1
|
Mozhiarasi V. Overview of pretreatment technologies on vegetable, fruit and flower market wastes disintegration and bioenergy potential: Indian scenario. CHEMOSPHERE 2022; 288:132604. [PMID: 34678338 DOI: 10.1016/j.chemosphere.2021.132604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Disposal of segregated organic fractions of centralized wholesale market wastes (i.e. vegetable, fruit and flower markets waste) in dumpsites/landfills are not only a serious issue but also underutilizes the huge potency of these organic wastes. Anaerobic digestion (AD) is a promising technology for converting organic wastes into methane, as a carbon-neutral alternative to conventional fuels. The major challenges related to the AD process are poor biodegradation of wastes and buffering capacity within the anaerobic digester that lowers the biogas yield. To accelerate biodegradation and to enhance the process efficacy of anaerobic digestion, several pretreatment technologies (mechanical, thermal, biological, chemical and combined pre-treatments) for organic wastes prior to the AD process were developed. This review article presents a comprehensive analysis of research updates in pretreatment techniques for vegetable, fruit and flower markets wastes for enhancing biogas yields during the AD process. The technological aspects of the pretreatment process are described and their efficiency comparison with the resultant process yields and environmental benefits are also discussed. The challenges and technical issues associated with each pretreatment and future research directions for overcoming the field implementation issues are also proposed.
Collapse
Affiliation(s)
- Velusamy Mozhiarasi
- CLRI Regional Centre Jalandhar, CSIR-Central Leather Research Institute, Jalandhar, 144021, Punjab, India.
| |
Collapse
|
2
|
Abstract
The biogas production technology has improved over the last years for the aim of reducing the costs of the process, increasing the biogas yields, and minimizing the greenhouse gas emissions. To obtain a stable and efficient biogas production, there are several design considerations and operational parameters to be taken into account. Besides, adapting the process to unanticipated conditions can be achieved by adequate monitoring of various operational parameters. This paper reviews the research that has been conducted over the last years. This review paper summarizes the developments in biogas design and operation, while highlighting the main factors that affect the efficiency of the anaerobic digestion process. The study’s outcomes revealed that the optimum operational values of the main parameters may vary from one biogas plant to another. Additionally, the negative conditions that should be avoided while operating a biogas plant were identified.
Collapse
|
3
|
Castrillon L, Londoño YA, Pino NJ, Peñuela GA. Comparison of microbial and physicochemical behavior of expanded granular sludge bed system during methylparaben and triclosan removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:487-498. [PMID: 31596260 DOI: 10.2166/wst.2019.293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methylparaben and triclosan are antimicrobial agents widely used as preservatives in a variety of personal care and pharmaceutical products. Wastewater is considered the main source of these compounds in the environment. Expanded granular sludge bed (EGSB) reactors are a high rate technology for wastewater treatment based on biological processes and have been shown to be efficient in removing different types of compounds; however, little is known about the effect of contaminants such as methylparaben and triclosan on their behavior and effectiveness. In this study, we evaluate and compare the microbial and physicochemical behavior of EGSB systems during methylparaben and triclosan removal. The presence of different concentrations of pollutants had an influence on the cluster organization of microbial communities, especially bacteria. However, this did not affect the stability and performance of the EGSB systems. The banding patterns of the denaturing gradient gel electrophoresis of archaea demonstrated the constant presence and abundance of Methanosaeta concilii throughout all stages of operation, showing that this microorganism played a fundamental role in the stability of the reactors for the production of methane. The type of compound and its concentration influenced the expression of the mcrA and ACAs genes; however, these changes did not alter the stability and performance of the EGSB systems.
