1
|
Li J, Guan X, Huang W, Zhong X, Sun H, Song M, Tang W. Exploring the influence of moisture stress on microbial-driven organic acid synthesis in potato waste fermentation. Food Chem 2025; 464:141932. [PMID: 39522379 DOI: 10.1016/j.foodchem.2024.141932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Anaerobic fermentation of potato leaves and stems for organic acid synthesis, serving as food additives, faces impediments due to misconceptions about the effects of moisture stress on the acid-synthesizing microbiome. An ingenious method, avoiding interference from microbiome and nutrient integrations, was employed in the present study. Results showed that increasing the moisture level from 60 % to 75 % significantly improved lactic acid (182.64 %), acetic acid (163.55 %), propionic acid (1960.43 %), nonprotein nitrogen, free amino acid and ammonia levels but reduced pH value and water-soluble carbohydrate and hemicellulose levels. Microbiologically, the high-moisture groups enriched Lactiplantibacillus, Levilactobacillus and Enterobacter, upregulated glycolysis, nitrogen, pyruvate and propanoate metabolisms, and activated genes for acid-producing and ammonia-forming enzymes. Notably, Lactiplantibacillus and Enterobacter prevailed in glycolysis and nitrogen metabolism, respectively, and Levilactobacillus was more prominent in pyruvate and propanoate metabolism under high-moisture conditions. Collectively, a moisture level of 75 % benefited organic acid synthesis from potato waste via anaerobic fermentation.
Collapse
Affiliation(s)
- Jiawei Li
- College of Animal Science and Technology, Southwest University, Chongqing, PR China; National Center for Technology Innovation for Pigs, Chongqing, PR China
| | - Xiaofeng Guan
- Chongqing Academy of Animal Sciences, Chongqing, PR China; National Center for Technology Innovation for Pigs, Chongqing, PR China
| | - Wenming Huang
- College of Animal Science and Technology, Southwest University, Chongqing, PR China
| | - Xiaoxia Zhong
- Chongqing Academy of Animal Sciences, Chongqing, PR China; National Center for Technology Innovation for Pigs, Chongqing, PR China
| | - Huiting Sun
- College of Animal Science and Technology, Southwest University, Chongqing, PR China
| | - Minghao Song
- Keerqin District Animal Husbandry and Aquatic Work Station, PR China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Sichuan Province, PR China.
| |
Collapse
|
2
|
Wang L, Jia M, Gao D, Li H. Hybrid substrate-based pH autobuffering GABA fermentation by Levilactobacillus brevis CD0817. Bioprocess Biosyst Eng 2024; 47:2101-2110. [PMID: 39269502 DOI: 10.1007/s00449-024-03088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The probiotic fermentation of the bioactive substance gamma-aminobutyric acid (GABA) is an attractive research topic. There is still room for further improvement in reported GABA fermentation methods based on a single substrate (L-glutamic acid or L-monosodium glutamate). Here, we devised a pH auto-buffering strategy to facilitate the fermentation of GABA by Levilactobacillus brevis CD0817. This strategy features a mixture of neutral monosodium L-glutamate plus acidic L-glutamic acid as the substrate. This mixture provides a mild initial pH; moreover, the newly dissolved L-glutamic acid automatically offsets the pH increase caused by substrate decarboxylation, maintaining the acidity essential for GABA fermentation. In this study, a flask trial was first performed to optimize the GABA fermentation parameters of Levilactobacillus brevis CD0817. The optimized parameters were further validated in a 10 L fermenter. The flask trial results revealed that the appropriate fermentation medium was composed of powdery L-glutamic acid (750 g/L), monosodium L-glutamate (34 g/L [0.2 mol/L]), glucose (5 g/L), yeast extract (35 g/L), MnSO4·H2O (50 mg/L [0.3 mmol/L]), and Tween 80 (1.0 g/L). The appropriate fermentation temperature was 30 °C. The fermenter trial results revealed that GABA was slowly synthesized from 0-4 h, rapidly synthesized until 32 h, and finally reached 353.1 ± 8.3 g/L at 48 h, with the pH increasing from the initial value of 4.56 to the ultimate value of 6.10. The proposed pH auto-buffering strategy may be popular for other GABA fermentations.
Collapse
Affiliation(s)
- Lingqin Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Mengya Jia
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Dandan Gao
- Biomedical Research Center, College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou, 730030, China.
| | - Haixing Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang, 330047, China.
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330020, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
3
|
Chelluboina B, Cho T, Park JS, Mehta SL, Bathula S, Jeong S, Vemuganti R. Intermittent fasting induced cerebral ischemic tolerance altered gut microbiome and increased levels of short-chain fatty acids to a beneficial phenotype. Neurochem Int 2024; 178:105795. [PMID: 38908519 PMCID: PMC11296926 DOI: 10.1016/j.neuint.2024.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Preconditioning-induced cerebral ischemic tolerance is known to be a beneficial adaptation to protect the brain in an unavoidable event of stroke. We currently demonstrate that a short bout (6 weeks) of intermittent fasting (IF; 15 h fast/day) induces similar ischemic tolerance to that of a longer bout (12 weeks) in adult C57BL/6 male mice subjected to transient middle cerebral artery occlusion (MCAO). In addition, the 6 weeks IF regimen induced ischemic tolerance irrespective of age (3 months or 24 months) and sex. Mice subjected to transient MCAO following IF showed improved motor function recovery (rotarod and beam walk tests) between days 1 and 14 of reperfusion and smaller infarcts (T2-MRI) on day 1 of reperfusion compared with age/sex matched ad libitum (AL) controls. Diet influences the gut microbiome composition and stroke is known to promote gut bacterial dysbiosis. We presently show that IF promotes a beneficial phenotype of gut microbiome following transient MCAO compared with AL cohort. Furthermore, post-stroke levels of short-chain fatty acids (SCFAs), which are known to be neuroprotective, are higher in the fecal samples of the IF cohort compared with the AL cohort. Thus, our studies indicate the efficacy of IF in protecting the brain after stroke, irrespective of age and sex, probably by altering gut microbiome and SCFA production.
