1
|
Lin XY, Li HB, Juhasz AL, Jiao DD, Zhou L, Xue RY, Tang Y, Luo X, Zhou D, Ma LQ. Lower Cadmium Bioavailability and Toxicity in Japonica Rice than in Indica Rice: Mechanisms and Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1156-1169. [PMID: 39772521 DOI: 10.1021/acs.est.4c12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cadmium (Cd) is efficiently transferred from soil to food crops, notably rice. Research indicates that indica rice grains may accumulate more Cd than japonica cultivars; however, differences in Cd bioavailability (the fraction of ingested rice Cd absorbed into the systemic circulation) and toxicity remain unexplored, thus hindering a comprehensive understanding of exposure and health risks. To address this, a mouse bioassay was conducted to evaluate the relative bioavailability (RBA) of Cd in 35 samples each of japonica and indica rice, determining which type exhibits lower Cd bioavailability. The results revealed a significantly lower mean Cd-RBA in japonica rice (49.6 ± 7.8%) compared to indica rice (65.6 ± 12.2%). This disparity is attributed primarily to the 1.25- and 1.37-fold higher concentrations of calcium (Ca) and iron (Fe) in japonica rice, which enhanced Ca and Fe absorption from the intestine and reduced duodenal expression of Ca and Fe transporters by 1.8-5.9 times in mice consuming japonica rice, thereby decreasing Cd transcellular transport. Additionally, japonica rice consumption promoted beneficial gut probiotics (Bifidobacterium pseudolongum and Lactobacillus reuteri) and metabolites, particularly short-chain fatty acids and peptides, potentially increasing mineral absorption and reducing Cd uptake. Moreover, mice fed japonica rice exhibited 1.35-1.47 times higher gene expression of intestinal tight junctions, enhancing intestinal barrier function and reducing extracellular Cd transport. Consequently, consuming Cd-containing japonica rice was associated with lower oxidative stress, inflammation, and cancer risks in mice compared to indica rice consumption. This study significantly enhances our understanding on the health risks associated with Cd in different rice subspecies.
Collapse
Affiliation(s)
- Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Duo-Duo Jiao
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Rong-Yue Xue
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuqiong Tang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiaosan Luo
- Department of Agricultural Resources and Environment, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Zhu G, Li Y, Cheng D, Chen R, Wang Y, Tu Q. Effects of Distiller's Grains Biochar and Lactobacillus plantarum on the Remediation of Cd-Pb-Zn-Contaminated Soil and Growth of Sorghum-Sudangrass. Microorganisms 2024; 12:2592. [PMID: 39770794 PMCID: PMC11676423 DOI: 10.3390/microorganisms12122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Soil contamination with heavy metals is a significant environmental issue that adversely affects plant growth and agricultural productivity. Biochar and microbial inoculants have emerged as a promising approach to solving this problem, and previous studies have focused more on the remediation effects of single types of materials on heavy metal soil pollution. This study examined the impact of both standalone and combined applications of distiller's grains biochar, Lactobacillus plantarum thallus, and the bacterial supernatant on the availability of cadmium (Cd), lead (Pb), and zinc (Zn) in soil, its physicochemical features, and its enzyme activities; this study also examined the growth, physiological and biochemical characteristics, and heavy metal accumulation of Sorghum-sudangrass. The findings suggest that the application of distiller's grains biochar, Lactobacillus plantarum thallus, and the bacterial supernatant can improve the soil's physical and chemical properties and enhance soil enzyme activity while reducing the availability of heavy metals in the soil. Furthermore, the addition of these materials promoted plant growth, increased stress resistance, and significantly decreased the accumulation of heavy metals in the plants. A thorough analysis of the results shows that applying 0.025% Lactobacillus plantarum thallus along with 4.4% distiller's grains biochar produced the best results.
Collapse
Affiliation(s)
- Guangxu Zhu
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Yufeng Li
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Dandan Cheng
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Rongkun Chen
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Yunyan Wang
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Qiang Tu
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
- Institute of Synthetic Biology Industry, Hunan University of Arts and Science, Changde 415000, China
| |
Collapse
|
3
|
Huang N, Wang B, Liu S, Wang K, Wang R, Liu F, Chen C. Cadmium exposure in infants and children: toxicity, health effects, dietary risk assessment and mitigation strategies. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39264340 DOI: 10.1080/10408398.2024.2403036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As a non-essential metal, cadmium (Cd) poses a significant threat to food safety and public health. This risk is particularly pronounced for infants and young children due to their high food consumption relative to body weight and immature physiological systems. This review examines the health risks associated with Cd exposure, particularly during the prenatal period through adolescence. It evaluates the prevalence of Cd-rich foods in children's diets and their intake levels across various countries. The review demonstrates that Cd exposure is associated with neurodevelopmental disorders, immune dysfunction, and cardiovascular diseases. It also highlights geographic differences in exposure, with some Asian countries, such as Thailand and China, exhibiting higher overall levels of Cd intake among children compared to other regions. This review presents several recommendations to mitigate Cd intake during early childhood, including reducing the Cd content in food, inhibiting Cd absorption, and promoting its excretion from the body. To minimize the risk of dietary Cd intake in children, it is recommended that stringent regulations of Cd limits in children's food be implemented, alongside a coordinated multi-stakeholder effort. This review provides important insights into effective public health policy development, laying the foundation for achieving broader public health goals.
Collapse
Affiliation(s)
- Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baozhen Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kebo Wang
- Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengquan Liu
- Department of Plant Pathology/Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Lin XY, Ye TW, Duan X, Wang BX, Zhou D, Li HB. Cadmium in Market Pork Kidneys: A Study on Cadmium Bioavailability and the Health Effects Based on Mouse Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14651-14661. [PMID: 39121354 DOI: 10.1021/acs.est.4c04801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Edible offal of farmed animals can accumulate cadmium (Cd). However, no studies have investigated Cd bioavailability and its health effects. Here, based on mouse models, market pork kidney samples exhibited high Cd relative bioavailability of 74.5 ± 11.2% (n = 26), close to 83.8 ± 7.80% in Cd-rice (n = 5). This was mainly due to high vitamin D3 content in pork kidney, causing 1.7-2.3-fold up-regulated expression of duodenal Ca transporter genes in mice fed pork kidney compared to mice fed Cd-rice, favoring Cd intestinal absorption via Ca transporters. However, although pork kidney was high in Cd bioavailability, subchronic low-dose (5% in diet) consumption of two pork kidney samples having 0.48 and 0.97 μg Cd g-1 dw over 35 d did not lead to significant Cd accumulation in the tissue of mice fed Cd-free rice but instead remarkably decreased Cd accumulation in the tissue of mice fed Cd-rice (0.48 μg Cd g-1) by ∼50% and increased abundance of gut probiotics (Faecalibaculum and Lactobacillus). Overall, this study contributed to our understanding of the bioavailability and health effects associated with Cd in edible offal, providing mechanistic insights into pork kidney consumption safety based on Cd bioavailability.
Collapse
Affiliation(s)
- Xin-Ying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Tian-Wen Ye
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bo-Xuan Wang
- International Department of Nanjing No. 13 Middle School, No. 14 Xijiadatang Road, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Zhu G, Wang X, Du R, Wen S, Du L, Tu Q. Adsorption of Cd 2+ by Lactobacillus plantarum Immobilized on Distiller's Grains Biochar: Mechanism and Action. Microorganisms 2024; 12:1406. [PMID: 39065174 PMCID: PMC11279144 DOI: 10.3390/microorganisms12071406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Immobilized microbial technology has recently emerged as a prominent research focus for the remediation of heavy metal pollution because of its superior treatment efficiency, ease of operation, environmental friendliness, and cost-effectiveness. This study investigated the adsorption characteristics and mechanisms of Cd2+ solutions by Lactobacillus plantarum adsorbed immobilized on distiller's grains biochar (XIM) and Lactobacillus plantarum-encapsulated immobilized on distiller's grains biochar (BIM). The findings reveal that the maximum adsorption capacity and efficiency were achieved at a pH solution of 6.0. Specifically, at an adsorption equilibrium concentration of cadmium at 60 mg/L, XIM and BIM had adsorption capacities of 8.40 ± 0.30 mg/g and 12.23 ± 0.05 mg/g, respectively. BIM demonstrated noticeably greater adsorption capacities than XIM at various cadmium solution concentrations. A combination of isothermal adsorption modeling, kinetic modeling, scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FTIR) analyses showed that cadmium adsorption by XIM primarily involved physical adsorption and pore retention. In contrast, the adsorption mechanism of BIM was mainly attributed to the formation of Cd(CN)2 crystals.
Collapse
Affiliation(s)
- Guangxu Zhu
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Xingfeng Wang
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Ronghui Du
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Shuangxi Wen
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Lifen Du
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Shehata AI, Shahin SA, Elmaghraby AM, Alhoshy M, Toutou MM, Soliman AA, Amer AA, Habib YJ, Gewaily MS, Teiba II, El Basuini MF. Stevioside mitigates lead toxicity in thinlip mullet juveniles: Impacts on growth, metabolism, and immune function. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106910. [PMID: 38631122 DOI: 10.1016/j.aquatox.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
This study investigates the impact of varying concentrations of stevioside in the presence of lead (Pb) exposure on multiple aspects of thinlip mullet (Liza ramada) juveniles. Over 60 days, a total of 540 juvenile L. ramada with an initial weight of 3.5 ± 0.13 g were evenly distributed into six groups, each consisting of three replicates. The experimental diet consisted of varying levels of stevioside (150, 250, 350, and 450 mg/kg diet), with a consistent concentration of lead (Pb) set at 100 µg/kg diet. Stevioside demonstrated a positive influence on growth parameters, with the 450 mg/kg +Pb treatment showing the highest values. Biochemical parameters remained stable, but lead-exposed fish without stevioside displayed signs of potential liver damage and metabolic issues. Stevioside supplementation, especially at higher doses (≥250 mg/kg), reversed these negative effects, restoring biochemical markers to healthy control levels. Lead exposure significantly suppressed antioxidant enzyme activities, but co-administration of stevioside exhibited a dose-dependent protective effect, with 250, 350, and 450 mg/kg groups showing activities comparable to the healthy control. Lead-exposed fish without stevioside demonstrated attenuation of the immune response, but stevioside supplementation reversed these effects, particularly at ≥250 mg/kg. Stev (≥250 mg/kg) reduced IL-1β and hepcidin expression, contrasting dose-dependent upregulation in lower dosages and lead-only group. Histological examinations of the intestine and liver supported these findings. In conclusion, stevioside, especially at 450 mg, positively impacted growth, biochemical parameters, antioxidant activity, immune response, and gene expression in L. ramada exposed to lead, suggesting its potential to mitigate lead toxicity in aquaculture. Additional research is warranted to investigate the long-term impacts of stevioside supplementation and its prospective implementation in aquaculture.
