1
|
Hibbs M, Pal D, Barudzija G, Ariya PA. Physicochemical properties and their impact on ice nucleation efficiency of respiratory viral RNA and proteins. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2010-2019. [PMID: 39351962 DOI: 10.1039/d4em00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Ice nucleation processes in the earth's atmosphere are critical for cloud formation, radiation, precipitation, and climate change. We investigated the physicochemical properties and ice nucleation potential of selected viral aerosols, including their RNA and proteins, using advanced techniques such as scanning-transmission electron microscopy (S/TEM), small angle X-ray scattering (SAXS), particle analyzers, and a peltier chamber. The experiments revealed that RNA particles obtained from MS2 bacteriophage had a mean freezing point of -13.9 ± 0.3 °C, comparable to the average ice nucleation temperature of global dust particles, which is approximatively -15 °C. RNA from MS2, Influenza, SARS-CoV-1 and SARS-CoV-2 demonstrated average ice nucleation temperatures of -13.9 ± 0.3 °C, -13.7 ± 0.3 °C, -13.7 ± 0.3 °C, and -15.9 ± 0.4 °C, respectively. SAXS analysis indicated a high local crystallinity value of 0.5 of MS2 RNA particles, hinting that high crystalline nature may contribute to their effectiveness as ice nuclei. Dilution experiments show that viral RNA consistently catalyzes ice nucleation. The addition of dust-containing particles, such as Fe2O3, CuO, and TiO2, to MS2 bacteriophage droplets enhanced ice nucleation, as did UV radiation. We herein discuss the implications of this work on ice nucleation and freezing processes.
Collapse
Affiliation(s)
- Mattie Hibbs
- Department of Atmospheric and Oceanic Sciences, Canada.
| | - Devendra Pal
- Department of Atmospheric and Oceanic Sciences, Canada.
| | - Gorjana Barudzija
- Department of Chemistry McGill University, 801 Sherbrooke St. W., Montreal, QC, H2A 0B8, Canada
| | - Parisa A Ariya
- Department of Atmospheric and Oceanic Sciences, Canada.
- Department of Chemistry McGill University, 801 Sherbrooke St. W., Montreal, QC, H2A 0B8, Canada
| |
Collapse
|
2
|
Motos G, Schaub A, David SC, Costa L, Terrettaz C, Kaltsonoudis C, Glas I, Klein LK, Bluvshtein N, Luo B, Violaki K, Pohl MO, Hugentobler W, Krieger UK, Pandis SN, Stertz S, Peter T, Kohn T, Nenes A. Dependence of aerosol-borne influenza A virus infectivity on relative humidity and aerosol composition. Front Microbiol 2024; 15:1484992. [PMID: 39479211 PMCID: PMC11521868 DOI: 10.3389/fmicb.2024.1484992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
We describe a novel biosafety aerosol chamber equipped with state-of-the-art instrumentation for bubble-bursting aerosol generation, size distribution measurement, and condensation-growth collection to minimize sampling artifacts when measuring virus infectivity in aerosol particles. Using this facility, we investigated the effect of relative humidity (RH) in very clean air without trace gases (except ∼400 ppm CO2) on the preservation of influenza A virus (IAV) infectivity in saline aerosol particles. We characterized infectivity in terms of 99%-inactivation time, t 99, a metric we consider most relevant to airborne virus transmission. The viruses remained infectious for a long time, namely t 99 > 5 h, if RH < 30% and the particles effloresced. Under intermediate conditions of humidity (40% < RH < 70%), the loss of infectivity was the most rapid (t 99 ≈ 15-20 min, and up to t 99 ≈ 35 min at 95% RH). This is more than an order of magnitude faster than suggested by many previous studies of aerosol-borne IAV, possibly due to the use of matrices containing organic molecules, such as proteins, with protective effects for the virus. We tested this hypothesis by adding sucrose to our aerosolization medium and, indeed, observed protection of IAV at intermediate RH (55%). Interestingly, the t 99 of our measurements are also systematically lower than those in 1-μL droplet measurements of organic-free saline solutions, which cannot be explained by particle size effects alone.
Collapse
Affiliation(s)
- Ghislain Motos
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Aline Schaub
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Shannon C. David
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura Costa
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Céline Terrettaz
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christos Kaltsonoudis
- Center for The Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Liviana K. Klein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Nir Bluvshtein
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Beiping Luo
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Kalliopi Violaki
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marie O. Pohl
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Walter Hugentobler
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ulrich K. Krieger
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Spyros N. Pandis
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for The Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
- Department of Chemical Engineering, University of Patras, Patras, Greece
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Thomas Peter
- Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
| | - Tamar Kohn
- Environmental Chemistry Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for The Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| |
Collapse
|
3
|
Purhonen R, Atanasova NS, Salokas J, Duplissy J, Loikkanen E, Maunula L. A Pilot Study of Aerosolization of Infectious Murine Norovirus in an Experimental Setup. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:329-337. [PMID: 38698288 PMCID: PMC11422255 DOI: 10.1007/s12560-024-09595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 05/05/2024]
Abstract
Human norovirus is transmitted mainly via the faecal-oral route, but norovirus disease outbreaks have been reported in which airborne transmission has been suggested as the only explanation. We used murine norovirus (MNV) as a surrogate for human norovirus to determine the aerosolization of infectious norovirus in an experimental setup. A 3-l air chamber system was used for aerosolization of MNV. Virus in solution (6 log10 TCID50/ml) was introduced into the nebulizer for generating aerosols and a RAW 264.7 cell dish without a lid was placed in the air chamber. Cell culture medium samples were taken from the dishes after the aerosol exposure time of 30 or 90 min, and the dishes were placed in a 37 °C, 5% CO2 incubator and inspected with a light microscope for viral cytopathic effects (CPEs). We determined both the infectious MNV TCID50 titre and used an RT-qPCR assay. During the experiments, virus infectivity remained stable for 30 and 90 min in the MNV solution in the nebulizer. Infectious MNV TCID50 values/ml of 2.89 ± 0.29 and 3.20 ± 0.49 log10 were measured in the chamber in RAW 264.7 cell dish media after the 30-min and 90-min exposure, respectively. The MNV RNA loads were 6.20 ± 0.24 and 6.93 ± 1.02 log10 genome copies/ml, respectively. Later, a typical MNV CPE appeared in the aerosol-exposed RAW cell dishes. We demonstrated that MNV was aerosolized and that it remained infectious in the experimental setup used. Further studies required for understanding the behaviour of MNV in aerosols can thus be performed.
Collapse
Affiliation(s)
- Roderik Purhonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Nina S Atanasova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Atmospheric Composition Unit, Finnish Meteorological Institute, Helsinki, Finland
| | - Julija Salokas
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jonathan Duplissy
- Institute for Atmospheric and Earth System Research (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Emil Loikkanen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Leena Maunula
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Hu Y, Peng S, Su B, Wang T, Lin J, Sun W, Hu X, Zhang G, Wang X, Peng P, Bi X. Laboratory studies on the infectivity of human respiratory viruses: Experimental conditions, detections, and resistance to the atmospheric environment. FUNDAMENTAL RESEARCH 2024; 4:471-483. [PMID: 38933192 PMCID: PMC11197496 DOI: 10.1016/j.fmre.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 06/28/2024] Open
Abstract
The environmental stability of infectious viruses in the laboratory setting is crucial to the transmission potential of human respiratory viruses. Different experimental techniques or conditions used in studies over the past decades have led to diverse understandings and predictions for the stability of viral infectivity in the atmospheric environment. In this paper, we review the current knowledge on the effect of simulated atmospheric conditions on the infectivity of respiratory viruses, mainly focusing on influenza viruses and coronaviruses, including severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus. First, we summarize the impact of the experimental conditions on viral stability; these involve the methods of viral aerosol generation, storage during aging and collection, the virus types and strains, the suspension matrixes, the initial inoculum volumes and concentrations, and the drying process. Second, we summarize and discuss the detection methods of viral infectivity and their disadvantages. Finally, we integrate the results from the reviewed studies to obtain an overall understanding of the effects of atmospheric environmental conditions on the decay of infectious viruses, especially aerosolized viruses. Overall, this review highlights the knowledge gaps in predicting the ability of viruses to maintain infectivity during airborne transmission.
Collapse
Affiliation(s)
- Yaohao Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyi Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bojiang Su
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juying Lin
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510640, China
| |
Collapse
|
5
|
Myung H, Joung YS. Contribution of Particulates to Airborne Disease Transmission and Severity: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6846-6867. [PMID: 38568611 DOI: 10.1021/acs.est.3c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) has catalyzed great interest in the spread of airborne pathogens. Airborne infectious diseases are classified into viral, bacterial, and fungal infections. Environmental factors can elevate their transmission and lethality. Air pollution has been reported as the leading environmental cause of disease and premature death worldwide. Notably, ambient particulates of various components and sizes are harmful pollutants. There are two prominent health effects of particles in the atmosphere: (1) particulate matter (PM) penetrates the respiratory tract and adversely affects health, such as heart and respiratory diseases; and (2) bioaerosols of particles act as a medium for the spread of pathogens in the air. Particulates contribute to the occurrence of infectious diseases by increasing vulnerability to infection through inhalation and spreading disease through interactions with airborne pathogens. Here, we focus on the synergistic effects of airborne particulates on infectious disease. We outline the concepts and characteristics of bioaerosols, from their generation to transformation and circulation on Earth. Considering that microorganisms coexist with other particulates as bioaerosols, we investigate studies examining respiratory infections associated with airborne PM. Furthermore, we discuss four factors (meteorological, biological, physical, and chemical) that may impact the influence of PM on the survival of contagious pathogens in the atmosphere. Our review highlights the significant role of particulates in supporting the transmission of infectious aerosols and emphasizes the need for further research in this area.
Collapse
Affiliation(s)
- Hyunji Myung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Young Soo Joung
- Department of Mechanical Systems Engineering, Sookmyung Women's University, 100, Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
6
|
Mofidfar M, Mehrgardi MA, Xia Y, Zare RN. Dependence on relative humidity in the formation of reactive oxygen species in water droplets. Proc Natl Acad Sci U S A 2024; 121:e2315940121. [PMID: 38489384 PMCID: PMC10962988 DOI: 10.1073/pnas.2315940121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Water microdroplets (7 to 11 µm average diameter, depending on flow rate) are sprayed in a closed chamber at ambient temperature, whose relative humidity (RH) is controlled. The resulting concentration of ROS (reactive oxygen species) formed in the microdroplets, measured by the amount of hydrogen peroxide (H2O2), is determined by nuclear magnetic resonance (NMR) and by spectrofluorimetric assays after the droplets are collected. The results are found to agree closely with one another. In addition, hydrated hydroxyl radical cations (•OH-H3O+) are recorded from the droplets using mass spectrometry and superoxide radical anions (•O2-) and hydroxyl radicals (•OH) by electron paramagnetic resonance spectroscopy. As the RH varies from 15 to 95%, the concentration of H2O2 shows a marked rise by a factor of about 3.5 in going from 15 to 50%, then levels off. By replacing the H2O of the sprayed water with deuterium oxide (D2O) but keeping the gas surrounding droplets with H2O, mass spectrometric analysis of the hydrated hydroxyl radical cations demonstrates that the water in the air plays a dominant role in producing H2O2 and other ROS, which accounts for the variation with RH. As RH increases, the droplet evaporation rate decreases. These two facts help us understand why viruses in droplets both survive better at low RH values, as found in indoor air in the wintertime, and are disinfected more effectively at higher RH values, as found in indoor air in the summertime, thus explaining the recognized seasonality of airborne viral infections.