Collapse
Affiliation(s)
- Bharath Chelluboina
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Tony Cho
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Jin-Soo Park
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
| |
Collapse
|
4
|
Yamamoto Y. Roles of flavoprotein oxidase and the exogenous heme- and quinone-dependent respiratory chain in lactic acid bacteria. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:183-191. [PMID: 38966056 PMCID: PMC11220326 DOI: 10.12938/bmfh.2024-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Lactic acid bacteria (LAB) are a type of bacteria that convert carbohydrates into lactate through fermentation metabolism. While LAB mainly acquire energy through this anaerobic process, they also have oxygen-consuming systems, one of which is flavoprotein oxidase and the other is exogenous heme- or heme- and quinone-dependent respiratory metabolism. Over the past two decades, research has contributed to the understanding of the roles of these oxidase machineries, confirming their suspected roles and uncovering novel functions. This review presents the roles of these oxidase machineries, which are anticipated to be critical for the future applications of LAB in industry and comprehending the virulence of pathogenic streptococci.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Laboratory of Cellular Microbiology, School of Veterinary Medicine, Kitasato University, 23-35-1 Higashi, Towada, Aomori 034-8628, Japan
| |
Collapse
|
5
|
Tang X, Liao C, Huang X, Chen C, Xu D, Chen C. Epiphytic microbiota source stimulates the fermentation profile and bacterial community of alfalfa-corn mixed silage. Front Microbiol 2024; 14:1247254. [PMID: 38628434 PMCID: PMC11018978 DOI: 10.3389/fmicb.2023.1247254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/12/2023] [Indexed: 04/19/2024] Open
Abstract
The epiphytic microbiota source on plants plays a crucial role in the production of high-quality silage. To gain a better understanding of its contribution, the microbiota of alfalfa (M1C0), corn (M0C1) and the resulting mixture (M1C1) was applied in alfalfa-corn mixed silage production system. M1C0 decreased ammonia-N levels in terms of total nitrogen (57.59-118.23 g/kg TN) and pH (3.59-4.40) values (p < 0.01), which increased lactic acid (33.73-61.89 g/kg DM) content (p < 0.01). Consequently, this resulted in higher residual water-soluble carbohydrate (29.13-41.76 g/kg DM) and crude protein (152.54-167.91 g/kg DM) contents, as well as lower NDF (427.27 g/kg DM) and ADF (269.53 g/kg DM) contents in the silage compared to M1C1- and M0C1-treated samples. Moreover, M1C0 silage showed significantly higher bacterial alpha diversity indices (p < 0.05), including the number of observed species and Chao1 and Shannon diversity indices, at the later stages of ensiling. Lactobacillus, Kosakonia and Enterobacter were the dominant bacterial species in silages, with a relative abundance of >80%. However, the abundance of Lactobacillus amylovorus in M0C1- and M1C1-treated silage increased (p < 0.01) in the late stages of ensiling. These findings confirmed that the epiphytic microbiota source exerts competitive effects during anaerobic storage of alfalfa-corn mixed silage.
Collapse
Affiliation(s)
- Xiaolong Tang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Chaosheng Liao
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xiaokang Huang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Cheng Chen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Guo X, Li Z, He N, Zhang B, Liu X, Bao J. Detection and elimination of trace d-lactic acid in lignocellulose biorefining chain: Generation, flow, and impact on chiral lactide synthesis. Biotechnol Bioeng 2024; 121:670-682. [PMID: 37902776 DOI: 10.1002/bit.28583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 10/31/2023]
Abstract
High chiral purity of lactic acid is a crucial indicator for the synthesis of chiral lactide as the primary intermediate chemical for ring-open polymerization of high molecular weight polylactic acid (PLA). Lignocellulose biomass is the most promising carbohydrate feedstock for commercial production of PLA, but the presence of trace d-lactic acid in the biorefinery chain adversely affects the synthesis and quality of chiral lactide. This study analyzed the fingerprint of trace d-lactic acid in the biorefinery chain and found that the major source of d-lactic acid comes from lignocellulose feedstock. The naturally occurring lactic acid bacteria and water-soluble carbohydrates in lignocellulose feedstock provide the necessary conditions for d-lactic acid generation. Three strategies were proposed to eliminate the generation pathway of d-lactic acid, including reduction of moisture content, conversion of water-soluble carbohydrates to furan aldehydes in pretreatment, and conversion to l-lactic acid by inoculating engineered l-lactic acid bacteria. The natural reduction of lactic acid content in lignocellulose feedstock during storage was observed due to the lactate oxidase-catalyzed oxidation of l- and d-lactic acids. This study provided an important support for the production of cellulosic l-lactic acid with high chiral purity.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhibin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Niling He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Wätjen AP, Øzmerih S, Shetty R, Todorov SK, Huang W, Turner MS, Bang-Berthelsen CH. Utilization of plant derived lactic acid bacteria for efficient bioconversion of brewers' spent grain into acetoin. Int J Food Microbiol 2023; 406:110400. [PMID: 37742345 DOI: 10.1016/j.ijfoodmicro.2023.110400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/05/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Brewers' spent grain (BSG) is a major side-stream from the beer industry, with an annual estimated production of 39 million tons worldwide. Due to its high nutritional value, high abundance and low price, it has been proposed as an ingredient in human food. Here we investigated the ability of different lactic acid bacteria to produce the flavor molecule acetoin in liquid BSG extract, in order to broaden the possibilities of utilization of BSG in human food. All the investigated lactic acid bacteria (LAB) covering the Leuconostoc, Lactobacillus and Lactoccocus species were able to convert the fermentable sugars in liquid BSG into acetoin. Production levels varied significantly between the different LAB species, with Leuconostoc pseudomesenteroides species reaching the highest titers of acetoin with only acetate as the main byproduct, while also being the fastest consumer of the fermentable sugars present in liquid BSG. Surprisingly, the currently best investigated LAB for acetoin production, L. lactis, was unable to consume the maltose fraction of liquid BSG and was therefore deemed unfit for full conversion of the sugars in BSG into acetoin. The production of acetoin in Leu. pseudomesenteroides was pH dependent as previously observed in other LAB, and the conversion of BSG into acetoin was scalable from shake flasks to 1 L bioreactors. While all investigated LAB species produced acetoin under aerobic conditions, Leu. pseudomesenteroides was found to be an efficient and scalable organism for bioconversion of liquid BSG into a safe acetoin rich food additive.
