1
|
Yibar A, Saticioglu IB, Ajmi N, Duman M. Molecular Characterization and Antibacterial Resistance Determination of Escherichia coli Isolated from Fresh Raw Mussels and Ready-to-Eat Stuffed Mussels: A Major Public Health Concern. Pathogens 2024; 13:532. [PMID: 39057759 PMCID: PMC11279604 DOI: 10.3390/pathogens13070532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Our study focused exclusively on analyzing Escherichia coli (E. coli) contamination in fresh raw mussels and ready-to-eat (RTE) stuffed mussels obtained from authorized and regulated facilities. However, it is critical to recognize that such contamination represents a significant public health threat in regions where unauthorized harvesting and sales practices are prevalent. This study aimed to comprehensively assess the prevalence, molecular characteristics, and antibacterial resistance profiles of E. coli in fresh raw mussels and RTE stuffed mussels. E. coli counts in fresh raw mussel samples ranged from 1 to 2.89 log CFU/g before cooking, with a significant reduction observed post-cooking. RTE stuffed mussel samples predominantly exhibited negligible E. coli presence (<1 log CFU/g). A phylogenetic analysis revealed a dominance of phylogroup A, with variations in the distribution observed across different sampling months. Antibacterial resistance was prevalent among the E. coli isolates, notably showing resistance to ampicillin, streptomycin, and cefotaxime. Extended-spectrum β-lactamase (ESβL) production was rare, with only one positive isolate detected. A variety of antibacterial resistance genes, including tetB and sul1, were identified among the isolates. Notably, virulence factor genes associated with pathogenicity were absent. In light of these findings, it is imperative to maintain rigorous compliance with quality and safety standards at all stages of the mussel production process, encompassing harvesting, processing, cooking, and consumption. Continuous monitoring, implementation of rigorous hygiene protocols, and responsible antibacterial drug use are crucial measures in mitigating food safety risks and combating antibacterial resistance. Stakeholders, including seafood industry players, regulatory agencies, and healthcare professionals, are essential to ensure effective risk mitigation and safeguard public health in the context of seafood consumption.
Collapse
Affiliation(s)
- Artun Yibar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey;
| | - Izzet B. Saticioglu
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (I.B.S.); (N.A.)
| | - Nihed Ajmi
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (I.B.S.); (N.A.)
| | - Muhammed Duman
- Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Turkey; (I.B.S.); (N.A.)
| |
Collapse
|
2
|
Wiśniewski P, Zakrzewski A, Chajęcka-Wierzchowska W, Zadernowska A. Possibility of transfer and activation of 'silent' tetracycline resistance genes among Enterococcus faecalis under high-pressure processing. Food Microbiol 2024; 120:104481. [PMID: 38431327 DOI: 10.1016/j.fm.2024.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
In this study, the tetracycline resistance of Enterococcus faecalis strains isolated from food was determined and molecular analyses of the resistance background were performed by determining the frequency of selected tetracycline resistance genes. In addition, the effect of high-pressure stress (400 and 500 MPa) on the expression of selected genes encoding tetracycline resistance was determined, as well as changes in the frequency of transfer of these genes in isolates showing sensitivity to tetracyclines. In our study, we observed an increase in the expression of genes encoding tetracyclines, especially the tet(L) gene, mainly under 400 MPa pressure. The study confirmed the possibility of transferring genes encoding tetracyclines such as tet(M), tet(L), tet(K), tet(W) and tet(O) by horizontal gene transfer in both control strains and exposed to high-pressure. Exposure of the strains to 400 MPa pressure had a greater effect on the possibility of gene transfer and expression than the application of a higher-pressure. To our knowledge, this study for the first time determined the effect of high-pressure stress on the expression of selected genes encoding tetracycline resistance, as well as the possibility and changes in the frequency of transfer of these genes in Enterococcus faecalis isolates showing sensitivity to tetracyclines and possessing silent genes. Due to the observed possibility of increased expression of some of the genes encoding tetracycline resistance and the possibility of their spread by horizontal gene transfer to other microorganisms in the food environment, under the influence of high-pressure processing in strains phenotypically susceptible to this antibiotic, it becomes necessary to monitor this ability in isolates derived from foods.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland.
| | - Arkadiusz Zakrzewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland
| | - Wioleta Chajęcka-Wierzchowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland
| | - Anna Zadernowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland
| |
Collapse
|
3
|
Wang D, Ji X, Jiang B, Yuan Y, Liang B, Sun S, Zhu L, Liu J, Guo X, Yin Y, Sun Y. Prevalence of Antibiotic Resistance and Virulence Genes in Escherichia coli Carried by Migratory Birds on the Inner Mongolia Plateau of Northern China from 2018 to 2023. Microorganisms 2024; 12:1076. [PMID: 38930458 PMCID: PMC11205581 DOI: 10.3390/microorganisms12061076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: Antibiotic resistance in bacteria is an urgent global threat to public health. Migratory birds can acquire antibiotic-resistant and pathogenic bacteria from the environment or through contact with each other and spread them over long distances. The objectives of this study were to explore the relationship between migratory birds and the transmission of drug-resistant pathogenic Escherichia coli. (2) Methods: Faeces and swab samples from migratory birds were collected for isolating E. coli on the Inner Mongolia Plateau of northern China from 2018 to 2023. The resistant phenotypes and spectra of isolates were determined using a BD Phoenix 100 System. Conjugation assays were performed on extended-spectrum β-lactamase (ESBL)-producing strains, and the genomes of multidrug-resistant (MDR) and ESBL-producing isolates were sequenced and analysed. (3) Results: Overall, 179 isolates were antibiotic-resistant, with 49.7% MDR and 14.0% ESBL. Plasmids were successfully transferred from 32% of ESBL-producing strains. Genome sequencing analysis of 91 MDR E. coli strains identified 57 acquired resistance genes of 13 classes, and extraintestinal pathogenic E. coli and avian pathogenic E. coli accounted for 26.4% and 9.9%, respectively. There were 52 serotypes and 54 sequence types (STs), including ST48 (4.4%), ST69 (4.4%), ST131 (2.2%) and ST10 (2.2%). The international high-risk clonal strains ST131 and ST10 primarily carried blaCTX-M-27 and blaTEM-176. (4) Conclusions: There is a high prevalence of multidrug-resistant virulent E. coli in migratory birds on the Inner Mongolian Plateau. This indicates a risk of intercontinental transmission from migratory birds to livestock and humans.
Collapse
Affiliation(s)
- Danhong Wang
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
| | - Xue Ji
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Bowen Jiang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Yue Yuan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Bing Liang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Shiwen Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Lingwei Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Xuejun Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| | - Yuhe Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China;
| | - Yang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130121, China; (X.J.); (B.J.); (Y.Y.); (B.L.); (S.S.); (L.Z.); (J.L.); (X.G.)
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130121, China
| |
Collapse
|
4
|
Buranasinsup S, Wiratsudakul A, Chantong B, Maklon K, Suwanpakdee S, Jiemtaweeboon S, Sakcamduang W. Prevalence and characterization of antimicrobial-resistant Escherichia coli isolated from veterinary staff, pets, and pet owners in Thailand. J Infect Public Health 2023; 16 Suppl 1:194-202. [PMID: 37973494 DOI: 10.1016/j.jiph.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Companion animals may act as antimicrobial resistance (AMR) reservoirs. This study investigated the prevalence and AMR patterns of Escherichia coli in pets and people in close contact with pets. METHODS A total of 955 samples were collected from veterinary clinics across Thailand by rectal and skin or ear swabs from dogs and cats and fecal swabs from veterinarians, veterinary assistants, and pet owners. The minimum inhibitory concentrations (MICs) of the obtained isolates were investigated using Sensititre™ MIC plates against 21 different antimicrobial drugs. RESULTS Escherichia coli from pets was frequently resistant to ampicillin (100%) and amoxicillin-clavulanic acid (100%), whereas E. coli from pet owners, veterinarians, and veterinary assistants was mostly resistant to tetracycline. The multiple antibiotic resistance index revealed that multidrug-resistant E. coli isolates were frequently found in dogs (34.92%), cats (62.12%), veterinarians (61.11%), veterinarian assistants (36.36%), and pet owners (47.62%). The most common AMR genes identified in this study were blaCTX-M, blaTEM, tetA, and tetB, which were associated with the antimicrobial susceptibility results. Additionally, extended-spectrum beta-lactamase (ESBL)-associated genes (i.e., blaCTX-M, blaTEM, and blaSHV) were found in 21.69%, 71.97%, 27.78%, and 21.43% of E. coli isolated from dogs, cats, veterinarians, and pet owners, respectively. CONCLUSIONS Our findings demonstrated the presence of AMR genes, particularly ESBL-associated genes, in E. coli isolated from healthy pets and veterinarians. This implies that these sources of E. coli could potentially be reservoirs for antibiotic resistance, thereby increasing the risk of harm to both humans and animals. These findings highlight the importance of implementing effective AMR control measures in veterinary practices, as bacteria resistant to commonly used antimicrobials are present in humans and animals.
Collapse
Affiliation(s)
- Shutipen Buranasinsup
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Anuwat Wiratsudakul
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Khuanwalai Maklon
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sarin Suwanpakdee
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sineenard Jiemtaweeboon
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Walasinee Sakcamduang
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
5
|
Ortega-Balleza JL, Guerrero A, Castro-Escarpulli G, Martínez-Vázquez AV, Cruz-Hernández MA, de Luna-Santillana EDJ, Acosta-Cruz E, Rodríguez-Sánchez IP, Rivera G, Bocanegra-García V. Genomic Analysis of Multidrug-Resistant Escherichia coli Strains Isolated in Tamaulipas, Mexico. Trop Med Infect Dis 2023; 8:458. [PMID: 37888586 PMCID: PMC10610597 DOI: 10.3390/tropicalmed8100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
The global spread of antimicrobial resistance genes (ARGs) is a major public health concern. Mobile genetic elements (MGEs) are the main drivers of this spread by horizontal gene transfer (HGT). Escherichia coli is widespread in various environments and serves as an indicator for monitoring antimicrobial resistance (AMR). Therefore, the objective of this work was to evaluate the whole genome of multidrug-resistant E. coli strains isolated from human clinical, animal, and environmental sources. Four E. coli strains previously isolated from human urine (n = 2), retail meat (n = 1), and water from the Rio Grande River (n = 1) collected in northern Tamaulipas, Mexico, were analyzed. E. coli strains were evaluated for antimicrobial susceptibility, followed by whole genome sequencing and bioinformatic analysis. Several ARGs were detected, including blaCTX-M-15, blaOXA-1, blaTEM-1B, blaCMY-2, qnrB, catB3, sul2, and sul3. Additionally, plasmid replicons (IncFIA, IncFIB, IncFII, IncY, IncR, and Col) and intact prophages were also found. Insertion sequences (ISs) were structurally linked with resistance and virulence genes. Finally, these findings indicate that E. coli strains have a large repertoire of resistance determinants, highlighting a high pathogenic potential and the need to monitor them.
Collapse
Affiliation(s)
- Jessica L. Ortega-Balleza
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| | - Abraham Guerrero
- CONACyT Program, Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Mexico;
| | - Graciela Castro-Escarpulli
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Ciudad de Mexico 07738, Mexico;
| | - Ana Verónica Martínez-Vázquez
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| | - María Antonia Cruz-Hernández
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| | - Erick de Jesús de Luna-Santillana
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| | - Erika Acosta-Cruz
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo Coahuila 25280, Mexico;
| | - Irám Pablo Rodríguez-Sánchez
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba s/n cruz con Ave. Manuel L. Barragán, San Nicolás de los Garza 66455, Mexico;
| | - Gildardo Rivera
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| | - Virgilio Bocanegra-García
- Instituto Politécnico Nacional, Centro de Biotecnología Genómica, Boulevard del Maestro SN esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico; (J.L.O.-B.); (A.V.M.-V.); (M.A.C.-H.); (E.d.J.d.L.-S.); (G.R.)
| |
Collapse
|
6
|
Messele YE, Trott DJ, Hasoon MF, Veltman T, McMeniman JP, Kidd SP, Djordjevic SP, Petrovski KR, Low WY. Phylogenetic Analysis of Escherichia coli Isolated from Australian Feedlot Cattle in Comparison to Pig Faecal and Poultry/Human Extraintestinal Isolates. Antibiotics (Basel) 2023; 12:antibiotics12050895. [PMID: 37237797 DOI: 10.3390/antibiotics12050895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The similarity of commensal Escherichia coli isolated from healthy cattle to antimicrobial-resistant bacteria causing extraintestinal infections in humans is not fully understood. In this study, we used a bioinformatics approach based on whole genome sequencing data to determine the genetic characteristics and phylogenetic relationships among faecal Escherichia coli isolates from beef cattle (n = 37) from a single feedlot in comparison to previously analysed pig faecal (n = 45), poultry extraintestinal (n = 19), and human extraintestinal E. coli isolates (n = 40) from three previous Australian studies. Most beef cattle and pig isolates belonged to E. coli phylogroups A and B1, whereas most avian and human isolates belonged to B2 and D, although a single human extraintestinal isolate belonged to phylogenetic group A and sequence type (ST) 10. The most common E. coli sequence types (STs) included ST10 for beef cattle, ST361 for pig, ST117 for poultry, and ST73 for human isolates. Extended-spectrum and AmpC β-lactamase genes were identified in seven out of thirty-seven (18.9%) beef cattle isolates. The most common plasmid replicons identified were IncFIB (AP001918), followed by IncFII, Col156, and IncX1. The results confirm that feedlot cattle isolates examined in this study represent a reduced risk to human and environmental health with regard to being a source of antimicrobial-resistant E. coli of clinical importance.