Collapse
Affiliation(s)
| | - Masoud A. Mehrgardi
- Department of Chemistry, Stanford University, Stanford, CA94305
- Department of Chemistry, University of Isfahan, Isfahan81743, Iran
| | - Yu Xia
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA94305
| |
Collapse
|
7
|
Groth R, Niazi S, Oswin HP, Haddrell AE, Spann K, Morawska L, Ristovski Z. Toward Standardized Aerovirology: A Critical Review of Existing Results and Methodologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3595-3608. [PMID: 38355395 DOI: 10.1021/acs.est.3c07275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Understanding the airborne survival of viruses is important for public health and epidemiological modeling and potentially to develop mitigation strategies to minimize the transmission of airborne pathogens. Laboratory experiments typically involve investigating the effects of environmental parameters on the viability or infectivity of a target airborne virus. However, conflicting results among studies are common. Herein, the results of 34 aerovirology studies were compared to identify links between environmental and compositional effects on the viability of airborne viruses. While the specific experimental apparatus was not a factor in variability between reported results, it was determined that the experimental procedure was a major factor that contributed to discrepancies in results. The most significant contributor to variability between studies was poorly defined initial viable virus concentration in the aerosol phase, causing many studies to not measure the rapid inactivation, which occurs quickly after particle generation, leading to conflicting results. Consistently, studies that measured their reference airborne viability minutes after aerosolization reported higher viability at subsequent times, which indicates that there is an initial loss of viability which is not captured in these studies. The composition of the particles which carry the viruses was also found to be important in the viability of airborne viruses; however, the mechanisms for this effect are unknown. Temperature was found to be important for aerosol-phase viability, but there is a lack of experiments that directly compare the effects of temperature in the aerosol phase and the bulk phase. There is a need for repeated measurements between different research groups under identical conditions both to assess the degree of variability between studies and also to attempt to better understand already published data. Lack of experimental standardization has hindered the ability to quantify the differences between studies, for which we provide recommendations for future studies. These recommendations are as follows: measuring the reference airborne viability using the "direct method"; use equipment which maximizes time resolution; quantify all losses appropriately; perform, at least, a 5- and 10-min sample, if possible; report clearly the composition of the virus suspension; measure the composition of the gas throughout the experiment. Implementing these recommendations will address the most significant oversights in the existing literature and produce data which can more easily be quantitatively compared.
Collapse
Affiliation(s)
- Robert Groth
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Sadegh Niazi
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Henry P Oswin
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Allen E Haddrell
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kirsten Spann
- School of Biomedical Sciences, Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Lidia Morawska
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Zoran Ristovski
- School of Earth and Atmospheric Sciences, International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| |
Collapse
|
8
|
Rockey NC, Le Sage V, Marr LC, Lakdawala SS. Seasonal influenza viruses decay more rapidly at intermediate humidity in droplets containing saliva compared to respiratory mucus. Appl Environ Microbiol 2024; 90:e0201023. [PMID: 38193683 PMCID: PMC10880610 DOI: 10.1128/aem.02010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Expulsions of virus-laden aerosols or droplets from the oral and nasal cavities of an infected host are an important source of onward respiratory virus transmission. However, the presence of infectious influenza virus in the oral cavity during infection has not been widely considered, and thus, little work has explored the environmental persistence of influenza virus in oral cavity expulsions. Using the ferret model, we detected infectious virus in the nasal and oral cavities, suggesting that the virus can be expelled into the environment from both anatomical sites. We also assessed the stability of two influenza A viruses (H1N1 and H3N2) in droplets of human saliva or respiratory mucus over a range of relative humidities. We observed that influenza virus infectivity decays rapidly in saliva droplets at intermediate relative humidity, while viruses in airway surface liquid droplets retain infectivity. Virus inactivation was not associated with bulk protein content, salt content, or droplet drying time. Instead, we found that saliva droplets exhibited distinct inactivation kinetics during the wet and dry phases at intermediate relative humidity, and droplet residue morphology may lead to the elevated first-order inactivation rate observed during the dry phase. Additionally, distinct differences in crystalline structure and nanobead localization were observed between saliva and airway surface liquid droplets. Together, our work demonstrates that different respiratory fluids exhibit unique virus persistence profiles and suggests that influenza viruses expelled from the oral cavity may contribute to virus transmission in low- and high-humidity environments.IMPORTANCEDetermining how long viruses persist in the environment is important for mitigating transmission risk. Expelled infectious droplets and aerosols are composed of respiratory fluids, including saliva and complex mucus mixtures, but how well influenza viruses survive in such fluids is largely unknown. Here, we find that infectious influenza virus is present in the oral cavity of infected ferrets, suggesting that saliva-containing expulsions can play a role in onward transmission. Additionally, influenza virus in droplets composed of saliva degrades more rapidly than virus within respiratory mucus. Droplet composition impacts the crystalline structure and virus localization in dried droplets. These results suggest that viruses from distinct sites in the respiratory tract could have variable persistence in the environment, which will impact viral transmission fitness.
Collapse
Affiliation(s)
- Nicole C. Rockey
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Seema S. Lakdawala
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Horne J, Dunne N, Singh N, Safiuddin M, Esmaeili N, Erenler M, Ho I, Luk E. Building parameters linked with indoor transmission of SARS-CoV-2. ENVIRONMENTAL RESEARCH 2023; 238:117156. [PMID: 37717799 DOI: 10.1016/j.envres.2023.117156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/27/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
The rapid spread of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emphasized the importance of understanding and adapting to the indoor remediation of transmissible diseases to decrease the risk for future pandemic threats. While there were many precautions in place to hinder the spread of COVID-19, there has also been a substantial increase of new research on SARS-CoV-2 that can be utilized to further mitigate the transmission risk of this novel virus. This review paper aims to identify the building parameters of indoor spaces that could have considerable influence on the transmission of SARS-CoV-2. The following building parameters have been identified and analyzed, emphasizing their link with the indoor transmission of SARS-CoV-2: temperature and relative humidity, temperature differences between rooms, ventilation rate and access to natural ventilation, occupant density, surface type and finish, airflow direction and speed, air stability, indoor air pollution, central air conditioning systems, capacity of air handling system and HVAC filter efficiency, edge sealing of air filters, room layout and interior design, and compartmentalization of interior space. This paper also explains the interactions of SARS-CoV-2 with indoor environments and its persistence. Furthermore, the modifications of the key building parameters have been discussed for controlling the transmission of SARS-CoV-2 in indoor spaces. Understanding the information provided in this paper is crucial to develop effective health and safety measures that will aid in infection prevention.
Collapse
Affiliation(s)
- Jacqueline Horne
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Nicholas Dunne
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Nirmala Singh
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Md Safiuddin
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada.
| | - Navid Esmaeili
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Merve Erenler
- Centre for Construction and Engineering Technologies, George Brown College, Casa Loma Campus, 160 Kendal Avenue, Toronto, ON M5R 1M3, Canada
| | - Ian Ho
- Sysconverge Inc., 7030 Woodbine Avenue, Suite 500, Markham, ON L3R 6G2, Canada
| | - Edwin Luk
- Sysconverge Inc., 7030 Woodbine Avenue, Suite 500, Markham, ON L3R 6G2, Canada
| |
Collapse
|
10
|
Bustos NA, Ribbeck K, Wagner CE. The role of mucosal barriers in disease progression and transmission. Adv Drug Deliv Rev 2023; 200:115008. [PMID: 37442240 DOI: 10.1016/j.addr.2023.115008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/22/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Mucus is a biological hydrogel that coats and protects all non-keratinized wet epithelial surfaces. Mucins, the primary structural components of mucus, are critical components of the gel layer that protect against invading pathogens. For communicable diseases, pathogen-mucin interactions contribute to the pathogen's fate and the potential for disease progression in-host, as well as the potential for onward transmission. We begin by reviewing in-host mucus filtering mechanisms, including size filtering and interaction filtering, which regulate the permeability of mucus barriers to all molecules including pathogens. Next, we discuss the role of mucins in communicable diseases at the point of transmission (i.e. how the encapsulation of pathogens in emitted mucosal droplets externally to hosts may modulate pathogen infectivity and viability). Overall, mucosal barriers modulate both host susceptibility as well as the dynamics of population-level disease transmission. The study of mucins and their use in models and experimental systems are therefore crucial for understanding the mechanistic biophysical principles underlying disease transmission and the early stages of host infection.
Collapse
Affiliation(s)
- Nicole A Bustos
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline E Wagner
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Yin Y, Lai M, Zhou S, Chen Z, Jiang X, Wang L, Li Z, Peng Z. Effects and interaction of temperature and relative humidity on the trend of influenza prevalence: A multi-central study based on 30 provinces in mainland China from 2013 to 2018. Infect Dis Model 2023; 8:822-831. [PMID: 37496828 PMCID: PMC10366480 DOI: 10.1016/j.idm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023] Open
Abstract
Background Evidence is inefficient about how meteorological factors influence the trends of influenza transmission in different regions of China. Methods We estimated the time-varying reproduction number (Rt) of influenza and explored the impact of temperature and relative humidity on Rt using generalized additive quasi-Poisson regression models combined with the distribution lag non-linear model (DLNM). The effect of temperature and humidity interaction on Rt of influenza was explored. The multiple random-meta analysis was used to evaluate region-specific association. The excess risk (ER) index was defined to investigate the correlation between Rt and each meteorological factor with the modification of seasonal and regional characteristics. Results Low temperature and low relative humidity contributed to influenza epidemics on the national level, while shapes of merged cumulative effect plots were different across regions. Compared to that of median temperature, the merged RR (95%CI) of low temperature in northern and southern regions were 1.40(1.24,1.45) and 1.20 (1.14,1.27), respectively, while those of high temperature were 1.10(1.03,1.17) and 1.00 (0.95,1.04), respectively. There were negative interactions between temperature and relative humidity on national (SI = 0.59, 95%CI: 0.57-0.61), southern (SI = 0.49, 95%CI: 0.17-0.80), and northern regions (SI = 0.59, 95%CI: 0.56,0.62). In general, with the increase of the change of the two meteorological factors, the ER of Rt also gradually increased. Conclusions Temperature and relative humidity have an effect on the influenza epidemics in China, and there is an interaction between the two meteorological factors, but the effect of each factor is heterogeneous among regions. Meteorological factors may be considered to predict the trend of influenza epidemic.