Collapse
Affiliation(s)
- Akram Ismael Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt.
| | - Shimaa A Shahin
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Ayaat M Elmaghraby
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt; Faculty of Health Science Technology, Borg Al-Arab Technological University, Alexandria, Egypt
| | - Mayada Alhoshy
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mohamed M Toutou
- Fish Nutrition Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Alexandria City 21556, Egypt
| | - Ali A Soliman
- Fish Nutrition Laboratory, Aquaculture Division, National Institute of Oceanography and Fisheries, Alexandria City 21556, Egypt
| | - Asem A Amer
- Central Laboratory for Aquaculture Research, Abbassa, Sharkia, Sakha Aquaculture Research Unit, Kafrelsheikh City 33516, Egypt
| | - Yusuf Jibril Habib
- Department of Medical Analysis, Tishk International University, Erbil, Iraq
| | - Mahmoud S Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Islam I Teiba
- Faculty of Agriculture, Tanta University, Tanta City 31527, Egypt
| | | |
Collapse
|
7
|
Wang Y, Han J, Ren Q, Liu Z, Zhang X, Wu Z. The Involvement of Lactic Acid Bacteria and Their Exopolysaccharides in the Biosorption and Detoxication of Heavy Metals in the Gut. Biol Trace Elem Res 2024; 202:671-684. [PMID: 37165259 DOI: 10.1007/s12011-023-03693-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Heavy metal pollution has become one of the most important global environmental issues. The human health risk posed by heavy metals encountered through the food chain and occupational and environmental exposure is increasing, resulting in a series of serious diseases. Ingested heavy metals might disturb the function of the gut barrier and cause toxicity to organs or tissues in other sites of the body. Probiotics, including some lactic acid bacteria (LAB), can be used as an alternative strategy to detoxify heavy metals in the host body due to their safety and effectiveness. Exopolysaccharides (EPS) produced by LAB possess varied chemical structures and functional properties and take part in the adsorption of heavy metals via keeping the producing cells vigorous. The main objective of this paper was to summarize the roles of LAB and their EPS in the adsorption and detoxification of heavy metals in the gut. Accumulated evidence has demonstrated that microbial EPS play a pivotal role in heavy metal biosorption. Specifically, EPS-producing LAB have been reported to show superior absorption, tolerance, and efficient abatement of the toxicity of heavy metals in vitro and/or in vivo to non-EPS-producing species. The mechanisms underlying EPS-metal binding are mainly related to the negatively charged acidic groups and unique steric structure on the surface of EPS. However, whether the enriched heavy metals on the bacterial cell surface increase toxicity to local mammal cells or tissues in the intestine and whether they are released during excretion remain to be elucidated.
Collapse
Affiliation(s)
- Yitian Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Quanlu Ren
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai, 200436, China.
| |
Collapse
|
8
|
Wang Z, Zhou Y, Xiao X, Liu A, Wang S, Preston RJS, Zaytseva YY, He G, Xiao W, Hennig B, Deng P. Inflammation and cardiometabolic diseases induced by persistent organic pollutants and nutritional interventions: Effects of multi-organ interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122756. [PMID: 37844865 PMCID: PMC10842216 DOI: 10.1016/j.envpol.2023.122756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The development and outcome of inflammatory diseases are associated with genetic and lifestyle factors, which include chemical and nonchemical stressors. Persistent organic pollutants (POPs) are major groups of chemical stressors. For example, dioxin-like polychlorinated biphenyls (PCBs), per- and polyfluoroalkyl substances (PFASs), and polybrominated diphenyl ethers (PBDEs) are closely associated with the incidence of inflammatory diseases. The pathology of environmental chemical-mediated inflammatory diseases is complex and may involve disturbances in multiple organs, including the gut, liver, brain, vascular tissues, and immune systems. Recent studies suggested that diet-derived nutrients (e.g., phytochemicals, vitamins, unsaturated fatty acids, dietary fibers) could modulate environmental insults and affect disease development, progression, and outcome. In this article, mechanisms of environmental pollutant-induced inflammation and cardiometabolic diseases are reviewed, focusing on multi-organ interplays and highlighting recent advances in nutritional strategies to improve the outcome of cardiometabolic diseases associated with environmental exposures. In addition, advanced system biology approaches are discussed, which present unique opportunities to unveil the complex interactions among multiple organs and to fuel the development of precision intervention strategies in exposed individuals.
Collapse
Affiliation(s)
- Zhongmin Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China; Irish Centre for Vascular Biology, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Ireland
| | - Yixuan Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xia Xiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Aowen Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shengnan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Ireland
| | - Yekaterina Y Zaytseva
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Guangzhao He
- Department of Pharmacy, Changzhou Cancer Hospital, Soochow University, Changzhou, Jiangsu, China
| | - Wenjin Xiao
- Department of Endocrinology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington, KY, USA; Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Pan Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Chen L, Liu Y, Zhang Y, Zhang Y, Wang W, Han H, Yang C, Dong X. Superoxide dismutase ameliorates oxidative stress and regulates liver transcriptomics to provide therapeutic benefits in hepatic inflammation. PeerJ 2023; 11:e15829. [PMID: 37583908 PMCID: PMC10424669 DOI: 10.7717/peerj.15829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Background Oxidative stress refers to the imbalance between oxidants and antioxidants in organisms and often induces hepatic inflammation. Supplementing exogenous superoxide dismutase is an effective way to alleviate oxidative stress; however, the effects and mechanisms by which superoxide dismutase alleviates hepatic inflammation remain unclear. Methods This study established a Kunming mouse model to verify and investigate the oxidative stress and hepatic inflammation-alleviating effects of the superoxide dismutase oral supplement that was prepared by our research group in a previous study. Results The superoxide dismutase product significantly restored the body weight and liver alanine transaminase, aspartate aminotransferase, superoxide dismutase, catalase, glutathione, and glutathione peroxidase levels of oxidative stress induced mice. Moreover, exogenous superoxide dismutase significantly inhibited interleukin 1β and interleukin 6 mRNA expression in the livers of mice with hepatic inflammation. Transcriptomic analysis indicated that superoxide dismutase had a significant inhibitory effect on Endog expression, alleviating oxidative stress damage, and mediating liver cell apoptosis by regulating the expression of Rab5if, Hnrnpab, and Ifit1. Conclusion Our research verified the oxidative stress remediation effects of superoxide dismutase and its therapeutic role against hepatic inflammation. This study can lay a foundation for investigating the mechanism by which superoxide dismutase alleviates hepatic disease.
Collapse
Affiliation(s)
- Longyan Chen
- Qilu Hospital of Shandong University, Jinan, China
| | - Yang Liu
- QiLu University of Technology, Jinan, China
| | | | | | - Wei Wang
- QiLu University of Technology, Jinan, China
| | - Hongyu Han
- QiLu University of Technology, Jinan, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xueqian Dong
- QiLu University of Technology, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Chen Z, Leng X, Zhou F, Shen W, Zhang H, Yu Q, Meng X, Fan H, Qin M. Screening and Identification of Probiotic Lactobacilli from the Infant Gut Microbiota to Alleviate Lead Toxicity. Probiotics Antimicrob Proteins 2023; 15:821-831. [PMID: 35060081 DOI: 10.1007/s12602-021-09895-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/08/2023]
Abstract
Lead (Pb2+) exposure cause a potential hazard to human health and the ecological environment; however, prevention and treatment of Pb2+ toxicity remain problems. The aim of this study is to isolate a novel probiotic lead (Pb2+)-resistant Lactobacillus strain from the infant gut microbiota and to determine whether they have the probiotic properties and investigate its preventive and therapeutic effects in the early-life Pb2+ exposure mouse model. In the present study, a total of 64 Pb2+-resistant colonies were isolated from the infant gut microbiota. Of these colonies, SYF-08, identified as Lacticaseibacillus casei, exhibited a Pb2+-binding capacity and Pb2+ tolerance. The in vivo study showed that SYF-08 treatment could effectively reduce Pb2+ levels in the blood, alleviate Pb2+ enrichment in bone and brain tissues, and recover the intestinal and brain damage in both dams and offspring. SYF-08 treatment also improved the antioxidant index in the liver and kidney tissues, while increasing the diversity of the intestinal microbiota of the offspring. The results of the in vitro and in vivo studies suggest that SYF-08, isolated from infant fecal samples, is a promising candidate probiotic against Pb2+ toxicity.
Collapse
Affiliation(s)
- Zhenhui Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xingyu Leng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fan Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wei Shen
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hongnan Zhang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qinfei Yu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Min Qin
- Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
11
|
Yu Y, Meng W, Kuang H, Chen X, Zhu X, Wang L, Tan H, Xu Y, Ding P, Xiang M, Hu G, Zhou Y, Dong GH. Association of urinary exposure to multiple metal(loid)s with kidney function from a national cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163100. [PMID: 37023822 DOI: 10.1016/j.scitotenv.2023.163100] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Arsenic (As), cadmium (Cd) and copper (Cu) are hazardous for kidney function, while the effects of selenium (Se) and zinc (Zn) were unexplored for the narrow safe range of intake. Interactions exists between these multiple metal/metalloid exposures, but few studies have investigated the effects. METHODS A cross-sectional survey was performed among 2210 adults across twelve provinces in China between 2020 and 2021. Urinary As, Cd, Cu, Se and Zn were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Serum creatinine (Scr) and N-acetyl-beta-D glucosaminidases (urine NAG) were quantified in serum and urine, respectively. Kidney function was evaluated by the estimated glomerular filtration rate (eGFR). We employed logistic regression and Bayesian kernel machine regression (BKMR) models to explore the individual and joint effects of urinary metals/metalloids on the risk of impaired renal function (IRF) or chronic kidney disease (CKD), respectively. RESULTS Association was found between As (OR = 1.24, 95 % CI: 1.03, 1.48), Cd (OR = 1.65, 95 % CI: 1.35, 2.02), Cu (OR = 1.90, 95 % CI: 1.59, 2.29), Se (OR = 1.51, 95 % CI: 1.24, 1.85) and Zn (OR = 1.33, 95 % CI: 1.09, 1.64) and the risk of CKD. Moreover, we observed association between As (OR = 1.18, 95 % CI: 1.07, 1.29), Cu (OR = 1.14, 95 % CI: 1.04, 1.25), Se (OR = 1.15, 95 % CI: 1.06, 1.26) and Zn (OR = 1.12, 95 % CI: 1.02, 1.22) and the risk of IRF. Additionally, it was found that Se exposure may strength the association of urinary As, Cd and Cu with IRF. Furthermore, it is worth noting that Se and Cu contributed greatest to the inverse association in IRF and CKD, respectively. CONCLUSION Our findings suggested that metal/metalloid mixtures were associated with kidney dysfunction, Se and Cu were inverse factors. Additionally, interactions between them may affect the association. Further studies are needed to assess the potential risks for metal/metalloid exposures.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China.
