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA
| |
Collapse
|
46
|
Detection of Mycobacterium avium subsp. paratuberculosis in drinking water and biofilms by quantitative PCR. Appl Environ Microbiol 2010; 76:7367-70. [PMID: 20817803 DOI: 10.1128/aem.00730-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been suggested that Mycobacterium avium subspecies paratuberculosis has a role in Crohn's disease. The organism may be acquired but is difficult to culture from the environment. We describe a quantitative PCR (qPCR) method to detect M. avium subsp. paratuberculosis in drinking water and the results of its application to drinking water and faucet biofilm samples collected in the United States.
Collapse
|
47
|
Kormas KA, Neofitou C, Pachiadaki M, Koufostathi E. Changes of the bacterial assemblages throughout an urban drinking water distribution system. ENVIRONMENTAL MONITORING AND ASSESSMENT 2010; 165:27-38. [PMID: 19404754 DOI: 10.1007/s10661-009-0924-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 04/18/2009] [Indexed: 05/27/2023]
Abstract
We analyzed the bacterial 16S rRNA gene diversity throughout the major components of the drinking water distribution system of a ca. 52,000-inhabitants city (Trikala City, Greece) in order to describe the changes of the bacterial assemblages and to detect possible bacterial pathogens which are not included in the standard monitoring process. Bacterial DAPI counts and DNA extraction was performed in the water pumping wells, the water treatment tank and tap water from households. Approximately 920 bp of the bacterial 16S rDNA were PCR-amplified, cloned, and sequenced for a total of 191 clones, which belonged to 112 unique phylotypes. The water of the pumping wells harbored a typical subsurface bacterial assemblage, with no human pathogens, dominated by beta-Proteobacteria. Cell abundance in the water treatment tank decreased significantly, close to detection limit, but bacterial diversity remained high. However, the dominance of beta-Proteobacteria decreased considerably, indicating the sensitivity of this group to drinking water disinfection treatment. Tap water from the households hosted a much less diverse, low-cell bacterial assemblage, dominated by Mycobacterium-like phylotypes, related to biofilm bacterial communities.
Collapse
Affiliation(s)
- Konstantinos Ar Kormas
- Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Nea Ionia, Greece.
| | | | | | | |
Collapse
|
48
|
Loret JF, Greub G. Free-living amoebae: Biological by-passes in water treatment. Int J Hyg Environ Health 2010; 213:167-75. [PMID: 20418158 DOI: 10.1016/j.ijheh.2010.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/24/2010] [Accepted: 03/24/2010] [Indexed: 11/30/2022]
Abstract
Free-living amoebae constitute reservoirs for many bacteria including not only well-known pathogens but also emerging pathogens responsible for respiratory diseases, and contribute to the protection, survival and dissemination of these bacteria in water systems, despite the application of disinfection or thermal treatments. In this article we review the available information on the presence of free-living amoebae and amoebae-resisting bacteria in drinking water systems, on the factors that contribute to their presence in the water and/or the biofilms, on the possible control measures and their effectiveness, and we identify some gaps in current knowledge needing further research.
Collapse
Affiliation(s)
- Jean-François Loret
- Suez Environnement, CIRSEE, 38 rue du Président Wilson, 78230 Le Pecq, France.
| | | |
Collapse
|
49
|
Corsaro D, Pages GS, Catalan V, Loret JF, Greub G. Biodiversity of amoebae and amoeba-associated bacteria in water treatment plants. Int J Hyg Environ Health 2010; 213:158-66. [PMID: 20403728 DOI: 10.1016/j.ijheh.2010.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 02/18/2010] [Accepted: 03/19/2010] [Indexed: 11/27/2022]
Abstract
In this study, we enlarged our previous investigation focusing on the biodiversity of chlamydiae and amoebae in a drinking water treatment plant, by the inclusion of two additional plants and by searching also for the presence of legionellae and mycobacteria. Autochthonous amoebae were recovered onto non-nutritive agar, identified by 18S rRNA gene sequencing, and screened for the presence of bacterial endosymbionts. Bacteria were also searched for by Acanthamoeba co-culture. From a total of 125 samples, we recovered 38 amoebae, among which six harboured endosymbionts (three chlamydiae and three legionellae). In addition, we recovered by amoebal co-culture 11 chlamydiae, 36 legionellae (no L. pneumophila), and 24 mycobacteria (all rapid-growers). Two plants presented a similar percentage of samples positive for chlamydiae (11%), mycobacteria (20%) and amoebae (27%), whereas in the third plant the number of recovered bacteria was almost twice higher. Each plant exhibited a relatively high specific microbiota. Amoebae were mainly represented by various Naegleria species, Acanthamoeba species and Hartmannella vermiformis. Parachlamydiaceae were the most abundant chlamydiae (8 strains in total), and in this study we recovered a new genus-level strain, along with new chlamydiae previously reported. Similarly, about 66% of the recovered legionellae and 47% of the isolated mycobacteria could represent new species. Our work highlighted a high species diversity among legionellae and mycobacteria, dominated by putative new species, and it confirmed the presence of chlamydiae in these artificial water systems.
Collapse
Affiliation(s)
- Daniele Corsaro
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Faculty of Biology and Medecine, University of Lausanne, Bugnon 46, 1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
50
|
Tatchou-Nyamsi-König JA, Dailloux M, Block JC. Survival of Mycobacterium avium attached to polyethylene terephtalate (PET) water bottles. J Appl Microbiol 2010; 106:825-32. [PMID: 19187155 DOI: 10.1111/j.1365-2672.2008.04050.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS The main objective of our study was to assess the persistence of Mycobacterium avium in an oligotrophic environment such as bottled groundwater. METHODS AND RESULTS Filtered groundwater samples were spiked with washed Myco. avium suspension and stored in dark and under static conditions, at 20 degrees C, for 3 months in 500 ml PET bottles. The loss of Myco. avium cultivability was slow in water. On the contrary, after a 3-month storage at 20 degrees C, growth of attached cells was observed and cell adhesiveness to the PET wall increased with time. It could probably be because of the presence of an extracellular matrix. CONCLUSIONS This study has shown the great stability of Myco. avium in bulk water as well as their adhesiveness and their growth on a PET bottle wall in an oligotrophic environment. SIGNIFICANCE AND IMPACT OF THE STUDY Slowly growing mycobacteria are well adapted to oligotrophic environments such as groundwater. As they stick very well to surfaces, they could be used for determining the efficiency of the cleaning of contaminated surfaces.
Collapse
Affiliation(s)
- J-A Tatchou-Nyamsi-König
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR 7564 CNRS, Nancy-Université, Vandoeuvre-lès-Nancy, France
| | | | | |
Collapse
|