Collapse
Affiliation(s)
- Yi Yin
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Miao Lai
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Sijia Zhou
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ziying Chen
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xin Jiang
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Liping Wang
- Division of Infectious Disease/Key Laboratory of Surveillance and Early Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhongjie Li
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhihang Peng
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
12
|
Zeng L, Li J, Lv M, Li Z, Yao L, Gao J, Wu Q, Wang Z, Yang X, Tang G, Qu G, Jiang G. Environmental Stability and Transmissibility of Enveloped Viruses at Varied Animate and Inanimate Interfaces. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2023; 1:15-31. [PMID: 37552709 PMCID: PMC11504606 DOI: 10.1021/envhealth.3c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 08/10/2023]
Abstract
Enveloped viruses have been the leading causative agents of viral epidemics in the past decade, including the ongoing coronavirus disease 2019 outbreak. In epidemics caused by enveloped viruses, direct contact is a common route of infection, while indirect transmissions through the environment also contribute to the spread of the disease, although their significance remains controversial. Bridging the knowledge gap regarding the influence of interfacial interactions on the persistence of enveloped viruses in the environment reveals the transmission mechanisms when the virus undergoes mutations and prevents excessive disinfection during viral epidemics. Herein, from the perspective of the driving force, partition efficiency, and viral survivability at interfaces, we summarize the viral and environmental characteristics that affect the environmental transmission of viruses. We expect to provide insights for virus detection, environmental surveillance, and disinfection to limit the spread of severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Li Zeng
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junya Li
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Meilin Lv
- College
of Sciences, Northeastern University, Shenyang 110819, China
| | - Zikang Li
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Yao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Qi Wu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
| | - Ziniu Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyue Yang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Tang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310000, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Spena A, Palombi L, Carestia M, Spena VA, Biso F. SARS-CoV-2 Survival on Surfaces. Measurements Optimisation for an Enthalpy-Based Assessment of the Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6169. [PMID: 37372756 DOI: 10.3390/ijerph20126169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
The present work, based on the results found in the literature, yields a consistent model of SARS-CoV-2 survival on surfaces as environmental conditions, such as temperature and relative humidity, change simultaneously. The Enthalpy method, which has recently been successfully proposed to investigate the viability of airborne viruses using a holistic approach, is found to allow us to take a reasoned reading of the data available on surfaces in the literature. This leads us to identify the domain of conditions of lowest SARS-CoV-2 viability, in a specific enthalpy range between 50 and 60 kJ/Kgdry-air. This range appears well-superimposed with the results we previously obtained from analyses of coronaviruses' behaviour in aerosols, and may be helpful in dealing with the spread of infections. To steer future investigations, shortcomings and weaknesses emerging from the assessment of viral measurement usually carried out on surfaces are also discussed in detail. Once demonstrated that current laboratory procedures suffer from both high variability and poor standardisation, targeted implementations of standards and improvement of protocols for future investigations are then proposed.
Collapse
Affiliation(s)
- Angelo Spena
- Department of Enterprise Engineering, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Leonardo Palombi
- Catholic University of "Our Lady of Good Counsel", 1001 Tirana, Albania
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Mariachiara Carestia
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Vincenzo Andrea Spena
- Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Francesco Biso
- Department of Enterprise Engineering, Tor Vergata University of Rome, 00133 Rome, Italy
| |
Collapse
|
14
|
Tosheva II, Saygan KS, Mijnhardt SM, Russell CJ, Fraaij PLA, Herfst S. Hemagglutinin stability as a key determinant of influenza A virus transmission via air. Curr Opin Virol 2023; 61:101335. [PMID: 37307646 DOI: 10.1016/j.coviro.2023.101335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/14/2023]
Abstract
To cause pandemics, zoonotic respiratory viruses need to adapt to replication in and spread between humans, either via (indirect or direct) contact or through the air via droplets and aerosols. To render influenza A viruses transmissible via air, three phenotypic viral properties must change, of which receptor-binding specificity and polymerase activity have been well studied. However, the third adaptive property, hemagglutinin (HA) acid stability, is less understood. Recent studies show that there may be a correlation between HA acid stability and virus survival in the air, suggesting that a premature conformational change of HA, triggered by low pH in the airways or droplets, may render viruses noninfectious before they can reach a new host. We here summarize available data from (animal) studies on the impact of HA acid stability on airborne transmission and hypothesize that the transmissibility of other respiratory viruses may also be impacted by an acidic environment in the airways.
Collapse
Affiliation(s)
- Ilona I Tosheva
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kain S Saygan
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Suzanne Ma Mijnhardt
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pieter LA Fraaij
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands.
| |
Collapse
|
15
|
Tarannum T, Ahmed S. Recent development in antiviral surfaces: Impact of topography and environmental conditions. Heliyon 2023; 9:e16698. [PMID: 37260884 PMCID: PMC10227326 DOI: 10.1016/j.heliyon.2023.e16698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
The transmission of viruses is largely dependent on contact with contaminated virus-laden communal surfaces. While frequent surface disinfection and antiviral coating techniques are put forth by researchers as a plan of action to tackle transmission in dire situations like the Covid-19 pandemic caused by SARS-CoV-2 virus, these procedures are often laborious, time-consuming, cost-intensive, and toxic. Hence, surface topography-mediated antiviral surfaces have been gaining more attention in recent times. Although bioinspired hydrophobic antibacterial nanopatterned surfaces mimicking the natural sources is a very prevalent and successful strategy, the antiviral prospect of these surfaces is yet to be explored. Few recent studies have explored the potential of nanopatterned antiviral surfaces. In this review, we highlighted surface properties that have an impact on virus attachment and persistence, particularly focusing and emphasizing on the prospect of the nanotextured surface with enhanced properties to be used as antiviral surface. In addition, recent developments in surface nanopatterning techniques depending on the nano-scaled dimensions have been discussed. The impacts of environments and surface topology on virus inactivation have also been reviewed.
Collapse
Affiliation(s)
- Tanjina Tarannum
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh
| | - Shoeb Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000. Bangladesh
| |
Collapse
|
16
|
Haddrell A, Otero-Fernandez M, Oswin H, Cogan T, Bazire J, Tian J, Alexander R, Mann JFS, Hill D, Finn A, Davidson AD, Reid JP. Differences in airborne stability of SARS-CoV-2 variants of concern is impacted by alkalinity of surrogates of respiratory aerosol. J R Soc Interface 2023; 20:20230062. [PMID: 37340783 PMCID: PMC10282576 DOI: 10.1098/rsif.2023.0062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
The mechanistic factors hypothesized to be key drivers for the loss of infectivity of viruses in the aerosol phase often remain speculative. Using a next-generation bioaerosol technology, we report measurements of the aero-stability of several SARS-CoV-2 variants of concern in aerosol droplets of well-defined size and composition at high (90%) and low (40%) relative humidity (RH) upwards of 40 min. When compared with the ancestral virus, the infectivity of the Delta variant displayed different decay profiles. At low RH, a loss of viral infectivity of approximately 55% was observed over the initial 5 s for both variants. Regardless of RH and variant, greater than 95% of the viral infectivity was lost after 40 min of being aerosolized. Aero-stability of the variants correlate with their sensitivities to alkaline pH. Removal of all acidic vapours dramatically increased the rate of infectivity decay, with 90% loss after 2 min, while the addition of nitric acid vapour improved aero-stability. Similar aero-stability in droplets of artificial saliva and growth medium was observed. A model to predict loss of viral infectivity is proposed: at high RH, the high pH of exhaled aerosol drives viral infectivity loss; at low RH, high salt content limits the loss of viral infectivity.
Collapse
Affiliation(s)
- Allen Haddrell
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| | | | - Henry Oswin
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| | - Tristan Cogan
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, UK
| | - James Bazire
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jianghan Tian
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| | - Robert Alexander
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jamie F. S. Mann
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, UK
| | - Darryl Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- School of Population Health Sciences, University of Bristol, Bristol, UK
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Jonathan P. Reid
- School of Chemistry, Cantock's Close, University of Bristol, Bristol, UK
| |
Collapse
|
17
|
Viral Preservation with Protein-Supplemented Nebulizing Media in Aerosols. Appl Environ Microbiol 2023; 89:e0154522. [PMID: 36856430 PMCID: PMC10057872 DOI: 10.1128/aem.01545-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The outbreak of SARS-CoV-2 has emphasized the need for a deeper understanding of infectivity, spread, and treatment of airborne viruses. Bacteriophages (phages) serve as ideal surrogates for respiratory pathogenic viruses thanks to their high tractability and the structural similarities tailless phages bear to viral pathogens. However, the aerosolization of enveloped SARS-CoV-2 surrogate phi6 usually results in a >3-log10 reduction in viability, limiting its usefulness as a surrogate for aerosolized coronavirus in "real world" contexts, such as a sneeze or cough. Recent work has shown that saliva or artificial saliva greatly improves the stability of viruses in aerosols and microdroplets relative to standard dilution/storage buffers like suspension medium (SM) buffer. These findings led us to investigate whether we could formulate media that preserves the viability of phi6 and other phages in artificially derived aerosols. Results indicate that SM buffer supplemented with bovine serum albumin (BSA) significantly improves the recovery of airborne phi6, MS2, and 80α and outperforms commercially formulated artificial saliva. Particle sizing and acoustic particle trapping data indicate that BSA supplementation dose-dependently improves viral survivability by reducing the extent of particle evaporation. These data suggest that our viral preservation medium may facilitate a lower-cost alternative to artificial saliva for future applied aerobiology studies. IMPORTANCE We have identified common and inexpensive lab reagents that confer increased aerosol survivability on phi6 and other phages. Our results suggest that soluble protein is a key protective component in nebulizing medium. Protein supplementation likely reduces exposure of the phage to the air-water interface by reducing the extent of particle evaporation. These findings will be useful for applications in which researchers wish to improve the survivability of these (and likely other) aerosolized viruses to better approximate highly transmissible airborne viruses like SARS-CoV-2.
Collapse
|
18
|
Evanescent-Field Excited Surface Plasmon-Enhanced U-Bent Fiber Probes Coated with Au and ZnO Nanoparticles for Humidity Detection. Processes (Basel) 2023. [DOI: 10.3390/pr11020642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
We report the design, fabrication, and testing of a humidity sensor based on an optical fiber-based evanescent wave probe. The fiber was bent into a U-shape and de-cladded at the location of the bending. The de-cladded section was coated either with Au or with ZnO nanoparticles. Humidity is detected based on the interaction in the surface plasmon resonance of the Au/ZnO nanoparticles excited by an evanescent wave of light passing through the optical fiber. The response of the U-bent fibers to humidity was investigated using a specifically designed low-voltage portable interrogation box. We found that the fibers coated with ZnO nanoparticles were able to detect a minimum 0.1% change in humidity with an average sensitivity of 143 µV/%RH and 95% linearity over the 10% to 80% humidity range. In comparison, samples coated with Au and Au + ZnO nanoparticles demonstrated a minimum change detection of 0.3% RH and 2% RH respectively. The response and recovery time of the sensor were measured to be 3 s and 4 s, respectively, for a 60% change in humidity from 20% to 80%. The entire measurement system was operated by consuming an electrical power of 1.62 W at an input voltage of 12 Vdc.
Collapse
|
19
|
Luo B, Schaub A, Glas I, Klein LK, David SC, Bluvshtein N, Violaki K, Motos G, Pohl MO, Hugentobler W, Nenes A, Krieger UK, Stertz S, Peter T, Kohn T. Expiratory Aerosol pH: The Overlooked Driver of Airborne Virus Inactivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:486-497. [PMID: 36537693 PMCID: PMC9835828 DOI: 10.1021/acs.est.2c05777] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/01/2023]
Abstract
Respiratory viruses, including influenza virus and SARS-CoV-2, are transmitted by the airborne route. Air filtration and ventilation mechanically reduce the concentration of airborne viruses and are necessary tools for disease mitigation. However, they ignore the potential impact of the chemical environment surrounding aerosolized viruses, which determines the aerosol pH. Atmospheric aerosol gravitates toward acidic pH, and enveloped viruses are prone to inactivation at strong acidity levels. Yet, the acidity of expiratory aerosol particles and its effect on airborne virus persistence have not been examined. Here, we combine pH-dependent inactivation rates of influenza A virus (IAV) and SARS-CoV-2 with microphysical properties of respiratory fluids using a biophysical aerosol model. We find that particles exhaled into indoor air (with relative humidity ≥ 50%) become mildly acidic (pH ∼ 4), rapidly inactivating IAV within minutes, whereas SARS-CoV-2 requires days. If indoor air is enriched with nonhazardous levels of nitric acid, aerosol pH drops by up to 2 units, decreasing 99%-inactivation times for both viruses in small aerosol particles to below 30 s. Conversely, unintentional removal of volatile acids from indoor air may elevate pH and prolong airborne virus persistence. The overlooked role of aerosol acidity has profound implications for virus transmission and mitigation strategies.