Collapse
Affiliation(s)
- Anders Peter Wätjen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Süleyman Øzmerih
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Radhakrishna Shetty
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Wenkang Huang
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mark S Turner
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
8
|
Kim SH, Singh D, Kim SA, Kwak MJ, Cho D, Kim J, Roh JH, Kim WG, Han NS, Lee CH. Strain-specific metabolomic diversity of Lactiplantibacillus plantarum under aerobic and anaerobic conditions. Food Microbiol 2023; 116:104364. [PMID: 37689426 DOI: 10.1016/j.fm.2023.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
The chemotaxonomic diversity of 20 Lactiplantibacillus plantarum strains was investigated using non-targeted metabolite profiling under different culture conditions. Multivariate and metabolic pathway analyses based on GC-MS and LC-MS/MS datasets showed that amino acid metabolism, especially 2-hydroxy acids, was enriched under aerobic conditions (AE), whereas fatty acid & sugar metabolism was increased under anaerobic conditions (AN). Based on the metabolite profiles, L. plantarum strains were clustered into three main groups (A, B, and C). Overall, 79 and 83 significantly discriminant metabolites were characterized as chemical markers of AE and AN growth conditions, respectively. Notably, alcohols were more abundant in group A whereas amino acids, peptides, purines, and pyrimidines were significantly higher in group C. 2-hydroxy acids and oxylipins biosynthesized through amino acid and fatty acid metabolism, respectively, were more abundant in groups A and B. Furthermore, we observed a strong correlation between the chemical diversity of L. plantarum groups and their antioxidant activity from metabolite extracts. We propose a non-targeted metabolomic workflow to comprehensively characterize the chemodiversity of L. plantarum strain under different culture conditions, which may help reveal specific biomarkers of individual strains depending on the culture conditions.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, And Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Min Jeong Kwak
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, And Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Donghyun Cho
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Juewon Kim
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Jong-Hwa Roh
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Wan-Gi Kim
- Amorepacific R&I Center, 1920, Yonggu-daero, Yongin, 17074, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, And Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 05029, Seoul, Republic of Korea; Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Drouin P, da Silva ÉB, Tremblay J, Chevaux E, Apper E, Castex M. Inoculation with Lentilactobacillus buchneri alone or in combination with Lentilactobacillus hilgardii modifies gene expression, fermentation profile, and starch digestibility in high-moisture corn. Front Microbiol 2023; 14:1253588. [PMID: 37901805 PMCID: PMC10602787 DOI: 10.3389/fmicb.2023.1253588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Inoculants combining Lentilactobacillus buchneri and Lentilactobacillus hilgardii have been shown to improve the aerobic stability of high-moisture corn (HMC) and whole-plant corn silage, but the mode of action of this co-inoculation remains to be elucidated. This study used metatranscriptomics to evaluate the effects of inoculation with L. buchneri alone or combined with L. hilgardii on the bacterial community, gene expression, fermentation profile, and starch digestibility in HMC. High-moisture corn not inoculated (Control) or inoculated with L. buchneri NCIMB 40788 (LB) or L. buchneri NCIMB 40788 combined with L. hilgardii CNCM-I-4785 (Combo) was ensiled in mini silo bags for 30, 60, 120, and 180 days. The fermentation profile was evaluated at all time points. Metatranscriptomics was performed on samples collected on day 120. Combo had a greater alpha diversity richness index of contigs than LB and Control, and inoculation with Combo and LB modified the beta-diversity of contigs compared to Control. Out of 69 genes of interest, 20 were differentially expressed in LB compared to Control and 25 in Combo compared to Control. Of those differently expressed genes, 16 (10 of which were associated with carbohydrate metabolism and six with amino acid metabolism) were differently expressed in both LB and Combo compared to Control, and all those genes were upregulated in the inoculated silages. When we compared Combo and LB, we found seven genes expressed differently, four associated with carbohydrate metabolism and downregulated in Combo, and three associated with amino acid metabolism and upregulated in Combo. At day 120, the inoculated silages had more culturable lactic acid bacteria, higher Lactobacillus relative abundance, and lower Leuconostoc relative abundance than Control. The concentration of acetic acid remained low throughout ensiling in Control, but in LB and Combo, it increased up to day 60 and remained stable from day 60 to 180. The 1,2-propanediol was only detected in LB and Combo. Inoculation did not affect the concentration of starch, but starch digestibility was greater in Combo than in Control. Inoculation of HMC with Combo modified the gene expression and fermentation profile compared to Control and LB, improving starch digestibility compared to uninoculated HMC.
Collapse
Affiliation(s)
- Pascal Drouin
- Independent Researcher, Saint-Jean-sur-Richelieu, QC, Canada
| | | | - Julien Tremblay
- Energy, Mining, and Environment, National Research Council of Canada, Montréal, QC, Canada
| | | | | | | |
Collapse
|
10
|
Modrego J, Ortega-Hernández A, Goirigolzarri J, Restrepo-Córdoba MA, Bäuerl C, Cortés-Macías E, Sánchez-González S, Esteban-Fernández A, Pérez-Villacastín J, Collado MC, Gómez-Garre D. Gut Microbiota and Derived Short-Chain Fatty Acids Are Linked to Evolution of Heart Failure Patients. Int J Mol Sci 2023; 24:13892. [PMID: 37762194 PMCID: PMC10530267 DOI: 10.3390/ijms241813892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
There is a lack of direct evidence regarding gut microbiota dysbiosis and changes in short-chain fatty acids (SCFAs) in heart failure (HF) patients. We sought to assess any association between gut microbiota composition, SCFA production, clinical parameters, and the inflammatory profile in a cohort of newly diagnosed HF patients. In this longitudinal prospective study, we enrolled eighteen newly diagnosed HF patients. At admission and after 12 months, blood samples were collected for the assessment of proinflammatory cytokines, monocyte populations, and endothelial dysfunction, and stool samples were collected for analysis of gut microbiota composition and quantification of SCFAs. Twelve months after the initial HF episode, patients demonstrated improved clinical parameters and reduced inflammatory state and endothelial dysfunction. This favorable evolution was associated with a reversal of microbiota dysbiosis, consisting of the increment of health-related bacteria, such as genus Bifidobacterium, and levels of SCFAs, mainly butyrate. Furthermore, there was a decrease in the abundance of pathogenic bacteria. In vitro, fecal samples collected after 12 months of follow-up exhibited lower inflammation than samples collected at admission. In conclusion, the favorable progression of HF patients after the initial episode was linked to the reversal of gut microbiota dysbiosis and increased SCFA production, particularly butyrate. Whether restoring butyrate levels or promoting the growth of butyrate-producing bacteria could serve as a complementary treatment for these patients deserves further studies.
Collapse
Affiliation(s)
- Javier Modrego
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.M.); (A.O.-H.); (S.S.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Adriana Ortega-Hernández
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.M.); (A.O.-H.); (S.S.-G.)
| | - Josebe Goirigolzarri
- Servicio de Cardiología, Hospital Clínico de San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.G.); (M.A.R.-C.)
| | - María Alejandra Restrepo-Córdoba
- Servicio de Cardiología, Hospital Clínico de San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.G.); (M.A.R.-C.)
| | - Christine Bäuerl
- Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), 46980 Paterna, Spain; (C.B.); (E.C.-M.); (M.C.C.)
| | - Erika Cortés-Macías
- Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), 46980 Paterna, Spain; (C.B.); (E.C.-M.); (M.C.C.)
| | - Silvia Sánchez-González
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.M.); (A.O.-H.); (S.S.-G.)
| | | | - Julián Pérez-Villacastín
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Servicio de Cardiología, Hospital Clínico de San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.G.); (M.A.R.-C.)