Collapse
Affiliation(s)
- Laura Castrillon
- GDCON Research Group, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, Street 70 # 52-21, Medellín, Colombia
| | - Yudy Andrea Londoño
- Faculty of Engineering, Technological of Antioquia - University Institution, Street 78B # 72A-220, Medellín, Colombia
| | - Nancy J Pino
- School of Microbiology, University of Antioquia, Street 70 # 52-21, Medellín, Colombia E-mail:
| | - Gustavo A Peñuela
- GDCON Research Group, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, Street 70 # 52-21, Medellín, Colombia
| |
Collapse
|
4
|
Mathai PP, Dunn HM, Venkiteshwaran K, Zitomer DH, Maki JS, Ishii S, Sadowsky MJ. A microfluidic platform for the simultaneous quantification of methanogen populations in anaerobic digestion processes. Environ Microbiol 2019; 21:1798-1808. [DOI: 10.1111/1462-2920.14589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/13/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Prince P. Mathai
- The BioTechnology InstituteUniversity of Minnesota St. Paul MN USA
| | - Hannah M. Dunn
- The BioTechnology InstituteUniversity of Minnesota St. Paul MN USA
| | - Kaushik Venkiteshwaran
- Department of Civil, Construction, and Environmental EngineeringMarquette University Milwaukee WI USA
| | - Daniel H. Zitomer
- Department of Civil, Construction, and Environmental EngineeringMarquette University Milwaukee WI USA
| | - James S. Maki
- Department of Biological SciencesMarquette University Milwaukee WI USA
| | - Satoshi Ishii
- The BioTechnology InstituteUniversity of Minnesota St. Paul MN USA
- Department of Soil, Water, and ClimateUniversity of Minnesota St. Paul MN USA
| | - Michael J. Sadowsky
- The BioTechnology InstituteUniversity of Minnesota St. Paul MN USA
- Department of Soil, Water, and ClimateUniversity of Minnesota St. Paul MN USA
- Department of Plant and Microbial BiologyUniversity of Minnesota St. Paul MN USA
| |
Collapse
|
5
|
Bonk F, Popp D, Weinrich S, Sträuber H, Becker D, Kleinsteuber S, Harms H, Centler F. Determination of Microbial Maintenance in Acetogenesis and Methanogenesis by Experimental and Modeling Techniques. Front Microbiol 2019; 10:166. [PMID: 30800108 PMCID: PMC6375858 DOI: 10.3389/fmicb.2019.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022] Open
Abstract
For biogas-producing continuous stirred tank reactors, an increase in dilution rate increases the methane production rate as long as substrate input can be converted fully. However, higher dilution rates necessitate higher specific microbial growth rates, which are assumed to have a strong impact on the apparent microbial biomass yield due to cellular maintenance. To test this, we operated two reactors at 37°C in parallel at dilution rates of 0.18 and 0.07 days-1 (hydraulic retention times of 5.5 and 14 days, doubling times of 3.9 and 9.9 days in steady state) with identical inoculum and a mixture of volatile fatty acids as sole carbon sources. We evaluated the performance of the Anaerobic Digestion Model No. 1 (ADM1), a thermodynamic black box approach (TBA), and dynamic flux balance analysis (dFBA), to describe the experimental observations. All models overestimated the impact of dilution rate on the apparent microbial biomass yield when using default parameter values. Based on our analysis, a maintenance coefficient value below 0.2 kJ per carbon mole of microbial biomass per hour should be used for the TBA, corresponding to 0.12 mmol ATP per gram dry weight per hour for dFBA, which strongly deviates from the value of 9.8 kJ Cmol h-1 that has been suggested to apply to all anaerobic microorganisms at 37°C. We hypothesized that a decrease in dilution rate might select taxa with minimized maintenance expenditure. However, no major differences in the dominating taxa between the reactors were observed based on amplicon sequencing of 16S rRNA genes and terminal restriction fragment length polymorphism analysis of mcrA genes. Surprisingly, Methanosaeta dominated over Methanosarcina even at a dilution rate of 0.18 days-1, which contradicts previous model expectations. Furthermore, only 23-49% of the bacterial reads could be assigned to known syntrophic fatty acid oxidizers, indicating that unknown members of this functional group remain to be discovered. In conclusion, microbial maintenance was found to be much lower for acetogenesis and methanogenesis than previously assumed, likely due to the exceptionally low growth rates in anaerobic digestion. This finding might also be relevant for other microbial systems operating at similarly low growth rates.