| | - Wenjie Meng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Hongxuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Xichao Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Xiaohui Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Lebing Wang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Haiping Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Yujie Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, PR China; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
12
|
Brdarić E, Popović D, Soković Bajić S, Tucović D, Mutić J, Čakić-Milošević M, Đurđić S, Tolinački M, Aleksandrov AP, Golić N, Mirkov I, Živković M. Orally Administrated Lactiplantibacillus plantarum BGAN8-Derived EPS-AN8 Ameliorates Cd Hazards in Rats. Int J Mol Sci 2023; 24:ijms24032845. [PMID: 36769176 PMCID: PMC9917968 DOI: 10.3390/ijms24032845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Cadmium (Cd) is a highly toxic metal that is distributed worldwide. Exposure to it is correlated with a vast number of diseases and organism malfunctions. Exopolysaccharides (EPS) derived from Lactiplantibacillus plantarum BGAN8, EPS-AN8, previously showed great potential for the in vitro protection of intestinal cells from this metal. Here, we investigated the potential of food supplemented with EPS-AN8 to protect rats from the hazardous effects of Cd exposure. After thirty days of exposure to lower (5 ppm) and higher (50 ppm)-Cd doses, the administration of EPS-AN8 led to decreased Cd content in the kidneys, liver, and blood compared to only Cd-treated groups, whereas the fecal Cd content was strongly enriched. In addition, EPS-AN8 reversed Cd-provoked effects on the most significant parameters of oxidative stress (MDA, CAT, GST, and GSH) and inflammation (IL-1β, TNF-α, and IFN-γ) in the duodenum. Moreover, micrographs of the duodenum were in line with these findings. As the gut microbiota has an important role in maintaining homeostasis, we used 16S rRNA amplicon sequencing and investigated the effects of Cd and EPS-AN8 on one part of the microbiota presented in the duodenum. Although Cd decreased the growth of lactobacilli and mostly favored the blooming of opportunistic pathogen bacteria, parallel intake of EPS-AN8 reversed those changes. Therefore, our results imply that EPS-AN8 might be extremely noteworthy in combatting this toxic environmental pollutant.
Collapse
Affiliation(s)
- Emilija Brdarić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Dušanka Popović
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11062 Belgrade, Serbia
| | - Svetlana Soković Bajić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Dina Tucović
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11062 Belgrade, Serbia
| | - Jelena Mutić
- Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| | - Maja Čakić-Milošević
- Institute of Zoology, University of Belgrade-Faculty of Biology, 11158 Belgrade, Serbia
| | - Slađana Đurđić
- Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia
| | - Maja Tolinački
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11062 Belgrade, Serbia
| | - Nataša Golić
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11062 Belgrade, Serbia
| | - Milica Živković
- Group for Probiotics and Microbiota-Host Interaction, Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
13
|
Probiotic cultures as a potential protective strategy against the toxicity of environmentally relevant chemicals: State-of-the-art knowledge. Food Chem Toxicol 2023; 172:113582. [PMID: 36581092 DOI: 10.1016/j.fct.2022.113582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Environmentally relevant toxic substances may affect human health, provoking numerous harmful effects on central nervous, respiratory, cardiovascular, endocrine and reproductive system, and even cause various types of carcinoma. These substances, to which general population is constantly and simultaneously exposed, enter human body via food and water, but also by inhalation and dermal contact, while accumulating evidence suggests that probiotic cultures are able to efficiently adsorb and/or degrade them. Cell wall of probiotic bacteria/fungi, which contains structures such as exopolysaccharide, teichoic acid, protein and peptidoglycan components, is considered the main place of toxic substances adsorption. Moreover, probiotics are able to induce metabolism and degradation of various toxic substances, making them less toxic and more suitable for elimination. Other probable in vivo protective effects have also been suggested, including decreased intestinal absorption and increased excretion of toxic substances, prevented gut microbial dysbiosis, increase in the intestinal mucus secretion, decreased production of reactive oxygen species, reduction of inflammation, etc. Having all of this in mind, this review aims to summarize the state-of-the-art knowledge regarding the potential protective effects of different probiotic strains against environmentally relevant toxic substances (mycotoxins, polycyclic aromatic hydrocarbons, pesticides, perfluoroalkyl and polyfluoroalkyl substances, phthalates, bisphenol A and toxic metals).
Collapse
|
14
|
Threonine Facilitates Cd Excretion by Increasing the Abundance of Gut Escherichia coli in Cd-Exposed Mice. Molecules 2022; 28:molecules28010177. [PMID: 36615370 PMCID: PMC9822384 DOI: 10.3390/molecules28010177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) can easily enter the body through the food chain and threaten health since Cd pollution is prevalent in the environment. Gut microbiota is necessary for the reduction of metal ions. To reduce Cd-induced harmful impacts and Cd accumulation in the body, we investigated the effect of amino acids on gut microbiota and Cd excretion in (fecal Cd) Cd-exposed mice. The screening of 20 amino acids showed that threonine (Thr) effectively increased fecal Cd, and reduced Cd-induced intestinal structural damage. The abundance of Escherichia-Shigella genus and KF843036_g significantly increased after the oral administration of Thr. As the type species of the Escherichia-Shigella genus, Escherichia coli exhibited high similarity to KF843036_g species and significantly decreased Cd-induced gut damage. Cd contents in the liver, kidney, and gut of Cd-exposed mice were also significantly (p < 0.05) decreased after E. coli treatment, while the contents in the feces were increased. The results demonstrated the potential roles that gut E. coli might play in Thr-mediated Cd excretion in Cd-exposed mice. The findings may provide important data for better understanding the molecular biological mechanism of Thr in reducing Cd accumulation in the body.
Collapse
|
15
|
Peana M, Pelucelli A, Chasapis CT, Perlepes SP, Bekiari V, Medici S, Zoroddu MA. Biological Effects of Human Exposure to Environmental Cadmium. Biomolecules 2022; 13:biom13010036. [PMID: 36671421 PMCID: PMC9855641 DOI: 10.3390/biom13010036] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) is a toxic metal for the human organism and for all ecosystems. Cd is naturally found at low levels; however, higher amounts of Cd in the environment result from human activities as it spreads into the air and water in the form of micropollutants as a consequence of industrial processes, pollution, waste incineration, and electronic waste recycling. The human body has a limited ability to respond to Cd exposure since the metal does not undergo metabolic degradation into less toxic species and is only poorly excreted. The extremely long biological half-life of Cd essentially makes it a cumulative toxin; chronic exposure causes harmful effects from the metal stored in the organs. The present paper considers exposure and potential health concerns due to environmental cadmium. Exposure to Cd compounds is primarily associated with an elevated risk of lung, kidney, prostate, and pancreatic cancer. Cd has also been linked to cancers of the breast, urinary system, and bladder. The multiple mechanisms of Cd-induced carcinogenesis include oxidative stress with the inhibition of antioxidant enzymes, the promotion of lipid peroxidation, and interference with DNA repair systems. Cd2+ can also replace essential metal ions, including redox-active ones. A total of 12 cancer types associated with specific genes coding for the Cd-metalloproteome were identified in this work. In addition, we summarize the proper treatments of Cd poisoning, based on the use of selected Cd detoxifying agents and chelators, and the potential for preventive approaches to counteract its chronic exposure.
Collapse
Affiliation(s)
- Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Alessio Pelucelli
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (M.P.); (A.P.)
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | | | - Vlasoula Bekiari
- School of Agricultural Science, University of Patras, 30200 Messolonghi, Greece
| | - Serenella Medici
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Maria Antonietta Zoroddu
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
16
|
Oleic Acid Facilitates Cd Excretion by Increasing the Abundance of Burkholderia in Cd-Exposed Mice. Int J Mol Sci 2022; 23:ijms232314718. [PMID: 36499044 PMCID: PMC9741113 DOI: 10.3390/ijms232314718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
As a global pollutant, cadmium (Cd) can easily enter the body through food chains, threatening human health. Most Cd is initially absorbed in the gut, with the gut microbiota playing a pivotal role in reducing Cd absorption and accumulation. This study assessed the effects of three fatty acids on Cd accumulation and toxicity in Cd-exposed mice. The results showed that oleic acid (OA) was the most effective in facilitating Cd excretion in mice among these fatty acids. The use of OA led to reduced Cd accumulation in the organs and increased Cd content in the feces. The metagenomic analysis of the gut microbiota showed that the genus Burkholderia was the most significantly restored by OA in Cd-exposed mice. Burkholderia cepacia, as the type species for the genus Burkholderia, also exhibited strong Cd tolerance after treatment with OA. Furthermore, the electron microscopy analysis showed that most of the Cd was adsorbed on the surface of B. cepacia, where the extracellular polymeric substances (EPSs) secreted by B. cepacia play a key role, displaying a strong capacity for Cd adsorption. The peak at 2355 cm-1 and the total sulfhydryl group content of EPSs showed significant increases following co-treatment with Cd and OA. The results demonstrated the potential roles that gut Burkholderia may play in OA-mediated Cd excretion in mice.
Collapse
|
17
|
Chronic lead exposure exacerbates hepatic glucolipid metabolism disorder and gut microbiota dysbiosis in high-fat-diet mice. Food Chem Toxicol 2022; 170:113451. [PMID: 36198340 DOI: 10.1016/j.fct.2022.113451] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Lead (Pb) and obesity are co-occurring risk factors for metabolic disorders. However, there is still a lack of study on the combined effects of both stressors on metabolism. C57BL/6J mice were exposed to 200 mg/L Pb or/and HFD for 24 weeks and were used to investigate the effects and underlying mechanisms of chronic Pb exposure on obese mice. The results showed that Pb significantly increased body weight, visceral obesity, fasting blood glucose levels, and insulin resistance, and aggravated liver damage, hepatic lipid accumulation and steatosis in HFD-fed mice. Further analysis showed that Pb significantly inhibited insulin signaling pathway PI3K/AKT and fatty acid β-oxidation, and accelerated fatty acid synthesis. Moreover, Pb exacerbated HFD-induced disruption of gut microbiota homeostasis, manifested by increased proportions of pathogenic genera such as Desulfovibrio, Alistipes and Helicobacter, and decreased proportions of beneficial microbes Akkermansia and Barnesiella, which were negatively associated with obesity. These results indicated that Pb exposure exacerbated the disruption of liver glucolipid metabolism in HFD mice possibly by disrupting gut microbiota.