Collapse
Affiliation(s)
- Yohannes E Messele
- The Davies Livestock Research Centre, The University of Adelaide, Adelaide, SA 5371, Australia
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Darren J Trott
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Mauida F Hasoon
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tania Veltman
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Joe P McMeniman
- Meat & Livestock Australia, Level 1, 40 Mount Street, North Sydney, NSW 2060, Australia
| | - Stephen P Kidd
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
- Research Centre for Infectious Disease, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kiro R Petrovski
- The Davies Livestock Research Centre, The University of Adelaide, Adelaide, SA 5371, Australia
- The Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wai Y Low
- The Davies Livestock Research Centre, The University of Adelaide, Adelaide, SA 5371, Australia
| |
Collapse
|
7
|
Grudlewska-Buda K, Bauza-Kaszewska J, Wiktorczyk-Kapischke N, Budzyńska A, Gospodarek-Komkowska E, Skowron K. Antibiotic Resistance in Selected Emerging Bacterial Foodborne Pathogens-An Issue of Concern? Antibiotics (Basel) 2023; 12:antibiotics12050880. [PMID: 37237783 DOI: 10.3390/antibiotics12050880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Antibiotic resistance (AR) and multidrug resistance (MDR) have been confirmed for all major foodborne pathogens: Campylobacter spp., Salmonella spp., Escherichia coli and Listeria monocytogenes. Of great concern to scientists and physicians are also reports of antibiotic-resistant emerging food pathogens-microorganisms that have not previously been linked to food contamination or were considered epidemiologically insignificant. Since the properties of foodborne pathogens are not always sufficiently recognized, the consequences of the infections are often not easily predictable, and the control of their activity is difficult. The bacteria most commonly identified as emerging foodborne pathogens include Aliarcobacter spp., Aeromonas spp., Cronobacter spp., Vibrio spp., Clostridioides difficile, Escherichia coli, Mycobacterium paratuberculosis, Salmonella enterica, Streptocccus suis, Campylobacter jejuni, Helicobacter pylori, Listeria monocytogenes and Yersinia enterocolitica. The results of our analysis confirm antibiotic resistance and multidrug resistance among the mentioned species. Among the antibiotics whose effectiveness is steadily declining due to expanding resistance among bacteria isolated from food are β-lactams, sulfonamides, tetracyclines and fluoroquinolones. Continuous and thorough monitoring of strains isolated from food is necessary to characterize the existing mechanisms of resistance. In our opinion, this review shows the scale of the problem of microbes related to health, which should not be underestimated.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, Bydgoszcz University of Science and Technology, 85-029 Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| |
Collapse
|
8
|
Rovira P. Short-Term Impact of Oxytetracycline Administration on the Fecal Microbiome, Resistome and Virulome of Grazing Cattle. Antibiotics (Basel) 2023; 12:antibiotics12030470. [PMID: 36978337 PMCID: PMC10044027 DOI: 10.3390/antibiotics12030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Antimicrobial resistance (AMR) is an important public health concern around the world. Limited information exists about AMR in grasslands-based systems where antibiotics are seldom used in beef cattle. The present study investigated the impacts of oxytetracycline (OTC) on the microbiome, antibiotic resistance genes (ARGs), and virulence factor genes (VFGs) in grazing steers with no previous exposure to antibiotic treatments. Four steers were injected with a single dose of OTC (TREAT), and four steers were kept as control (CONT). The effects of OTC on fecal microbiome, ARGs, and VFGs were assessed for 14 days using 16S rRNA sequencing and shotgun metagenomics. Alpha and beta microbiome diversities were significantly affected by OTC. Following treatment, less than 8% of bacterial genera had differential abundance between CONT and TREAT samples. Seven ARGs conferring resistance to tetracycline (tet32, tet40, tet44, tetO, tetQ, tetW, and tetW/N/W) increased their abundance in the post-TREAT samples compared to CONT samples. In addition, OTC use was associated with the enrichment of macrolide and lincosamide ARGs (mel and lnuC, respectively). The use of OTC had no significant effect on VFGs. In conclusion, OTC induced short-term alterations of the fecal microbiome and enrichment of ARGs in the feces of grazing beef cattle.
Collapse
Affiliation(s)
- Pablo Rovira
- Instituto Nacional de Investigación Agropecuaria (INIA Uruguay), Treinta y Tres 33000, Uruguay
| |
Collapse
|
9
|
Pinnell LJ, Kuiper G, Huebner KL, Doster E, Parker JK, Alekozai N, Powers JG, Wallen RL, Belk KE, Morley PS. More than an anthropogenic phenomenon: Antimicrobial resistance in ungulates from natural and agricultural environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159789. [PMID: 36309273 DOI: 10.1016/j.scitotenv.2022.159789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Widely considered an anthropogenic phenomenon, antimicrobial resistance (AMR) is a naturally occurring mechanism that microorganisms use to gain competitive advantage. AMR represents a significant threat to public health and has generated criticism towards the overuse of antimicrobial drugs. Livestock have been proposed as important reservoirs for AMR accumulation. Here, we show that assemblages of AMR genes in cattle and ungulates from natural environments (Yellowstone and Rocky Mountain National Parks) are all dominated by genes conferring resistance to tetracyclines. However, cattle feces contained higher proportions of erm(A-X) genes conferring resistance to macrolide antibiotics. Medically important AMR genes differed between cattle and natural ungulates, but cumulatively were more predominant in natural soils. Our findings suggest that the commonly described predominance of tetracycline resistance in cattle feces is a natural phenomenon among multiple ungulate species and not solely a result of antimicrobial drug exposure. Yet, the virtual absence of macrolide resistance genes in natural ungulates suggests that macrolide usage in agriculture may enrich these genes in cattle. Our results show that antimicrobial use in agriculture may be promoting a potential reservoir for specific types of AMR (i.e., macrolide resistance) but that a significant proportion of the ungulate resistome appears to have natural origins.
Collapse
Affiliation(s)
- Lee J Pinnell
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA
| | - Grace Kuiper
- Colorado State University, Fort Collins, CO 80523, USA
| | | | - Enrique Doster
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA; Colorado State University, Fort Collins, CO 80523, USA
| | | | | | - Jenny G Powers
- Biological Resources Division, National Park Service, Fort Collins, CO 80521, USA
| | - Rick L Wallen
- Yellowstone National Park, National Park Service, Mammoth, WY 82190, USA
| | - Keith E Belk
- Colorado State University, Fort Collins, CO 80523, USA
| | - Paul S Morley
- Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, TX 79015, USA.
| |
Collapse
|
10
|
Hu J, Afayibo DJA, Zhang B, Zhu H, Yao L, Guo W, Wang X, Wang Z, Wang D, Peng H, Tian M, Qi J, Wang S. Characteristics, pathogenic mechanism, zoonotic potential, drug resistance, and prevention of avian pathogenic Escherichia coli (APEC). Front Microbiol 2022; 13:1049391. [PMID: 36583051 PMCID: PMC9793750 DOI: 10.3389/fmicb.2022.1049391] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Although most Escherichia coli (E. coli) strains are commensal and abundant, certain pathogenic strains cause severe diseases from gastroenteritis to extraintestinal infections. Extraintestinal pathogenic E. coli (ExPEC) contains newborn meningitis E. coli (NMEC), uropathogenic E. coli (UPEC), avian pathogenic E. coli (APEC), and septicemic E. coli (SEPEC) based on their original host and clinical symptom. APEC is a heterogeneous group derived from human ExPEC. APEC causes severe respiratory and systemic diseases in a variety of avians, threatening the poultry industries, food security, and avian welfare worldwide. APEC has many serotypes, and it is a widespread pathogenic bacterium in poultry. In addition, ExPEC strains share significant genetic similarities and similar pathogenic mechanisms, indicating that APEC potentially serves as a reservoir of virulence and resistance genes for human ExPEC, and the virulence and resistance genes can be transferred to humans through food animals. Due to economic losses, drug resistance, and zoonotic potential, APEC has attracted heightened awareness. Various virulence factors and resistance genes involved in APEC pathogenesis and drug resistance have been identified. Here, we review the characteristics, epidemiology, pathogenic mechanism zoonotic potential, and drug resistance of APEC, and summarize the current status of diagnosis, alternative control measures, and vaccine development, which may help to have a better understanding of the pathogenesis and resistance of APEC, thereby reducing economic losses and preventing the spread of multidrug-resistant APEC to humans.
Collapse
|
11
|
Zheng ZJ, Cui ZH, Diao QY, Ye XQ, Zhong ZX, Tang T, Wu SB, He HL, Lian XL, Fang LX, Wang XR, Liang LJ, Liu YH, Liao XP, Sun J. MALDI-TOF MS for rapid detection and differentiation between Tet(X)-producers and non-Tet(X)-producing tetracycline-resistant Gram-negative bacteria. Virulence 2022; 13:77-88. [PMID: 34951562 PMCID: PMC9794003 DOI: 10.1080/21505594.2021.2018768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The extensive use of tetracycline antibiotics has led to the widespread presence of tetracycline-resistance genes in Gram-negative bacteria and this poses serious threats to human and animal health. In our previous study, we reported a method for rapid detection of Tet(X)-producers using MALDI-TOF MS. However, there have been multiple machineries involved in tetracycline resistance including efflux pump, and ribosomal protection protein. Our previous demonstrated the limitation in probing the non-Tet(X)-producing tetracycline-resistant strains. In this regard, we further developed a MALDI-TOF MS method to detect and differentiate Tet(X)-producers and non-Tet(X)-producing tetracycline-resistant strains. Test strains were incubated with tigecycline and oxytetracycline in separate tubes for 3 h and then analyzed spectral peaks of tigecycline, oxytetracycline, and their metabolite. Strains were distinguished using MS ratio for [metabolite/(metabolite+ tigecycline or oxytetracycline)]. Four control strains and 319 test strains were analyzed and the sensitivity was 98.90% and specificity was 98.34%. This was consistent with the results obtained from LC-MS/MS analysis. Interestingly, we also found that the reactive oxygen species (ROS) produced by tetracycline-susceptible strains were able to promote the degradation of oxytetracycline. Overall, the MALDITet(X)-plus test represents a rapid and reliable method to detect Tet(X)-producers, non-Tet(X)-producing tetracycline-resistant strains, and tetracycline-susceptible strains.
Collapse
Affiliation(s)
- Zi-Jian Zheng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ze-Hua Cui
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Qiu-Yue Diao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xin-Qing Ye
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Zi-Xing Zhong
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Tian Tang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Shuai-Bin Wu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Hui-Ling He
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xin-Lei Lian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xi-Ran Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Li-Jie Liang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China,Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China,CONTACT Jian Sun National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Fang Y, Stanford K, Yang X. Lactic Acid Resistance and Population Structure of Escherichia coli from Meat Processing Environment. Microbiol Spectr 2022; 10:e0135222. [PMID: 36194136 PMCID: PMC9602453 DOI: 10.1128/spectrum.01352-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/09/2022] [Indexed: 12/30/2022] Open
Abstract
To explore the effect of beef processing on Escherichia coli populations in relation to lactic acid resistance, this study investigated the links among acid response, phylogenetic structure, genome diversity, and genotypes associated with acid resistance of meat plant E. coli. Generic E. coli isolates (n = 700) were from carcasses, fabrication equipment, and beef products. Acid treatment was carried out in Luria-Bertani broth containing 5.5% lactic acid (pH 2.9). Log reductions of E. coli ranged from <0.5 to >5 log CFU/mL (median: 1.37 log). No difference in lactic acid resistance was observed between E. coli populations recovered before and after a processing step or antimicrobial interventions. E. coli from the preintervention carcasses were slightly more resistant than E. coli isolated from equipment, differing by <0.5 log unit. Acid-resistant E. coli (log reduction <1, n = 45) had a higher prevalence of genes related to energy metabolism (ydj, xap, ato) and oxidative stress (fec, ymjC) than the less resistant E. coli (log reduction >1, n = 133). The ydj and ato operons were abundant in E. coli from preintervention carcasses. In contrast, fec genes were abundant in E. coli from equipment surfaces. The preintervention E. coli contained phylogroups A and B1 in relatively equal proportions. Phylogroup B1 predominated (95%) in the population from equipment. Of note, E. coli collected after sanitation shared either the antigens of O8 or H21. Additionally, genome diversity decreased after chilling and equipment sanitation. Overall, beef processing did not select for E. coli resistant to lactic acid but shaped the population structure. IMPORTANCE Antimicrobial interventions have significantly reduced the microbial loads on carcasses/meat products; however, the wide use of chemical and physical biocides has raised concerns over their potential for selecting resistant populations in the beef processing environment. Phenotyping of acid resistance and whole-genome analysis described in this study demonstrated beef processing practices led to differences in acid resistance, genotype, and population structure between carcass- and equipment-associated E. coli but did not select for the acid-resistant population. Results indicate that genes coding for the metabolism of long-chain sugar acids (ydj) and short-chain fatty acids (ato) were more prevalent in carcass-associated than equipment-associated E. coli. These results suggest E. coli from carcasses and equipment surfaces have been exposed to different selective pressures. The findings improve our understanding of the microbial ecology of E. coli in food processing environments and in general.