Collapse
Affiliation(s)
- Fabian Bonk
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Denny Popp
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sören Weinrich
- Biochemical Conversion Department, DBFZ-Deutsches Biomasseforschungszentrum gGmbH, Leipzig, Germany
| | - Heike Sträuber
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Daniela Becker
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Florian Centler
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
6
|
Krakat N, Demirel B, Anjum R, Dietz D. Methods of ammonia removal in anaerobic digestion: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:1925-1938. [PMID: 29068325 DOI: 10.2166/wst.2017.406] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The anaerobic digestion of substrates with high ammonia content has always been a bottleneck in the methanisation process of biomasses. Since microbial communities in anaerobic digesters are sensitive to free ammonia at certain conditions, the digestion of nitrogen-rich substrates such as livestock wastes may result in inhibition/toxicity eventually leading to process failures, unless appropriate engineering precautions are taken. There are many different options reported in literature to remove ammonia from anaerobic digesters to achieve a safe and stable process so that along with high methane yields, a good quality of effluents can also be obtained. Conventional techniques to remove ammonia include physical/chemical methods, immobilization and adaptation of microorganisms, while novel methods include ultrasonication, microwave, hollow fiber membranes and microbial fuel cell applications. This paper discusses conventional and novel methods of ammonia removal from anaerobic digesters using nitrogen-rich substrates, with particular focus on recent literature available about this topic.
Collapse
Affiliation(s)
- Niclas Krakat
- Department of Bioprocess-Engineering, Leibniz Institute for Agricultural Engineering and Bio-Economy Potsdam, Max-Eyth-Allee 100, D-14469 Potsdam, Germany E-mail: ; Department of Biotechnology, University of Applied Sciences, Lohbrügger Kirchstraße 65, 21033 Hamburg, Germany
| | - Burak Demirel
- Institute of Environmental Science, Boğaziçi University, Bebek, Istanbul 34342, Turkey
| | - Reshma Anjum
- Department of Bioprocess-Engineering, Leibniz Institute for Agricultural Engineering and Bio-Economy Potsdam, Max-Eyth-Allee 100, D-14469 Potsdam, Germany E-mail:
| | - Donna Dietz
- Department of Bioprocess-Engineering, Leibniz Institute for Agricultural Engineering and Bio-Economy Potsdam, Max-Eyth-Allee 100, D-14469 Potsdam, Germany E-mail:
| |
Collapse
|
7
|
Jha P, Schmidt S. Reappraisal of chemical interference in anaerobic digestion processes. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2017; 75:954-971. [DOI: 10.1016/j.rser.2016.11.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
8
|
Anjum R, Grohmann E, Krakat N. Anaerobic digestion of nitrogen rich poultry manure: Impact of thermophilic biogas process on metal release and microbial resistances. CHEMOSPHERE 2017; 168:1637-1647. [PMID: 27932039 DOI: 10.1016/j.chemosphere.2016.11.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/16/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
Poultry manure is a nitrogen rich fertilizer, which is usually recycled and spread on agricultural fields. Due to its high nutrient content, chicken manure is considered to be one of the most valuable animal wastes as organic fertilizer. However, when chicken litter is applied in its native form, concerns are raised as such fertilizers also include high amounts of antibiotic resistant pathogenic Bacteria and heavy metals. We studied the impact of an anaerobic thermophilic digestion process on poultry manure. Particularly, microbial antibiotic resistance profiles, mobile genetic elements promoting the resistance dissemination in the environment as well as the presence of heavy metals were focused in this study. The initiated heat treatment fostered a community shift from pathogenic to less pathogenic bacterial groups. Phenotypic and molecular studies demonstrated a clear reduction of multiple resistant pathogens and self-transmissible plasmids in the heat treated manure. That treatment also induced a higher release of metals and macroelements. Especially, Zn and Cu exceeded toxic thresholds. Although the concentrations of a few metals reached toxic levels after the anaerobic thermophilic treatment, the quality of poultry manure as organic fertilizer may raise significantly due to the elimination of antibiotic resistance genes (ARG) and self-transmissible plasmids.