Collapse
|
18
|
Chen DW, Li HJ, Liu Y, Ma LN, Pu JH, Lu J, Tang XJ, Gao YS. Protective effects of fowl-origin cadmium-tolerant lactobacillus against sub-chronic cadmium-induced toxicity in chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76036-76049. [PMID: 35665891 DOI: 10.1007/s11356-022-19113-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/03/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) directly endangers poultry health and indirectly causes harm to human health by food chain. Numerous studies have focused on removing Cd using lactic acid bacteria (LAB). However, there is still a lack of in vivo studies to validate whether Cd can be absorbed successfully by LAB to alleviate Cd toxicity. Here, we aimed to isolated and screened poultry-derived Cd-tolerant LAB with the strongest adsorption capacity in vitro and investigate the protective effect of which on sub-chronic Cd toxicity in chickens. First, nine Cd-tolerant LAB strains were selected preliminarily by isolating, screening, and identifying from poultry farms. Next, four strains with the strongest adsorption capacity were used to explore the influence of different physical and chemical factors on the ability of LAB to adsorb Cd as well as its probiotic properties in terms of acid tolerance, bile salt tolerance, drug resistance, and antibacterial effects. Resultantly, the CLF9-1 strain with the best comprehensive ability was selected for further animal protection test. The Cd-tolerant LAB treatment promoted the growth performance of chickens and reduced the Cd-elevated liver and kidney coefficients. Moreover, Cd-induced liver, kidney, and duodenum injuries were alleviated significantly by high-dose LAB treatment. Furthermore, LAB treatment also increased the elimination of Cd in feces and markedly reduced the Cd buildup in the liver and kidney. In summary, these findings determine that screened Cd-tolerant LAB strain exerts a protective effect on chickens against sub-chronic cadmium poisoning, thus providing an essential guideline for the public health and safety of livestock and poultry.
Collapse
Affiliation(s)
- Da-Wei Chen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Hui-Jia Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - YinYin Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Li-Na Ma
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Jun-Hua Pu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - JunXian Lu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Xiu-Jun Tang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Yu-Shi Gao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China.
| |
Collapse
|
19
|
Human supplementation with Pediococcus acidilactici GR-1 decreases heavy metals levels through modifying the gut microbiota and metabolome. NPJ Biofilms Microbiomes 2022; 8:63. [PMID: 35974020 PMCID: PMC9381558 DOI: 10.1038/s41522-022-00326-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Exposure to heavy metals (HMs) is a threat to human health. Although probiotics can detoxify HMs in animals, their effectiveness and mechanism of action in humans have not been studied well. Therefore, we conducted this randomized, double-blind, controlled trial on 152 occupational workers from the metal industry, an at-risk human population, to explore the effectiveness of probiotic yogurt in reducing HM levels. Participants were randomly assigned to two groups: one consumed probiotic yogurt containing the HM-resistant strain Pediococcus acidilactici GR-1 and the other consumed conventional yogurt for 12 weeks. Analysis of metal contents in the blood revealed that the consumption of probiotic yogurt resulted in a higher and faster decrease in copper (34.45%) and nickel (38.34%) levels in the blood than the consumption of conventional yogurt (16.41% and 27.57%, respectively). Metagenomic and metabolomic studies identified a close correlation between gut microbiota (GM) and host metabolism. Significantly enriched members of Blautia and Bifidobacterium correlated positively with the antioxidant capacities of GM and host. Further murine experiments confirmed the essential role of GM and protective effect of GR-1 on the antioxidative role of the intestine against copper. Thus, the use of probiotic yogurt may be an effective and affordable approach for combating toxic metal exposure through the protection of indigenous GM in humans. ClinicalTrials.gov identifier: ChiCTR2100053222
Collapse
|
20
|
Shang X, Xu W, Zhao Z, Luo L, Zhang Q, Li M, Sun Q, Geng L. Effects of exposure to cadmium (Cd) and selenium-enriched Lactobacillus plantarum in Luciobarbus capito: Bioaccumulation, antioxidant responses and intestinal microflora. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109352. [PMID: 35460911 DOI: 10.1016/j.cbpc.2022.109352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 02/02/2023]
Abstract
Cadmium (Cd) is a dangerous pollutant with multiple toxic effects on aquatic animals, and it exists widely in the environment. Selenium (Se) is a biologically essential trace element. Interactions between heavy metals and selenium can significantly affect their biological toxicity, although little is known about the mechanism of this antagonism. Lactobacillus is one of the dominant probiotics, given that a certain dose promotes host health. In this study, we evaluated the protective effect of a dietary probiotic supplementation, Se-enriched Lactobacillus plantarum (L. plantarum), on the bioaccumulation, oxidative stress and gut microflora of Luciobarbus capito exposed to waterborne Cd. Fish were exposed for 28 days to waterborne Cd at 0.05 mg/L and/or dietary Se-enriched L. plantarum. Exposure to Cd in water leads to Cd accumulation in tissues, oxidative stress and significant changes in gut microflora composition. Adding Se-enriched L. plantarum to the diet can reduce the accumulation of Cd in tissues, enhance the activity of antioxidant enzymes, and reverse changes in intestinal microbial composition after Cd exposure. The results obtained indicate that Se-enriched L. plantarum provides significant protection against the toxicity of Cd by inhibiting bioaccumulation. Selenium reduced oxidative stress by increasing the activity of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and malondialdehyde (MDA). Se-enriched L. plantarum can reduce the increase in the number of pathogenic Aeromonas caviae bacteria in the intestine caused by Cd stress and increase the number of Gemmobacter to regulate the microbial population. The results of this study show that Se-enriched L. plantarum dietary supplements can effectively protect Luciobarbus capito against Cd toxicity at subchronic levels.
Collapse
Affiliation(s)
- Xinchi Shang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Wei Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China.
| | - Zhigang Zhao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Liang Luo
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Qing Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China
| | - Muyang Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China; College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Qingsong Sun
- Jilin Agricultural Science and Technology University, Key Lab of Preventive Veterinary Medicine in Jilin Province, 77 Hanlin Road, Jilin 132101,China
| | - Longwu Geng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Rd 43 Songfa, Daoli District, Harbin 150070, China; Key Laboratory of Cold Water Fish Germplasm Resources and Multiplication and Cultivation of Heilongjiang Province, Harbin 150070, Heilongjiang, China.
| |
Collapse
|
21
|
Petrova P, Arsov A, Tsvetanova F, Parvanova-Mancheva T, Vasileva E, Tsigoriyna L, Petrov K. The Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients 2022; 14:2038. [PMID: 35631179 PMCID: PMC9147554 DOI: 10.3390/nu14102038] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Toxic ingredients in food can lead to serious food-related diseases. Such compounds are bacterial toxins (Shiga-toxin, listeriolysin, Botulinum toxin), mycotoxins (aflatoxin, ochratoxin, zearalenone, fumonisin), pesticides of different classes (organochlorine, organophosphate, synthetic pyrethroids), heavy metals, and natural antinutrients such as phytates, oxalates, and cyanide-generating glycosides. The generally regarded safe (GRAS) status and long history of lactic acid bacteria (LAB) as essential ingredients of fermented foods and probiotics make them a major biological tool against a great variety of food-related toxins. This state-of-the-art review aims to summarize and discuss the data revealing the involvement of LAB in the detoxification of foods from hazardous agents of microbial and chemical nature. It is focused on the specific properties that allow LAB to counteract toxins and destroy them, as well as on the mechanisms of microbial antagonism toward toxigenic producers. Toxins of microbial origin are either adsorbed or degraded, toxic chemicals are hydrolyzed and then used as a carbon source, while heavy metals are bound and accumulated. Based on these comprehensive data, the prospects for developing new combinations of probiotic starters for food detoxification are considered.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.P.); (A.A.)
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.P.); (A.A.)
| | - Flora Tsvetanova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Tsvetomila Parvanova-Mancheva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Evgenia Vasileva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| |
Collapse
|
22
|
Hu C, Huang Z, Sun B, Liu M, Tang L, Chen L. Metabolomic profiles in zebrafish larvae following probiotic and perfluorobutanesulfonate coexposure. ENVIRONMENTAL RESEARCH 2022; 204:112380. [PMID: 34785208 DOI: 10.1016/j.envres.2021.112380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Probiotic supplements are able to attenuate the developmental toxicity of perfluorobutanesulfonate (PFBS) pollutant. However, the underlying mechanisms remain unexplored. To this end, the present study acutely exposed zebrafish larvae for 4 days to 0 and 10 mg/L of PFBS, with or without the addition of probiotic Lactobacillus rhamnosus in the rearing water. The metabolomics approach was used to reveal the combined effects of PFBS and probiotics on metabolic dynamics, based on which gene transcriptions, enzymatic activities, and behavioral endpoints were further examined. The results showed that probiotic supplements were the major driver of the metabolomic fingerprints in coexposed zebrafish larvae. The addition of probiotic bacteria significantly decreased the methylation potential whilst up-regulating the demethylation process of genomic DNA, which may globally stimulate the gene expression to improve somatic growth. Acute exposure to PFBS significantly increased the cortisol concentration in zebrafish larvae, subsequently inducing stress response and hyperactive behavior. In contrast, probiotic supplementation promoted the degradation of cortisol, thus alleviating the stressful state. Antagonistic action of probiotics against PFBS developmental toxicity was also noted regarding the locomotor behavior. In addition, gut microbiota-mediated production of secondary bile acids was remarkably enhanced by probiotic supplements regardless of PFBS exposure. Overall, the present study underlines the efficacy of probiotic bacteria to protect zebrafish larvae from the metabolic disturbances of PFBS, thereby providing more evidence to support the application of probiotics in aquaculture and fishery as an environmentally-friendly choice.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
23
|
Zou C, Chen Y, Li H, Li W, Wei J, Li Z, Wang X, Chen T, Huang H. Engineered Bacteria EcN-MT Alleviate Liver Injury in Cadmium-Exposed Mice via its Probiotics Characteristics and Expressing of Metallothionein. Front Pharmacol 2022; 13:857869. [PMID: 35281910 PMCID: PMC8908209 DOI: 10.3389/fphar.2022.857869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Cadmium (Cd) exposure is a widespread problem in many parts of the world, but effective means to treat Cd exposure is still lacking. Hence, an engineered strain expressing metallothionein (MT) named Escherichia coli Nissle 1917 (EcN)-MT was constructed, and its potential in the treatment of Cd exposure was evaluated. The in vitro studies showed that metallothionein expressed by EcN-MT could significantly bind Cd. Further, the in vivo results indicated that EcN-MT strain could reduce 26.3% Cd in the liver and increase 24.7% Cd in the feces, which greatly decreased malondialdehyde (MDA) levels and increased catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD) levels in liver, and reduced the expression of toll-like receptor4 (TLR4), nuclear factor-κB (NF-κB), the myeloid differentiation factor 88 (Myd88) andincreased B-cell lymphoma 2 (Bcl-2)/Bcl-2-Associated X (Bax). Moreover, high throughput sequencing results indicated that EcN-MT strain greatly enhanced the beneficial bacteria of Ruminococcaceae, Lactobacillaceae, Akkermansia, Muribaculaceae, Lachnospiraceae, Dubosiella and restored the disturbed microbial ecology to the normal level. Therefore, the high Cd binding capacity of the expressed metallothionein, together with the beneficial characteristics of the host bacteria EcN, makes EcN-MT a sound reagent for the treatment of subchronic Cd exposure-induced liver injury.