Collapse
Affiliation(s)
- Yuan Fang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Kim Stanford
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| |
Collapse
|
13
|
Ajose DJ, Abolarinwa TO, Oluwarinde BO, Montso PK, Fayemi OE, Aremu AO, Ateba CN. Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent against Antimicrobial-Resistant Pathogens. Biomedicines 2022; 10:2426. [PMID: 36289688 PMCID: PMC9599314 DOI: 10.3390/biomedicines10102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Antibiotics are regularly used in animal husbandry to treat diseases. This practice is beneficial to animals' health and helps ensure food security. However, the misuse of antibiotics, especially in food-producing animals, has resulted in the advent of antimicrobial resistance (AMR) and its dissemination among foodborne pathogens. The occurrence of AMR in bacteria pathogens that cause infections in animals and those associated with food spoilage is now considered a global health concern affecting humans, animals and the environment. The search for alternative antimicrobial agents has kindled the interest of many researchers. Among the alternatives, using plant-derived nanoparticles (PDNPs) for treating microbial dysfunctions in food-producing animals has gained significant attention. In traditional medicine, plant extracts are considered as safe, efficient and natural antibacterial agents for various animal diseases. Given the complexity of the AMR and concerns about issues at the interface of human health, animal health and the environment, it is important to emphasize the role of a One Health approach in addressing this problem. This review examines the potential of PDNPs as bio-control agents in food-producing animals, intending to provide consumers with microbiologically safe food while ensuring food safety and security, better health for animals and humans and a safe environment.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Bukola Opeyemi Oluwarinde
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Peter Kotsoana Montso
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Adeyemi Oladapo Aremu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Collins Njie Ateba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Antimicrobial Resistance and Phage Bio-Control Research Laboratory, Department of Microbiology, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
14
|
Bassitta R, Kronfeld H, Bauer J, Schwaiger K, Hölzel C. Tracking Antimicrobial Resistant E. coli from Pigs on Farm to Pork at Slaughter. Microorganisms 2022; 10:1485. [PMID: 35893543 PMCID: PMC9394271 DOI: 10.3390/microorganisms10081485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
Antimicrobial-resistant bacteria might be transferred via the foodchain. However, that risk is rarely tracked along different production steps, e.g., from pigs at farm to meat. To close that gap, we performed a prospective study in four conventional and two organic farms from the moment pigs entered the farm until meat sampling at slaughter. Antimicrobial use was recorded (0 to 11 agents). Antimicrobial susceptibility (AMS) against 26 antibiotics, including critically important substances, was tested by microdilution, and tetA-tetB-sulI-sulII-strA-strB-bla-CTXM-qacEΔ1 were included in PCR-genotyping. From 244 meat samples of 122 pigs, 54 samples (22.1%) from 45 animals were positive for E. coli (n = 198). MICs above the breakpoint/ECOFF occurred for all antibiotics except meropenem. One isolate from organic farming was markedly resistant against beta-lactams including fourth-generation cefalosporines. AMS patterns differed remarkably between isolates from one piece of meat, varying from monoresistance to 16-fold multiresistance. Amplicon-typing revealed high similarity between isolates at slaughter and on farm. Prior pig lots andeven the farmer might serve as reservoirs for E. coli isolated from meat at slaughter. However, AMS phenotyping and genotyping indicate that antimicrobial resistance in E. coli is highly dynamic, impairing reliable prediction of health risks from findings along the production chain.
Collapse
Affiliation(s)
- Rupert Bassitta
- Former Department of Animal Hygiene, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany;
| | - Hanna Kronfeld
- Department for Animal Hygiene, Animal Health and Food Safety, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany;
| | - Johann Bauer
- Former Department of Animal Hygiene, Technical University of Munich, Weihenstephaner Berg 3, 85354 Freising, Germany;
| | - Karin Schwaiger
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria;
| | - Christina Hölzel
- Department for Animal Hygiene, Animal Health and Food Safety, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany;
| |
Collapse
|
15
|
Nadella RK, Panda SK, Badireddy MR, Kurcheti PP, Raman RP, Mothadaka MP. Multi-drug resistance, integron and transposon-mediated gene transfer in heterotrophic bacteria from Penaeus vannamei and its culture environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37527-37542. [PMID: 35066837 DOI: 10.1007/s11356-021-18163-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Multi-drug resistance (MDR) in bacteria is regarded as an emerging pollutant in different food production avenues including aquaculture. One hundred and sixty out of 2304 bacterial isolates from shrimp farm samples (n = 192) of Andhra Pradesh, India, were MDR. Based on biochemical identification and 16S rRNA sequencing, they were grouped into 35 bacterial species with the predominance of Vibrio parahaemolyticus (12.5%). The MDR isolates showed highest resistance toward oxytetracycline (89%) with more than 0.2 MAR (multiple antibiotic resistance), demonstrates a high-risk source. The most prevalent antibiotic-resistance gene (ARG) and mobile genetic element (MGE) detected were tetA (47.5%) and int1 (46.2%), respectively. In conjugation experiments, overall transfer frequency was found to be in the range of 1.1 × 10-9 to 1.8 × 10-3 with the transconjugants harbouring ARGs and MGEs. This study exposed the wide distribution of MDR bacteria in shrimp and its environment, which can further aggravate the already raised concerns of antibiotic residues in the absence of proper mitigation measures.
Collapse
Affiliation(s)
- Ranjit Kumar Nadella
- MFB Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri P.O., Cochin, 682029, Kerala, India
| | - Satyen Kumar Panda
- QAM Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri P.O, Cochin, 682029, Kerala, India
| | - Madhusudana Rao Badireddy
- Visakhapatnam Research Centre, ICARCentral Institute of Fisheries Technology, Visakhapatnam, 530003, Andhra Pradesh, India
| | - Pani Prasad Kurcheti
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Ram Prakash Raman
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, Maharashtra, India
| | - Mukteswar Prasad Mothadaka
- MFB Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri P.O., Cochin, 682029, Kerala, India.
| |
Collapse
|
16
|
Ajose DJ, Oluwarinde BO, Abolarinwa TO, Fri J, Montso KP, Fayemi OE, Aremu AO, Ateba CN. Combating Bovine Mastitis in the Dairy Sector in an Era of Antimicrobial Resistance: Ethno-veterinary Medicinal Option as a Viable Alternative Approach. Front Vet Sci 2022; 9:800322. [PMID: 35445101 PMCID: PMC9014217 DOI: 10.3389/fvets.2022.800322] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Bovine mastitis (BM) is the traditional infectious condition in reared cattle which may result in serious repercussions ranging from animal welfare to economic issues. Owing to the high costs associated with preventative practices and therapeutic measures, lower milk output, and early culling, bovine mastitis is accountable for most of the financial losses suffered in cattle farming. Streptococcus agalactiae, Staphylococcus aureus, Streptococcus dysgalactiae and coliform bacteria are the predominant pathogens for bovine mastitis. In addition, the occurrence of BM has been linked to lactation stage and poor management, in the latter case, the poor stabling conditions around udder hygiene. BM occurs throughout the world, with varying rates of Streptococcus agalactiae infection in different regions. Despite the modern techniques, such as the appropriate milking practices that are applied, lower levels of pathogen vulnerability may help to prevent the development of the disease, BM treatment is primarily reliant on antibiotics for both prophylactic and therapeutic purposes. Nevertheless, as a result of the proliferation of bacterial agents to withstand the antibiotic effects, these therapies have frequently proven ineffectual, resulting in persistent BM. Consequently, alternative medicines for the management of udder inflammation have been researched, notably natural compounds derived from plants. This review focuses on BM in terms of its risk factors, pathogenesis, management, the molecular identification of causative agents, as well as the application of ethno-veterinary medicine as an alternative therapy.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Bukola Opeyemi Oluwarinde
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Tesleem Olatunde Abolarinwa
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Justine Fri
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Kotsoana Peter Montso
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems (IKS) Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Mmabatho, South Africa
| |
Collapse
|
17
|
Draft Genome Sequence of a Uropathogenic Escherichia coli Sequence Type 44 Strain Carrying Multiple Antimicrobial Resistance Genes. Microbiol Resour Announc 2022; 11:e0093121. [PMID: 35323043 PMCID: PMC9022579 DOI: 10.1128/mra.00931-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is a reservoir of antimicrobial resistance genes (ARGs). Here, we report the draft genome sequence of an E. coli strain (31HGR-CBG) that was isolated from a urine sample in Tamaulipas, Mexico. 31HGR-CBG harbors multiple ARGs, including blaCTX-M-15 and class 1 integron. This strain also carries multiple virulence genes.
Collapse
|
18
|
A Metagenomic Approach for Characterizing Antibiotic Resistance Genes in Specific Bacterial Populations: Demonstration with Escherichia coli in Cattle Manure. Appl Environ Microbiol 2022; 88:e0255421. [PMID: 35285243 DOI: 10.1128/aem.02554-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high diversity of bacterial antibiotic resistance genes (ARGs) and the different health risks due to their association with different bacterial hosts require environmental ARG risk assessment to have capabilities of both high throughput and host differentiation. Current whole genome sequencing of cultivated isolates is low in throughput, while direct metagenomic next generation sequencing (mNGS) of environmental samples is nonselective with respect to bacterial hosts. This study introduced a population metagenomic approach that combines isolate library construction and mNGS of the population metagenomic DNA, which enables studying ARGs and their association with mobile genetic elements (MGEs) in a specific bacterial population. The population metagenomic approach was demonstrated with the E. coli population in cattle manure, which detected the co-location of multiple ARGs on the same MGEs and their correspondence to the prevalence of resistance phenotypes of the E. coli isolates. When compared with direct mNGS of the cattle manure samples, the E. coli population metagenomes exhibited a significantly different resistome and an overall higher relative abundance of ARGs and horizontal gene transfer risks. IMPORTANCE Bacterial antibiotic resistance genes in the environment are ubiquitous and can pose different levels of human health risks due to their bacterial host association and subsequent mobility. This study introduced a population metagenomic approach to study ARGs and their mobility in specific bacterial populations through a combination of selective cultivation followed by next generation sequencing and bioinformatic analysis of the combined metagenome of isolates. The utility of this approach was demonstrated with the E. coli population in cattle manure samples, which showed that ARGs detected in the E. coli population corresponded to the observed resistance phenotypes, co-location of multiple ARGs on the same mobile genetic elements.
Collapse
|
19
|
Establishment of Epidemiological Cut-Off Values and the Distribution of Resistance Genes in Aeromonas hydrophila and Aeromonas veronii Isolated from Aquatic Animals. Antibiotics (Basel) 2022; 11:antibiotics11030343. [PMID: 35326806 PMCID: PMC8944483 DOI: 10.3390/antibiotics11030343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023] Open
Abstract
The emergence of antimicrobial-resistant bacteria is an enormous challenge to public health. Aeromonas hydrophila and Aeromonas veronii are opportunistic pathogens in fish. They exert tremendous adverse effects on aquaculture production, owing to their acquired antibiotic resistance. A few Clinical and Laboratory Standards Institute (CLSI) epidemiological cut-off values (ECVs) against Aeromonas spp. are available. We evaluated antimicrobial susceptibility by establishing 8 ECVs using two analytical methods, normalized resistance interpretation and ECOFFinder. We detected antimicrobial resistance genes in two motile Aeromonas spp. isolated from aquatic animals. Results showed that 89.2% of A. hydrophila and 75.8% of A. veronii isolates were non-wild types according to the oxytetracycline ECVCLSI and ECVNRI, respectively. The antimicrobial resistance genes included tetA, tetB, tetD, tetE, cat, floR, qnrA, qnrB, qnrS, strA-strB, and aac(6′)-1b. The most common tet gene in Aeromonas spp. isolates was tetE, followed by tetA. Some strains carried more than one tet gene, with tetA–tetD and tetA–tetE found in A. hydrophila; however, tetB was not detected in any of the strains. Furthermore, 18.6% of A. hydrophila and 24.2% of A. veronii isolates showed presumptive multidrug-resistant phenotypes. The emergence of multidrug resistance among aquatic aeromonads suggests the spread of drug resistance and difficult to treat bacterial infections.