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
- Fundación para la Investigación Interhospitalaria Cardiovascular, 28008 Madrid, Spain
| | - María Carmen Collado
- Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), 46980 Paterna, Spain; (C.B.); (E.C.-M.); (M.C.C.)
| | - Dulcenombre Gómez-Garre
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (J.M.); (A.O.-H.); (S.S.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
11
|
Haokok C, Lunprom S, Reungsang A, Salakkam A. Efficient production of lactic acid from cellulose and xylan in sugarcane bagasse by newly isolated Lactiplantibacillus plantarum and Levilactobacillus brevis through simultaneous saccharification and co-fermentation process. Heliyon 2023; 9:e17935. [PMID: 37449189 PMCID: PMC10336797 DOI: 10.1016/j.heliyon.2023.e17935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Sugarcane bagasse is one of the promising lignocellulosic feedstocks for bio-based chemicals production. However, to date, most research focuses mainly on the cellulose conversion process, while hemicellulose remains largely underutilized. The conversion of glucose and xylose derived from lignocellulosic biomass can be a promising strategy to improve utilization efficiencies of resources, energy, and water, and at the same time reduce wastes generated from the process. Here, attempts were made to convert cellulose and xylan in sugarcane bagasse (SB) into lactic acid (LA) through a pre-hydrolysis and simultaneous saccharification and co-fermentation (SScF) process using newly isolated Lactiplantibacillus plantarum TSKKU P-8 and Levilactobacillus brevis CHKKU N-6. The process yielded 91.9 g/L of LA, with a volumetric productivity of 0.85 g/(L·h). This was equivalent to 137.8 ± 3.4 g-LA, a yield on substrate (pretreated SB) of 0.86 g/g, and a productivity of 1.28 g/h, based on a final volume of 1.5 L. On the other hand, pre-hydrolysis and simultaneous saccharification and fermentation (SSF) process using La. plantarum TSKKU P-8 as a monoculture gave 86.7 ± 0.2 g/L of LA and a volumetric productivity of 0.8 g/(L·h), which were equivalent to 104.8 ± 0.3 g-LA, a yield on substrate of 0.65 g/g, and a productivity of 0.97 g/h, based on a final volume of 1.2 L. Mass balance calculated based on mass of raw SB entering the process showed that the SScF process improved the product yield by 32% as compared with SSF process, resulting in 14% improvement in medium-based economic yield.
Collapse
Affiliation(s)
- Chularat Haokok
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Siriporn Lunprom
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Apilak Salakkam
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
12
|
Development of an oil-sealed anaerobic fermentation process for high production of γ-aminobutyric acid with Lactobacillus brevis isolated by directional colorimetric screening. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
13
|
Adaptation of Lacticaseibacillus rhamnosus CM MSU 529 to Aerobic Growth: A Proteomic Approach. Microorganisms 2023; 11:microorganisms11020313. [PMID: 36838278 PMCID: PMC9963975 DOI: 10.3390/microorganisms11020313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The study describes the effect of aerobic conditions on the proteome of homofermentative lactic acid bacterium Lacticaseibacillus rhamnosus CM MSU 529 grown in a batch culture. Aeration caused the induction of the biosynthesis of 43 proteins, while 14 proteins were downregulated as detected by label-free LC-MS/MS. Upregulated proteins are involved in oxygen consumption (Pox, LctO, pyridoxine 5'-phosphate oxidase), xylulose 5-phosphate conversion (Xfp), pyruvate metabolism (PdhD, AlsS, AlsD), reactive oxygen species (ROS) elimination (Tpx, TrxA, Npr), general stress response (GroES, PfpI, universal stress protein, YqiG), antioxidant production (CysK, DkgA), pyrimidine metabolism (CarA, CarB, PyrE, PyrC, PyrB, PyrR), oligopeptide transport and metabolism (OppA, PepO), and maturation and stability of ribosomal subunits (RbfA, VicX). Downregulated proteins participate in ROS defense (AhpC), citrate and pyruvate consumption (CitE, PflB), oxaloacetate production (AvtA), arginine synthesis (ArgG), amino acid transport (GlnQ), and deoxynucleoside biosynthesis (RtpR). The data obtained shed light on mechanisms providing O2-tolerance and adaptation to aerobic conditions in strain CM MSU 529. The biosynthesis of 39 from 57 differentially abundant proteins was shown to be O2-sensitive in lactic acid bacteria for the first time. To our knowledge this is the first study on the impact of aerobic cultivation on the proteome of L. rhamnosus.
Collapse
|
14
|
Cimini D, D’ambrosio S, Stellavato A, Fusco A, Corsaro MM, Dabous A, Casillo A, Donnarumma G, Giori AM, Schiraldi C. Optimization of growth of Levilactobacillus brevis SP 48 and in vitro evaluation of the effect of viable cells and high molecular weight potential postbiotics on Helicobacter pylori. Front Bioeng Biotechnol 2022; 10:1007004. [PMID: 36394050 PMCID: PMC9661962 DOI: 10.3389/fbioe.2022.1007004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/14/2022] [Indexed: 09/29/2023] Open
Abstract
Several Levilactobacillus brevis strains have the potential to be used as probiotics since they provide health benefits due to the interaction of live cells, and of their secreted products, with the host (tissues). Therefore, the development of simple fermentation processes that improve cell viability to reduce industrial production costs, and at the same time the characterization and biological evaluation of cell-free postbiotics that can further promote application, are of great interest. In the present study, small scale batch fermentations on semi defined media, deprived of animal derived raw materials, were used to optimize growth of L. brevis SP48, reaching 1.2 ± 0.4 × 1010 CFU/ml of viable cells after 16 h of growth. Displacement, competition, and inhibition assays compared the effect, on Helicobacter pylori, of L. brevis cells to that of its partially purified potentially postbiotic fraction rich in exopolysaccharides and proteins. The expression of pro and anti-inflammatory biochemical markers indicated that both samples activated antimicrobial defenses and innate immunity in a gastric model. Moreover, these compounds also acted as modulators of the inflammatory response in a gut in vitro model. These data demonstrate that the high molecular weight compounds secreted by L. brevis SP48 can contrast H. pylori and reduce inflammation related to intestinal bowel disease, potentially overcoming issues related to the preservation of probiotic viability.
Collapse
Affiliation(s)
- Donatella Cimini
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Sergio D’ambrosio
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | - Antonietta Stellavato
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Azza Dabous
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | - Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte S. Angelo, Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| | | | - Chiara Schiraldi
- Department of Experimental Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
| |
Collapse
|
15
|
Central and peripheral regulations mediated by short-chain fatty acids on energy homeostasis. Transl Res 2022; 248:128-150. [PMID: 35688319 DOI: 10.1016/j.trsl.2022.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The human gut microbiota influences obesity, insulin resistance, and the subsequent development of type 2 diabetes (T2D). The gut microbiota digests and ferments nutrients resulting in the production of short-chain fatty acids (SCFAs), which generate various beneficial metabolic effects on energy and glucose homeostasis. However, their roles in the central nervous system (CNS)-mediated outputs on the metabolism have only been minimally studied. Here, we explore what is known and future directions that may be worth exploring in this emerging area. Specifically, we searched studies or data in English by using PubMed, Google Scholar, and the Human Metabolome Database. Studies were filtered by time from 1978 to March 2022. As a result, 195 studies, 53 reviews, 1 website, and 1 book were included. One hundred and sixty-five of 195 studies describe the production and metabolism of SCFAs or the effects of SCFAs on energy homeostasis, glucose balance, and mental diseases through the gut-brain axis or directly by a central pathway. Thirty of 195 studies show that inappropriate metabolism and excessive of SCFAs are metabolically detrimental. Most studies suggest that SCFAs exert beneficial metabolic effects by acting as the energy substrate in the TCA cycle, regulating the hormones related to satiety regulation and insulin secretion, and modulating immune cells and microglia. These functions have been linked with AMPK signaling, GPCRs-dependent pathways, and inhibition of histone deacetylases (HDACs). However, the studies focusing on the central effects of SCFAs are still limited. The mechanisms by which central SCFAs regulate appetite, energy expenditure, and blood glucose during different physiological conditions warrant further investigation.