Collapse
Affiliation(s)
- Reshma Anjum
- Leibniz Institute for Agricultural Engineering and Bio-Economy Potsdam, Dept. Bioengineering, Max-Eyth-Allee 100, D-14469 Potsdam, Germany
| | - Elisabeth Grohmann
- Faculty of Life Sciences and Technology, Beuth University of Applied Sciences, Berlin, Germany; Division of Infectious Diseases, University Medical Centre Freiburg, Freiburg, Germany
| | - Niclas Krakat
- Leibniz Institute for Agricultural Engineering and Bio-Economy Potsdam, Dept. Bioengineering, Max-Eyth-Allee 100, D-14469 Potsdam, Germany.
| |
Collapse
|
9
|
Ziganshin AM, Schmidt T, Lv Z, Liebetrau J, Richnow HH, Kleinsteuber S, Nikolausz M. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems. BIORESOURCE TECHNOLOGY 2016; 217:62-71. [PMID: 26853042 DOI: 10.1016/j.biortech.2016.01.096] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 05/27/2023]
Abstract
The effects of hydraulic retention time (HRT) reduction at constant high organic loading rate on the activity of hydrogen-producing bacteria and methanogens were investigated in reactors digesting thin stillage. Stable isotope fingerprinting was additionally applied to assess methanogenic pathways. Based on hydA gene transcripts, Clostridiales was the most active hydrogen-producing order in continuous stirred tank reactor (CSTR), fixed-bed reactor (FBR) and anaerobic sequencing batch reactor (ASBR), but shorter HRT stimulated the activity of Spirochaetales. Further decreasing HRT diminished Spirochaetales activity in systems with biomass retention. Based on mcrA gene transcripts, Methanoculleus and Methanosarcina were the predominantly active in CSTR and ASBR, whereas Methanosaeta and Methanospirillum activity was more significant in stably performing FBR. Isotope values indicated the predominance of aceticlastic pathway in FBR. Interestingly, an increased activity of Methanosaeta was observed during shortening HRT in CSTR and ASBR despite high organic acids concentrations, what was supported by stable isotope data.
Collapse
Affiliation(s)
- Ayrat M Ziganshin
- Department of Microbiology, Kazan (Volga Region) Federal University, Kazan 420008, The Republic of Tatarstan, Russia
| | - Thomas Schmidt
- Department of Biochemical Conversion, Deutsches Biomasseforschungszentrum gGmbH, 04347 Leipzig, Germany; Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Zuopeng Lv
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Jan Liebetrau
- Department of Biochemical Conversion, Deutsches Biomasseforschungszentrum gGmbH, 04347 Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany
| | - Marcell Nikolausz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, 04318 Leipzig, Germany.
| |
Collapse
|
10
|
Westerholm M, Crauwels S, Houtmeyers S, Meerbergen K, Van Geel M, Lievens B, Appels L. Microbial community dynamics linked to enhanced substrate availability and biogas production of electrokinetically pre-treated waste activated sludge. BIORESOURCE TECHNOLOGY 2016; 218:761-770. [PMID: 27423543 DOI: 10.1016/j.biortech.2016.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
The restricted hydrolytic degradation rate of complex organic matter presents a considerable challenge in anaerobic digestion of waste activated sludge (WAS). Within this context, application of pre-treatment of digester substrate has potential for improved waste management and enhanced biogas production. Anaerobic degradation of untreated or electrokinetically pre-treated WAS was performed in two pilot-scale digesters for 132days. WAS electrokinetically pre-treated with energy input 0.066kJ/kg sludge was used in a first phase of operation and WAS pre-treated with energy input 0.091kJ/kg sludge was used in a second phase (each phase lasted at least three hydraulic retention times). Substrate characteristics before and after pre-treatment and effects on biogas digester performance were comprehensively analysed. To gain insights into influences of altered substrate characteristics on microbial communities, the dynamics within the bacterial and archaeal communities in the two digesters were investigated using 16S rRNA gene sequencing (pyrosequencing) and quantitative PCR (qPCR). Specific primers targeting dominant operation taxonomic units (OTUs) and members of the candidate phylum Cloacimonetes were designed to further evaluate their abundance and dynamics in the digesters. Electrokinetic pre-treatment significantly improved chemical oxygen demand (COD) and carbohydrate solubility and increased biogas production by 10-11% compared with untreated sludge. Compositional similarity of the bacterial community during initial operation and diversification during later operation indicated gradual adaptation of the community to the higher solubility of organic material in the pre-treated substrate. Further analyses revealed positive correlations between gene abundance of dominant OTUs related to Clostridia and Cloacimonetes and increased substrate availability and biogas production. Among the methanogens, the genus Methanosaeta dominated in both digesters. Overall, the results showed that electrokinetic pre-treatment of WAS increases substrate solubility and biogas production. Changes in bacterial community composition and abundances of dominant bacterial OTUs were observed during anaerobic degradation of pre-treated WAS, whereas the relative abundance of methanogenic community members remained stable.