Collapse
|
20
|
Herbert A, Hancock CN, Cox B, Schnabel G, Moreno D, Carvalho R, Jones J, Paret M, Geng X, Wang H. Oxytetracycline and Streptomycin Resistance Genes in Xanthomonas arboricola pv. pruni, the Causal Agent of Bacterial Spot in Peach. Front Microbiol 2022; 13:821808. [PMID: 35283838 PMCID: PMC8914263 DOI: 10.3389/fmicb.2022.821808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 01/12/2023] Open
Abstract
Xanthomonas arboricola pv. pruni (Xap) causes bacterial spot, a major worldwide disease of Prunus species. Very few chemical management options are available for this disease and frequent applications of oxytetracycline (OTC) in the United States peach orchards have raised concerns about resistance development. During 2017-2020, 430 Xap strains were collected from ten peach orchards in South Carolina. Seven OTC-resistant (OTC R ) Xap strains were found in 2017 and 2020 from four orchards about 20-270 km apart. Interestingly, the seven strains were also resistant to streptomycin (STR). Six strains grew on media amended with ≤100 μg/mL OTC, while one strain, R1, grew on ≤250 μg/mL OTC. Genome sequence analysis of four representative OTC R strains revealed a 14-20 kb plasmid carrying tetC, tetR, and strAB in each strain. These three genes were transferable to Xanthomonas perforans via conjugation, and they were PCR confirmed in all seven OTC R Xap strains. When tetC and tetR were cloned and expressed together in a sensitive strain, the transconjugants showed resistance to ≤100 μg/mL OTC. When tetC was cloned and expressed alone in a sensitive strain, the transconjugants showed resistance to ≤250 μg/mL OTC. TetC and tetR expression was inducible by OTC in all six wild-type strains resistant to ≤100 μg/mL OTC. However, in the R1 strain resistant to ≤250 μg/mL OTC, tetR was not expressed, possibly due to the presence of Tn3 in the tetR gene, and in this case tetC was constitutively expressed. These data suggest that tetC confers OTC resistance in Xap strains, and tetR regulates the level of OTC resistance conferred by tetC. To our knowledge, this is the first report of OTC resistance in plant pathogenic xanthomonads.
Collapse
Affiliation(s)
- Austin Herbert
- Edisto Research and Education Center, Clemson University, Blackville, SC, United States
| | - C. Nathan Hancock
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States
| | - Brodie Cox
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Daniela Moreno
- Edisto Research and Education Center, Clemson University, Blackville, SC, United States
| | - Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Jeffrey Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Matthew Paret
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hehe Wang
- Edisto Research and Education Center, Clemson University, Blackville, SC, United States
| |
Collapse
|
21
|
Enrofloxacin Alters Fecal Microbiota and Resistome Irrespective of Its Dose in Calves. Microorganisms 2021; 9:microorganisms9102162. [PMID: 34683483 PMCID: PMC8537546 DOI: 10.3390/microorganisms9102162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/27/2022] Open
Abstract
Enrofloxacin is a fluoroquinolone drug used to prevent and control bovine respiratory disease (BRD) complex in multiple or single doses, ranging from 7.5 to 12.5 mg/kg body weight. Here, we examined the effects of high and low doses of a single subcutaneously injected enrofloxacin on gut microbiota and resistome in calves. Thirty-five calves sourced for this study were divided into five groups: control (n = 7), two low dose groups (n = 14, 7.5 mg/kg), and two high dose groups (n = 14, 12.5 mg/kg). One group in the low and high dose groups was challenged with Mannheimia haemolytica to induce BRD. Both alpha and beta diversities were significantly different between pre- and post-treatment microbial communities (q < 0.05). The high dose caused a shift in a larger number of genera than the low dose. Using metagenomic ProxiMeta Hi-C, 32 unique antimicrobial resistance genes (ARGs) conferring resistance to six antibiotic classes were detected with their reservoirs, and the high dose favored clonal expansion of ARG-carrying bacterial hosts. In conclusion, enrofloxacin treatment can alter fecal microbiota and resistome irrespective of its dose. Hi-C sequencing provides significant benefits for unlocking new insights into the ARG ecology of complex samples; however, limitations in sample size and sequencing depth suggest that further work is required to validate the findings.
Collapse
|
22
|
Danofloxacin Treatment Alters the Diversity and Resistome Profile of Gut Microbiota in Calves. Microorganisms 2021; 9:microorganisms9102023. [PMID: 34683343 PMCID: PMC8538188 DOI: 10.3390/microorganisms9102023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Fluoroquinolones, such as danofloxacin, are used to control bovine respiratory disease complex in beef cattle; however, little is known about their effects on gut microbiota and resistome. The objectives were to evaluate the effect of subcutaneously administered danofloxacin on gut microbiota and resistome, and the composition of Campylobacter in calves. Twenty calves were injected with a single dose of danofloxacin, and ten calves were kept as a control. The effects of danofloxacin on microbiota and the resistome were assessed using 16S rRNA sequencing, quantitative real-time PCR, and metagenomic Hi-C ProxiMeta. Alpha and beta diversities were significantly different (p < 0.05) between pre-and post-treatment samples, and the compositions of several bacterial taxa shifted. The patterns of association between the compositions of Campylobacter and other genera were affected by danofloxacin. Antimicrobial resistance genes (ARGs) conferring resistance to five antibiotics were identified with their respective reservoirs. Following the treatment, some ARGs (e.g., ant9, tet40, tetW) increased in frequencies and host ranges, suggesting initiation of horizontal gene transfer, and new ARGs (aac6, ermF, tetL, tetX) were detected in the post-treatment samples. In conclusion, danofloxacin induced alterations of gut microbiota and selection and enrichment of resistance genes even against antibiotics that are unrelated to danofloxacin.
Collapse
|
23
|
Yue S, Zhang Z, Liu Y, Zhou Y, Wu C, Huang W, Chen N, Zhu Z. Phenotypic and molecular characterizations of multidrug-resistant diarrheagenic E. coli of calf origin. ANIMAL DISEASES 2021. [DOI: 10.1186/s44149-021-00019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractEscherichia coli has become one of the most important causes of calf diarrhea. The aim of this study is to determine the patterns of antimicrobial resistance of E. coli isolates from six cattle farms and to identify prominent resistance genes and virulence genes among the strains isolated from the diarrhea of calves. Antimicrobial susceptibility tests were performed using the disk diffusion method, and PCR was used to detect resistance and virulence genes. The prevalence of multidrug resistant (MDR) E. coli was 77.8% in dairy cattle and 63.6% in beef cattle. There were high resistance rates to penicillin (100%, 100%) and ampicillin (96.3%, 86.4%) in E. coli from dairy cattle and beef cattle. Interestingly, resistance rate to antimicrobials and distribution of resistance genes in E. coli isolated from dairy cattle were higher than those in beef cattle. Further analysis showed that the most prevalent resistance genes were blaTEM and aadA1 in dairy cattle and beef cattle, respectively. Moreover, seven diarrheagenic virulence genes (irp2, fyuA, Stx1, eaeA, F41, K99 and STa) were present in the isolates from dairy cattle, with a prevalence ranging from 3.7% to 22.22%. Six diarrheagenic virulence genes (irp2, fyuA, Stx1, eaeA, hylA and F41) were identified in the isolates from beef cattle, with a prevalence ranging from 2.27% to 63.64%. Our results provide important evidence for better exploring their interaction mechanism. Further studies are also needed to understand the origin and transmission route of E. coli in cattle to reduce its prevalence.
Collapse
|
24
|
Halleran JL, Minch R, Slyvester HJ, Jacob ME, Prange T, Baynes R, Foster DM. Comparison of the Intestinal Pharmacokinetics of Two Different Florfenicol Dosing Regimens and Its Impact on the Prevalence and Phenotypic Resistance of E. coli and Enterococcus over Time. Microorganisms 2021; 9:microorganisms9091835. [PMID: 34576730 PMCID: PMC8468023 DOI: 10.3390/microorganisms9091835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
In order to mitigate the food animal sector's role in the growing threat of antimicrobial resistance (AMR), the World Health Organization (WHO) suggests the use of lower tier antimicrobials, such as florfenicol. Florfenicol has two dosing schemes used to treat primarily bovine respiratory disease. In this study, the objective was to characterize the plasma and gastrointestinal pharmacokinetics of each dosing regimen and assess the effect of these dosing regimens on the prevalence of resistant indicator bacteria over time. Twelve steers underwent abdominal surgery to facilitate the placement of ultrafiltration probes within the lumen of the ileum and colon, as well as placement of an interstitial probe. Following surgery, cattle were dosed with either 20 mg/kg IM every 48 h of florfenicol given twice (n = 6) or a single, subcutaneous dose (40 mg/kg, n = 6). Plasma, interstitial fluid, gastrointestinal ultrafiltrate, and feces were collected. Pharmacokinetic analysis demonstrated high penetration of florfenicol within the gastrointestinal tract for both the high and low dose group (300%, 97%, respectively). There was no significant difference noted between dosing groups in proportion or persistence of phenotypically resistant bacterial isolates; however, the percent of resistant isolates was high throughout the study period. The recommendation for the use of a lower tier antimicrobial, such as florfenicol, may allow for the persistence of co-resistance for antibiotics of high regulatory concern.
Collapse
Affiliation(s)
- Jennifer L. Halleran
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
- Correspondence:
| | - Ryker Minch
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
| | - Hannah J. Slyvester
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
| | - Megan E. Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
| | - Timo Prange
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA;
| | - Ronald Baynes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
| | - Derek M. Foster
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
| |
Collapse
|
25
|
Roshdy H, Shalaby AG, Mohamed AAE, Badr H. Detection of aerobic bacterial pathogens associated with early embryonic death in pregnant New Zealand female Rabbits in Egypt. Vet World 2021; 14:986-995. [PMID: 34083950 PMCID: PMC8167537 DOI: 10.14202/vetworld.2021.986-995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Aim: Rabbits are a highly sensitive species and susceptible to various bacterial pathogens that may be causative agents for early embryonic death. This study aimed to explore the administration of different bacterial agents in does suffering from early embryonic death. Furthermore, identification of genes associated with virulence was performed to identify the phenotypic and genotypic antimicrobial resistance patterns that may increase the virulence of pathogens and lead to early embryonic death. Materials and Methods: We isolated and identified bacterial agents in 106 samples from live and dead female rabbits that had undergone early embryonic death, including liver and intestine tissue, aborted fetuses, discharges, and vaginal swabs. Conventional polymerase chain reaction (PCR) was conducted to confirm the identity of the isolated bacterial strains and their virulence. Moreover, antibiotic resistance was studied phenotypically and genotypically. Results: We isolated Escherichia coli, Salmonella, Staphylococcus aureus, Pasteurella multocida, and Listeria monocytogenes. PCR confirmed typical identification except in P. multocida, which was confirmed as Gallibacterium spp. in some cases. The final percentage of detection was 34%, 30.2%, 16.9%, 13.2%, and 11.3%, respectively. Virulence properties were investigated using different designated genes. All Salmonella strains harbored invA, stn, avrA, and ompf genes, while the sopE gene was identified in 31.25%. E. coli strains harboring the iss gene lacked the shiga toxin (stx1) gene. L. monocytogenes and S. aureus strains harbored the hemolysin gene (66.7% and 33.4%, respectively). Multidrug resistance was detected phenotypically and genotypically in most strains. Each bacterial pathogen had a different antibiotic resistance profile. Conclusion: Multiple bacterial species may contribute to early embryonic death in does. Furthermore, the combined infection could be the main cause of early embryonic death. Thus, monitoring programs should bear this in mind and focus on the early detection of these bacterial agents in female rabbits to avoid embryonic death.
Collapse
Affiliation(s)
- Heba Roshdy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P.O. Box246, Giza 12618, Egypt
| | - Azhar G Shalaby
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P.O. Box246, Giza 12618, Egypt
| | - Ahmed Abd Elhalem Mohamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P.O. Box246, Giza 12618, Egypt
| | - Heba Badr
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P.O. Box246, Giza 12618, Egypt
| |
Collapse
|
26
|
Kim S, Kim H, Kang HS, Kim Y, Kim M, Kwak, H, Ryu S. Prevalence and Genetic Characterization of mcr-1-Positive Escherichia coli Isolated from Retail Meats in South Korea. J Microbiol Biotechnol 2020; 30:1862-1869. [PMID: 32958736 PMCID: PMC9728184 DOI: 10.4014/jmb.2007.07008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
The spread of plasmid-mediated colistin resistance has posed a serious threat to public health owing to its effects on the emergence of pandrug-resistant bacteria. In this study, we investigated the prevalence and characteristics of mcr-1-positive Escherichia coli isolated from retail meat samples in Korea. In total, 1,205 E. coli strains were isolated from 3,234 retail meat samples in Korea. All E. coli strains were subjected to antimicrobial susceptibility testing and were examined for the presence of mcr-1 gene. All mcr-1-positive E. coli (n = 10, 0.8%) from retail meat were subjected to pulse-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). The transferability of mcr-1 gene was determined by conjugation assays. The mcr-1-positive strains exhibited diverse clonal types. Our mcr-1 genes were located in plasmids belonged to the IncI2 (n = 1) and IncX4 (n = 8) types, which were reported to be prevalent in Asia and worldwide, respectively. Most mcr-1 genes from mcr-1-positive strains (9/10) were transferable to the recipient strain and the transfer frequencies ranged from 2.4 × 10-3 to 9.8 × 10-6. Our data suggest that the specific types of plasmid may play an important role in spreading plasmid-mediated colistin resistance in Korea. Furthermore, our findings suggest that the retail meat may be an important tool for disseminating plasmid-mediated colistin resistance.