Collapse
|
16
|
Zhang Q, Vasquez R, Yoo JM, Kim SH, Kang DK, Kim IH. Dietary Supplementation of Limosilactobacillus mucosae LM1 Enhances Immune Functions and Modulates Gut Microbiota Without Affecting the Growth Performance of Growing Pigs. Front Vet Sci 2022; 9:918114. [PMID: 35847647 PMCID: PMC9280434 DOI: 10.3389/fvets.2022.918114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023] Open
Abstract
Limosilactobacillus mucosae LM1 (LM1) is previously isolated from the intestine of piglets, but its potential as a probiotic supplement has not yet been assessed in growing pigs. In this study, we analyzed the probiotic effect of LM1 on the growth performance, apparent total tract digestibility (ATTD) of nutrients, immune properties, intestinal morphology, and gut microbiota and their metabolites in growing pigs. The experiment included 145 Duroc × (Landrace × Yorkshire) pigs (average body weight: 21.21 ± 1.14 kg) distributed into five treatment groups. The pigs were fed either a control diet (CON), or the control diet supplemented with incremental doses of LM1, namely low-dose LM1 (LL, 8.3 × 108 CFU/kg), moderate-low dose LM1 (ML, 4.2 × 109 CFU/kg), moderate-high dose LM1 (MH, 8.3 × 109 CFU/kg), and high-dose LM1 (HH, 2.1 × 1010 CFU/kg) for 42 d. On d 42, 12 pigs from each of the CON and MH groups were slaughtered. The results indicated that the ATTD of nitrogen (N, P = 0.038) was improved with MH supplementation. In addition, increasing dose of LM1 improved the immune response in pigs by reducing serum pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-alpha) and increasing anti-inflammatory cytokines (interleukin-10). Pigs fed with MH LM1 also had higher jejunal villus height and ileal villus height: crypt depth ratio, demonstrating improved intestinal morphology. Moreover, moderate-high LM1 supplementation enriched SCFA-producing taxa such as Lactobacillus, Holdemanella, Peptococcus, Bifidobacterium, Eubacterium_hallii_group, and Lachnospiraceae_AC2044_group, which correlated positively with increased fecal levels of butyrate and iso-valerate. These results strongly suggest the probiotic potential of LM1 on growing pigs. Overall, the current study provides insights on the use of L. mucosae LM1 as a novel livestock probiotic to improve pig gut health.
Collapse
Affiliation(s)
| | | | | | | | - Dae-Kyung Kang
- Department of Animal Resources and Science, Dankook University, Cheonan, South Korea
| | - In Ho Kim
- Department of Animal Resources and Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
17
|
pH Auto-Sustain-Based Fermentation Supports Efficient Gamma-Aminobutyric Acid Production by Lactobacillus brevis CD0817. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050208] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gamma-aminobutyric acid (GABA) plays a role in several physiological functions. GABA production by lactic acid bacteria has attracted considerable interest; however, there is need to improve production. This study aimed to develop a pH auto-sustain (PAS)-based GABA fermentation process for Lactobacillus brevis CD0817, with L-glutamic acid (solubility ~6.0 g/L and isoelectric point 3.22) as the substrate. Firstly, we determined the optimum levels of vital factors affecting GABA synthesis using Erlenmeyer flask experiments. The results showed that optimal levels of sugar, yeast extract, Tween-80, manganese ion, and temperature were 5.0 g/L, 35.0 g/L, 1.0 g/L, 16.0 mg/L, and 30.0 °C, respectively. The added L-glutamic acid (650 g per liter of medium) mostly existed in the form of solid powder was slowly released to supply the substrate and acidity essential for GABA production with the progress of fermentation. Based on the optimizations, the PAS-based GABA fermentation was performed using a 10 L fermenter. The PAS-based strategy promoted GABA synthesis by the strain of up to 321.9 ± 6.7 g/L after 48 h, with a productivity of 6.71 g/L/h and a substrate molar conversion rate of 99.6%. The findings suggest that the PAS-based fermentation is a promising method for GABA production by lactic acid bacteria.
Collapse
|
18
|
Ricciardi A, Storti LV, Giavalisco M, Parente E, Zotta T. The Effect of Respiration, pH, and Citrate Co-Metabolism on the Growth, Metabolite Production and Enzymatic Activities of Leuconostoc mesenteroides subsp. cremoris E30. Foods 2022; 11:foods11040535. [PMID: 35206012 PMCID: PMC8871477 DOI: 10.3390/foods11040535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Leuconostoc mesenteroides includes strains used as starter and/or adjunct cultures for the production of several fermented foods. In this study, the effect of anaerobic and respiratory cultivations, as well as of citrate supplementation and different pH values, was evaluated on growth, biomass, metabolite, and enzymatic activities (pyruvate oxidase, POX; NADH-dependent oxidase, NOX; NADH-dependent peroxidase, NPR) of Leuconostoc mesenteroides subsp. cremoris E30. We compared the respiration-increased growth rate and biomass production of Leuc. mesenteroides E30 to anaerobic cultivation. A supplementation of citrate impaired the growth rate of the respiratory cells. As expected, anaerobic cultures did not consume oxygen, and a similar trend in oxygen uptake was observed in respiratory cultures. The aerobic incubation caused changes in the metabolic pattern, reducing the production of ethanol in favour of acetic acid. Citrate was already exhausted in the exponential phase and did not affect the yields in acetic acid and ethanol. NOX activity increased in the presence of oxygen, while catalase was also detected in the absence of hemin. The absence of H2O2 suggested its degradation by NPR and catalase. Respiratory cultivation provided benefits (increase in growth rate, biomass, and activity in antioxidant enzymes) for Leuc. mesenteroides E30. Therefore, the exploitation of respiratory phenotypes may be useful for the formulation of competitive starter or adjunct cultures.