Collapse
Affiliation(s)
- Changwei Zou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Ying Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Hongyu Li
- Queen Mary School, Nanchang University, Nanchang, China
| | - Wenyu Li
- Queen Mary School, Nanchang University, Nanchang, China
| | - Jin Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Ziyan Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Xinliang Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- *Correspondence: Tingtao Chen, ; Hong Huang,
| | - Hong Huang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources Environmental and Chemical Engineering, Ministry of Education, Nanchang University, Nanchang, China
- *Correspondence: Tingtao Chen, ; Hong Huang,
| |
Collapse
|
24
|
Mirza Alizadeh A, Hosseini H, Mollakhalili Meybodi N, Hashempour-Baltork F, Alizadeh-Sani M, Tajdar-Oranj B, Pirhadi M, Mousavi Khaneghah A. Mitigation of potentially toxic elements in food products by probiotic bacteria: A comprehensive review. Food Res Int 2022; 152:110324. [PMID: 35181105 DOI: 10.1016/j.foodres.2021.110324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Potentially toxic elements (PTEs) as non-degradable elements (especially carcinogenic types for humans such as lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As)) are widely distributed in the environment. They are one of the most concerned pollutants that can be absorbed and accumulated in the human body, primarily via contaminated water and foods. Acute or chronic poisoning of humans to PTEs can pose some serious risks for human health even at low concentrations. In this context, some methods are introduced to eliminate or reduce their concentration. While the biological treatment by bacterial strains, particularly probiotic bacteria, is considered as an effective method for reducing or eliminating of them. The consumption of probiotics as nonpathogenic microorganisms at regular and adequate dose offer some beneficial health impacts, it can also be applied to remove PTEs in both alive and non-alive states. This review aimed to provide an overview regarding the efficacy of different types of probiotic bacteria for PTEs removal from various environments such as food, water, in vitro, and in vivo conditions.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Neda Mollakhalili Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Tajdar-Oranj
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Pirhadi
- Division of Food Safety and Hygiene, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
25
|
Wang N, Yin Y, Xia C, Li Y, Liu J, Li Y. Zn-Enriched Bacillus cereus Alleviates Cd Toxicity in Mirror Carp (Cyprinus carpio): Intestinal Microbiota, Bioaccumulation, and Oxidative Stress. Biol Trace Elem Res 2022; 200:812-821. [PMID: 33740179 DOI: 10.1007/s12011-021-02657-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/25/2021] [Indexed: 11/28/2022]
Abstract
Cadmium (Cd) poisoning in humans and fish represents a significant global problem. Bacillus cereus (B. cereus) is a widely used probiotic in aquaculture. The objective of this study was to evaluate the potential of B. cereus in ameliorating Cd-induced toxicity in mirror carp. The biosorption rate of Zn for the B. cereus in 85.99% was significantly more than five strains. All fishes were exposed for 30 days to dietary ZnCl2 (30mg/kg), waterborne Cd (1 mg/L), and/or dietary Zn-enriched B. cereus (Zn 30mg/kg and 107cfu/g B. cereus). At 15 and 30 days, the fishes were sampled, and bioaccumulation, antioxidant activity, and intestinal microbiota were measured. Waterborne Cd exposure caused marked alterations in the composition of the microbiota. Dietary supplementation with Zn-enriched B. cereus can reduce the changes in the composition of intestinal microbiota in Cd exposure and decrease the pathogenic bacteria of Flavobacterium and Pseudomonas in Zn-enriched B. cereus groups. The results obtained indicate that Zn-enriched B. cereus can provide a significant protective effect on the toxicity of cadmium by inhibiting alterations in the levels of bioaccumulation and antioxidant enzyme including superoxide dismutase (SOD), catalase (CAT), total antioxidant (T-AOC), and malonaldehyde (MDA). Our results suggest that administration of Zn-enriched B. cereus has the potential to combat Cd toxicity in mirror carp.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuwei Yin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- HongShi Farm of Henan Province, Zhoukou, 466263, China
| | - Changge Xia
- Xinlicheng Reservoir Management Bureau, Changchun, Jilin Province, 130119, People's Republic of China
| | - Yueru Li
- Laboratory of Ginseng and Antler Products Quality and Safety Risk Assessment, Ministry of Agriculture, Changchun, 130118, China
| | - Jia Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
26
|
Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson's Disease and the Metal-Microbiome-Gut-Brain Axis: A Systems Toxicology Approach. Antioxidants (Basel) 2021; 11:71. [PMID: 35052575 PMCID: PMC8773335 DOI: 10.3390/antiox11010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease, leading to motor and non-motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional communication between the gut and the brain. The bioaccumulation of metals promotes stress mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut-brain link. To better understand the differing molecular mechanisms underlying PD, integrative modeling approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to PD onset, the modification of the host-associated microbiome to mitigate neurological stress may be a future treatment option against neurodegeneration through bioremediation. The progressive movement towards a systems toxicology framework for precision medicine can uncover molecular mechanisms underlying PD onset such as metal regulation and microbial community interactions by developing predictive models to better understand PD etiology to identify options for novel treatments and beyond. Several methodologies recently addressed the complexity of this interaction from different perspectives; however, to date, a comprehensive review of these approaches is still lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by reviewing recently published papers to address the surrounding questions regarding the underlying molecular mechanisms between metals, microbiota, and the gut-brain-axis, as well as the regulation of this system to prevent neurodegeneration.
Collapse
Affiliation(s)
- Lady Johanna Forero-Rodríguez
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Stefano Flor
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Andrés Pinzón
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| |
Collapse
|
27
|
Sun B, Liu M, Tang L, Hu C, Huang Z, Zhou X, Chen L. Probiotic supplementation mitigates the developmental toxicity of perfluorobutanesulfonate in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149458. [PMID: 34365260 DOI: 10.1016/j.scitotenv.2021.149458] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/18/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an emerging pollutant of international concern, which is found to impair the early embryonic development of fishes. In the context of ubiquitous and persistent pollution, it is necessary to explore mitigatory strategies against the developmental toxicity of PFBS. In this study, zebrafish larvae were acutely exposed to 0, 1, 3.3 and 10 mg/L of PFBS till 168 h post-fertilization (hpf), during which probiotic Lactobacillus rhamnosus bacteria were administered via the exposure media. After the singular or combined exposure, interaction between PFBS and probiotics on the growth of zebrafish larvae was measured. PFBS exposure significantly decreased the larval body weight, weight gain and specific growth rate, while probiotic supplementation efficiently inhibited the growth retardation caused by PFBS. Furthermore, PFBS and probiotic combinations remarkably activated the antioxidant capacity to timely scavenge the reactive oxidative species and protect the larvae from lipid peroxidation. Biochemical assay and fluorescent staining verified that PFBS exposure significantly promoted the production of bile acids, which were further enhanced by the probiotics. In coexposed zebrafish larvae, up-regulation of peroxisome proliferator-activated receptor (PPARb) would enhance the β-oxidation of fatty acids to meet the energy demand from larval growth, subsequently decreasing fatty acid concentrations. In addition, probiotic supplements masked the dysbiosis of PFBS and potently shaped the gut microbiota, which closely modulated the production of bile acids. Overall, the present findings underline the beneficial effects of probiotics to protect the developing larvae from the aquatic toxicities of PFBS, thus highlighting the potential application values of probiotic recipe in aquaculture and ecological reservation.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
28
|
Sun B, Liu M, Tang L, Hu C, Huang Z, Chen L. Probiotics inhibit the stunted growth defect of perfluorobutanesulfonate via stress and thyroid axes in zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118013. [PMID: 34428700 DOI: 10.1016/j.envpol.2021.118013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an emerging pollutant in aquatic environments and potently disrupts the early developmental trajectory of teleosts. Considering the persistent and toxic nature of PFBS, it is necessary to develop in situ protective measures to ameliorate the toxic damage of PFBS. Probiotic supplements are able to mitigate the growth retardation defects of PFBS. However, the interactive mechanisms remain elusive. To this end, this study acutely exposed zebrafish larvae to a concentration gradient of PFBS (0, 1, 3.3 and 10 mg/L) for 4 days, during which probiotic bacteria Lactobacillus rhamnosus were added in the rearing water. After exposure, alterations in gene transcriptions and key hormones along the hypothalamus-pituitary-interrenal (HPI), growth hormone/insulin-like growth factor (GH/IGF) and hypothalamus-pituitary-thyroid (HPT) axes were examined. The results showed that PFBS single exposure significantly increased the cortisol concentrations, suggesting the induction of stress response, while probiotic supplementation effectively decreased the cortisol levels in coexposed larvae in an attempt to relieve the stress of PFBS toxicant. It was unexpected that probiotic additive significantly decreased the larval GH concentrations independent of PFBS, thereby eliminating the contribution of GH/IGF axis to the growth improvement of probiotics. In contrast, probiotic bacteria remarkably increased the concentration of thyroid hormones, particularly the thyroxine (T4), in zebrafish larvae. The pronounced down-regulation of uridinediphosphate glucoronosyltransferases (UDPGT) gene pointed to the blocked elimination process of T4 by probiotics. Furthermore, proteomic fingerprinting found that probiotics were potent to shape the protein expression pattern in PFBS-exposed zebrafish larvae and modulated multiple biological processes that are essential for the growth. In summary, the present findings suggest that HPI and HPT axes may cooperate to enhance the growth of fish larvae under PFBS and probiotic coexposures.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
29
|
Muhammad Z, Ramzan R, Zhang R, Zhao D, Gul M, Dong L, Zhang M. Assessment of In Vitro and In Vivo Bioremediation Potentials of Orally Supplemented Free and Microencapsulated Lactobacillus acidophilus KLDS Strains to Mitigate the Chronic Lead Toxicity. Front Bioeng Biotechnol 2021; 9:698349. [PMID: 34796165 PMCID: PMC8592972 DOI: 10.3389/fbioe.2021.698349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Lead (Pb) is a pestilent and relatively nonbiodegradable heavy metal, which causes severe health effects by inducing inflammation and oxidative stress in animal and human tissues. This is because of its significant tolerance and capability to bind Pb (430 mg/L) and thermodynamic fitness to sequester Pb in the Freundlich model (R2 = 0.98421) in vitro. Lactobacillus acidophilus KLDS1.1003 was selected for further in vivo study both in free and maize resistant starch (MRS)–based microencapsulated forms to assess its bioremediation aptitude against chronic Pb lethality using adult female BALB/c mice as a model animal. Orally administered free and microencapsulated KLDS 1.1003 provided significant protection by reducing Pb levels in the blood (127.92 ± 5.220 and 101.47 ± 4.142 µg/L), kidneys (19.86 ± 0.810 and 18.02 ± 0.735 µg/g), and liver (7.27 ± 0.296 and 6.42 ± 0.262 µg/g). MRS-microencapsulated KLDS 1.0344 improved the antioxidant index and inhibited changes in blood and serum enzyme concentrations and relieved the Pb-induced renal and hepatic pathological damages. SEM and EDS microscopy showed that the Pb covered the surfaces of cells and was chiefly bound due to the involvement of the carbon and oxygen elements. Similarly, FTIR showed that the amino, amide, phosphoryl, carboxyl, and hydroxyl functional groups of bacteria and MRS were mainly involved in Pb biosorption. Based on these findings, free and microencapsulated L. acidophilus KLDS 1.0344 could be considered a potential dietetic stratagem in alleviating chronic Pb toxicity.