Collapse
Affiliation(s)
- Beiping Luo
- Institute
for Atmospheric and Climate Science, ETH
Zurich, CH-8092Zurich, Switzerland
| | - Aline Schaub
- Environmental
Chemistry Laboratory, School of Architecture, Civil and Environmental
Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Irina Glas
- Institute
of Medical Virology, University of Zurich, CH-8057Zurich, Switzerland
| | - Liviana K. Klein
- Institute
for Atmospheric and Climate Science, ETH
Zurich, CH-8092Zurich, Switzerland
| | - Shannon C. David
- Environmental
Chemistry Laboratory, School of Architecture, Civil and Environmental
Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Nir Bluvshtein
- Institute
for Atmospheric and Climate Science, ETH
Zurich, CH-8092Zurich, Switzerland
| | - Kalliopi Violaki
- Laboratory
of Atmospheric Processes and Their Impacts, School of Architecture,
Civil and Environmental Engineering, Ecole
Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Ghislain Motos
- Laboratory
of Atmospheric Processes and Their Impacts, School of Architecture,
Civil and Environmental Engineering, Ecole
Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Marie O. Pohl
- Institute
of Medical Virology, University of Zurich, CH-8057Zurich, Switzerland
| | - Walter Hugentobler
- Laboratory
of Atmospheric Processes and Their Impacts, School of Architecture,
Civil and Environmental Engineering, Ecole
Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| | - Athanasios Nenes
- Laboratory
of Atmospheric Processes and Their Impacts, School of Architecture,
Civil and Environmental Engineering, Ecole
Polytechnique Fédérale de Lausanne (EPFL), CH-1015Lausanne, Switzerland
- Institute
of Chemical Engineering Sciences, Foundation
for Research and Technology Hellas, GR-26504Patras, Greece
| | - Ulrich K. Krieger
- Institute
for Atmospheric and Climate Science, ETH
Zurich, CH-8092Zurich, Switzerland
| | - Silke Stertz
- Institute
of Medical Virology, University of Zurich, CH-8057Zurich, Switzerland
| | - Thomas Peter
- Institute
for Atmospheric and Climate Science, ETH
Zurich, CH-8092Zurich, Switzerland
| | - Tamar Kohn
- Environmental
Chemistry Laboratory, School of Architecture, Civil and Environmental
Engineering, Ecole Polytechnique Fédérale
de Lausanne (EPFL), CH-1015Lausanne, Switzerland
| |
Collapse
|
20
|
Negishi N, Yamano R, Hori T, Koura S, Maekawa Y, Sato T. Development of a high-speed bioaerosol elimination system for treatment of indoor air. BUILDING AND ENVIRONMENT 2023; 227:109800. [PMID: 36407015 PMCID: PMC9651995 DOI: 10.1016/j.buildenv.2022.109800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/12/2023]
Abstract
We developed a high-speed filterless airflow multistage photocatalytic elbow aerosol removal system for the treatment of bioaerosols such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human-generated bioaerosols that diffuse into indoor spaces are 1-10 μm in size, and their selective and rapid treatment can reduce the risk of SARS-CoV-2 infection. A high-speed airflow is necessary to treat large volumes of indoor air over a short period. The proposed system can be used to eliminate viruses in aerosols by forcibly depositing aerosols in a high-speed airflow onto a photocatalyst placed inside the system through inertial force and turbulent diffusion. Because the main component of the deposited bioaerosol is water, it evaporates after colliding with the photocatalyst, and the nonvolatile virus remains on the photocatalytic channel wall. The residual virus on the photocatalytic channel wall is mineralized via photocatalytic oxidation with UVA-LED irradiation in the channel. When this system was operated in a 4.5 m3 aerosol chamber, over 99.8% aerosols in the size range of 1-10 μm were removed within 15 min. The system continued delivering such performance with the continuous introduction of aerosols. Because this system exhibits excellent aerosol removal ability at a flow velocity of 5 m/s or higher, it is more suitable than other reactive air purification systems for treating large-volume spaces.
Collapse
Key Words
- AOP, advanced oxidation process
- Bioaerosol
- CFD, computational fluid dynamics
- COVID-19, coronavirus disease 2019
- DES, detached eddy simulation
- HEPA, high-efficiency particulate absorbing
- ISO, International Standard Organization
- Indoor air
- LES, Large eddy simulation
- RANS, Reynolds-averaged Navier–Stokes
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SCDLP, soya casein-digested lecithin polysorbate
- TiO2 photocatalyst
- UV, ultraviolet
- UVA, ultraviolet-A
- UVC, ultraviolet-C
- Windspeed
Collapse
Affiliation(s)
- Nobuaki Negishi
- Environment Management Research Institute, National Institute of Advanced Industrial Science and Technology, 1-16 Onogawa, Tsukuba, 305-8569, Japan
| | - Ryo Yamano
- Department of Applied Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
| | - Tomoko Hori
- Environment Management Research Institute, National Institute of Advanced Industrial Science and Technology, 1-16 Onogawa, Tsukuba, 305-8569, Japan
| | - Setsuko Koura
- Department of Applied Chemistry, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, 275-0016, Japan
| | - Yuji Maekawa
- Kamaishi Electric Machinery Factory Co. Ltd., 9-171-4 Kasshi-cho, Kamaishi, 026-0055, Japan
| | - Taro Sato
- Kamaishi Electric Machinery Factory Co. Ltd., 9-171-4 Kasshi-cho, Kamaishi, 026-0055, Japan
| |
Collapse
|
21
|
Choudhary S, Durkin MJ, Stoeckel DC, Steinkamp HM, Thornhill MH, Lockhart PB, Babcock HM, Kwon JH, Liang SY, Biswas P. Comparison of aerosol mitigation strategies and aerosol persistence in dental environments. Infect Control Hosp Epidemiol 2022; 43:1779-1784. [PMID: 35440351 PMCID: PMC10822722 DOI: 10.1017/ice.2022.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To determine the impact of various aerosol mitigation interventions and to establish duration of aerosol persistence in a variety of dental clinic configurations. METHODS We performed aerosol measurement studies in endodontic, orthodontic, periodontic, pediatric, and general dentistry clinics. We used an optical aerosol spectrometer and wearable particulate matter sensors to measure real-time aerosol concentration from the vantage point of the dentist during routine care in a variety of clinic configurations (eg, open bay, single room, partitioned operatories). We compared the impact of aerosol mitigation strategies (eg, ventilation and high-volume evacuation (HVE), and prevalence of particulate matter) in the dental clinic environment before, during, and after high-speed drilling, slow-speed drilling, and ultrasonic scaling procedures. RESULTS Conical and ISOVAC HVE were superior to standard-tip evacuation for aerosol-generating procedures. When aerosols were detected in the environment, they were rapidly dispersed within minutes of completing the aerosol-generating procedure. Few aerosols were detected in dental clinics, regardless of configuration, when conical and ISOVAC HVE were used. CONCLUSIONS Dentists should consider using conical or ISOVAC HVE rather than standard-tip evacuators to reduce aerosols generated during routine clinical practice. Furthermore, when such effective aerosol mitigation strategies are employed, dentists need not leave dental chairs fallow between patients because aerosols are rapidly dispersed.
Collapse
Affiliation(s)
- Shruti Choudhary
- Aerosol and Air Quality Research Laboratory, Department of Chemical, Environmental and Material Engineering, University of Miami, Miami, Florida, United States
| | - Michael J. Durkin
- Division of Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Daniel C. Stoeckel
- St. Louis University Center for Advanced Dental Education, St. Louis University, St. Louis, Missouri, United States
| | - Heidi M. Steinkamp
- St. Louis University Center for Advanced Dental Education, St. Louis University, St. Louis, Missouri, United States
| | - Martin H. Thornhill
- The School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
- Department of Oral Medicine, Carolinas Medical Center, Atrium Health, North Carolina, United States
| | - Peter B. Lockhart
- Department of Oral Medicine, Carolinas Medical Center, Atrium Health, North Carolina, United States
| | - Hilary M. Babcock
- Division of Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jennie H. Kwon
- Division of Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Stephen Y. Liang
- Division of Infectious Disease, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Pratim Biswas
- Aerosol and Air Quality Research Laboratory, Department of Chemical, Environmental and Material Engineering, University of Miami, Miami, Florida, United States
| |
Collapse
|
22
|
Joseph J, Baby HM, Zhao S, Li X, Cheung K, Swain K, Agus E, Ranganathan S, Gao J, Luo JN, Joshi N. Role of bioaerosol in virus transmission and material-based countermeasures. EXPLORATION (BEIJING, CHINA) 2022; 2:20210038. [PMID: 37324804 PMCID: PMC10190935 DOI: 10.1002/exp.20210038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/15/2022] [Indexed: 06/17/2023]
Abstract
Respiratory pathogens transmit primarily through particles such as droplets and aerosols. Although often overlooked, the resuspension of settled droplets is also a key facilitator of disease transmission. In this review, we discuss the three main mechanisms of aerosol generation: direct generation such as coughing and sneezing, indirect generation such as medical procedures, and resuspension of settled droplets and aerosols. The size of particles and environmental factors influence their airborne lifetime and ability to cause infection. Specifically, humidity and temperature are key factors controlling the evaporation of suspended droplets, consequently affecting the duration in which particles remain airborne. We also suggest material-based approaches for effective prevention of disease transmission. These approaches include electrostatically charged virucidal agents and surface coatings, which have been shown to be highly effective in deactivating and reducing resuspension of pathogen-laden aerosols.
Collapse
Affiliation(s)
- John Joseph
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Helna Mary Baby
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Spencer Zhao
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Xiang‐Ling Li
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Krisco‐Cheuk Cheung
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Kabir Swain
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Eli Agus
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Sruthi Ranganathan
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
| | - Jingjing Gao
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - James N Luo
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of SurgeryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Nitin Joshi
- Center for Nanomedicine, Department of AnesthesiologyPerioperative and Pain Medicine, Brigham and Women's HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
23
|
Doan TNK, Le MD, Bajrovic I, Celentano L, Krause C, Balyan HG, Svancarek A, Mote A, Tretiakova A, Jude Samulski R, Croyle MA. Thermostability and in vivo performance of AAV9 in a film matrix. COMMUNICATIONS MEDICINE 2022; 2:148. [PMID: 36414773 PMCID: PMC9681776 DOI: 10.1038/s43856-022-00212-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Adeno-associated virus (AAV) vectors are stored and shipped frozen which poses logistic and economic barriers for global access to these therapeutics. To address this issue, we developed a method to stabilize AAV serotype 9 (AAV9) in a film matrix that can be stored at ambient temperature and administered by systemic injection. METHODS AAV9 expressing the luciferase transgene was mixed with formulations, poured into molds and films dried under aseptic conditions. Films were packaged in individual particle-free bags with foil overlays and stored at various temperatures under controlled humidity. Recovery of AAV9 from films was determined by serial dilution of rehydrated film in media and infection of HeLa RC32 cells. Luciferase expression was compared to that of films rehydrated immediately after drying. Biodistribution of vector was determined by in vivo imaging and quantitative real-time PCR. Residual moisture in films was determined by Karl Fischer titration. RESULTS AAV9 embedded within a film matrix and stored at 4 °C for 5 months retained 100% of initial titer. High and low viscosity formulations maintained 90 and 85% of initial titer after 6 months at 25 °C respectively. AAV was not detected after 4 months in a Standard Control Formulation under the same conditions. Biodistribution and transgene expression of AAV stored in film at 25 or 4 °C were as robust as vector stored at -80 °C in a Standard Control Formulation. CONCLUSIONS These results suggest that storage of AAV in a film matrix facilitates easy transport of vector to remote sites without compromising in vivo performance.