Collapse
|
19
|
Singh K, Ainala SK, Park S. Metabolic engineering of Lactobacillus reuteri DSM 20,016 for improved 1,3-propanediol production from glycerol. BIORESOURCE TECHNOLOGY 2021; 338:125590. [PMID: 34298333 DOI: 10.1016/j.biortech.2021.125590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The production of 1,3-propanediol (1,3-PDO) from glycerol was studied by GRAS and native 1,3-PDO producer, Lactobacillus reuteri DSM 20016. This strain ferments glucose with production of lactate, acetate, ethanol, and converts glycerol to 1,3-PDO using NADH generated by glucose metabolism. To improve 1,3-PDO production, alcohol dehydrogenases (ADH) were disrupted and 1,3-PDO oxidoreductases (PDOR) were overexpressed. Deletion of ADH (adh2) enhanced 1,3-PDO production yield on glucose by reducing ethanol synthesis, and overexpression of PDOR (pduQ) elevated 1,3-PDO production rate and cell growth rate. The strain with simultaneous adh2 deletion, pduQ overexpression (Δadh2pduQ++) could produce 687 mM 1,3-PDO with the yield of 1.2 ± 0.08 mol 1,3-PDO/mol glucose by fed-batch bioreactor cultivation in 48 h. However, the 1,3-PDO production rate was greatly reduced in the late period of bioreactor culture, mainly due to high lactate accumulation. This is the first report on rational metabolic engineering of L. reuteri for improved 1,3-PDO production.
Collapse
Affiliation(s)
- Kalpana Singh
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - Satish Kumar Ainala
- NOROO Bio R&D Center, NOROO Holdings Co., Ltd, Gyeonggi-do 16229, Republic of Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, Republic of Korea.
| |
Collapse
|
20
|
Kellingray L, Le Gall G, Doleman JF, Narbad A, Mithen RF. Effects of in vitro metabolism of a broccoli leachate, glucosinolates and S-methylcysteine sulphoxide on the human faecal microbiome. Eur J Nutr 2021; 60:2141-2154. [PMID: 33067661 PMCID: PMC8137612 DOI: 10.1007/s00394-020-02405-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Brassica are an important food source worldwide and are characterised by the presence of compounds called glucosinolates. Studies indicate that the glucosinolate derived bioactive metabolite sulphoraphane can elicit chemoprotective benefits on human cells. Glucosinolates can be metabolised in vivo by members of the human gut microbiome, although the prevalence of this activity is unclear. Brassica and Allium plants also contain S-methylcysteine sulphoxide (SMCSO), that may provide additional health benefits but its metabolism by gut bacteria is not fully understood. METHODS We examined the effects of a broccoli leachate (BL) on the composition and function of human faecal microbiomes of five different participants under in vitro conditions. Bacterial isolates from these communities were then tested for their ability to metabolise glucosinolates and SMCSO. RESULTS Microbial communities cultured in vitro in BL media were observed to have enhanced growth of lactic acid bacteria, such as lactobacilli, with a corresponding increase in the levels of lactate and short-chain fatty acids. Members of Escherichia isolated from these faecal communities were found to bioconvert glucosinolates and SMCSO to their reduced analogues. CONCLUSION This study uses a broccoli leachate to investigate the bacterial-mediated bioconversion of glucosinolates and SMCSO, which may lead to further products with additional health benefits to the host. We believe that this is the first study that shows the reduction of the dietary compound S-methylcysteine sulphoxide by bacteria isolated from human faeces.
Collapse
Affiliation(s)
- Lee Kellingray
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Gwénaëlle Le Gall
- Analytical Sciences Unit, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Joanne F. Doleman
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Arjan Narbad
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| | - Richard F. Mithen
- Food Innovation and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ UK
| |
Collapse
|
21
|
Chen C, Huang K, Li X, Tian H, Yu H, Huang J, Yuan H, Zhao S, Shao L. Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis. Appl Microbiol Biotechnol 2021; 105:3691-3704. [PMID: 33852024 DOI: 10.1007/s00253-021-11276-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Lactiplantibacillus plantarum is frequently exposed to salt stress during industrial applications. Catabolite control protein (CcpA) controls the transcription of many genes, but its role in the response to salt stress remains unclear. In this study, we used transcriptome analyses to investigate differences in the logarithmic growth phases of Lactiplantibacillus plantarum ST-III and its ccpA-knockout mutant when grown with or without salt and glycine betaine (GB). The deletion of ccpA significantly affected bacterial growth under different conditions. Among the comparisons, the highest proportion of differentially expressed genes (64%) was observed in the comparison between the wild-type and ccpA mutant grown with NaCl, whereas the lowest proportion (6%) was observed in the comparison between the ccpA mutant strain cultures grown with NaCl alone or with GB together. Transcriptomic analyses showed that CcpA could regulate GB uptake, activate iron uptake, produce acetyl-CoA, and affect fatty acid composition to maintain membrane lipid homeostasis in the adaptation of high-salinity conditions. Conclusively, these results demonstrate the importance of CcpA as a master regulator of these processes in response to salt stress, and provide new insights into the complex regulatory network of lactic acid bacteria. KEY POINTS: • The absence of CcpA significantly affected growth of L. plantarum and its response to salt stress. • CcpA regulates compatible solutes absorption and ions transport to resist salt stress. • CcpA alters fatty acids composition to maintain membrane lipid homeostasis towards salt stress.
Collapse
Affiliation(s)
- Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Ke Huang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Xiaohong Li
- Shanghai Customs P. R. China Technical Center For Animal, Plant And Food Inspection And Quarantine, Shanghai, People's Republic of China
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Juan Huang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Haibin Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Shanshan Zhao
- College of Agriculture, Hebei University of Engineering, Handan, People's Republic of China
| | - Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China.
| |
Collapse
|
22
|
Yanckello LM, Hoffman JD, Chang YH, Lin P, Nehra G, Chlipala G, McCulloch SD, Hammond TC, Yackzan AT, Lane AN, Green SJ, Hartz AMS, Lin AL. Apolipoprotein E genotype-dependent nutrigenetic effects to prebiotic inulin for modulating systemic metabolism and neuroprotection in mice via gut-brain axis. Nutr Neurosci 2021; 25:1669-1679. [PMID: 33666538 PMCID: PMC8799401 DOI: 10.1080/1028415x.2021.1889452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The goal of the study was to identify the potential nutrigenetic effects to inulin, a prebiotic fiber, in mice with different human apolipoprotein E (APOE) genetic variants. Specifically, we compared responses to inulin for the potential modulation of the systemic metabolism and neuroprotection via gut-brain axis in mice with human APOE ϵ3 and ϵ4 alleles. METHOD We performed experiments with young mice expressing the human APOE3 (E3FAD mice and APOE4 gene (E4FAD mice). We fed mice with either inulin or control diet for 16 weeks starting from 3 months of age. We determined gut microbiome diversity and composition using16s rRNA sequencing, systemic metabolism using in vivo MRI and metabolomics, and blood-brain barrier (BBB) tight junction expression using Western blot. RESULTS In both E3FAD and E4FAD mice, inulin altered the alpha and beta diversity of the gut microbiome, increased beneficial taxa of bacteria and elevated cecal short chain fatty acid and hippocampal scyllo-inositol. E3FAD mice had altered metabolism related to tryptophan and tyrosine, while E4FAD mice had changes in the tricarboxylic acid cycle, pentose phosphate pathway, and bile acids. Differences were found in levels of brain metabolites related to oxidative stress, and levels of Claudin-1 and Claudin-5 BBB tight junction expression. DISCUSSION We found that inulin had many similar beneficial effects in the gut and brain for both E3FAD and E4FAD mice, which may be protective for brain functions and reduce risk for neurodegeneration. . E3FAD and E4FAD mice also had distinct responses in several metabolic pathways, suggesting an APOE-dependent nutrigenetic effects in modulating systemic metabolism and neuroprotection.