Collapse
Affiliation(s)
- Maria Westerholm
- KU Leuven, Department of Chemical Engineering, Technology Campus De Nayer, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne Waver, Belgium
| | - Sam Crauwels
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Technology Campus De Nayer, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Fortsesteenweg 30A, B-2860 Sint-Katelijne Waver, Belgium
| | - Sofie Houtmeyers
- KU Leuven, Department of Chemical Engineering, Technology Campus De Nayer, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne Waver, Belgium
| | - Ken Meerbergen
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Technology Campus De Nayer, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Fortsesteenweg 30A, B-2860 Sint-Katelijne Waver, Belgium
| | - Maarten Van Geel
- KU Leuven, Department of Biology, Plant Conservation and Population Biology, Kasteelpark Arenberg 31, B-3001 Heverlee, Belgium
| | - Bart Lievens
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Technology Campus De Nayer, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Fortsesteenweg 30A, B-2860 Sint-Katelijne Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Technology Campus De Nayer, Process and Environmental Technology Lab, J. De Nayerlaan 5, B-2860 Sint-Katelijne Waver, Belgium.
| |
Collapse
|
11
|
Dynamics of the microbial community during continuous methane fermentation in continuously stirred tank reactors. J Biosci Bioeng 2015; 119:375-83. [DOI: 10.1016/j.jbiosc.2014.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 09/03/2014] [Accepted: 09/16/2014] [Indexed: 11/20/2022]
|
12
|
Kern T, Linge M, Rother M. Methanobacterium aggregans sp. nov., a hydrogenotrophic methanogenic archaeon isolated from an anaerobic digester. Int J Syst Evol Microbiol 2015; 65:1975-1980. [PMID: 25807978 DOI: 10.1099/ijs.0.000210] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel, strictly anaerobic, hydrogenotrophic methanogen, strain E09F.3T, was isolated from a commercial biogas plant in Germany. Cells of E09F.3T were Gram-stain-negative, non-motile, slightly curved rods, long chains of which formed large aggregates consisting of intertwined bundles of chains. Cells utilized H2+CO2 and, to a lesser extent, formate as substrates for growth and methanogenesis. The optimal growth temperature was around 40 °C; maximum growth rate was obtained at pH around 7.0 with approximately 6.8 mM NaCl. The DNA G+C content of strain E09F.3T was 39.1 mol%. Phylogenetic analyses based on 16S rRNA and mcrA gene sequences placed strain E09F.3T within the genus Methanobacterium. On the basis of 16S rRNA gene sequence similarity, strain E09F.3T was closely related to Methanobacterium congolense CT but morphological, physiological and genomic characteristics indicated that strain E09F.3T represents a novel species. The name Methanobacterium aggregans sp. nov. is proposed for this novel species, with strain E09F.3T ( = DSM 29428T = JCM 30569T) as the type strain.