Collapse
Affiliation(s)
- Seokhwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea,Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul 0886, Republic of Korea
| | - Hansol Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Hai-Seong Kang
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Yonghoon Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Migyeong Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Hyosun Kwak,
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea,Corresponding authors H.Kwak Phone: +82-43-719-4301 Fax: +82-43-719-4300 E-mail:
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul 0886, Republic of Korea,S.Ryu Phone: +82-2-880-4856 Fax: +82-2-873-5095 E-mail:
| |
Collapse
|
27
|
Molecular characterization of multidrug-resistant avian pathogenic Escherichia coli from broiler chickens in Korea. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Schmidt JW, Vikram A, Arthur TM, Belk KE, Morley PS, Weinroth MD, Wheeler TL. Antimicrobial Resistance at Two U.S. Cull Cow Processing Establishments. J Food Prot 2020; 83:2216-2228. [PMID: 32730612 DOI: 10.4315/jfp-20-201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/29/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Culled beef cows (cows that have reached the end of their productive life span in cow-calf operations) and culled dairy cows represent approximately 18% of the cattle harvested in the United States annually, but data on antimicrobial resistance (AMR) in these cull cattle are extremely limited. To address this data gap, colon contents were obtained from 180 culled conventional beef cows, 179 culled conventional dairy cows, and 176 culled organic dairy cows (produced without using antimicrobials). Sponge samples were also collected from 181 conventional beef, 173 conventional dairy, and 180 organic dairy cow carcasses. These samples were obtained on 6 days (3 days each at two beef harvest and processing establishments). At one establishment, 30 samples of beef manufacturing trimmings from conventional cows and 30 trim samples from organic dairy cows were acquired. All 1,129 samples were cultured for Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant (3GCr) E. coli, Salmonella, and 3GCrSalmonella. Metagenomic DNA was isolated from 535 colon content samples, and quantitative PCR assays were performed to assess the abundances of the following 10 antimicrobial resistance genes: aac(6')-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M). For colon contents, only TETrE. coli (P < 0.01), 3GCrE. coli (P < 0.01), and erm(B) (P = 0.03) levels were higher in conventional than in organic cows. Sampling day also significantly affected (P < 0.01) these levels. Production system did not affect the levels of any measured AMR on carcasses or trim. The human health impact of the few significant AMR differences could not be determined due to the lack of standards for normal, background, safe, or basal values. Study results provide key heretofore unavailable data that may inform quantitative microbial risk assessments to address these gaps. HIGHLIGHTS
Collapse
Affiliation(s)
- John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,ORCID: https://orcid.org/0000-0003-0494-2436 [J.W.S.]
| | - Amit Vikram
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0001-5064-8356 [A.V.]
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0001-9035-0474 [T.M.A.]
| | - Keith E Belk
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,ORCID: https://orcid.org/0000-0002-7171-8824 [K.E.B.]
| | - Paul S Morley
- Veterinary Education, Research, and Outreach (VERO) Program, Texas A&M University and West Texas A&M University, Canyon, Texas 79016, USA (ORCID: https://orcid.org/0000-0001-8138-2714 [P.S.M.])
| | - Margaret D Weinroth
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523.,https://orcid.org/0000-0001-8351-395X [M.D.W.]
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933.,https://orcid.org/0000-0002-6571-9097 [T.L.W.]
| |
Collapse
|
29
|
Dsani E, Afari EA, Danso-Appiah A, Kenu E, Kaburi BB, Egyir B. Antimicrobial resistance and molecular detection of extended spectrum β-lactamase producing Escherichia coli isolates from raw meat in Greater Accra region, Ghana. BMC Microbiol 2020; 20:253. [PMID: 32795260 PMCID: PMC7427773 DOI: 10.1186/s12866-020-01935-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Typically, raw meat can be contaminated with antibiotic resistant pathogens at unhygienic slaughter and sale points. Consumption of meat contaminated with antibiotic resistant E. coli is associated with grave health care consequences. The aim of this study was to determine the microbial quality of raw meat, the antimicrobial susceptibility and Extended Spectrum Beta Lactamase (ESBL) production in E. coli isolates from raw meat. RESULTS Total Plate Counts exceeded the acceptable limit of 5.0 log CFU/ cm2 in 60.5% (124/205) of raw meat samples. Total Coliform Counts in 70.7% (145/205) of samples were in excess of the acceptable limit of 2.5 log CFU/cm2. E. coli was detected in about half of raw meat samples (48%), ranging from 9.5-79.0% among the slaughter sites. Isolates were susceptible to meropenem (100%), ceftriaxone (99%), cefotaxime (98%), chloramphenicol (97%), gentamycin (97%), ciprofloxacin (92%) and amikacin (92%), but resistant to ampicillin (57%), tetracycline (45%), sulfamethoxazole-trimethoprim (21%) and cefuroxime (17%). Multi-drug resistance (MDR) was identified in 22% of the isolates. The blaTEM gene was detected in 4% (4/98) of E. coli isolates in this study. CONCLUSION The levels of microbial contamination of raw meat in this study were unacceptable. Meat handlers and consumers are at risk of foodborne infections from E. coli including ESBL producing E. coli that are resistant to most antibiotics in use. We recommend an enhanced surveillance for antibiotic resistance in food products for the early detection of emerging resistant bacteria species in the food chain.
Collapse
Affiliation(s)
- Esther Dsani
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Accra, Ghana.,Veterinary Services Directorate of the Ministry of Food and Agriculture, Accra, Ghana
| | - Edwin Andrews Afari
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Accra, Ghana
| | - Anthony Danso-Appiah
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Accra, Ghana
| | - Ernest Kenu
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Accra, Ghana
| | - Basil Benduri Kaburi
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Accra, Ghana
| | - Beverly Egyir
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| |
Collapse
|
30
|
Environmental and Sex Effects on Bacterial Carriage by Adult House Flies ( Musca domestica L.). INSECTS 2020; 11:insects11070401. [PMID: 32605295 PMCID: PMC7412185 DOI: 10.3390/insects11070401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022]
Abstract
Adult house flies frequent microbe-rich sites such as urban dumpsters and animal facilities, and encounter and ingest bacteria during feeding and reproductive activities. Due to unique nutritional and reproductive needs, male and female flies demonstrate different interactions with microbe-rich substrates and therefore dissemination potential. We investigated culturable aerobic bacteria and coliform abundance in male and female flies (n = 107) collected from urban (restaurant dumpsters) and agricultural (dairy farm) sites. Whole-fly homogenate was aerobically cultured and enumerated on nonselective (tryptic soy agar; culturable bacteria) and selective (violet-red bile agar, VRBA; coliforms) media. Unique morphotypes from VRBA cultures of agricultural flies were identified and tested for susceptibility to 14 antimicrobials. Female flies harbored more bacteria than males and there was a sex by site interaction with sex effects on bacterial abundance at the urban site. Coliform abundance did not differ by sex, site or sex within site. Both male and female flies carried antimicrobial-resistant (AMR) bacteria: 36/38 isolates (95%) were resistant to ≥1 antimicrobial, 33/38 were multidrug-resistant (≥2), and 24/38 isolates were resistant to ≥4 antimicrobials. Our results emphasize the role of house flies in harboring bacteria including AMR strains that pose a risk to human and animal health.
Collapse
|
31
|
Adator EH, Narvaez-Bravo C, Zaheer R, Cook SR, Tymensen L, Hannon SJ, Booker CW, Church D, Read RR, McAllister TA. A One Health Comparative Assessment of Antimicrobial Resistance in Generic and Extended-Spectrum Cephalosporin-Resistant Escherichia coli from Beef Production, Sewage and Clinical Settings. Microorganisms 2020; 8:microorganisms8060885. [PMID: 32545206 PMCID: PMC7355928 DOI: 10.3390/microorganisms8060885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to compare antimicrobial resistance (AMR) in extended-spectrum cephalosporin-resistant and generic Escherichia coli from a One Health continuum of the beef production system in Alberta, Canada. A total of 705 extended-spectrum cephalosporin-resistant E. coli (ESCr) were obtained from: cattle feces (CFeces, n = 382), catch basins (CBasins, n = 137), surrounding streams (SStreams, n = 59), beef processing plants (BProcessing, n = 4), municipal sewage (MSewage; n = 98) and human clinical specimens (CHumans, n = 25). Generic isolates (663) included: CFeces (n = 142), CBasins (n = 185), SStreams (n = 81), BProcessing (n = 159) and MSewage (n = 96). All isolates were screened for antimicrobial susceptibility to 9 antimicrobials and two clavulanic acid combinations. In ESCr, oxytetracycline (87.7%), ampicillin (84.4%) and streptomycin (73.8%) resistance phenotypes were the most common, with source influencing AMR prevalence (p < 0.001). In generic E. coli, oxytetracycline (51.1%), streptomycin (22.6%), ampicillin (22.5%) and sulfisoxazole (14.3%) resistance were most common. Overall, 88.8% of ESCr, and 26.7% of generic isolates exhibited multi-drug resistance (MDR). MDR in ESCr was high from all sources: CFeces (97.1%), MSewage (96.9%), CHumans (96%), BProcessing (100%), CBasins (70.5%) and SStreams (61.4%). MDR in generic E. coli was lower with CFeces (45.1%), CBasins (34.6%), SStreams (23.5%), MSewage (13.6%) and BProcessing (10.7%). ESBL phenotypes were confirmed in 24.7% (n = 174) ESCr and 0.6% of generic E. coli. Prevalence of bla genes in ESCr were blaCTXM (30.1%), blaCTXM-1 (21.6%), blaTEM (20%), blaCTXM-9 (7.9%), blaOXA (3.0%), blaCTXM-2 (6.4%), blaSHV (1.4%) and AmpC β-lactamase blaCMY (81.3%). The lower AMR in ESCr from SStreams and BProcessing and higher AMR in CHumans and CFeces likely reflects antimicrobial use in these environments. Although MDR levels were higher in ESCr as compared to generic E. coli, AMR to the same antimicrobials ranked high in both ESCr and generic E. coli sub-populations. This suggests that both sub-populations reflect similar AMR trends and are equally useful for AMR surveillance. Considering that MDR ESCr MSewage isolates were obtained without enrichment, while those from CFeces were obtained with enrichment, MSewage may serve as a hot spot for MDR emergence and dissemination.
Collapse
Affiliation(s)
- Emelia H. Adator
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Claudia Narvaez-Bravo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
| | - Shaun R. Cook
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Lisa Tymensen
- Irrigation and Farm Water Branch, Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada; (S.R.C.); (L.T.)
| | - Sherry J. Hannon
- Health Management Services Ltd, Okotoks, AB T1S 2A2, Canada; (S.J.H.); (C.W.B.)
| | - Calvin W. Booker
- Health Management Services Ltd, Okotoks, AB T1S 2A2, Canada; (S.J.H.); (C.W.B.)
| | - Deirdre Church
- Department of Pathology & Laboratory Medicine and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (D.C.); (R.R.R.)
| | - Ron R. Read
- Department of Pathology & Laboratory Medicine and Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (D.C.); (R.R.R.)
| | - Tim A. McAllister
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.H.A.); (C.N.-B.)
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
- Correspondence:
| |
Collapse
|
32
|
de Alcântara Rodrigues I, Ferrari RG, Panzenhagen PHN, Mano SB, Conte-Junior CA. Antimicrobial resistance genes in bacteria from animal-based foods. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:143-183. [PMID: 32762867 DOI: 10.1016/bs.aambs.2020.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial resistance is a worldwide public health threat. Farm animals are important sources of bacteria containing antimicrobial resistance genes (ARGs). Although the use of antimicrobials in aquaculture and livestock has been reduced in several countries, these compounds are still routinely applied in animal production, and contribute to ARGs emergence and spread among bacteria. ARGs are transmitted to humans mainly through the consumption of products of animal origin (PAO). Bacteria can present intrinsic resistance, and once antimicrobials are administered, this resistance may be selected and multiply. The exchange of genetic material is another mechanism used by bacteria to acquire resistance. Some of the main ARGs found in bacteria present in PAO are the bla, mcr-1, cfr and tet genes, which are directly associated to antibiotic resistance in the human clinic.
Collapse
Affiliation(s)
- Isadora de Alcântara Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Sergio Borges Mano
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Crecencio RB, Brisola MC, Bitner D, Frigo A, Rampazzo L, Borges KA, Furian TQ, Salle CTP, Moraes HLS, Faria GA, Da Silva AS, Stefani LM. Antimicrobial susceptibility, biofilm formation and genetic profiles of Escherichia coli isolated from retail chicken meat. INFECTION GENETICS AND EVOLUTION 2020; 84:104355. [PMID: 32389829 DOI: 10.1016/j.meegid.2020.104355] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 11/15/2022]
Abstract
Brazil is the number one exporter of chicken meat, and this industry maintains constant microbiological vigilance. The objective of this study was to characterize the pathogenicity, antimicrobial resistance (AMR) and the profile of biofilm production of Escherchia coli strains isolated from raw refrigerated cuts of chicken meat sold in retail markets of the four largest poultry companies in Brazil. We collected 150 samples of chicken meat, in order to isolate E. coli and performed susceptibility tests (to amoxicillin associated with clavulanic acid, ceftiofur, enrofloxacin, gentamicin, and trimethoprim + sulfamethoxazole). In addition, the disc approximation test to detect extended spectrum beta-lactamases enzymes (ESBLs) producers was performed. E. coli ability to form biofilm was checked using polystyrene microplates. We also searched for ESBLs genes (blaCTY-M2, blaSHV-1, blaTEM-1, blaCTX-M2, blaOXA-1, blaPSE-1 and AmpC) and adhesion genes (sfa/foc, afa/draB, iha, hrla, fimC, tsh, papC, mat, cr1, felA, fimH and papG) in ESBL-E. coli producers and in those E. coli classified as strongly biofilm formers, respectively. The overall percentage of E. coli isolation was 58.66%, with brand A having the highest percentage (70%), followed by brands D, B and C (60, 53.3 and 50%, respectively). The highest resistance profile was observed for beta-lactams (39.5%), followed by sulfonamide associated to trimethoprim (36.9%) and polymyxin (33.4%). Of the isolates obtained, 77% were non-susceptible to at least one antimicrobial. Brand A showed the highest overall percentage of resistance with 95.23%, followed by brands C (80%), B (75%) and D (69.44%). Overall, 73.86% of the isolates were non susceptible to at least one antibiotic and 36.3% were multiresistants. A total of 17.04% of E. coli strains were identified as ESBLs producers and 70.44% were able to form biofilms (moderate-to-strong). The blaTEM-1 gene was the most prevalent (73.33%), followed by blaSHV-1 (46.66%) and blaCMY-2 (6%). Of the 31 strongly biofilm-forming strains, 26 (83.87%), 24 (77.41%) and 20 (64.51%) expressed fimC, papG and crl genes, respectively. Taken together, our results show that Brazilian chicken meat can be contaminated with E. coli that are non-susceptible to multiple antibiotics, able to form biofilm and showing a diverse repertoire of adhesins linked to pathogenicity depending on the brand evaluated.