Collapse
Affiliation(s)
- Trang Nguyen Kieu Doan
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA
| | - Matthew D Le
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA
| | - Irnela Bajrovic
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Lorne Celentano
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Charles Krause
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | | | - Abbie Svancarek
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Angela Mote
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - Anna Tretiakova
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
| | - R Jude Samulski
- AskBio 20T.W. Alexander Drive, Suite 110, Durham, NC, 27709, USA
- Jurata Thin Film, 2450 Holcombe Blvd., Suite J, Houston, TX, 77021, USA
- Department of Pharmacology, University of North Carolina, 7119 Thurston Bowles Bldg. 104 Manning Dr., Chapel Hill, NC, 27599, USA
| | - Maria A Croyle
- The University of Texas at Austin College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, 78712, USA.
- John R. LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
24
|
Verheyen CA, Bourouiba L. Associations between indoor relative humidity and global COVID-19 outcomes. J R Soc Interface 2022; 19:20210865. [PMID: 36382379 PMCID: PMC9667146 DOI: 10.1098/rsif.2021.0865] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
Globally, the spread and severity of COVID-19 have been distinctly non-uniform. Seasonality was suggested as a contributor to regional variability, but the relationship between weather and COVID-19 remains unclear and the focus of attention has been on outdoor conditions. Because humans spend most of their time indoors and because most transmission occurs indoors, we here, instead, investigate the hypothesis that indoor climate-particularly indoor relative humidity (RH)-may be the more relevant modulator of outbreaks. To study this association, we combined population-based COVID-19 statistics and meteorological measurements from 121 countries. We rigorously processed epidemiological data to reduce bias, then developed and experimentally validated a computational workflow to estimate indoor conditions based on outdoor weather data and standard indoor comfort conditions. Our comprehensive analysis shows robust and systematic relationships between regional outbreaks and indoor RH. In particular, we found intermediate RH (40-60%) to be robustly associated with better COVID-19 outbreak outcomes (versus RH < 40% or >60%). Together, these results suggest that indoor conditions, particularly indoor RH, modulate the spread and severity of COVID-19 outbreaks.
Collapse
Affiliation(s)
- C. A. Verheyen
- Harvard-MIT Health Sciences and Technology, Boston, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - L. Bourouiba
- Harvard-MIT Health Sciences and Technology, Boston, MA, USA
- Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
- The Fluid Dynamics of Disease Transmission Laboratory, MIT, Cambridge, MA, USA
| |
Collapse
|
25
|
Zhang S, Sun Z, He J, Li Z, Han L, Shang J, Hao Y. The influences of the East Asian Monsoon on the spatio-temporal pattern of seasonal influenza activity in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157024. [PMID: 35772553 DOI: 10.1016/j.scitotenv.2022.157024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Previous research has extensively studied the seasonalities of human influenza infections and the effect of specific climatic factors in different regions. However, there is limited understanding of the influences of monsoons. This study applied generalized additive model with monthly surveillance data from mainland China to explore the influences of the East Asian Monsoon on the spatio-temporal pattern of seasonal influenza in China. The results suggested two influenza active periods in northern China and three active periods in southern China. The study found that the northerly advancement of East Asian Summer Monsoon (EASM) influences the summer influenza spatio-temporal patterns in both southern and northern China. At the interannual scale, the north-south converse effect of EASM on influenza activity is mainly due to the converse effect of EASM on humidity and precipitation. Within the annual scale, influenza activity in southern China gradually reaches its maximum during the summer exacerbated by the northerly advancement of EASM. Furthermore, the winter epidemic in China is related to the low temperature and humidity influenced by the East Asian Winter Monsoon (EAWM). Moreover, the active period in transition season is related partially to the large rapid temperature change influenced by the transition of EAWM and EASM. Despite the delayed onset and instability, the climatic condition influenced by the East Asian Monsoon is one of the potential key drivers of influenza activity.
Collapse
Affiliation(s)
- Shuwen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhaobin Sun
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China.
| | - Juan He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ziming Li
- Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei, China Meteorological Administration, Beijing 100089, China; Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Ling Han
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Shang
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Yu Hao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
26
|
Nair AN, Anand P, George A, Mondal N. A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. ENVIRONMENTAL RESEARCH 2022; 213:113579. [PMID: 35714688 PMCID: PMC9192357 DOI: 10.1016/j.envres.2022.113579] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Airborne transmission arises through the inhalation of aerosol droplets exhaled by an infected person and is now thought to be the primary transmission route of COVID-19. Thus, maintaining adequate indoor air quality levels is vital in mitigating the spread of the airborne virus. The cause-and-effect flow of various agents involved in airborne transmission of viruses has been investigated through a systematic literature review. It has been identified that the airborne virus can stay infectious in the air for hours, and pollutants such as particulate matter (PM10, PM2.5), Nitrogen dioxide (NO2), Sulphur dioxide (SO2), Carbon monoxide (CO), Ozone (O3), Carbon dioxide (CO2), and Total Volatile Organic Compounds (TVOCs) and other air pollutants can enhance the incidence, spread and mortality rates of viral disease. Also, environmental quality parameters such as humidity and temperature have shown considerable influence in virus transmission in indoor spaces. The measures adopted in different research studies that can curb airborne transmission of viruses for an improved Indoor Air Quality (IAQ) have been collated for their effectiveness and limitations. A diverse set of building strategies, components, and operation techniques from the recent literature pertaining to the ongoing spread of COVID-19 disease has been systematically presented to understand the current state of techniques and building systems that can minimize the viral spread in built spaces This comprehensive review will help architects, builders, realtors, and other organizations improve or design a resilient building system to deal with COVID-19 or any such pandemic in the future.
Collapse
Affiliation(s)
- Ajith N Nair
- Department of Architecture and Regional Planning, IIT, Kharagpur, India
| | - Prashant Anand
- Department of Architecture and Regional Planning, IIT, Kharagpur, India.
| | - Abraham George
- Department of Architecture and Regional Planning, IIT, Kharagpur, India
| | - Nilabhra Mondal
- Department of Architecture and Regional Planning, IIT, Kharagpur, India
| |
Collapse
|
27
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Cumulative effects of air pollution and climate drivers on COVID-19 multiwaves in Bucharest, Romania. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 166:368-383. [PMID: 36034108 PMCID: PMC9391082 DOI: 10.1016/j.psep.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.
Collapse
Key Words
- 222Rn
- 222Rn, Radon
- AOD, Total Aerosol Optical Depth at 550 nm
- Aerosol Optical Depth (AOD)
- CAMS, Copernicus Atmosphere Monitoring Service
- CO, Carbon monoxide
- COVID, 19 Coronavirus Disease 2019
- COVID-19 disease
- Climate variables
- DNC, Daily New COVID-19 positive cases
- DND, Daily New COVID-19 Deaths
- MERS, CoV Middle East respiratory syndrome coronavirus
- NO2, Nitrogen dioxide
- NOAA, National Oceanic and Atmospheric Administration U.S.A.
- O3, Ozone
- Outdoor air pollutants
- PBL, Planetary Boundary Layer height
- PM, Particulate Matter: PM1(1 µm), PM2.5 (2.5 µm) and PM10(10.0 µm) diameter
- RH, Air relative humidity
- SARS, CoV Severe Outdoor Respiratory Syndrome Coronavirus
- SARS, CoV-2 Severe Outdoor Respiratory Syndrome Coronavirus 2
- SI, Surface solar global irradiance
- SO2, Sulfur dioxide
- Synoptic meteorological circulation
- T, Air temperature at 2 m height
- p, Air pressure
- w, Wind speed intensity
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| |
Collapse
|
28
|
Vass WB, Lednicky JA, Shankar SN, Fan ZH, Eiguren-Fernandez A, Wu CY. Viable SARS-CoV-2 Delta variant detected in aerosols in a residential setting with a self-isolating college student with COVID-19. JOURNAL OF AEROSOL SCIENCE 2022; 165:106038. [PMID: 35774447 PMCID: PMC9217630 DOI: 10.1016/j.jaerosci.2022.106038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 05/08/2023]
Abstract
The B.1.617.2 (Delta) variant of SARS-CoV-2 emerged in India in October of 2020 and spread widely to over 145 countries, comprising over 99% of genome sequence-confirmed virus in COVID-19 cases of the United States (US) by September 2021. The rise in COVID-19 cases due to the Delta variant coincided with a return to in-person school attendance, straining COVID-19 mitigation plans implemented by educational institutions. Some plans required sick students to self-isolate off-campus, resulting in an unintended consequence: exposure of co-inhabitants of dwellings used by the sick person during isolation. We assessed air and surface samples collected from the bedroom of a self-isolating university student with mild COVID-19 for the presence of SARS-CoV-2. That virus' RNA was detected by real-time reverse-transcription quantitative polymerase chain reaction (rRT-qPCR) in air samples from both an isolation bedroom and a distal, non-isolation room of the same dwelling. SARS-CoV-2 was detected and viable virus was isolated in cell cultures from aerosol samples as well as from the surface of a mobile phone. Genomic sequencing revealed that the virus was a Delta variant SARS-CoV-2 strain. Taken together, the results of this work confirm the presence of viable SARS-CoV-2 within a residential living space of a person with COVID-19 and show potential for transportation of virus-laden aerosols beyond a designated isolation suite to other areas of a single-family home.
Collapse
Affiliation(s)
- William B Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - John A Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Z Hugh Fan
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
- Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | | | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
29
|
Keetels GH, Godderis L, van de Wiel BJH. Associative evidence for the potential of humidification as a non-pharmaceutical intervention for influenza and SARS-CoV-2 transmission. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:720-726. [PMID: 36104526 PMCID: PMC9472723 DOI: 10.1038/s41370-022-00472-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Both influenza and SARS-CoV-2 viruses show a strong seasonal spreading in temperate regions. Several studies indicated that changes in indoor humidity could be one of the key factors explaining this. OBJECTIVE The purpose of this study is to quantify the association between relevant epidemiological metrics and humidity in both influenza and SARS-CoV-2 epidemic periods. METHODS The atmospheric dew point temperature serves as a proxy for indoor relative humidity. This study considered the weekly mortality rate in the Netherlands between 1995 and 2019 to determine the correlation between the dew point and the spread of influenza. During influenza epidemic periods in the Netherlands, governmental restrictions were absent; therefore, there is no need to control this confounder. During the SARS-CoV-2 pandemic, governmental restrictions strongly varied over time. To control this effect, periods with a relatively constant governmental intervention level were selected to analyze the reproduction rate. We also examine SARS-CoV-2 deaths in the nursing home setting, where health policy and social factors were less variable. Viral transmissibility was measured by computing the ratio between the estimated daily number of infectious persons in the Netherlands and the lagged mortality figures in the nursing homes. RESULTS For both influenza and SARS-CoV-2, a significant correlation was found between the dew point temperature and the aforementioned epidemiological metrics. The findings are consistent with the anticipated mechanisms related to droplet evaporation, stability of virus in the indoor environment, and impairment of the natural defenses of the respiratory tract in dry air. SIGNIFICANCE This information is helpful to understand the seasonal pattern of respiratory viruses and motivate further study to what extent it is possible to alter the seasonal pattern by actively intervening in the adverse role of low humidity during fall and winter in temperate regions. IMPACT A solid understanding and quantification of the role of humidity on the transmission of respiratory viruses is imperative for epidemiological modeling and the installation of non-pharmaceutical interventions. The results of this study indicate that improving the indoor humidity by humidifiers could be a promising technology for reducing the spread of both influenza and SARS-CoV-2 during winter and fall in the temperate zone. The identification of this potential should be seen as a strong motivation to invest in further prospective testing of this non-pharmaceutical intervention.