Collapse
Affiliation(s)
- Tobias Kern
- Institut für Mikrobiologie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mary Linge
- Institut für Mikrobiologie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Rother
- Institut für Mikrobiologie, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
13
|
Okudoh V, Trois C, Workneh T, Schmidt S. The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2014; 39:1035-1052. [DOI: 10.1016/j.rser.2014.07.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
|
14
|
Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 2014; 32:934-51. [DOI: 10.1016/j.biotechadv.2014.04.007] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/14/2014] [Accepted: 04/18/2014] [Indexed: 11/23/2022]
|
15
|
Kim TG, Jeong SY, Cho KS. Development of droplet digital PCR assays for methanogenic taxa and examination of methanogen communities in full-scale anaerobic digesters. Appl Microbiol Biotechnol 2014; 99:445-58. [DOI: 10.1007/s00253-014-6007-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/14/2023]
|
16
|
Johnson DR, Lee TK, Park J, Fenner K, Helbling DE. The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability. Environ Microbiol 2014; 17:4851-60. [PMID: 24552172 DOI: 10.1111/1462-2920.12429] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/30/2013] [Accepted: 02/11/2014] [Indexed: 02/01/2023]
Abstract
The number of functional traits of a wastewater treatment plant (WWTP) microbial community (i.e. functional richness) is thought to be an important determinant of its overall functional performance, but the ecological factors that determine functional richness remain unclear. The number of taxa within a community (i.e. taxonomic richness) is one ecological factor that might be important. Communities that contain more taxa are more likely to have more functional traits, and a positive association is therefore expected between functional and taxonomic richness. Empirical tests for this positive association among WWTP communities, however, are lacking. We address this knowledge gap by measuring the functional and taxonomic richness of 10 independent WWTP communities. We demonstrate that functional and taxonomic richness are positively associated with each other. We further demonstrate that functional and taxonomic richness are negatively associated with the effluent NH4 -N and BOD5 concentrations. This led us to hypothesize that correlated variation in functional and taxonomic richness is likely related to variation in ambient nitrogen and carbon availability. We finally demonstrate that this hypothesis is consistent with the functional and taxonomic attributes of the WWTP communities. Together, our results improve our basic understanding of the ecology and functioning of WWTP communities.
Collapse
Affiliation(s)
- David R Johnson
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
| | - Tae Kwon Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Joonhong Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Kathrin Fenner
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.,Department of Environmental Chemistry, Eawag, Dübendorf, Switzerland
| | - Damian E Helbling
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland.,School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
Polag D, Krapf LC, Heuwinkel H, Laukenmann S, Lelieveld J, Keppler F. Stable carbon isotopes of methane for real-time process monitoring in anaerobic digesters. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Lutz Christian Krapf
- Bavarian State Research Center for Agriculture; Institute for Agricultural Engineering and Animal Husbandry; Freising Germany
| | - Hauke Heuwinkel
- Bavarian State Research Center for Agriculture; Institute for Agricultural Engineering and Animal Husbandry; Freising Germany
| | | | | | | |
Collapse
|
18
|
Manyi-Loh CE, Mamphweli SN, Meyer EL, Okoh AI, Makaka G, Simon M. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:4390-417. [PMID: 24048207 PMCID: PMC3799523 DOI: 10.3390/ijerph10094390] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 11/16/2022]
Abstract
With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications.
Collapse
Affiliation(s)
- Christy E. Manyi-Loh
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa; E-Mails: (S.N.M.); (E.L.M.); (M.S.)