Collapse
Affiliation(s)
- Regiane B Crecencio
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC-Oeste), Chapecó, SC, Brazil
| | - Maiara C Brisola
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC-Oeste), Chapecó, SC, Brazil
| | - Dinael Bitner
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC-Oeste), Chapecó, SC, Brazil
| | - Angélica Frigo
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC-Oeste), Chapecó, SC, Brazil
| | - Luana Rampazzo
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC-Oeste), Chapecó, SC, Brazil
| | - Karen A Borges
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Thales Q Furian
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos T P Salle
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Glaucia A Faria
- Laboratory of Applied Statistics, Department of Mathematics, São Paulo State University (Unesp), School of Engineering, Ilha Solteira, SP, Brazil
| | - Aleksandro S Da Silva
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC-Oeste), Chapecó, SC, Brazil.
| | - Lenita M Stefani
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC-Oeste), Chapecó, SC, Brazil
| |
Collapse
|
34
|
Lu W, Wang M, Wu J, Jiang Q, Jin J, Jin Q, Yang W, Chen J, Wang Y, Xiao M. Spread of chloramphenicol and tetracycline resistance genes by plasmid mobilization in agricultural soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113998. [PMID: 31991360 DOI: 10.1016/j.envpol.2020.113998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Spread of antibiotic resistance genes (ARGs) poses a worldwide threat to public health and food safety. However, ARG spread by plasmid mobilization, a broad host range transfer system, in agricultural soil has received little attention. Here, we investigated the spread of chloramphenicol resistance gene (CRG) and tetracycline resistance gene (TRG) in agricultural soil by mobilization of pSUP106 under different conditions, including different concentrations of nutrients, temperatures, soil depths, rhizosphere soils, and soil types. The number of resistant bacteria isolated in non-sterilized soil from the experiments was approximately 104 to 107 per gram of soil, belonging to 5-10 species from four genera, including nonpathogen, opportunistic pathogen, pathogen bacteria, and gram-positive and gram-negative bacteria, depending on the experiment conditions. In sterilized soil, higher levels of nutrients and higher temperatures promoted plasmid mobilization and ARG expression. Topsoil and deep soil might not support the spread of antibiotic resistance, while ARG dissemination by plasmid mobilization was better supported by maize rhizosphere and loam soils. All these factors might change bacterial growth and the activity of bacteria and lead to the above influence. Introduction of only the donor and helper, or the donor alone also resulted in the transfer of ARGs and large numbers of antibiotic resistant bacteria (ARB), indicating that some indigenous bacteria contain the elements necessary for plasmid mobilization. Our results showed that plasmid mobilization facilitated dissemination of ARGs and ARB in soil, which led to the disturbance of indigenous bacterial communities. It is important to clear ARG dissemination routes and inhibit the spread of ARGs.
Collapse
Affiliation(s)
- Wenwei Lu
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Min Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Qiuyan Jiang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jieren Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qing Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenwu Yang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Chen
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yujing Wang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ming Xiao
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 200240, China.
| |
Collapse
|
35
|
Vikram A, Miller E, Arthur TM, Bosilevac JM, Wheeler TL, Schmidt JW. Food Service Pork Chops from Three U.S. Regions Harbor Similar Levels of Antimicrobial Resistance Regardless of Antibiotic Use Claims. J Food Prot 2019; 82:1667-1676. [PMID: 31532250 DOI: 10.4315/0362-028x.jfp-19-139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pork products from animals "raised without antibiotics" (RWA) are assumed to harbor lower levels of antimicrobial resistance (AMR) than conventional (CONV) pork products with no claims regarding use of antimicrobial agents during production. A total of 372 pork chop samples from CONV (n = 190) and RWA (n = 182) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant (3GCr) E. coli, Salmonella enterica, TETr Salmonella, 3GCr Salmonella, nalidixic acid-resistant Salmonella, Enterococcus spp., TETr Enterococcus, erythromycin-resistant Enterococcus, Staphylococcus aureus, and methicillin-resistant S. aureus. Production system did not significantly impact the detection of cultured bacteria (P > 0.05). Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). Quantitative PCR was used to assess the abundances of the following 10 AMR genes: aac(6')-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M). For all 10 AMR genes, abundances did not differ significantly (P > 0.05) between production systems. These results suggest that use of antimicrobial agents during swine production minimally impacts the AMR of bacteria in pork chops.
Collapse
Affiliation(s)
- Amit Vikram
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Eric Miller
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Joseph M Bosilevac
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: https://orcid.org/0000-0001-9035-0474 [T.M.A.]; https://orcid/org/0000-0002-6571-9097 [T.L.W.]; https://orcid.org/0000-0003-0494-2436 [J.W.S.])
| |
Collapse
|
36
|
Cormier AC, Chalmers G, Cook SR, Zaheer R, Hannon SJ, Booker CW, Read RR, Gow SP, McAllister TA, Boerlin P. Presence and Diversity of Extended-Spectrum Cephalosporin Resistance Among Escherichia coli from Urban Wastewater and Feedlot Cattle in Alberta, Canada. Microb Drug Resist 2019; 26:300-309. [PMID: 31553261 DOI: 10.1089/mdr.2019.0112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A recent preliminary study from our group found that extended-spectrum cephalosporin-resistance determinants can be detected in the majority of composite fecal samples collected from Alberta feedlot cattle. Most notably, blaCTX-M genes were detected in 46.5% of samples. Further isolate characterization identified blaCTX-M-15 and blaCTX-M-27, which are widespread in bacteria from humans. We hypothesized that Escherichia coli of human and beef cattle origins share the same pool of blaCTX-M genes. In this study, we aimed to assess and compare the genomic profiles of a larger collection of blaCTX-M-positive E. coli recovered from fecal composite samples from Canadian beef feedlot cattle and human wastewater through whole-genome sequencing. The variants blaCTX-M-55, blaCTX-M-32, blaCTX-M-27, blaCTX-M-15, and blaCTX-M-14 were found in both urban wastewater and cattle fecal isolates. Core genome multilocus sequence typing showed little similarity between the fecal and wastewater isolates. Thus, if the dissemination of genes between urban wastewater and feedlot cattle occurs, it does not appear to be related to the expansion of specific clonal lineages. Further investigations are warranted to assemble and compare plasmids carrying these genes to better understand the modalities and directionality of transfer.
Collapse
Affiliation(s)
- Ashley C Cormier
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Gabhan Chalmers
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Shaun R Cook
- Agriculture and Agri-Food Canada, Lethbridge, Canada.,Alberta Agriculture and Forestry, Lethbridge, Canada
| | - Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge, Canada
| | | | | | - Ron R Read
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Sheryl P Gow
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, Canada
| |
Collapse
|
37
|
Ibrahim RA, Cryer TL, Lafi SQ, Basha EA, Good L, Tarazi YH. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Vet Res 2019; 15:159. [PMID: 31118039 PMCID: PMC6530146 DOI: 10.1186/s12917-019-1901-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) is the principle cause of colibacillosis affecting poultry. The main challenge to the poultry industry is antimicrobial resistance and the emergence of multidrug resistant bacteria that threaten the safety of the food chain. Risk factors associated with emergence of antimicrobial resistance among avian pathogenic E. coli were correlated with the inappropriate use of antimicrobials along with inadequate hygienic practices, which encourages the selection pressure of antimicrobial resistant APEC. The aim of this study was to isolate, identify, serogroup and genotype APEC from broilers, assess their antibiotic resistance profile, expressed genes and the associated risk factors. RESULTS APEC was isolated from the visceral organs of sick chickens with a prevalence of 53.4%. The most prevalent serotypes were O1, O2, O25 and O78, in percentage of 14.8, 12.6, 4.4 and 23.7%, respectively. Virulence Associated Genes; SitA, iss, iucD, iucC, astA, tsh cvi and irp2 were detected in rate of 97.4, 93.3, 75, 74, 71, 46.5, 39 and 34%, respectively and 186 (69.2%) isolates possess > 5-10 genes. The highest resistance was found against sulphamethoxazole-trimethoprim, florfenicol, amoxicillin, doxycycline and spectinomycin in percentage; 95.5, 93.7, 93.3, 92.2 and 92.2%, respectively. Sixty-eight percent of APEC isolates were found to have at least 5 out of 8 antimicrobial resistant genes. The most predominant genes were Int1 97%, tetA 78.4%, bla TEM 72.9%, Sul1 72.4%, Sul2 70.2%. Two risk factors were found to be associated with the presence of multi-drug resistant APEC in broiler chickens, with a P value ≤0.05; the use of ground water as source of drinking water and farms located in proximity to other farms. CONCLUSIONS This study characterized the VAGs of avian pathogenic E. coli and establish their antimicrobial resistance patterns. The widespread of antimicrobial resistance of APEC isolates and detection of ARGs highlighted the need to monitor the spread of ARGs in poultry farms and the environment in Jordan. Use of ground water and closely located farms were significant risk factors associated with the presence of MDR APEC in broiler chickens in Jordan.
Collapse
Affiliation(s)
- Rekaz A. Ibrahim
- Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Tillie L. Cryer
- Pathobiology and Population Sciences Department, the Royal Veterinary College, London, UK
| | - Shawkat Q. Lafi
- Department of Pathology and Public Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Ehab-Abu Basha
- Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Liam Good
- Pathobiology and Population Sciences Department, the Royal Veterinary College, London, UK
| | - Yaser H. Tarazi
- Department of Basic Medical Veterinary Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
38
|
Vounba P, Arsenault J, Bada-Alambédji R, Fairbrother JM. Antimicrobial Resistance and Potential Pathogenicity of Escherichia coli Isolates from Healthy Broilers in Québec, Canada. Microb Drug Resist 2019; 25:1111-1121. [PMID: 31038391 DOI: 10.1089/mdr.2018.0403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global health issue, particularly when it affects critically important antimicrobials such as third-generation cephalosporins (3GC). The objective of this study was to characterize Escherichia coli isolates from healthy chickens in Québec in farms where ceftiofur has been administered to chickens in ovo over a long period with regard to their AMR, multidrug resistance (MDR), potential virulence, clonality, and possession of plasmids of the incompatibility groups carrying extended-spectrum beta-lactamases (ESBLs)/AmpC genes. More than 62% of indicator isolates were MDR with resistance observed for each of the nine classes of antimicrobials tested by disk diffusion. 3GC resistance was encoded by the blaCMY-2 gene (26.7% in indicator isolates), whereas blaCTX-M was only detected in isolates selected after supplementation with ceftriaxone (3 blaCTX-M-1 isolates). Examination of blaCMY-2-positive isolates by pulsed-field gel electrophoresis showed clustering of isolates originating from different floors of the livestock building within farms. The blaCMY-2 gene was carried on replicon plasmids FIB, I1, K/B, and B/O, whereas blaCTX-M-1 gene was located on I1 as demonstrated by transformation experiments; some of these plasmids cotransferred nonsusceptibility against tetracycline or sulfonamides. In addition, six isolates, of which three were AmpC-producers, were defined as potential human extraintestinal pathogenic E. coli. In summary, this study showed that ESBLs/AmpC-producing E. coli isolates from apparently healthy chickens in Québec, Canada predominantly possess blaCMY-2 rather than blaCTX-M maybe because of the in ovo use of ceftiofur to prevent omphalitis and may be spread through clones or plasmids, and that some of these isolates could be capable of infecting humans.