Collapse
Affiliation(s)
- Lucille M Yanckello
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Jared D Hoffman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Ya-Hsuan Chang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Penghui Lin
- Center for Environmental Systems Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Geetika Nehra
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - George Chlipala
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Tyler C Hammond
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew T Yackzan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew N Lane
- Center for Environmental Systems Biochemistry, University of Kentucky, Lexington, Kentucky, USA.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA.,Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Stefan J Green
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA.,Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA.,F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
23
|
Alfano A, Perillo F, Fusco A, Savio V, Corsaro MM, Donnarumma G, Schiraldi C, Cimini D. Lactobacillus brevis CD2: Fermentation Strategies and Extracellular Metabolites Characterization. Probiotics Antimicrob Proteins 2020; 12:1542-1554. [PMID: 32279232 DOI: 10.1007/s12602-020-09651-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Functional foods and nutraceuticals frequently contain viable probiotic strains that, at certain titers, are considered to be responsible of beneficial effects on health. Recently, it was observed that secreted metabolites might play a key role in this respect, especially in immunomodulation. Exopolysaccharides produced by probiotics, for example, are used in the food, pharmaceutical, and biomedical fields, due to their unique properties. Lactobacillus brevis CD2 demonstrated the ability to inhibit oral pathogens causing mucositis and periodontal inflammation and to reduce Helycobacter pylori infections. Due to the lack of literature, for this strain, on the development of fermentation processes that can increase the titer of viable cells and associated metabolites to industrially attractive levels, different batch and fed-batch strategies were investigated in the present study. In particular, aeration was shown to improve the growth rate and the yields of lactic acid and biomass in batch cultures. The use of an exponential feeding profile in fed-batch experiments allowed to produce 9.3 ± 0.45 × 109 CFU/mL in 42 h of growth, corresponding to a 20-fold increase of viable cells compared with that obtained in aerated batch processes; moreover, also increased titers of exopolysaccharides and lactic acid (260 and 150%, respectively) were observed. A purification process based on ultrafiltration, charcoal treatment, and solvent precipitation was applied to partially purify secreted metabolites and separate them into two molecular weight fractions (above and below 10 kDa). Both fractions inhibited growth of the known gut pathogen, Salmonella typhimurium, demonstrating that lactic acid plays a major role in pathogen growth inhibition, which is however further enhanced by the presence of Lact. brevis CD2 exopolysaccharides. Finally, the EPS produced from Lact. brevis CD2 was characterized by NMR for the first time up to date.
Collapse
Affiliation(s)
- Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio n 7, 80138, Naples, Italy
| | - Filomena Perillo
- Department of Experimental Medicine, Section of Biotechnology Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio n 7, 80138, Naples, Italy
| | - Alessandra Fusco
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Università della Campania "Luigi Vanvitelli", via L. De Crecchio n 7, 80138, Naples, Italy
| | - Vittoria Savio
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Università della Campania "Luigi Vanvitelli", via L. De Crecchio n 7, 80138, Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemic1al Science, University Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, 80126, Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Università della Campania "Luigi Vanvitelli", via L. De Crecchio n 7, 80138, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio n 7, 80138, Naples, Italy.
| | - Donatella Cimini
- Department of Experimental Medicine, Section of Biotechnology Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", via L. De Crecchio n 7, 80138, Naples, Italy.
| |
Collapse
|
24
|
GlnR Negatively Regulates Glutamate-Dependent Acid Resistance in Lactobacillus brevis. Appl Environ Microbiol 2020; 86:AEM.02615-19. [PMID: 31953336 DOI: 10.1128/aem.02615-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/08/2020] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria often encounter a variety of multiple stresses in their natural and industrial fermentation environments. The glutamate decarboxylase (GAD) system is one of the most important acid resistance systems in lactic acid bacteria. In this study, we demonstrated that GlnR, a nitrogen regulator in Gram-positive bacteria, directly modulated γ-aminobutyric acid (GABA) conversion from glutamate and was involved in glutamate-dependent acid resistance in Lactobacillus brevis The glnR deletion strain (ΔglnR mutant) achieved a titer of 284.7 g/liter GABA, which is 9.8-fold higher than that of the wild-type strain. The cell survival of the glnR deletion strain was significantly higher than that of the wild-type strain under the condition of acid challenge and was positively correlated with initial glutamate concentration and GABA production. Quantitative reverse transcription-PCR assays demonstrated that GlnR inhibited the transcription of the glutamate decarboxylase-encoding gene (gadB), glutamate/GABA antiporter-encoding gene (gadC), glutamine synthetase-encoding gene (glnA), and specific transcriptional regulator-encoding gene (gadR) involved in gadCB operon regulation. Moreover, GABA production and glutamate-dependent acid resistance were absolutely abolished in the gadR glnR deletion strain. Electrophoretic mobility shift and DNase I footprinting assays revealed that GlnR directly bound to the 5'-untranslated regions of the gadR gene and gadCB operon, thus inhibiting their transcription. These results revealed a novel regulatory mechanism of GlnR on glutamate-dependent acid resistance in Lactobacillus IMPORTANCE Free-living lactic acid bacteria often encounter acid stresses because of their organic acid-producing features. Several acid resistance mechanisms, such as the glutamate decarboxylase system, F1Fo-ATPase proton pump, and alkali production, are usually employed to relieve growth inhibition caused by acids. The glutamate decarboxylase system is vital for GAD-containing lactic acid bacteria to protect cells from DNA damage, enzyme inactivation, and product yield loss in acidic habitats. In this study, we found that a MerR-type regulator, GlnR, was involved in glutamate-dependent acid resistance by directly regulating the transcription of the gadR gene and gadCB operon, resulting in an inhibition of GABA conversion from glutamate in L. brevis This study represents a novel mechanism for GlnR's regulation of glutamate-dependent acid resistance and also provides a simple and novel strategy to engineer Lactobacillus strains to elevate their acid resistance as well as GABA conversion from glutamate.
Collapse
|
25
|
New crosstalk between probiotics Lactobacillus plantarum and Bacillus subtilis. Sci Rep 2019; 9:13151. [PMID: 31511589 PMCID: PMC6739383 DOI: 10.1038/s41598-019-49688-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 01/15/2023] Open
Abstract
It was reported that oral administration of Bacillus favored the growth of Lactobacillus in the intestinal tract. Here, this phenomenon was confirmed by co-cultivation of Bacillus subtilis 168 and Lactobacillus plantarum SDMCC050204-pL157 in vitro. To explain the possible molecular mechanisms, B. subtilis 168 cells were incubated in simulated intestinal fluid at 37 °C for 24 h, and up to 90% of cells autolysed in the presence of bile salts. Addition of the autolysate to medium inoculated with Lb. plantarum SDMCC050204 decreased the concentration of H2O2 in the culture, alleviated DNA damage and increased the survival of Lb. plantarum, as like the results of exogenous heme addition. These results suggested that the autolysate provided heme, which activated the heme-dependent catalase KatA in Lb. plantarum SDMCC050204. HPLC confirmed the presence of heme in the autolysate. Disruption of the Lb. plantarum SDMCC050204 katA gene abolished the protective effect of the B. subtilis 168 autolysate against H2O2 stress. We thus hypothesized that the beneficial effect of Bacillus toward Lactobacillus was established through activation of the heme-dependent catalase and remission of the damage of reactive oxygen species against Lactobacillus. This study raised new crosstalk between the two frequently-used probiotics, highlighting heme-dependent catalase as the key mediator.