Collapse
Affiliation(s)
- Zafarullah Muhammad
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rabia Ramzan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruifen Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dong Zhao
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mehak Gul
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical & Dental College, Lahore, Pakistan
| | - Lihong Dong
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingwei Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
30
|
Wang JF, Li WL, Ahmad I, He BY, Wang LL, He T, Wang FP, Xu ZM, Li QS. Biomineralization of Cd 2+ and inhibition on rhizobacterial Cd mobilization function by Bacillus Cereus to improve safety of maize grains. CHEMOSPHERE 2021; 283:131095. [PMID: 34144288 DOI: 10.1016/j.chemosphere.2021.131095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Reducing cadmium (Cd) bioavailability and rhizobacterial Cd mobilization functions in the rhizosphere via the inoculation of screened microbial inoculum is an environmental-friendly strategy to improve safety of crop grains. In this study, Bacillus Cereus, a model Cd resistant strain, was selected to explore its effects on Cd bioavailability and uptake, bacterial metabolic functions related to Cd mobilization. Results indicated that inoculation of Bacillus Cereus in maize roots of sand pot with water-soluble Cd (0.06-0.15 mg/kg) and soil pot with high Cd-contaminated soil (total Cd: 2.33 mg/kg; Cd extracted by NH4NO3: 38.6 μg/kg) could decrease water-soluble Cd ion concentration by 7.7-30.1% and Cd extracted with NH4NO3 solution by 7.8-22.5%, inducing Cd concentrations in maize grains reduced by 10.6-39.9% and 17.4-38.6%, respectively. Even for a single inoculation in soil, Cd concentration in maize grains still satisfy food safety requirements (Cd content: 0.1 mg/kg dry weight) due to its successful colonization on root surface of maize. Bacillus Cereus could enrich more plant growth promotion bacteria (PGPB) and down-regulate the expression of genes related to bacterial motility, membrane transports, carbon and nitrogen metabolism in the rhizosphere soil, decreasing Cd bioavailability in soil. Approximately 80% Cd2+ in media was transferred into intracellular, meanwhile Cd salts (sulfide and/or phosphate) were produced in Bacillus Cereus through biomineralization process. Overall, this study could provide a feasible method for improving safety of maize grains via the inoculation of Bacillus Cereus under Cd pollution.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Wan-Li Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Bao-Yan He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Li-Li Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Tao He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Fo-Peng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Zhi-Min Xu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
31
|
Zhu J, Yu L, Shen X, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Protective Effects of Lactobacillus plantarum CCFM8610 against Acute Toxicity Caused by Different Food-Derived Forms of Cadmium in Mice. Int J Mol Sci 2021; 22:ijms222011045. [PMID: 34681701 PMCID: PMC8537435 DOI: 10.3390/ijms222011045] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Cadmium (Cd) is an environmental pollutant that is toxic to almost every human organ. Oral supplementation with lactic acid bacteria (LAB) has been reported to alleviate cadmium toxicity. However, research on the mitigation of cadmium toxicity by LAB is still limited to inorganic cadmium, which is not representative of the varied forms of cadmium ingested daily. In this study, different foodborne forms of cadmium were adopted to establish an in vivo toxicity model, including cadmium–glutathione, cadmium–citrate, and cadmium–metallothionein. The ability of Lactobacillus plantarum CCFM8610 to reduce the toxic effects of these forms of cadmium was further investigated. The 16S rRNA gene sequencing and metabolomics technologies based on liquid chromatography with tandem mass spectrometry (LC–MS/MS) were adopted for the exploration of relevant protective mechanisms. The results demonstrated that the consumption of CCFM8610 can reduce the content of cadmium in mice and relieve the oxidative stress caused by different food–derived forms of cadmium, indicating that CCFM8610 has a promising effect on the remediation of the toxic effects of cadmium food poisoning. Meanwhile, protective effects on gut microflora and serum metabolites might be an important mechanism for probiotics to alleviate cadmium toxicity. This study provides a theoretical basis for the application of L. plantarum CCFM8610 to alleviate human cadmium poisoning.
Collapse
Affiliation(s)
- Jiamin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xudan Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute, Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
32
|
Yu L, Zhang L, Duan H, Zhao R, Xiao Y, Guo M, Zhao J, Zhang H, Chen W, Tian F. The Protection of Lactiplantibacillus plantarum CCFM8661 Against Benzopyrene-Induced Toxicity via Regulation of the Gut Microbiota. Front Immunol 2021; 12:736129. [PMID: 34447391 PMCID: PMC8383074 DOI: 10.3389/fimmu.2021.736129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 07/22/2021] [Indexed: 02/02/2023] Open
Abstract
The present study evaluated the protection of Lactiplantibacillus plantarum CCFM8661, a candidate probiotic with excellent benzopyrene (B[a]P)-binding capacity in vitro, against B[a]P-induced toxicity in the colon and brain of mice. Mice that received B[a]P alone served as the model group. Each mouse in the L. plantarum treatment groups were administered 2×109 colony forming unit (CFU) of L. plantarum strains once daily, followed by an oral dose of B[a]P at 50 mg/kg body weight. Behavior, biochemical indicators in the colon and brain tissue, and the gut microbiota composition and short-chain fatty acid (SCFA) levels in the gut were investigated. Compared to the treatment in the model group, CCFM8661 treatment effectively reduced oxidative stress in the brain, improved behavioral performance, increased intestinal barrier integrity, and alleviated histopathological changes in mice. Moreover, CCFM8661 increased the gut microbiota diversity and abundance of Ruminococcus and Lachnospiraceae and reduced the abundance of pro-inflammatory Turicibacter spp. Additionally, the production of SCFAs was significantly increased by L. plantarum CCFM8661. Our results suggest that CCFM8661 is effective against acute B[a]P-induced toxicity in mice and that it can be considered as an effective and easy dietary intervention against B[a]P toxicity.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Lingyu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Duan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruohan Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Min Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Screening and identification of Lactobacillus with potential cadmium removal and its application in fruit and vegetable juices. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Seth E, Ahsan AU, Bamrara P, Kaushal S, Sharma VL, Chopra M. Cytoprotective and antioxidant potential of Aegle marmelos on cadmium-induced hepato-renal toxicity: an in vivo study. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Liu M, Tang L, Hu C, Sun B, Huang Z, Chen L. Interaction between probiotic additive and perfluorobutanesulfonate pollutant on offspring growth and health after parental exposure using zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112107. [PMID: 33667734 DOI: 10.1016/j.ecoenv.2021.112107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Perfluorobutanesulfonate (PFBS) pollutant and probiotic bacteria can interact to affect the reproductive outcomes of zebrafish. However, it is still unexplored how the growth and health of offspring are modulated by the combination of PFBS and probiotic. In the present study, adult zebrafish were exposed to 0 and 10 μg/L PFBS for 40 days, with or without dietary supplementation of probiotic Lactobacillus rhamnosus. After parental exposure, the development, growth and viability of offspring larvae were examined, with the integration of molecular clues across proteome fingerprint, growth hormone/insulin-like growth factor (GH/IGF) axis, calcium homeostasis, hypothalamic-pituitary-adrenal (HPA) axis and nutrient metabolism. Parental probiotic supplementation significantly increased the body weight and body length of offspring larvae. Despite the spiking of PFBS, larvae from the combined exposure group still had longer body length. RNA processing and ribosomal assembly pathways may underlie the enhancement of offspring growth by probiotic bacteria. However, the presence of PFBS remarkably increased the concentrations of cortisol hormone in offspring larvae as means to cope with the xenobiotic stress, which required more energy production. As evidenced by the proteomic analysis, the addition of probiotic bacteria likely alleviated the energy metabolism disorders of PFBS, thus allocating more energy for the larval offspring growth from the combined group. It was noteworthy that multiple molecular disturbances caused by PFBS were antagonized by probiotic additive. Overall, the present study elucidated the intergenerational interaction between PFBS and probiotic on offspring growth and health after parental exposure.
Collapse
Affiliation(s)
- Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
36
|
George F, Mahieux S, Daniel C, Titécat M, Beauval N, Houcke I, Neut C, Allorge D, Borges F, Jan G, Foligné B, Garat A. Assessment of Pb(II), Cd(II), and Al(III) Removal Capacity of Bacteria from Food and Gut Ecological Niches: Insights into Biodiversity to Limit Intestinal Biodisponibility of Toxic Metals. Microorganisms 2021; 9:microorganisms9020456. [PMID: 33671764 PMCID: PMC7926695 DOI: 10.3390/microorganisms9020456] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Toxic metals (such as lead, cadmium, and, to a lesser extent, aluminum) are detrimental to health when ingested in food or water or when inhaled. By interacting with heavy metals, gut and food-derived microbes can actively and/or passively modulate (by adsorption and/or sequestration) the bioavailability of these toxins inside the gut. This “intestinal bioremediation” involves the selection of safe microbes specifically able to immobilize metals. We used inductively coupled plasma mass spectrometry to investigate the in vitro ability of 225 bacteria to remove the potentially harmful trace elements lead, cadmium, and aluminum. Interspecies and intraspecies comparisons were performed among the Firmicutes (mostly lactic acid bacteria, including Lactobacillus spp., with some Lactococcus, Pediococcus, and Carnobacterium representatives), Actinobacteria, and Proteobacteria. The removal of a mixture of lead and cadmium was also investigated. Although the objective of the study was not to elucidate the mechanisms of heavy metal removal for each strain and each metal, we nevertheless identified promising candidate bacteria as probiotics for the intestinal bioremediation of Pb(II) and Cd(II).