Collapse
Affiliation(s)
- Passoret Vounba
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, The Swine and Poultry Infectious Diseases Research Centre (CRIPA) and the Research Group on Zoonoses and Public Health (GREZOSP), Saint-Hyacinthe, Québec, Canada
| | - Julie Arsenault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, The Swine and Poultry Infectious Diseases Research Centre (CRIPA) and the Research Group on Zoonoses and Public Health (GREZOSP), Saint-Hyacinthe, Québec, Canada
| | - Rianatou Bada-Alambédji
- Ecole Inter-Etats des Sciences et Médecine Vétérinaires (EISMV) de Dakar-Sénégal, Dakar, Senegal
| | - John Morris Fairbrother
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, The Swine and Poultry Infectious Diseases Research Centre (CRIPA) and the Research Group on Zoonoses and Public Health (GREZOSP), Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
39
|
González-Escalona N, Kase JA. Virulence gene profiles and phylogeny of Shiga toxin-positive Escherichia coli strains isolated from FDA regulated foods during 2010-2017. PLoS One 2019; 14:e0214620. [PMID: 30934002 PMCID: PMC6443163 DOI: 10.1371/journal.pone.0214620] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/15/2019] [Indexed: 11/19/2022] Open
Abstract
Illnesses caused by Shiga toxin-producing Escherichia coli (STECs) can be life threatening, such as hemolytic uremic syndrome (HUS). The STECs most frequently identified by USDA's Microbiological Data Program (MDP) carried toxin gene subtypes stx1a and/or stx2a. Here we described the genome sequences of 331 STECs isolated from foods regulated by the FDA 2010-2017, and determined their genomic identity, serotype, sequence type, virulence potential, and prevalence of antimicrobial resistance. Isolates were selected from the MDP archive, routine food testing by FDA field labs (ORA), and food testing by a contract company. Only 276 (83%) strains were confirmed as STECs by in silico analysis. Foods from which STECs were recovered included cilantro (6%), spinach (25%), lettuce (11%), and flour (9%). Phylogenetic analysis using core genome MLST revealed these STEC genomes were highly variable, with some clustering associated with ST types and serotypes. We detected 95 different sequence types (ST); several ST were previously associated with HUS: ST21 and ST29 (O26:H11), ST11 (O157:H7), ST33 (O91:H14), ST17 (O103:H2), and ST16 (O111:H-). in silico virulome analyses showed ~ 51% of these strains were potentially pathogenic [besides stx gene they also carried eae (25%) or 26% saa (26%)]. Virulence gene prevalence was also determined: stx1 only (19%); stx2 only (66%); and stx1/sxt2 (15%). Our data form a new WGS dataset that can be used to support food safety investigations and monitor the recurrence/emergence of E. coli in foods.
Collapse
Affiliation(s)
- Narjol González-Escalona
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| | - Julie Ann Kase
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America
| |
Collapse
|
40
|
Molecular detection of Shiga toxin-producing and antibiotic-resistant Escherichia coli isolates from buffaloes in southwest of Iran. Trop Anim Health Prod 2019; 51:1725-1736. [PMID: 30915604 DOI: 10.1007/s11250-019-01869-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
Abstract
Three hundred fifteen bacteriological samples were obtained from feces and both external and visceral cavity surfaces of carcasses of 105 healthy buffalo slaughtered in southwest of Iran. Confirmed Escherichia coli isolates were examined for antimicrobial resistance phenotypically and were screened for stx1, stx2, and eae genes and their subtypes and assessment of antimicrobial resistance genes by regular PCR and RFLP techniques. One hundred forty-five E. coli were isolated from feces (96 isolates) and external (37) and internal (12) surfaces of carcasses. Results showed that the prevalence of STEC, EPEC, and EHEC pathotypes was 2.8%, 0.7%, and 0.7% respectively. Among 6 (4.13%) positive isolates for examined genes, 4 (2.8%) isolates were positive for stx1, 3 (2.1%) for stx2, and 2 (1.4%) for eae gene. The detected genes were classified into stx1a (4 isolates), stx2a, stx2b, stx2c, eae-β, and unknown subtypes. The most prevalent antibiotic resistance gene was sulII (11.03%). The tetB, qnrB, floR, blaTEM, blaSHV, and aadA genes were found to a lesser extent, and all isolates were negative for blaCTX-15, blaOXA, aac(3)-I, tetA, cat1, qnrA, sulI, dhfrI, and dhfrV genes. Twelve combination patterns of antibiotic-resistant genes were observed. Maximum phenotypically resistance rate was against doxycycline (91.83%), and the minimum was against ceftazidime and florfenicol (2.75%). E. coli isolates from feces and carcasses of slaughtered buffalo can be considered a mild reservoir for stx and eae genes. However, healthy buffaloes could be considered a potential reservoir of multiple antibiotic resistance genes in E. coli isolates.
Collapse
|
41
|
Maciel JF, Matter LB, Tasca C, Scheid DAR, Gressler LT, Ziech RE, Vargas ACD. Characterization of intestinal Escherichia coli isolated from calves with diarrhea due to rotavirus and coronavirus. J Med Microbiol 2019; 68:417-423. [PMID: 30720419 DOI: 10.1099/jmm.0.000937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To address more information about changes in commensal Escherichia coli during virus intestinal infection, we characterized 30 faecal E. coli isolates from calves (21 to 60 days old) with diarrhea due to rotavirus and coronavirus, which received, before diagnosis, tetracycline, gentamicin and enrofloxacin drugs. METHODOLOGY Clermont's phylogenetic classification; presence of genes for curli, cellulose, fimbriae (F4, F5, F6, F18, F41); and antimicrobial susceptibility were used to characterize the isolates. Disk diffusion technique and PCR were used as methodologies. RESULTS E. coli isolates from calves with diarrhea were phylogenetically classified as B1 (70%, 21/30), B2 (3.33%, 1/30), C (3.33%, 1/30), D (3.33%, 1/30), E (13.33%, 4/30) and unknown (6.7 %; 2/30), whereas E. coli isolates from the control group were classified only as B1 (83.3%, 25/30), E (10 %; 3/30) and unknown (6,7 %; 2/30). E. coli isolates from calves with diarrhea showed a much higher resistance profile with 16 (53.3%) multiresistant isolates. Only isolates (30%-9/30) from diarrheic calves were also positive for fimbriae, specifically 16.7% (5/30) for F5 and 13.3% (4/30) for F18. CONCLUSION To sum up, E. coli isolates from calves with diarrhea showed differences in relation to the control group, confirming changes in commensal E. coli during virus intestinal infection. It can be emphasized that some care should be taken to manage diarrheic calves: the pathological agent must be diagnosed prior to treatment; antibacterial treatment should be with antimicrobials with a different mechanism of action; and finally, treated animals should be maintained separately from others because they can carry micro-organisms with a resistant profile.
Collapse
Affiliation(s)
- Jonas Fernandes Maciel
- 1 Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Letícia Beatriz Matter
- 1 Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Caiane Tasca
- 1 Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Daniela Alessandra Rambo Scheid
- 1 Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Letícia Trevisan Gressler
- 1 Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
- 2 Instituto Federal Farroupilha, Campus Frederico Westphalen, Laboratório de Microbiologia e Doenças Infecciosas, Curso de Medicina Veterinária, Frederico Westphalen, Rio Grande do Sul, Brazil
| | - Rosângela Estel Ziech
- 1 Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Agueda Castagna de Vargas
- 1 Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
42
|
Abstract
Multidrug resistance in Escherichia coli has become a worrying issue that is increasingly observed in human but also in veterinary medicine worldwide. E. coli is intrinsically susceptible to almost all clinically relevant antimicrobial agents, but this bacterial species has a great capacity to accumulate resistance genes, mostly through horizontal gene transfer. The most problematic mechanisms in E. coli correspond to the acquisition of genes coding for extended-spectrum β-lactamases (conferring resistance to broad-spectrum cephalosporins), carbapenemases (conferring resistance to carbapenems), 16S rRNA methylases (conferring pan-resistance to aminoglycosides), plasmid-mediated quinolone resistance (PMQR) genes (conferring resistance to [fluoro]quinolones), and mcr genes (conferring resistance to polymyxins). Although the spread of carbapenemase genes has been mainly recognized in the human sector but poorly recognized in animals, colistin resistance in E. coli seems rather to be related to the use of colistin in veterinary medicine on a global scale. For the other resistance traits, their cross-transfer between the human and animal sectors still remains controversial even though genomic investigations indicate that extended-spectrum β-lactamase producers encountered in animals are distinct from those affecting humans. In addition, E. coli of animal origin often also show resistances to other-mostly older-antimicrobial agents, including tetracyclines, phenicols, sulfonamides, trimethoprim, and fosfomycin. Plasmids, especially multiresistance plasmids, but also other mobile genetic elements, such as transposons and gene cassettes in class 1 and class 2 integrons, seem to play a major role in the dissemination of resistance genes. Of note, coselection and persistence of resistances to critically important antimicrobial agents in human medicine also occurs through the massive use of antimicrobial agents in veterinary medicine, such as tetracyclines or sulfonamides, as long as all those determinants are located on the same genetic elements.
Collapse
|
43
|
Vikram A, Miller E, Arthur TM, Bosilevac JM, Wheeler TL, Schmidt JW. Similar Levels of Antimicrobial Resistance in U.S. Food Service Ground Beef Products with and without a "Raised without Antibiotics" Claim. J Food Prot 2018; 81:2007-2018. [PMID: 30476443 DOI: 10.4315/0362-028x.jfp-18-299] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
U.S. ground beef with "raised without antibiotics" (RWA) label claims are perceived as harboring fewer bacteria with antimicrobial resistance (AMR) than are found in conventional (CONV) ground beef with no such label claim. A total of 370 ground beef samples from CONV ( n = 191) and RWA ( n = 179) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant (3GCr) E. coli, Salmonella enterica, TETr S. enterica, 3GCr S. enterica, nalidixic acid-resistant S. enterica, Enterococcus spp., erythromycin-resistant Enterococcus spp., TETr Enterococcus spp., Staphylococcus aureus, and methicillin-resistant S. aureus. TETr E. coli was more frequently detected in CONV ground beef (CONV, 54.2%; RWA, 35.2%; P < 0.01), but supplier ( P < 0.01) and production system × suppler interaction ( P < 0.01) effects were also significant. Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). The abundance of aac(6')-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M) genes was assessed by quantitative PCR. The tet(A) (2.9-log2-fold change, P = 0.04) and tet(B) (5.6-log2-fold change) ( P = 0.03) genes were significantly more abundant in RWA ground beef. Phylogenetic analyses revealed that ground beef microbiomes differed more by supplier than by production system. These results were consistent with prior research suggesting antimicrobial use in U.S. beef cattle has minimal impact on the AMR of bacteria found in these products. These results should spur a reevaluation of assumptions regarding the impact of antimicrobial use during U.S. beef production on the AMR of bacteria in ground beef.
Collapse
Affiliation(s)
- Amit Vikram
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Eric Miller
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Terrance M Arthur
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Joseph M Bosilevac
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| | - John W Schmidt
- U.S. Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA (ORCID: http://orcid.org/0000-0001-9035-0474 [T.M.A.], http://orcid.org/0000-0002-6571-9097 [T.L.W.], http://orcid.org/0000-0003-0494-2436 [J.W.S.])
| |
Collapse
|
44
|
Belaynehe KM, Shin SW, Yoo HS. Interrelationship between tetracycline resistance determinants, phylogenetic group affiliation and carriage of class 1 integrons in commensal Escherichia coli isolates from cattle farms. BMC Vet Res 2018; 14:340. [PMID: 30419899 PMCID: PMC6233274 DOI: 10.1186/s12917-018-1661-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 10/22/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Carriage of antibiotic-resistant foodborne pathogens by food production animals is one of many contributors to treatment failure in health care settings, and it necessitates an integrated approach to investigate the carriage of resistant pathogens harboring integrons in food-producing animals. METHODS Escherichia coli isolates with reduced susceptibility to tetracycline antibiotics (n = 92) were tested for associations between carriage of class1 integrons, phylogenetic group affiliation and tetracycline resistance determinants using the MIC method, PFGE analysis, PCR and sequencing. RESULTS Phylogroups B1 and A were the most common (58.7 and 19.6%, respectively), followed by groups D (20.7%) and B2 (1.1%). All isolates carried at least one of the tet genes examined. In addition, 88 (95.7%) of all tetracycline-resistant isolates carried tet(A) or tet(B), while 47 (51.1%) and 41 (44.6%) harbored only tet(A) or tet(B), respectively. Likewise, isolates harboring these genes had a higher chance (P < 0.05) of carrying class 1 integrons. Of the tested isolates, 38 (41.3%) carried the intI1 gene. Classical integrons with complete genes (sul1 and qacE∆1) at the 3'-CS were recognized in 27 isolates. PCR screening and subsequent sequencing demonstrated that 84.2% (32/38) of the intI1-positive isolates harbored resistance gene cassettes. Overall, seven gene cassettes were identified, either solely or combined with another gene cassette. The most common gene was aadA1 (10 isolates), followed by a combination of aadA1-dfrA1 (seven isolates), aadA1-dfrA12 (six isolates) and aadA1-aadA2-dfrA12 (three isolates). Genetic typing using PFGE showed minimum clonal relatedness with 28 different clusters and 12-25 discernible DNA fragments. CONCLUSIONS This study brings new insight into the relationships between the presence of integrons, phylogenetic group association and characteristics of tetracycline antibiotic resistance determinants in commensal E. coli strains.