Collapse
Affiliation(s)
- G H Keetels
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
| | - L Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - B J H van de Wiel
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
| |
Collapse
|
30
|
MN M, KP S, Indrabalan UB, P K, Jacob SS, Subramaniam S, patil SS, SK K, Goroshi S. An extensive analysis of Codon usage pattern, Evolutionary rate, and Phylogeographic reconstruction in Foot and mouth disease (FMD) serotypes (A, Asia 1, and O) of six major climatic zones of India: A Comparative study. Acta Trop 2022; 236:106674. [DOI: 10.1016/j.actatropica.2022.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
|
31
|
Saccani C, Pellegrini M, Guzzini A. Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The research community agrees that the main indirect way the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads among people who do not keep social distance is through the emission of infected respiratory droplets. Infected people exhale droplets of different sizes and emission velocities while breathing, talking, sneezing, or coughing. Complex two-phase flow modeling considering evaporation and condensation phenomena describes droplets’ trajectories under the specific thermofluid dynamic boundary conditions, including air temperature, relative humidity, and velocity. However, public health organizations simply suggest a safe distance in the range of 1–2 m regardless of the effect of boundary conditions on droplets’ motion. This chapter aims to highlight open research questions to be addressed and clarify how framework conditions can influence safe distance in an indoor environment and which technical countermeasures (such as face masks wearing or heating, ventilation, and air conditioning (HVAC) control) can be adopted to minimize the infection risk.
Collapse
|
32
|
Skanata A, Spagnolo F, Metz M, Smyth DS, Dennehy JJ. Humidity Reduces Rapid and Distant Airborne Dispersal of Viable Viral Particles in Classroom Settings. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:632-637. [PMID: 35937034 PMCID: PMC9344459 DOI: 10.1021/acs.estlett.2c00243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The transmission of airborne pathogens is considered to be the main route through which a number of known and emerging respiratory diseases infect their hosts. While physical distancing and mask wearing may help mitigate short-range transmission, the extent of long-range transmission in closed spaces where a pathogen remains suspended in the air remains unknown. We have developed a method to detect viable virus particles by using an aerosolized bacteriophage Phi6 in combination with its host Pseudomonas phaseolicola, which when seeded on agar plates acts as a virus detector that can be placed at a range of distances away from an aerosol-generating source. By applying this method, we consistently detected viable phage particles at distances of up to 18 feet away from the source within 15 min of exposure in a classroom equipped with a state of the art HVAC system and determined that increasing the relative humidity beyond 40% significantly reduces dispersal. Our method, which can be further modified for use with other virus/host combinations, quantifies airborne transmission in the built environment and can thus be used to set safety standards for room capacity and to ascertain the efficacy of interventions in closed spaces of specified sizes and intended uses.
Collapse
Affiliation(s)
- Antun Skanata
- Biology
Department, Queens College, The City University
of New York, Flushing, New York 11367, United
States
| | - Fabrizio Spagnolo
- Biology
Department, Queens College, The City University
of New York, Flushing, New York 11367, United
States
| | - Molly Metz
- Department
of Natural Sciences and Mathematics, Eugene
Lang College of Liberal Arts at The New School, New York, New York 10011, United States
| | - Davida S. Smyth
- Department
of Natural Sciences and Mathematics, Eugene
Lang College of Liberal Arts at The New School, New York, New York 10011, United States
| | - John J. Dennehy
- Biology
Department, Queens College, The City University
of New York, Flushing, New York 11367, United
States
- Biology
Doctoral Program, The Graduate Center, The
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
33
|
Ahlawat A, Mishra SK, Herrmann H, Rajeev P, Gupta T, Goel V, Sun Y, Wiedensohler A. Impact of Chemical Properties of Human Respiratory Droplets and Aerosol Particles on Airborne Viruses' Viability and Indoor Transmission. Viruses 2022; 14:v14071497. [PMID: 35891477 PMCID: PMC9318922 DOI: 10.3390/v14071497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
The airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as a potential pandemic challenge, especially in poorly ventilated indoor environments, such as certain hospitals, schools, public buildings, and transports. The impacts of meteorological parameters (temperature and humidity) and physical property (droplet size) on the airborne transmission of coronavirus in indoor settings have been previously investigated. However, the impacts of chemical properties of viral droplets and aerosol particles (i.e., chemical composition and acidity (pH)) on viability and indoor transmission of coronavirus remain largely unknown. Recent studies suggest high organic content (proteins) in viral droplets and aerosol particles supports prolonged survival of the virus by forming a glassy gel-type structure that restricts the virus inactivation process under low relative humidity (RH). In addition, the virus survival was found at neutral pH, and inactivation was observed to be best at low (<5) and high pH (>10) values (enveloped bacteriophage Phi6). Due to limited available information, this article illustrates an urgent need to research the impact of chemical properties of exhaled viral particles on virus viability. This will improve our fundamental understanding of indoor viral airborne transmission mechanisms.
Collapse
Affiliation(s)
- Ajit Ahlawat
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
- Correspondence:
| | | | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
| | - Pradhi Rajeev
- Department of Civil Engineering, Indian Institute of Technology (IIT), Kanpur 208016, India; (P.R.); (T.G.)
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology (IIT), Kanpur 208016, India; (P.R.); (T.G.)
| | - Vikas Goel
- School of Interdisciplinary Research, Indian Institute of Technology (IIT), Delhi 110016, India;
| | - Yele Sun
- LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100017, China;
| | - Alfred Wiedensohler
- Leibniz Institute for Tropospheric Research, 04318 Leipzig, Germany; (H.H.); (A.W.)
| |
Collapse
|
34
|
Oswin HP, Haddrell AE, Otero-Fernandez M, Mann JFS, Cogan TA, Hilditch TG, Tian J, Hardy DA, Hill DJ, Finn A, Davidson AD, Reid JP. The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment. Proc Natl Acad Sci U S A 2022; 119:e2200109119. [PMID: 35763573 PMCID: PMC9271203 DOI: 10.1073/pnas.2200109119] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the factors that influence the airborne survival of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in aerosols is important for identifying routes of transmission and the value of various mitigation strategies for preventing transmission. We present measurements of the stability of SARS-CoV-2 in aerosol droplets (∼5 to 10 µm equilibrated radius) over timescales spanning 5 s to 20 min using an instrument to probe survival in a small population of droplets (typically 5 to 10) containing ∼1 virus/droplet. Measurements of airborne infectivity change are coupled with a detailed physicochemical analysis of the airborne droplets containing the virus. A decrease in infectivity to ∼10% of the starting value was observable for SARS-CoV-2 over 20 min, with a large proportion of the loss occurring within the first 5 min after aerosolization. The initial rate of infectivity loss was found to correlate with physical transformation of the equilibrating droplet; salts within the droplets crystallize at relative humidities (RHs) below 50%, leading to a near-instant loss of infectivity in 50 to 60% of the virus. However, at 90% RH, the droplet remains homogenous and aqueous, and the viral stability is sustained for the first 2 min, beyond which it decays to only 10% remaining infectious after 10 min. The loss of infectivity at high RH is consistent with an elevation in the pH of the droplets, caused by volatilization of CO2 from bicarbonate buffer within the droplet. Four different variants of SARS-CoV-2 were compared and found to have a similar degree of airborne stability at both high and low RH.
Collapse
Affiliation(s)
- Henry P. Oswin
- aSchool of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Allen E. Haddrell
- aSchool of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
- 1To whom correspondence may be addressed. , , or
| | - Mara Otero-Fernandez
- aSchool of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jamie F. S. Mann
- bBristol Veterinary School, University of Bristol, Langford, Bristol BS40 5DU, United Kingdom
| | - Tristan A. Cogan
- bBristol Veterinary School, University of Bristol, Langford, Bristol BS40 5DU, United Kingdom
| | - Thomas G. Hilditch
- aSchool of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Jianghan Tian
- aSchool of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Daniel A. Hardy
- aSchool of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Darryl J. Hill
- cSchool of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Adam Finn
- cSchool of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Andrew D. Davidson
- cSchool of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TS, United Kingdom
- 1To whom correspondence may be addressed. , , or
| | - Jonathan P. Reid
- aSchool of Chemistry, Cantock’s Close, University of Bristol, Bristol BS8 1TS, United Kingdom
- 1To whom correspondence may be addressed. , , or
| |
Collapse
|
35
|
Ravelli E, Gonzales Martinez R. Environmental risk factors of airborne viral transmission: Humidity, Influenza and SARS-CoV-2 in the Netherlands. Spat Spatiotemporal Epidemiol 2022; 41:100432. [PMID: 35691642 DOI: 10.1101/2020.08.18.20177444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 05/20/2023]
Abstract
OBJECTIVE The relationship between specific humidity and influenza/SARS-CoV-2 in the Netherlands is evaluated over time and at regional level. DESIGN Parametric and non-parametric correlation coefficients are calculated to quantify the relationship between humidity and influenza, using five years of weekly data. Bayesian spatio-temporal models-with a Poisson and a Gaussian likelihood-are estimated to find the relationship between regional humidity and the daily cases of SARS-CoV-2 in the municipalities and provinces of the Netherlands. RESULTS An inverse (negative) relationship is observed between specific humidity and the incidence of influenza between 2015 and 2019. The space-time analysis indicates that an increase of specific humidity of one gram of water vapor per kilogram of air (1 g/kg) is related to a reduction of approximately 5% in the risk of COVID-19 infections. CONCLUSIONS The increase in humidity during the outbreak of the SARS-CoV-2 in the Netherlands may have helped to reduce the risk of regional COVID-19 infections. Policies that lead to an increase in household specific humidity to over 6g/Kg will help reduce the spread of respiratory viruses such as influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | - Rolando Gonzales Martinez
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Center for Advanced Systems Understanding (CASUS), Germany.
| |
Collapse
|
36
|
Baselga M, Güemes A, Alba JJ, Schuhmacher AJ. SARS-CoV-2 Droplet and Airborne Transmission Heterogeneity. J Clin Med 2022; 11:2607. [PMID: 35566733 PMCID: PMC9099777 DOI: 10.3390/jcm11092607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
The spread dynamics of the SARS-CoV-2 virus have not yet been fully understood after two years of the pandemic. The virus's global spread represented a unique scenario for advancing infectious disease research. Consequently, mechanistic epidemiological theories were quickly dismissed, and more attention was paid to other approaches that considered heterogeneity in the spread. One of the most critical advances in aerial pathogens transmission was the global acceptance of the airborne model, where the airway is presented as the epicenter of the spread of the disease. Although the aerodynamics and persistence of the SARS-CoV-2 virus in the air have been extensively studied, the actual probability of contagion is still unknown. In this work, the individual heterogeneity in the transmission of 22 patients infected with COVID-19 was analyzed by close contact (cough samples) and air (environmental samples). Viral RNA was detected in 2/19 cough samples from patient subgroups, with a mean Ct (Cycle Threshold in Quantitative Polymerase Chain Reaction analysis) of 25.7 ± 7.0. Nevertheless, viral RNA was only detected in air samples from 1/8 patients, with an average Ct of 25.0 ± 4.0. Viral load in cough samples ranged from 7.3 × 105 to 8.7 × 108 copies/mL among patients, while concentrations between 1.1-4.8 copies/m3 were found in air, consistent with other reports in the literature. In patients undergoing follow-up, no viral load was found (neither in coughs nor in the air) after the third day of symptoms, which could help define quarantine periods in infected individuals. In addition, it was found that the patient's Ct should not be considered an indicator of infectiousness, since it could not be correlated with the viral load disseminated. The results of this work are in line with proposed hypotheses of superspreaders, which can attribute part of the heterogeneity of the spread to the oversized emission of a small percentage of infected people.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
| | - Antonio Güemes
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
| | - Juan J. Alba
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Alberto J. Schuhmacher
- Institute for Health Research Aragon (IIS Aragón), 50009 Zaragoza, Spain; (M.B.); (A.G.); (J.J.A.)