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa; E-Mail:
| | - Sampson N. Mamphweli
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa; E-Mails: (S.N.M.); (E.L.M.); (M.S.)
| | - Edson L. Meyer
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa; E-Mails: (S.N.M.); (E.L.M.); (M.S.)
| | - Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa; E-Mail:
| | - Golden Makaka
- Department of Physics, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa; E-Mail:
| | - Michael Simon
- Fort Hare Institute of Technology, University of Fort Hare, Alice Campus, Alice 5700, Eastern Cape Province, South Africa; E-Mails: (S.N.M.); (E.L.M.); (M.S.)
| |
Collapse
|
19
|
Wu YR, He J. Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation. BIORESOURCE TECHNOLOGY 2013; 139:5-12. [PMID: 23639408 DOI: 10.1016/j.biortech.2013.03.103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/16/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
Two sediment-free microbial consortia (LI3 and LP3) were established to depolymerize lignin under anaerobic conditions. During depolymerizing high molecular weight lignin to low molecular weight molecules, the two cultures produced biomethane up to 151.7 and 113.0 mL g(-1) total lignin. Furthermore, LI3 and LP3 could also utilize the biomass - oil palm empty fruit bunch fiber (OPEFB) to produce 190.6 and 195.6 mL methaneg(-1) total lignin in OPEFB, and at the same time improve the bioavailability of lignocellulosic matters for further enzymatic hydrolysis. The microbial community analysis by denature gradient gel electrophoresis (DGGE) and the high-density 16S rDNA gene microarray (PhyloChip) exhibited that Methanomethylovorans sp. (LI3) and Methanoculleus sp. (LP3) were the main methanogens present, and phylum Firmicutes and Bacteroidetes were mainly involved in the lignin depolymerization. The established microbial consortia with both lignin depolymerization and biomethane production provide profound application on the environmental friendly pretreatment of lignocellulosic materials.
Collapse
Affiliation(s)
- Yi-Rui Wu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
20
|
Williams J, Williams H, Dinsdale R, Guwy A, Esteves S. Monitoring methanogenic population dynamics in a full-scale anaerobic digester to facilitate operational management. BIORESOURCE TECHNOLOGY 2013; 140:234-242. [PMID: 23707910 DOI: 10.1016/j.biortech.2013.04.089] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
Microbial populations in a full-scale anaerobic digester fed on food waste were monitored over an 18-month period using qPCR. The digester exhibited a highly dynamic environment in which methanogenic populations changed constantly in response to availability of substrates and inhibitors. The methanogenic population in the digester was dominated by Methanosaetaceae, suggesting that aceticlastic methanogenesis was the main route for the production of methane. Sudden losses (69%) in Methanosaetaceae were followed by a build-up of VFAs which were subsequently consumed when populations recovered. A build up of ammonium inhibited Methanosaetaceae and resulted in shifts from acetate to hydrogen utilization. Addition of trace elements and alkalinity when propionate levels were high stimulated microbial growth. Routine monitoring of microbial populations and VFAs provided valuable insights into the complex processes occurring within the digester and could be used to predict digester stability and facilitate digester optimization.
Collapse
Affiliation(s)
- Julie Williams
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre (SERC), Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, Wales CF37 1DL, UK.
| | | | | | | | | |
Collapse
|
21
|
Ma J, Zhao B, Frear C, Zhao Q, Yu L, Li X, Chen S. Methanosarcina domination in anaerobic sequencing batch reactor at short hydraulic retention time. BIORESOURCE TECHNOLOGY 2013; 137:41-50. [PMID: 23584407 DOI: 10.1016/j.biortech.2013.03.101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 05/13/2023]
Abstract
The Archaea population of anaerobic sequential batch reactor (ASBR) featuring cycle operations under varying hydraulic retention time (HRT) was evaluated for treating a dilute waste stream. Terminal-Restriction Length Polymorphism and clone libraries for both 16S rRNA gene and mcrA gene were employed to characterize the methanogenic community structure. Results revealed that a Methanosarcina dominated methanogenic community was successfully established when using an ASBR digester at short HRT. It was revealed that both 16S rRNA and mcrA clone library could not provide complete community structure, while combination of two different clone libraries could capture more archaea diversity. Thermodynamic calculations confirmed a preference for the observed population structure. The results both experimentally and theoretically confirmed that Methanosarcina dominance emphasizing ASBR's important role in treating low strength wastewater as Methanosarcina will be more adept at overcoming temperature and shock loadings experienced with treating this type of wastewater.