Collapse
Affiliation(s)
- Kuastros Mekonnen Belaynehe
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Seung Won Shin
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
45
|
Belaynehe KM, Shin SW, Hong-Tae P, Yoo HS. Occurrence of aminoglycoside-modifying enzymes among isolates of Escherichia coli exhibiting high levels of aminoglycoside resistance isolated from Korean cattle farms. FEMS Microbiol Lett 2018. [PMID: 28637330 DOI: 10.1093/femsle/fnx129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This study investigated 247 Escherichia coli isolates collected from four cattle farms to characterize aminoglycoside-modifying enzyme (AME) genes, their plasmid replicons and transferability. Out of 247 isolates a high number of isolates (total 202; 81.78%) were found to be resistant to various antibiotics by disc diffusion. Of the 247 strains, 139 (56.3%) were resistant to streptomycin, and other antibiotic resistances followed as tetracycline (12.15%), ampicillin (7%), chloramphenicol (5.7%) and trimethoprim-sulfamethoxazole (0.8%). Among 247 isolates B1 was the predominant phylogenetic group identified comprising 151 isolates (61.1%), followed by groups A (27.9%), D (7%) and B2 (4%). Out of 139 isolates investigated for AME, 130 (93.5%) isolates carried at least one AME gene. aph3″-1a and aph3″-1b (46%) were the principal genes detected, followed by aac3-IVa (34.5%). ant2″-1a was the least detected gene (2.2%). Nine (6.5%) strains carried no AME genes. Twelve (63.2%) among 19 isolates transferred an AME gene to a recipient and aph3΄-1a was the dominant transferred gene. Transferability mainly occurred via the IncFIB replicon type (52.6%). Pulsed-field gel electrophoresis typing demonstrated a higher degree of diversity with 14 distinct cluster types. This result suggests that commensal microflora from food-producing animals has a tremendous ability to harbor and transfer AME genes, and poses a potential risk by dissemination of resistance to humans through the food chain.
Collapse
Affiliation(s)
- Kuastros Mekonnen Belaynehe
- Department of infectious diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Won Shin
- Department of infectious diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | | | - Han Sang Yoo
- Department of infectious diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
46
|
Li C, Jiang C, Wu Z, Cheng B, An X, Wang H, Sun Y, Huang M, Chen X, Wang J. Diversity of antibiotic resistance genes and encoding ribosomal protection proteins gene in livestock waste polluted environment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:423-433. [PMID: 29469609 DOI: 10.1080/03601234.2018.1438836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The rapid development and increase of antibiotic resistance are global phenomena resulting from the extensive use of antibiotics in human clinics and animal feeding operations. Antibiotics can promote the occurrence of antibiotic resistance genes (ARGs), which can be transferred horizontally to humans and animals through water and the food chain. In this study, the presence and abundance of ARGs in livestock waste was monitored by quantitative PCR. A diverse set of bacteria and tetracycline resistance genes encoding ribosomal protection proteins (RPPs) from three livestock farms and a river were analyzed through denaturing gradient gel electrophoresis (DGGE). The abundance of sul(I) was 103 to 105 orders of magnitude higher than that of sul(II). Among 11 tet-ARGs, the most abundant was tet(O). The results regarding bacterial diversity indicated that the presence of antibiotics might have an evident impact on bacterial diversity at every site, particularly at the investigated swine producer. The effect of livestock waste on the bacterial diversity of soil was stronger than that of water. Furthermore, a sequencing analysis showed that tet(M) exhibited two genotypes, while the other RPPs-encoding genes exhibited at least three genotypes. This study showed that various ARGs and RPPs-encoding genes are particularly widespread among livestock.
Collapse
Affiliation(s)
- Chunyan Li
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Cheng Jiang
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
- b College of Life Science, Jiamusi University , Jiamusi , Heilongjiang , PR China
| | - Zhiyang Wu
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Binglin Cheng
- c College of First Clinical Medicine of Harbin Medical University , Harbin , Heilongjiang , PR China
| | - Xuejiao An
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Hailan Wang
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Yueling Sun
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Mingyan Huang
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Xi Chen
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Jinming Wang
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| |
Collapse
|
47
|
Rebbah N, Messai Y, Châtre P, Haenni M, Madec JY, Bakour R. Diversity of CTX-M Extended-Spectrum β-Lactamases in Escherichia coli Isolates from Retail Raw Ground Beef: First Report of CTX-M-24 and CTX-M-32 in Algeria. Microb Drug Resist 2017; 24:896-908. [PMID: 29227186 DOI: 10.1089/mdr.2017.0171] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to investigate the prevalence and molecular features of extended-spectrum cephalosporin resistance in Escherichia coli isolates contaminating ground beef at retail in Algeria. Of 371 ground beef samples, 27.5% were found to contain cefotaxime-resistant E. coli isolates distributed into A (24.5%), B1 (60.8%), and D (14.7%) phylogroups. A rate of 88.2% of isolates had a multidrug-resistance phenotype. All strains were producers of CTX-M type extended-spectrum β-lactamases (ESBLs): CTX-M-1, CTX-M-3, CTX-M-14, CTX-M-15, CTX-M-24, or CTX-M-32. Conjugation assays allowed the transfer of blaCTX-M-1 in association with IncI1 plasmids, blaCTX-M-15 with IncI1 and IncK+B/O plasmids, blaCTX-M-3 with IncK plasmids, and blaCTX-M-14 with IncF1B or IncK plasmids. Sequence analysis of gyrA and parC genes showed mutations in 98.6% of ciprofloxacin-resistant isolates. The patterns "GyrA: S83L+D87N, ParC: S80I" (46.5%) and "ParC: S80I" (42.3%) were predominant. qnrS1, qnrB, and aac(6')-Ib-cr were detected in 18.7% of isolates. The tet genes, tetA, tetB, and tetA+tetB, were present in 95.7% of tetracycline-resistant isolates. The sul genes (sul1, sul2, sul3, sul1+sul2, sul2+sul3, and sul1+sul3) and the dfr gene clusters (dfrA1, dfrA5, dfrA7, dfrA8, dfrA12, dfrA5+dfrA12, dfrA1+dfrA5, dfrA7+dfrA12, dfrA5+dfrA7, and dfrA1+dfrA5+dfrA7) were found in 96.4% and 85.5% of sulfamethoxazole/trimethoprim-resistant isolates, respectively. Classes 1 and 2 integrons were detected in 67.6% and 9.8% of isolates, respectively. This study highlighted the significant presence of resistance genes, in particular those of CTXM ESBLs, in the beef meat, with the risk of their transmission to humans through food chain.
Collapse
Affiliation(s)
- Nesrine Rebbah
- 1 Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , Algiers, Algeria
| | - Yamina Messai
- 1 Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , Algiers, Algeria
| | - Pierre Châtre
- 2 Unité Antibiorésistance et Virulence Bactériennes, Université Lyon-ANSES Site de Lyon , Lyon, France
| | - Marisa Haenni
- 2 Unité Antibiorésistance et Virulence Bactériennes, Université Lyon-ANSES Site de Lyon , Lyon, France
| | - Jean Yves Madec
- 2 Unité Antibiorésistance et Virulence Bactériennes, Université Lyon-ANSES Site de Lyon , Lyon, France
| | - Rabah Bakour
- 1 Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene , Algiers, Algeria
| |
Collapse
|
48
|
Maynou G, Migura-Garcia L, Chester-Jones H, Ziegler D, Bach A, Terré M. Effects of feeding pasteurized waste milk to dairy calves on phenotypes and genotypes of antimicrobial resistance in fecal Escherichia coli isolates before and after weaning. J Dairy Sci 2017; 100:7967-7979. [PMID: 28755935 DOI: 10.3168/jds.2017-13040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/29/2017] [Indexed: 01/19/2023]
Abstract
The aim of this study was to evaluate the effects of feeding pasteurized waste milk (pWM) to calves on antimicrobial resistance of fecal Escherichia coli at both phenotypic and genotypic levels. Fifty-two Holstein female calves (3 ± 1.3 d of age) were fed 1 of the 2 different types of milk: milk replacer (MR) without antimicrobials or pWM with β-lactam residues until weaning at 49 d of age. Fecal swabs of all calves were obtained on d 0, 35, and 56 of the study and 3 E. coli isolates per sample were studied. Phenotypic resistance was tested by the disk diffusion method against a panel of 12 antimicrobials. A total of 13 resistance genes consisting of β-lactam, sulfonamide, tetracycline, and aminoglycoside families were examined by PCR. Feeding pWM to calves increased the presence of phenotypic resistance to ampicillin, cephalotin, ceftiofur, and florfenicol in fecal E. coli compared with MR-fed calves. However, the presence of resistance to sulfonamides, tetracyclines, and aminoglycosides was common in dairy calves independent of their milk-feeding source, suggesting other factors apart from the feeding source are involved in the emergence of antimicrobial resistance.
Collapse
Affiliation(s)
- G Maynou
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain
| | - L Migura-Garcia
- Department of Bacterial and Endoparasitic Infections, Centre de Recerca en Sanitat Animal (CReSA)-IRTA, 08193 Barcelona, Spain
| | - H Chester-Jones
- Department of Animal Science, Southern Research and Outreach Center, Waseca, MN 56093
| | - D Ziegler
- Department of Animal Science, Southern Research and Outreach Center, Waseca, MN 56093
| | - A Bach
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - M Terré
- Department of Ruminant Production, Institute of Agrifood Research and Technology (IRTA), 08140 Caldes de Montbui, Spain.
| |
Collapse
|
49
|
Zhang D, Zhao J, Wang Q, Liu Y, Tian C, Zhao Y, Yu L, Liu M. Trueperella pyogenes isolated from dairy cows with endometritis in Inner Mongolia, China: Tetracycline susceptibility and tetracycline-resistance gene distribution. Microb Pathog 2017; 105:51-56. [PMID: 28188901 DOI: 10.1016/j.micpath.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 11/18/2022]
Abstract
Trueperella pyogenes plays a crucial role in endometritis pathogenesis and is also associated with many infections, including metritis, mastitis, arthritis and liver abscessation, in many domestic animals. In this study, we investigated the prevalence of tetracycline resistance in T. pyogenes isolated from dairy cows with endometritis in Inner Mongolia, China, and we assessed tetracycline-resistance gene distribution among the isolates. Our results indicated that 68.7% and 62.5% of the isolates were resistant to tetracycline and doxycycline, respectively, and the rate of resistance to metacycline was 18.8%. The tetracycline resistance gene tetK was present in all isolates (n = 32), whereas the tetM gene was identified in 12.5% and 9.4% of the isolates, in the chromosome and plasmid, respectively. Strains carrying tetW were also common in the chromosome and plasmid, with abundances of 53.1% and 46.9%, respectively. However, tetO and otrA were absent in all isolates. The resistance phenotype analysis indicated that 6.3% of strains were susceptible to all tetracyclines, while 3.1% showed resistance to all tetracyclines.
Collapse
Affiliation(s)
- Dexian Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Jingcui Zhao
- Jianping Livestock Product Safety Supervision, Chaoyang 122400, PR China
| | - Qiuxia Wang
- Liaoyang Animal Health Supervision Institute, Liaoyang 111000, PR China
| | - Yaochuan Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Chunlian Tian
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yujun Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Lihui Yu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Mingchun Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
50
|
Song JW, Yang SJ, Shin S, Seo KS, Park YH, Park KT. Genotypic and Phenotypic Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Bovine Mastitic Milk in Korea. J Food Prot 2016; 79:1725-1732. [PMID: 28221858 DOI: 10.4315/0362-028x.jfp-16-067] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Staphylococcus aureus is a major etiological pathogen for bovine mastitis, foodborne illness, and various clinical infections. Methicillin-resistant S. aureus (MRSA) has been isolated from bovine mastitic milk, and the presence of MRSA in milk is a major public health concern. We investigated the frequency of MRSA isolation from mastitic raw milk in Korea and characterized the patterns of antimicrobial resistance, virulence, and genotypes of the MRSA isolates. A total of 1,222 raw milk samples were collected from 47 dairy farms in Gyeonggi province from 2011 to 2012. Of these samples, 649 were considered mastitic milk based on somatic cell counts of more than 200,000 cells per ml, and 165 S. aureus isolates (from 25.4% of samples) were obtained from these samples. Of these isolates, 23 (13.9%) collected from five farms were confirmed as MRSA by detection of the mecA gene. Disk diffusion and MIC tests for antibiotic resistance revealed that all MRSA isolates were resistant to four or more antimicrobial agents. All MRSA isolates had staphylococcal enterotoxin genes, and two clusters of these genes were identified: seg-sei-sek-sem-sen-seo (20 isolates, 87%) and sed-seg-sei-sej-sem-sen-seo (3 isolates, 13%). Each MRSA-positive farm had only one spa-SCCmec type. Nine MRSA isolates (39.1%) with the t324-IVa genotype, which is related to community-acquired MRSA infection, were isolated from three dairy farms. Additional genotypes of t148-IVa and t002-II were detected and related to human MRSA strains. Most MRSA isolates had distinct pulsed-field gel electrophoresis subtypes, indicating they were not the same clones. Only two isolates collected from the same farm during different years had an identical electrophoresis type, indicating persistence of the clone at this farm. Taken together, these findings may indicate an increased virulence and risk of MRSA strains on dairy farms. Therefore, an efficient surveillance and control program is needed to prevent the transmission of MRSA from animals to humans.
Collapse
Affiliation(s)
- Jae Won Song
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Soo Jin Yang
- Department of Animal Science and Technology, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 456-756, Gyeonggi-do, Republic of Korea
| | - Sook Shin
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Keun Seok Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Yong Ho Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| | - Kun Taek Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|