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
37
|
Sun W, Hu X, Hu Y, Zhang G, Guo Z, Lin J, Huang J, Cai X, Dai J, Wang X, Zhang X, Bi X, Zhong N. 大气环境对SARS-CoV-2传播的影响研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? ASTROBIOLOGY 2022; 22:210-224. [PMID: 34981957 PMCID: PMC8861927 DOI: 10.1089/ast.2021.0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Viruses constitute a significant part of the human microbiome, so wherever humans go, viruses are brought with them, even on space missions. In this mini review, we focus on the International Space Station (ISS) as the only current human habitat in space that has a diverse range of viral genera that infect microorganisms from bacteria to eukaryotes. Thus, we have reviewed the literature on the physical conditions of space habitats that have an impact on both virus transmissibility and interaction with their host, which include UV radiation, ionizing radiation, humidity, and microgravity. Also, we briefly comment on the practices used on space missions that reduce virus spread, that is, use of antimicrobial surfaces, spacecraft sterilization practices, and air filtration. Finally, we turn our attention to the health threats that viruses pose to space travel. Overall, even though efforts are taken to ensure safe conditions during human space travel, for example, preflight quarantines of astronauts, we reflect on the potential risks humans might be exposed to and how those risks might be aggravated in extraterrestrial habitats.
Collapse
Affiliation(s)
- Bruno Pavletić
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Runzheimer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Siems
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Stella Koch
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Marta Cortesão
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ana Ramos-Nascimento
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
- Address correspondence to: Ralf Moeller, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, Linder Hoehe, Building 24, Room 104, D-51147 Köln, Germany
| |
Collapse
|
39
|
Evidence for a semisolid phase state of aerosols and droplets relevant to the airborne and surface survival of pathogens. Proc Natl Acad Sci U S A 2022; 119:2109750119. [PMID: 35064080 PMCID: PMC8794803 DOI: 10.1073/pnas.2109750119] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 01/25/2023] Open
Abstract
Ambient humidity can influence the survival of pathogens in respiratory aerosols and droplets, although the mechanism and optimum humidity level for public health remain unclear. Here, we present evidence for a humidity-dependent, semisolid state of aerosols and droplets relevant to pathogen survival. These observations indicate that a semisolid state may protect pathogens from inactivation by hindering disinfection reactions at intermediate-to-low humidity levels. The formation of the semisolid state was dependent on the composition of the aerosols, which suggests that the humidity for optimum pathogen destruction will depend on the composition of respiratory particles released from an infected host. These observations can be used to help interpret laboratory studies and inform public health recommendations. The phase state of respiratory aerosols and droplets has been linked to the humidity-dependent survival of pathogens such as SARS-CoV-2. To inform strategies to mitigate the spread of infectious disease, it is thus necessary to understand the humidity-dependent phase changes associated with the particles in which pathogens are suspended. Here, we study phase changes of levitated aerosols and droplets composed of model respiratory compounds (salt and protein) and growth media (organic–inorganic mixtures commonly used in studies of pathogen survival) with decreasing relative humidity (RH). Efflorescence was suppressed in many particle compositions and thus unlikely to fully account for the humidity-dependent survival of viruses. Rather, we identify organic-based, semisolid phase states that form under equilibrium conditions at intermediate RH (45 to 80%). A higher-protein content causes particles to exist in a semisolid state under a wider range of RH conditions. Diffusion and, thus, disinfection kinetics are expected to be inhibited in these semisolid states. These observations suggest that organic-based, semisolid states are an important consideration to account for the recovery of virus viability at low RH observed in previous studies. We propose a mechanism in which the semisolid phase shields pathogens from inactivation by hindering the diffusion of solutes. This suggests that the exogenous lifetime of pathogens will depend, in part, on the organic composition of the carrier respiratory particle and thus its origin in the respiratory tract. Furthermore, this work highlights the importance of accounting for spatial heterogeneities and time-dependent changes in the properties of aerosols and droplets undergoing evaporation in studies of pathogen viability.
Collapse
|
40
|
Inherent heterogeneity of influenza A virus stability following aerosolization. Appl Environ Microbiol 2022; 88:e0227121. [PMID: 34985975 DOI: 10.1128/aem.02271-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient human-to-human transmission represents a necessary adaptation for a zoonotic influenza A virus (IAV) to cause a pandemic. As such, many emerging IAVs are characterized for transmissibility phenotypes in mammalian models, with an emphasis on elucidating viral determinants of transmission and the role host immune responses contribute to mammalian adaptation. Investigations of virus infectivity and stability in aerosols concurrent with transmission assessments have increased in recent years, enhancing our understanding of this dynamic process. Here, we employ a diverse panel of 17 human and zoonotic IAVs, inclusive of seasonally circulating H1N1 and H3N2 viruses, and avian and swine viruses associated with human infection, to evaluate differences in spray factor (a value that assesses efficiency of the aerosolization process), stability, and infectivity following aerosolization. While most seasonal influenza viruses did not exhibit substantial variability within these parameters, there was more heterogeneity among zoonotic influenza viruses, which possess a diverse range of transmission phenotypes. Aging of aerosols at different relative humidities identified strain-specific levels of stability with different profiles identified between zoonotic H3, H5, and H7 subtype viruses associated with human infection. As studies continue to elucidate the complex components governing virus transmissibility, notably aerosol matrices and environmental parameters, considering the relative role of subtype- and strain-specific factors to modulate these parameters will improve our understanding of the pandemic potential of zoonotic influenza A viruses. Importance Transmission of respiratory pathogens through the air can facilitate the rapid and expansive spread of infection and disease through a susceptible population. While seasonal influenza viruses are quite capable of airborne spread, there is a lack of knowledge regarding how well influenza viruses remain viable after aerosolization, and if influenza viruses capable of jumping species barriers to cause human infection differ in this property from seasonal strains. We evaluated a diverse panel of influenza viruses associated with human infection (originating from human, avian, and swine reservoirs) for their ability to remain viable after aerosolization in the laboratory under a range of conditions. We found greater diversity among avian and swine-origin viruses compared with seasonal influenza viruses; strain-specific stability was also noted. Although influenza virus stability in aerosols is an underreported property, if molecular markers associated with enhanced stability are identified, we will be able to quickly recognize emerging strains of influenza that present the greatest pandemic threat.
Collapse
|
41
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN, Baschir LA, Tenciu DV. Assessing the impact of air pollution and climate seasonality on COVID-19 multiwaves in Madrid, Spain. ENVIRONMENTAL RESEARCH 2022; 203:111849. [PMID: 34370990 PMCID: PMC8343379 DOI: 10.1016/j.envres.2021.111849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 05/17/2023]
Abstract
While the COVID-19 pandemic is still in progress, being under the fifth COVID-19 wave in Madrid, over more than one year, Spain experienced a four wave pattern. The transmission of SARS-CoV-2 pathogens in Madrid metropolitan region was investigated from an urban context associated with seasonal variability of climate and air pollution drivers. Based on descriptive statistics and regression methods of in-situ and geospatial daily time series data, this study provides a comparative analysis between COVID-19 waves incidence and mortality cases in Madrid under different air quality and climate conditions. During analyzed period 1 January 2020-1 July 2021, for each of the four COVID-19 waves in Madrid were recorded anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere and favorable stability conditions for COVID-19 disease fast spreading. As airborne microbial temporal pattern is most affected by seasonal changes, this paper found: 1) a significant negative correlation of air temperature, Planetary Boundary Layer height, and surface solar irradiance with daily new COVID-19 incidence and deaths; 2) a similar mutual seasonality with climate variables of the first and the fourth COVID-waves from spring seasons of 2020 and 2021 years. Such information may help the health decision makers and public plan for the future.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Laurentiu A Baschir
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Daniel V Tenciu
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
42
|
Jarvis MC. Drying of virus-containing particles: modelling effects of droplet origin and composition. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1987-1996. [PMID: 34754455 PMCID: PMC8569499 DOI: 10.1007/s40201-021-00750-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/17/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND PURPOSE Virus-containing aerosol droplets emitted by breathing, speech or coughing dry rapidly to equilibrium with ambient relative humidity (RH), increasing in solute concentration with effects on virus survival and decreasing in diameter with effects on sedimentation and respiratory uptake. The aim of this paper is to model the effect of ionic and macromolecular solutes on droplet drying and solute concentration. METHODS Deliquescence-efflorescence concepts and Kohler theory were used to simulate the evolution of solute concentrations and water activity in respiratory droplets, starting from efflorescence data on mixed NaCl/KCl aerosols and osmotic pressure data on respiratory macromolecules. RESULTS In NaCl/KCl solutions total salt concentrations were shown to reach 10-13 M at the efflorescence RH of 40-55%, depending on the K:Na ratio. Dependence on K:Na ratio implies that the evaporation curves differ between aerosols derived from saliva and from airway surfaces. The direct effect of liquid droplet size through the Kelvin term was shown to be smaller and restricted to the evolution of breath emissions. Modelling the effect of proteins and glycoproteins showed that salts determine drying equilibria down to the efflorescence RH, and macromolecules at lower RH. CONCLUSION Differences in solute composition between airway surfaces and saliva are predicted to lead to different drying behaviour of droplets emitted by breathing, speech and coughing. These differences may influence the inactivation of viruses.
Collapse
Affiliation(s)
- Michael C. Jarvis
- School of Chemistry, Glasgow University, Glasgow, Scotland G12 8QQ UK
| |
Collapse
|
43
|
Thazhathedath Hariharan H, Surendran AT, Haridasan RK, Venkitaraman S, Robert D, Narayanan SP, Mammen PC, Siddharth SR, Kuriakose SL. Global COVID-19 Transmission and Mortality-Influence of Human Development, Climate, and Climate Variability on Early Phase of the Pandemic. GEOHEALTH 2021; 5:e2020GH000378. [PMID: 34693183 PMCID: PMC8519396 DOI: 10.1029/2020gh000378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Many of the respiratory pathogens show seasonal patterns and association with environmental factors. In this article, we conducted a cross-sectional analysis of the influence of environmental factors, including climate variability, along with development indicators on the differential global spread and fatality of COVID-19 during its early phase. Global climate data we used are monthly averaged gridded data sets of temperature, humidity and temperature anomaly. We used Human Development Index (HDI) to account for all nation wise socioeconomic factors that can affect the reporting of cases and deaths and build a stepwise negative binomial regression model. In the absence of a development indicator, all environmental variables excluding the specific humidity have a significant association with the spread and mortality of COVID-19. Temperature has a weak negative association with COVID-19 mortality. However, HDI is shown to confound the effect of temperature on the reporting of the disease. Temperature anomaly, which is being regarded as a global warming indicator, is positively associated with the pandemic's spread and mortality. Viewing newer infectious diseases like SARS-CoV-2 from the perspective of climate variability has a lot of public health implications, and it necessitates further research.