Collapse
Affiliation(s)
- Fanny George
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
| | - Séverine Mahieux
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
| | - Catherine Daniel
- U1019-UMR 9017–Center for Infection and Immunity of Lille, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France;
| | - Marie Titécat
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
| | - Nicolas Beauval
- ULR 4483-IMPECS-IMPact de l’Environnement Chimique sur la Santé humaine, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (N.B.); (D.A.); (A.G.)
- Unité fonctionnelle de Toxicologie, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France
| | - Isabelle Houcke
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
| | - Christel Neut
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
| | - Delphine Allorge
- ULR 4483-IMPECS-IMPact de l’Environnement Chimique sur la Santé humaine, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (N.B.); (D.A.); (A.G.)
- Unité fonctionnelle de Toxicologie, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France
| | | | - Gwénaël Jan
- STLO, INRAE, Agrocampus Ouest, Institut Agro, Science & Technologie du Lait & de l’Œuf, F-35042 Rennes, France;
| | - Benoît Foligné
- U1286–INFINITE-Institute for Translational Research in Inflammation, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (F.G.); (S.M.); (M.T.); (I.H.); (C.N.)
- Correspondence: ; Tel.: +33-621741015
| | - Anne Garat
- ULR 4483-IMPECS-IMPact de l’Environnement Chimique sur la Santé humaine, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France; (N.B.); (D.A.); (A.G.)
- Unité fonctionnelle de Toxicologie, Institut Pasteur de Lille, CHU Lille, Université de Lille, F-59000 Lille, France
| |
Collapse
|
37
|
Sevim Ç, Kara M. Can probiotics win the battle against environmental endocrine disruptors? ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-34237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Compounds that have negative effects on the endocrine system are called endocrine disrupting compounds (EDCs). There are several different types of compounds, with several different usage areas in the environment, which can be classified as EDCs. These chemicals have a wide range of negative health effects in organisms, depending on their target hormone system. EDCs are among the most popular topics of scientific research, as they are widely used and organisms are frequently exposed to these chemicals. There are various exposure routes for EDCs, such as oral, inhalation and dermal exposure. Parabens, phenolic compounds, phthalates, and pesticides are the most common EDCs. Nowadays, intestinal microorganism distribution, probiotics, and food supplements that regulate these microorganisms and their protective effects against various harmful chemicals attract attention. For this reason, many studies have been carried out in this field and certain diet schemes have been created according to the results of these studies. In fact, probiotics are preferred in order to reduce and eliminate the negative effects of harmful chemicals and to ensure that the organism reacts strongly in these conditions. In this review, we will focus on EDCs, their health effects and positive effects of probiotics on EDCs exposure conditions.
Collapse
|
38
|
Wang M, Chen Z, Song W, Hong D, Huang L, Li Y. A review on Cadmium Exposure in the Population and Intervention Strategies Against Cadmium Toxicity. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:65-74. [PMID: 33486543 DOI: 10.1007/s00128-020-03088-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The rapid industrial development has led to serious cadmium (Cd) pollution. Cd is a toxic heavy metal placing severe health threat to human. Cd can enter the body through the atmosphere, water, soil and food, and has a long half-life (10-30 years), it largely accumulates in kidneys, liver, bone and other organs and causes irreversible damage to the target organs. Cd pollution has also further caused certain carcinogenic and non-carcinogenic health risk. This study summarizes the current situation of Cd pollution, the toxicity of specific target organs, carcinogenic risk and non-carcinogenic risk in the general population, as well as dietary supplements to prevent and mitigate Cd toxication, which aims to focus on the adverse effects of Cd to human from both individual and population perspectives, hoping that not only the health risk of Cd poisoning can be reduced, but also the accurate prevention and control of Cd poisoning can be achieved in the future.
Collapse
Affiliation(s)
- Mei Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, Jiangsu, China
| | - Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Wei Song
- Centers for Disease Control and Prevention, Nanjing, 210093, Jiangsu, China
| | - Dezi Hong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, Jiangsu, China
| | - Lei Huang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210000, Jiangsu, China.
| |
Collapse
|
39
|
Shang X, Yu P, Yin Y, Zhang Y, Lu Y, Mao Q, Li Y. Effect of selenium-rich Bacillus subtilis against mercury-induced intestinal damage repair and oxidative stress in common carp. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108851. [PMID: 32777471 DOI: 10.1016/j.cbpc.2020.108851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/04/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Mercury (Hg) poisoning in humans and fish represents a significant global problem. Hg is one of the most dangerous threats to the aquatic ecosystem due to its high toxicity. Mercury has a high oxidative stress-inducing potential, and can compounds exert toxic effects by interacting with many important enzymes involved in the regulation of antioxidants. Selenium (Se) supplementation can reactivate the mercury-inhibited enzymes viability. The probiotic Bacillus subtilis is widely used in aquaculture, and it has a certain adsorption effect on heavy metals. The interactions between Hg and Se have been rigorously investigated, particularly due to the observed protective effects of Se against Hg toxicity. The objective of this study was to evaluate whether Se-rich B. subtilis ameliorated Hg-induced toxicity in C. carpio var. specularis. Fish were exposed to waterborne Hg (0.03 mg/L) and fed a diet supplemented with 105 cfu/g Se-rich B. subtilis for 30 days. Fish were sampled, antioxidant activity, and Intestinal damage repair were assessed. Our results indicated that Se-rich B. subtilis protected the Intestinal from Hg-induced morphological changes. Hg treatment significantly decreased the activity levels of SOD, CAT and GSH-PX while increasing the activity levels of MDA, GST, and GSH. Hg treatment also upregulated the mRNA expression of Nrf2, CAT, GSH-PX and HO-1, and reduced expression of keap1. Se-rich B. subtilis had a significant protective effect against Hg-induced oxidative stress.
Collapse
Affiliation(s)
- Xinchi Shang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Peng Yu
- College of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
| | - Yuwei Yin
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Yue Zhang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Yuting Lu
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China
| | - Qiaohong Mao
- College of Animal Medicine, Jilin University, Changchun, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun 130118, China.
| |
Collapse
|
40
|
Liu Y, Wu J, Xiao Y, Liu Q, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Relief of Cadmium-Induced Intestinal Motility Disorder in Mice by Lactobacillus plantarum CCFM8610. Front Immunol 2020; 11:619574. [PMID: 33362802 PMCID: PMC7758470 DOI: 10.3389/fimmu.2020.619574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022] Open
Abstract
Cadmium (Cd) is a toxic metal inducing a range of adverse effects on organs including liver and kidneys. However, the underlying molecular mechanisms of Cd-induced intestinal toxicity through dietary intake is poorly studied. This study evaluated the toxic effects of Cd on intestinal physiology and confirmed the effectiveness of the protective mechanism of the probiotic Lactobacillus plantarum CCFM8610 against chronic Cd toxicity. After treatment with Cd, the HT-29 cell line was subjected to iTRAQ analysis, which revealed that changes in the proteomic profiles after Cd exposure were related to pathways involved in the stress response and carbohydrate metabolism. The results of an animal trial also indicated that 10 weeks of Cd exposure decreased the fecal water content and contractile response of colonic muscle strips in mice, and delayed the excretion time of the first black feces. L. plantarum CCFM8610 treatment provided protective effects against these Cd-induced intestinal motility dysfunctions by recovering the levels of neurotransmitters, including substance P, acetyl cholinesterase, vasoactive intestinal peptide, 5-hydroxytryptamine, calcitonin gene-related peptide, and nitric oxide, and suppressing the cellular stress response in mice (e.g., the inhibition of mitogen-activated protein kinase pathways). The administration of this probiotic was also observed to reduce Cd levels in the tissues and blood of the mice. Our results suggest a newly identified protective mechanism of probiotics against Cd toxicity that involves the recovery of intestinal motility and increase in fecal cadmium excretion.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiangping Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
41
|
Hu C, Tang L, Liu M, Lam PKS, Lam JCW, Chen L. Probiotic modulation of perfluorobutanesulfonate toxicity in zebrafish: Disturbances in retinoid metabolism and visual physiology. CHEMOSPHERE 2020; 258:127409. [PMID: 32569959 DOI: 10.1016/j.chemosphere.2020.127409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/27/2023]
Abstract
Perfluorobutanesulfonate (PFBS), an aquatic pollutant of emerging concern, is found to disturb gut microbiota, retinoid metabolism and visual signaling in teleosts, while probiotic supplementation can shape gut microbial community to improve retinoid absorption. However, it remains unknown whether probiotic bacteria can modulate the toxicities of PFBS on retinoid metabolism and visual physiology. In the present study, adult zebrafish were exposed for 28 days to 0, 10 and 100 μg/L PFBS, with or without dietary administration of probiotic Lactobacillus rhamnosus. Interaction between PFBS and probiotic was examined regarding retinoid dynamics (intestine, liver and eye) and visual stimuli transmission. PFBS single exposures remarkably inhibited the absorption of retinyl ester in female intestines, which were, however, restored by probiotic to normal status. Although coexposure scenarios markedly increased the hepatic storage of retinyl ester in females, mobilization of retinol was reduced in livers by single or combined exposures regardless of sex. In the eyes, transport and catalytic conversion of retinol to retinal and retinoic acid were interrupted by PFBS alone, which were efficiently antagonized by probiotic presumably through an indirect action. In response to the availability of retinal chromophore, transcriptions of opsins and arrestin genes were altered adaptively to control visual perception and termination. Neurotransmission across retina circuitry was changed accordingly, centering on epinephrine and norepinephrine. In summary, the present study found the efficient modulation of probiotic on retinoid metabolic disorders of PFBS pollution, which subsequently impacted visual signaling. A future work is warranted to provide mechanistic clues in retinoid interaction.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China.