Collapse
|
26
|
Siciliano RA, Pannella G, Lippolis R, Ricciardi A, Mazzeo MF, Zotta T. Impact of aerobic and respirative life-style on Lactobacillus casei N87 proteome. Int J Food Microbiol 2019; 298:51-62. [PMID: 30925356 DOI: 10.1016/j.ijfoodmicro.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/10/2019] [Accepted: 03/10/2019] [Indexed: 12/27/2022]
Abstract
Lactic acid bacteria (LAB) are used as starter, adjunct and/or probiotic cultures in fermented foods. Several species are recognized as oxygen-tolerant anaerobes, and aerobic and respiratory cultivations may provide them with physiological and technological benefits. In this light, mechanisms involved in the adaptation to aerobic and respiratory (supplementation with heme and menaquinone) growth conditions of the O2-tolerant strain Lactobacillus casei N87 were investigated by proteomics. In fact, in this bacterial strain, respiration induced an increase in biomass yield and robustness to oxidative, long-term starvation and freeze-drying stresses, while high concentrations of dissolved O2 (dO2 60%) negatively affected its growth and cell survival. Proteomic results well paralleled with physiological and metabolic features and clearly showed that aerobic life-style led to a higher abundance of several proteins involved in carbohydrate metabolism and stress response mechanisms and, concurrently, impaired the biosynthesis of proteins involved in nucleic acid formation and translation processes, thus providing evidence at molecular level of the significant damage to L.casei N87 fitness. On the contrary, the activation of respiratory pathways due to heme and menaquinone supplementation, led to a decreased amount of chaperones and other stress related proteins. These findings confirmed that respiration reduced oxidative stress condition, allowing to positively modulate the central carbohydrate and energy metabolism and improve growth and stress tolerance features. Results of this study could be potentially functional to develop competitive adjunct and probiotic cultures effectively focused on the improvement of quality of fermented foods and the promotion of human health.
Collapse
Affiliation(s)
- Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Gianfranco Pannella
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | - Rosa Lippolis
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy
| | - Annamaria Ricciardi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
| | | | - Teresa Zotta
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| |
Collapse
|
27
|
Zaini NABM, Chatzifragkou A, Charalampopoulos D. Microbial production of d-lactic acid from dried distiller's grains with solubles. Eng Life Sci 2018; 19:21-30. [PMID: 32624952 DOI: 10.1002/elsc.201800077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 11/11/2022] Open
Abstract
d-Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, poly-d-lactic acid . In this study, Lactobacillus coryniformis subsp. torquens, was evaluated for its ability to produce d-lactic acid using Dried Distiller's Grains with Solubles (DDGS) hydrolysate as the substrate. DDGS was first subjected to alkaline pretreatment with sodium hydroxide to remove the hemicellulose component and the generated carbohydrate-rich solids were then subjected to enzymatic hydrolysis using cellulase mixture Accellerase® 1500. When comparing separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) of L. coryniformis on DDGS hydrolysate, the latter method demonstrated higher d-lactic acid production (27.9 g/L, 99.9% optical purity of d-lactic acid), with a higher glucose to d-lactic acid conversion yield (84.5%) compared to the former one (24.1 g/L, 99.9% optical purity of d-lactic acid). In addition, the effect of increasing the DDGS concentration in the fermentation system was investigated via a fed-batch SSF approach, where it was shown that the d-lactic acid production increased to 38.1 g/L and the conversion yield decreased to 70%. In conclusion, the SSF approach proved to be an efficient strategy for the production of d-lactic acid from DDGS as it reduced the overall processing time and yielded high d-lactic acid concentrations.
Collapse
Affiliation(s)
- Nurul Aqilah Binti Mohd Zaini
- Department of Food and Nutritional Sciences University of Reading Whiteknights UK.,Centre of Biotechnology and Functional Food Faculty of Science and Technology Universiti Kebangsaan Malaysia Selangor Malaysia
| | | | | |
Collapse
|
28
|
Ikeda-Ohtsubo W, Brugman S, Warden CH, Rebel JMJ, Folkerts G, Pieterse CMJ. How Can We Define "Optimal Microbiota?": A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture. Front Nutr 2018; 5:90. [PMID: 30333981 PMCID: PMC6176000 DOI: 10.3389/fnut.2018.00090] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
All multicellular organisms benefit from their own microbiota, which play important roles in maintaining the host nutritional health and immunity. Recently, the number of studies on the microbiota of animals, fish, and plants of economic importance is rapidly expanding and there are increasing expectations that productivity and sustainability in agricultural management can be improved by microbiota manipulation. However, optimizing microbiota is still a challenging task because of the lack of knowledge on the dominant microorganisms or significant variations between microbiota, reflecting sampling biases, different agricultural management as well as breeding backgrounds. To offer a more generalized view on microbiota in agriculture, which can be used for defining criteria of “optimal microbiota” as the goal of manipulation, we summarize here current knowledge on microbiota on animals, fish, and plants with emphasis on bacterial community structure and metabolic functions, and how microbiota can be affected by domestication, conventional agricultural practices, and use of antimicrobial agents. Finally, we discuss future tasks for defining “optimal microbiota,” which can improve host growth, nutrition, and immunity and reduce the use of antimicrobial agents in agriculture.
Collapse
Affiliation(s)
- Wakako Ikeda-Ohtsubo
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sylvia Brugman
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Craig H Warden
- Departments of Pediatrics, Neurobiology Physiology and Behavior, University of California, Davis, Davis, CA, United States
| | - Johanna M J Rebel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
29
|
Xu Z, Zhang S, Zhang R, Li S, Kong J. The changes in dominant lactic acid bacteria and their metabolites during corn stover ensiling. J Appl Microbiol 2018; 125:675-685. [DOI: 10.1111/jam.13914] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Z. Xu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan China
| | - S. Zhang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan China
| | - R. Zhang
- Research and Development Department; Jinan Senkang Sanfeng Biological Engineering Co., Ltd; Jinan China
| | - S. Li
- Research and Development Department; Jinan Senkang Sanfeng Biological Engineering Co., Ltd; Jinan China
| | - J. Kong
- State Key Laboratory of Microbial Technology; Shandong University; Jinan China
| |
Collapse
|