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Hanreich A, Heyer R, Benndorf D, Rapp E, Pioch M, Reichl U, Klocke M. Metaproteome analysis to determine the metabolically active part of a thermophilic microbial community producing biogas from agricultural biomass. Can J Microbiol 2012; 58:917-22. [DOI: 10.1139/w2012-058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complex consortia of microorganisms are responsible for biogas production. A lot of information about the taxonomic structure and enzymatic potential of such communities has been collected by a variety of gene-based approaches, yet little is known about which of all the assumable metabolic pathways are active throughout the process of biogas formation. To tackle this problem, we established a protocol for the metaproteomic analysis of samples taken from biogas reactors fed with agricultural biomass. In contrast to previous studies where an anaerobic digester was fed with synthetic wastewater, the complex matrix in this study required the extraction of proteins with liquid phenol and the application of paper bridge loading for 2-dimensional gel electrophoresis. Proteins were subjected to nanoHPLC (high-performance liquid chromatography) coupled to tandem mass spectrometry for characterization. Several housekeeping proteins as well as methanogenesis-related enzymes were identified by a MASCOT search and de novo sequencing, which proved the feasibility of our approach. The establishment of such an approach is the basis for further metaproteomic studies of biogas-producing communities. In particular, the apparent status of metabolic activities within the communities can be monitored. The knowledge collected from such experiments could lead to further improvements of biogas production.
Collapse
Affiliation(s)
- Angelika Hanreich
- Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V., Abteilung Bioverfahrenstechnik, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Robert Heyer
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Dirk Benndorf
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtor Straße 1, 39106 Magdeburg, Germany
| | - Markus Pioch
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Udo Reichl
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Sandtor Straße 1, 39106 Magdeburg, Germany
| | - Michael Klocke
- Leibniz-Institut für Agrartechnik Potsdam-Bornim e.V., Abteilung Bioverfahrenstechnik, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| |
Collapse
|
23
|
Krakat N, Schmidt S, Scherer P. Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. BIORESOURCE TECHNOLOGY 2011; 102:5692-701. [PMID: 21435870 DOI: 10.1016/j.biortech.2011.02.108] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/25/2011] [Accepted: 02/26/2011] [Indexed: 05/20/2023]
Abstract
The impact of the process parameters hydraulic retention time (HRT), organic loading rate (OLR) and substrate upon bacterial diversity was analyzed. Therefore, a controlled anaerobic fermentation (1755 days) of beet silage, only initially inoculated with manure, was monitored by the amplified "ribosomal DNA" restriction analysis. More than 85% of detected operational taxonomic units (OTUs) could not be assigned to described Bacteria. In contrast to studies analyzing the digestion of energy crops in the presence of manure, Chloroflexi were detected, whereas Clostridia and Chloroflexi were identified as persistent groups. Both groups are known as potential hydrogen producers or users. Species distribution patterns for Firmicutes, Bacteroidetes, Synergistetes and Thermotogae were not clearly linked to process parameters. The presence of Planctomycetes, Actinobacteria and Alcaligenaceae was related to long HRTs and short OLRs, while Acidobacteria were governed by short HRTs and high OLRs, respectively. The impact of substrate variations on diversity was minute.
Collapse
Affiliation(s)
- Niclas Krakat
- Hamburg University of Applied Sciences, Research Centre of Lifetec Process Engineering, Lohbrügger Kirchstr. 65, 21033 Hamburg-Bergedorf, Germany.
| | | | | |
Collapse
|
24
|
Takahashi M, Yamada T, Tanno M, Tsuji H, Hiraishi A. Nitrate Removal Efficiency and Bacterial Community Dynamics in Denitrification Processes Using Poly ( L-lactic acid) as the Solid Substrate. Microbes Environ 2011; 26:212-9. [DOI: 10.1264/jsme2.me11107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Masaaki Takahashi
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Takeshi Yamada
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Motohiro Tanno
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Hideto Tsuji
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| | - Akira Hiraishi
- Department of Environmental and Life Sciences, Toyohashi University of Technology
| |
Collapse
|