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
42
|
Bhattacharya S. The Role of Probiotics in the Amelioration of Cadmium Toxicity. Biol Trace Elem Res 2020; 197:440-444. [PMID: 31933279 DOI: 10.1007/s12011-020-02025-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/01/2020] [Indexed: 10/25/2022]
Abstract
Cadmium is extremely toxic heavy metal, and there is no specific, safe, and efficacious therapeutic management of cadmium toxicity. Scientific literature reveals several probiotic microorganisms which alleviate experimentally induced cadmium toxicity in animals. The present review attempts to collate the experimental studies on probiotics and probiotic-derived natural products with cadmium toxicity ameliorative effects. Literature survey revealed that seven (7) types of probiotic microorganisms exhibited significant protection from cadmium toxicity in experimental pre-clinical studies. Clinical study with significant outcome was not found in literature. From the outcomes of the pre-clinical studies, it appears that probiotics have the prospect for alleviation and treatment of cadmium toxicity.
Collapse
Affiliation(s)
- Sanjib Bhattacharya
- West Bengal Medical Services Corporation Ltd., GN 29, Sector V, Salt Lake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
43
|
Kang W, Pan L, Peng C, Dong L, Cao S, Cheng H, Wang Y, Zhang C, Gu R, Wang J, Zhou H. Isolation and characterization of lactic acid bacteria from human milk. J Dairy Sci 2020; 103:9980-9991. [PMID: 32952010 DOI: 10.3168/jds.2020-18704] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022]
Abstract
Human milk is the main source of nutrition for infants and the transmission of various microorganisms. The lactic acid bacteria (LAB) in breast milk allow for the establishment of the gut microflora of infants. In this study, we aimed to assess the probiotic potential of LAB strains isolated from breast milk of healthy Chinese women. Two strains, Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus) LHL6 and LHL7, were selected and identified through morphology observation, Gram staining, and 16S rDNA phylogenetic analysis. Using Limosilactobacillus fermentum (formerly Lactobacillus fermentum) CECT5716 as the standard reference strain, the screened strains were characterized for aspects of growth, production of lactic acid and H2O2, antibiotic susceptibility, survival under simulated gastrointestinal conditions, and tolerance to cadmium (Cd). In de Man, Rogosa, and Sharpe (MRS) broth, LHL6 and LHL7 showed longer lag phases than CECT5716 but higher specific growth rates. For the production of lactic acid and H2O2, LHL7 performed better than LHL6 and CECT5716, indicating better antimicrobial ability. Strain LHL7 generated 9.99 mg/L H2O2, considerably higher than 1.25 mg/L for LHL6 and 2.33 mg/L for CECT5716. According to European Food Safety Authority minimum inhibitory concentrations, all of the investigated strains were resistant to chloramphenicol, streptomycin, and kanamycin. However, unlike LHL6 and CECT5716, LHL7 was susceptible to ampicillin and resistant to tetracycline. Resistance to azithromycin, cephalexin, and penicillin G were similar for all 3 strains, whereas CECT5716 was resistant to a higher concentration of roxithromycin. All 3 strains were able to survive in a simulated gastric-like solution, but a low percentage survived in the presence of 0.4% bile salt and 7% pancreatin. Encapsulation with protectants may enhance the survival rate. All 3 strains were tolerant to 500 mg/L Cd in MRS broth and to 1,000 mg/L Cd on MRS agar medium. In summary, 2 novel strains of LAB were obtained that have similar characteristics to the reference strain CECT5716. This work identified potential probiotic candidates for application in the food and pharmaceutical industries and facilitated identification of further probiotics.
Collapse
Affiliation(s)
- Wenli Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China; Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Lina Pan
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Can Peng
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Ling Dong
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Sufang Cao
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China
| | - Haina Cheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Yuguang Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Chenchen Zhang
- College of Food Science and Technology, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ruixia Gu
- College of Food Science and Technology, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jiaqi Wang
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd., Changsha 410200, Hunan, China.
| | - Hongbo Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China.
| |
Collapse
|
44
|
Rahman Z. An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122682. [PMID: 32388182 DOI: 10.1016/j.jhazmat.2020.122682] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 05/24/2023]
Abstract
Anthropogenic imbalance of chemical pollutants in environment raises serious threat to all life forms. Contaminated sites often possess multiple heavy metals and other types of pollutants. Elimination of chemical pollutants at co-contaminated sites is imperative for the safe ecosystem functions, and simultaneous removal approach is an attractive scheme for their remediation. Different conventional techniques have been applied as concomitant treatment solution but fall short at various parameters. In parallel, use of microorganisms offers an innovative, cost effective and ecofriendly approach for simultaneous treatment of various chemical pollutants. However, microbiostasis due to harmful effects of heavy metals or other contaminants is a serious bottleneck facing remediation practices in co-contaminated sites. But certain microorganisms have unique mechanisms to resist heavy metals, and can act on different noxious wastes. Considering this significant, my review provides information on different heavy metal resistant microorganisms for bioremediation of different chemical pollutants, and other assistance. In this favour, the integrated approach of simultaneous treatment of multiple heavy metals and other environmental contaminants using different heavy metal resistant microorganisms is summarized. Further, the discussion also intends toward the use of heavy metal resistant microorganisms associated with industrial and environmental applications, and healthcare. PREFACE: Simultaneous treatment of multiple chemical pollutants using microorganisms is relatively a new approach. Therefore, this subject was not well received for review before. Also, multipurpose application of heavy metal microorganisms has certainly not considered for review. In this regard, this review attempts to gather information on recent progress on studies on different heavy metal resistant microorganisms for their potential of treatment of co-contaminated sites, and multipurpose application.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, 110002, India.
| |
Collapse
|
45
|
Zhao J, Yu L, Zhai Q, Tian F, Zhang H, Chen W. Effects of probiotic administration on hepatic antioxidative parameters depending on oxidative stress models: A meta-analysis of animal experiments. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
46
|
Isolation and characterization of an Enterococcus strain from Chinese sauerkraut with potential for lead removal. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03555-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Chen L, Lam JCW, Tang L, Hu C, Liu M, Lam PKS, Zhou B. Probiotic Modulation of Lipid Metabolism Disorders Caused by Perfluorobutanesulfonate Pollution in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7494-7503. [PMID: 32459962 DOI: 10.1021/acs.est.0c02345] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To determine whether and how probiotic supplement can alter gut microbiota dysbiosis and lipid metabolism disorders caused by perfluorobutanesulfonate (PFBS), the present study exposed adult zebrafish to 0, 10, and 100 μg/L PFBS for 28 days, with or without dietary administration of probiotic Lactobacillus rhamnosus. Regarding intestinal health and gut microbiota, probiotic supplement altered the innate toxicities of PFBS, depending on exposure concentration and the sex of the fish. Lactobacillus genus correlated positively (P < 0.001; r > 0.5) with other beneficial bacteria in the gut microbiota, thereby indirectly regulating host metabolic activities. In female fish, the PFBS and probiotic combination enhanced fatty acid synthesis and β-oxidation, but mitigated the accumulation of cholesterol in the blood compared with PFBS single exposure, highlighting the benefits of the probiotic to host health. In male zebrafish, probiotic administration antagonized the PFBS-induced disturbances of bile acid metabolism, presumably via farnesoid X receptor signaling. However, coexposure to PFBS and probiotic caused significant accumulation of triglyceride in male livers (2.6-fold relative to the control), implying the induction of hepatic steatosis. Overall, the present study underlined the potential of probiotics to modulate gut microbial dysbiosis and lipid metabolism disorders caused by PFBS exposure, which could provide implications to the application of probiotics in aquaculture.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, P. R. China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| |
Collapse
|
48
|
Feng P, Ye Z, Han H, Ling Z, Zhou T, Zhao S, Virk AK, Kakade A, Abomohra AEF, El-Dalatony MM, Salama ES, Liu P, Li X. Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota. Commun Biol 2020; 3:242. [PMID: 32415160 PMCID: PMC7229148 DOI: 10.1038/s42003-020-0968-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/24/2020] [Indexed: 12/24/2022] Open
Abstract
Heavy metal contamination in food endangers human health. Probiotics can protect animals and human against heavy metals, but the detoxification mechanism has not been fully clarified. Here, mice were supplemented with Pediococcus acidilactici strain BT36 isolated from Tibetan plateau yogurt, with strong antioxidant activity but no chromate reduction ability for 20 days to ensure gut colonization. Strain BT36 decreased chromate accumulation, reduced oxidative stress, and attenuated histological damage in the liver of mice. 16S rRNA and metatranscriptome sequencing analysis of fecal microbiota showed that BT36 reversed Cr(VI)-induced changes in gut microbial composition and metabolic activity. Specifically, BT36 recovered the expressions of 788 genes, including 34 inherent Cr remediation-relevant genes. Functional analysis of 10 unannotated genes regulated by BT36 suggested the existence of a new Cr(VI)-reduction gene in the gut microbiota. Thus, BT36 can modulate the gut microbiota in response to Cr(VI) induced oxidative stress and protect against Cr toxicity.
Collapse
Affiliation(s)
- Pengya Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Ze Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Huawen Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Shuai Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Amanpreet Kaur Virk
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173212, Himachal Pradesh, India
| | - Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | | | - Marwa M El-Dalatony
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Ei-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China.
| |
Collapse
|
49
|
Hang F, Jiang Y, Yan L, Hong Q, Lu W, Zhao J, Zhang H, Chen W. Preliminary study for the stimulation effect of plant-based meals on pure culture Lactobacillus plantarum growth and acidification in milk fermentation. J Dairy Sci 2020; 103:4078-4087. [DOI: 10.3168/jds.2019-17200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022]
|
50
|
In Vitro Evaluation of the Protective Role of Lactobacillus StrainsAgainst Inorganic Arsenic Toxicity. Probiotics Antimicrob Proteins 2020; 12:1484-1491. [PMID: 32077013 DOI: 10.1007/s12602-020-09639-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inorganic arsenic [iAs, As(III) + As(V)] is considered a human carcinogen. Recent studies show that it has also toxic effects on the intestinal epithelium which might partly explain its systemic toxicity. The aim of this study is to evaluate the protective role of lactic acid bacteria (LAB) against the toxic effects of iAs on the intestinal epithelium. For this purpose, the human colonic cells Caco-2 were exposed to As(III) in the presence of various LAB strains or their conditioned medium. Results showed that some strains and their conditioned media partially revert the oxidative stress, the production of pro-inflammatory cytokines, the alterations of the distribution of tight junction proteins, and the cell permeability increases caused by As(III). These results show that both soluble factors secreted or resulting from LAB metabolism and cell-cell interactions are possibly involved in the beneficial effects. Therefore, some LAB strains have potential as protective agents against iAs intestinal barrier disruption.
Collapse
|