Collapse
Affiliation(s)
| | | | | | - Sriram Venkitaraman
- Department of Health & Family WelfareGovernment of KeralaThiruvananthapuramIndia
| | | | - Sorna P. Narayanan
- Department of Community MedicineGovernment Medical CollegeThiruvananthapuramIndia
| | - Pratheesh C. Mammen
- KSDMA‐UNICEF PartnershipKerala State Disaster Management AuthorityThiruvananthapuramIndia
| | - Selva Raja Siddharth
- Department of Community MedicineGovernment Medical CollegeThiruvananthapuramIndia
| | | |
Collapse
|
44
|
Huang Q, Wang W, Vikesland PJ. Implications of the Coffee-Ring Effect on Virus Infectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11260-11268. [PMID: 34525305 DOI: 10.1021/acs.langmuir.1c01610] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The factors contributing to the survival of enveloped viruses (e.g., influenza and SARS-CoV-2) on fomite surfaces are of societal interest. The bacteriophage Phi6 is an enveloped viral surrogate commonly used to study viability. To investigate how viability changes during the evaporation of droplets on polypropylene, we conducted experiments using a fixed initial Phi6 concentration while systematically varying the culture concentration and composition (by amendment with 2% fetal bovine serum (FBS), 0.08 wt % BSA, or 0.5 wt % SDS). The results were consistent with the well-founded relative humidity (RH) effect on virus viability; however, the measured viability change was greater than that previously reported for droplets containing either inorganic salts or proteins alone, and the protein effects diverged in 1× Dulbecco's modified Eagle's medium (DMEM). We attribute this discrepancy to changes in virus distribution during droplet evaporation that arise due to the variable solute drying patterns (i.e., the "coffee-ring" effect) that are a function of the droplet biochemical composition. To test this hypothesis, we used surface-enhanced Raman spectroscopy (SERS) imaging and three types of gold nanoparticles (pH nanoprobe, positively charged (AuNPs(+)), and negatively charged (AuNPs(-))) as physical surrogates for Phi6 and determined that lower DMEM concentrations, as well as lower protein concentrations, suppressed the coffee-ring effect. This result was observed irrespective of particle surface charge. The trends in the coffee-ring effect correlate well with the measured changes in virus infectivity. The correlation suggests that conditions resulting in more concentrated coffee rings provide protective effects against inactivation when viruses and proteins aggregate.
Collapse
Affiliation(s)
- Qishen Huang
- Civil and Environmental Engineering and Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Wei Wang
- Civil and Environmental Engineering and Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Peter J Vikesland
- Civil and Environmental Engineering and Institute of Critical Technology and Applied Science (ICTAS) Sustainable Nanotechnology, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
45
|
Gamble A, Fischer RJ, Morris DH, Yinda CK, Munster VJ, Lloyd-Smith JO. Heat-Treated Virus Inactivation Rate Depends Strongly on Treatment Procedure: Illustration with SARS-CoV-2. Appl Environ Microbiol 2021; 87:e0031421. [PMID: 34288702 PMCID: PMC8432576 DOI: 10.1128/aem.00314-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/12/2021] [Indexed: 12/05/2022] Open
Abstract
Decontamination helps limit environmental transmission of infectious agents. It is required for the safe reuse of contaminated medical, laboratory, and personal protective equipment, and for the safe handling of biological samples. Heat treatment is a common decontamination method, notably used for viruses. We show that for liquid specimens (here, solution of SARS-CoV-2 in cell culture medium), the virus inactivation rate under heat treatment at 70°C can vary by almost two orders of magnitude depending on the treatment procedure, from a half-life of 0.86 min (95% credible interval [CI] 0.09, 1.77) in closed vials in a heat block to 37.04 min (95% CI 12.64, 869.82) in uncovered plates in a dry oven. These findings suggest a critical role of evaporation in virus inactivation via dry heat. Placing samples in open or uncovered containers may dramatically reduce the speed and efficacy of heat treatment for virus inactivation. Given these findings, we reviewed the literature on temperature-dependent coronavirus stability and found that specimen container types, along with whether they are closed, covered, or uncovered, are rarely reported in the scientific literature. Heat-treatment procedures must be fully specified when reporting experimental studies to facilitate result interpretation and reproducibility, and must be carefully considered when developing decontamination guidelines. IMPORTANCE Heat is a powerful weapon against most infectious agents. It is widely used for decontamination of medical, laboratory, and personal protective equipment, and for biological samples. There are many methods of heat treatment, and methodological details can affect speed and efficacy of decontamination. We applied four different heat-treatment procedures to liquid specimens containing SARS-CoV-2. Our results show that the container used to store specimens during decontamination can substantially affect inactivation rate; for a given initial level of contamination, decontamination time can vary from a few minutes in closed vials to several hours in uncovered plates. Reviewing the literature, we found that container choices and heat treatment methods are only rarely reported explicitly in methods sections. Our study shows that careful consideration of heat-treatment procedure-in particular the choice of specimen container and whether it is covered-can make results more consistent across studies, improve decontamination practice, and provide insight into the mechanisms of virus inactivation.
Collapse
Affiliation(s)
- Amandine Gamble
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Robert J. Fischer
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Dylan H. Morris
- Department of Ecology & Evolutionary Biology, Princeton University, New Jersey, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - James O. Lloyd-Smith
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
46
|
Clearing the air: Addressing air clearance times for infectious aerosols in healthcare facilities. Infect Control Hosp Epidemiol 2021; 42:1143-1144. [PMID: 32829731 PMCID: PMC7653224 DOI: 10.1017/ice.2020.432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Nanoscale Wetting of Single Viruses. Molecules 2021; 26:molecules26175184. [PMID: 34500617 PMCID: PMC8434471 DOI: 10.3390/molecules26175184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022] Open
Abstract
The epidemic spread of many viral infections is mediated by the environmental conditions and influenced by the ambient humidity. Single virus particles have been mainly visualized by atomic force microscopy (AFM) in liquid conditions, where the effect of the relative humidity on virus topography and surface cannot be systematically assessed. In this work, we employed multi-frequency AFM, simultaneously with standard topography imaging, to study the nanoscale wetting of individual Tobacco Mosaic virions (TMV) from ambient relative humidity to water condensation (RH > 100%). We recorded amplitude and phase vs. distance curves (APD curves) on top of single virions at various RH and converted them into force vs. distance curves. The high sensitivity of multifrequency AFM to visualize condensed water and sub-micrometer droplets, filling gaps between individual TMV particles at RH > 100%, is demonstrated. Dynamic force spectroscopy allows detecting a thin water layer of thickness ~1 nm, adsorbed on the outer surface of single TMV particles at RH < 60%.
Collapse
|
48
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN, Baschir LA, Tenciu DV. Exploring the linkage between seasonality of environmental factors and COVID-19 waves in Madrid, Spain. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2021; 152:583-600. [PMID: 36285289 PMCID: PMC9584827 DOI: 10.1016/j.psep.2021.06.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 05/07/2023]
Abstract
Like several countries, Spain experienced a multi wave pattern of COVID-19 pandemic over more than one year period, between spring 2020 and spring 2021. The transmission of SARS-CoV-2 pandemics is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation.This study aims to quantify the impact of climate and air pollution factors seasonality on incidence and severity of COVID-19 disease waves in Madrid metropolitan region in Spain. We employed descriptive statistics and Spearman rank correlation tests for analysis of daily in-situ and geospatial time-series of air quality and climate data to investigate the associations with COVID-19 incidence and lethality in Madrid under different synoptic meteorological patterns. During the analyzed period (1 January 2020-28 February 2021), with one month before each of three COVID-19 waves were recorded anomalous anticyclonic circulations in the mid-troposphere, with positive anomalies of geopotential heights at 500 mb and favorable stability conditions for SARS-CoV-2 fast diffusion. In addition, the results reveal that air temperature, Planetary Boundary Layer height, ground level ozone have a significant negative relationship with daily new COVID-19 confirmed cases and deaths. The findings of this study provide useful information to the public health authorities and policymakers for optimizing interventions during pandemics.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Laurentiu A Baschir
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Daniel V Tenciu
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
49
|
Liu Z, Zhu L, Wang Y, Zhou Z, Guo Y. The Correlation Between COVID-19 Activities and Climate Factors in Different Climate Types Areas. J Occup Environ Med 2021; 63:e533-e541. [PMID: 34029299 PMCID: PMC8327769 DOI: 10.1097/jom.0000000000002274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the epidemiological characteristics of human infection with corona virus disease 2019 (COVID-19) in Moscow, Lima, Kuwait, and Singapore to analyze the effects of climate factors on the incidence of COVID-19. METHODS Collect the daily incidence of COVID-19 and related climate data in four areas, construct a negative binomial regression model, and analyze the correlation between the incidence of COVID-19 and meteorological factors. RESULTS AH was the climate factor affecting the incidence of COVID-19 in Moscow, Lima, and Singapore; Ta and RH were the climate factors affecting the incidence of COVID-19 in Kuwait. CONCLUSIONS The incidence of COVID-19 in four areas were all associated with the humidity, and climate factors should be taken into consideration when epidemic prevention measures are taken, and environment humidification may be a feasible approach to decrease COVID-19 virus transmission.
Collapse
Affiliation(s)
- Zhenchao Liu
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao Shandong 266003, PR China (Mr Liu, Dr Zhu, Ms Wang, Mr Zhou, and Dr Guo)
| | | | | | | | | |
Collapse
|
50
|
Raines KS, Doniach S, Bhanot G. The transmission of SARS-CoV-2 is likely comodulated by temperature and by relative humidity. PLoS One 2021; 16:e0255212. [PMID: 34324570 PMCID: PMC8321224 DOI: 10.1371/journal.pone.0255212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
Inferring the impact of climate upon the transmission of SARS-CoV-2 has been confounded by variability in testing, unknown disease introduction rates, and changing weather. Here we present a data model that accounts for dynamic testing rates and variations in disease introduction rates. We apply this model to data from Colombia, whose varied and seasonless climate, central port of entry, and swift, centralized response to the COVID-19 pandemic present an opportune environment for assessing the impact of climate factors on the spread of COVID-19. We observe strong attenuation of transmission in climates with sustained daily temperatures above 30 degrees Celsius and simultaneous mean relative humidity below 78%, with outbreaks occurring at high humidity even where the temperature is high. We hypothesize that temperature and relative humidity comodulate the infectivity of SARS-CoV-2 within respiratory droplets.
Collapse
Affiliation(s)
| | - Sebastian Doniach
- Applied Physics, Stanford University, Stanford, CA, United States of America
| | - Gyan Bhanot
- Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, United States of America
- Physics and Astronomy, Rutgers University, Piscataway, NJ, United States of America
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States of America
- School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|