1
|
Woldeyohannis NN, Desta AF. Metagenome-based microbial community analysis of urine-derived fertilizer. BMC Microbiol 2024; 24:418. [PMID: 39425038 PMCID: PMC11490151 DOI: 10.1186/s12866-024-03578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Phosphorus is essential for food production and its supply is limited. Urine is an excellent source of phosphorus and one way to produce fertilizer is through conversion of urine to struvite (MgNH3PO4.6H2O). The present study aimed to understand the bacterial portion of the microbial community composition and dynamics of plasmid-mediated antimicrobial resistant genes during the optimized process of struvite production from composite human urine. Samples for DNA extraction was collected from fresh urine, stored urine and struvite during the process of struvite production. Shotgun metagenomic analysis was employed to understand the bacterial community. The most dominant phyla in the fresh and stored urine samples were Pseudomonadata, which comprised of 60% and 43% respectively, followed by Bacillota, comprised of 25% and 39% respectively. The struvite sample was dominated by the phylum Bacilliota (61%), Pseudomonadota (18%) and bacteroidota (12%). Members of the above phyla persisted in dominating each sample accordingly. Member of the family Morganellaceae was dominant in the fresh sample while the stored urine and struvite samples were dominated by the family Clostridiaceae. A decrease of members of the class Gammaproteobacteria was observed from the fresh to the struvite sample though not statistically significant. The genus Pseudomonas remained to be the most dominant member of Gammaproteobacteria in the fresh and stored urine sample with OTU count of 12,116 and 6,155 with a marked decrease by half in the stored sample. On the other hand, members of the genera Clostridium, Enterococcus, Bacteroides in the stored samples and Clostridium, Alkaliphilus and Pseudomonas in the struvite samples were dominant. 96% of the identified genera were shared in all the samples and the antimicrobial resistance genes (ARGs) identified in the fresh urine were shared by the struvite but not by the stored urine (e.g. sul, cat, aph and aac members). The presence of high abundance of ARGs in struvite needs attention in the persistence and transmissibility of the ARGs before application for agriculture.
Collapse
Affiliation(s)
- Nebiyat N Woldeyohannis
- Microbial cellular and molecular Biology Department, Addis Ababa University, P.O.BOX 1176, Addis Ababa, Ethiopia
| | - Adey F Desta
- Microbial cellular and molecular Biology Department, Addis Ababa University, P.O.BOX 1176, Addis Ababa, Ethiopia.
| |
Collapse
|
2
|
Yi G, Jin MK, Cai TG, Xu R, Gou XW, Yang N, Feng YL, Zhang SW, Qi XJ, Zhu YG, Zhu D, Li H. Antibiotics and Pesticides Enhancing the Transfer of Resistomes among Soil-Bayberry-Fruit Fly Food Chain in the Orchard Ecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18167-18176. [PMID: 39365373 DOI: 10.1021/acs.est.4c05829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
While substantial amounts of antibiotics and pesticides are applied to maintain orchard yields, their influence on the dissemination and risk of antibiotic resisitome in the orchard food chain remains poorly understood. In this study, we characterized the bacterial and fungal communities and differentiated both antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in the soil, Chinese bayberry (matured and fallen), and fruit fly gut, collected from five geographic locations. Our results showed that fruit fly guts and soils exhibit a higher abundance of ARGs and VFGs compared with bayberry fruits. We identified 112 shared ARGs and 75 shared VFGs, with aminoglycoside and adherence factor genes being among the most abundant. The co-occurrence network revealed some shared microbes, such as Bacillus and Candida, as potential hosts of ARGs, highlighting the vector risks for both above- and below-ground parts of the orchard food chain. Notably, the elevated levels of antibiotics and pesticide residues in orchard soils increase ARGs, mobile genetic elements (MGEs), and VFGs in the soil-bayberry-fruit fly food chain. Our study highlighted that agricultural management, including the overuse of antibiotics and pesticides, could be the key factor in accumulating resistomes in the orchard food chain.
Collapse
Affiliation(s)
- Ge Yi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Tian-Gui Cai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Xu
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China
| | - Xian-Wei Gou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Nan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yi-Lu Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Shu-Wen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences (ZAAS), Hangzhou 310021, China
| | - Xing-Jiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences (ZAAS), Hangzhou 310021, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Ningbo Zhenhai Institute of Mass Spectrometry, Ningbo 315000, China
| |
Collapse
|
3
|
Ransirini AM, Elżbieta MS, Joanna G, Bartosz K, Wojciech T, Agnieszka B, Magdalena U. Fertilizing drug resistance: Dissemination of antibiotic resistance genes in soil and plant bacteria under bovine and swine slurry fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174476. [PMID: 38969119 DOI: 10.1016/j.scitotenv.2024.174476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The increasing global demand for food production emphasizes the use of organic animal fertilizers, such as manure and slurry, to support sustainable agricultural practices. However, recent studies highlight concerns about antibiotic resistance determinants in animal excrements, posing a potential risk of spreading antibiotic resistance genes (ARGs) in agricultural soil and, consequently, in food products. This study examines the dissemination of ARGs within the soil and plant-associated microbiomes in cherry radish following the application of swine and bovine slurry. In a 45-day pot experiment, slurry-amended soil, rhizospheric bacteria, and endophytic bacteria in radish roots and leaves were sampled and analyzed for 21 ARGs belonging to 7 Antibiotic Resistance Phenotypes (ARPs). The study also assessed slurry's impact on soil microbiome functional diversity, enzymatic activity, physicochemical soil parameters, and the concentration of 22 selected antimicrobials in soil and plant tissues. Tetracyclines and β-lactams were the most frequently identified ARGs in bovine and swine slurry, aligning with similar studies worldwide. Swine slurry showed a higher prevalence of ARGs in soil and plant-associated bacteria, particularly TET genes, reflecting pig antibiotic treatments. The persistent dominance of TET genes across slurry, soil, and plant microbiomes highlights significant influence of slurry application on gene occurrence in plant bacteria. The presence of ARGs in edible plant parts underscores health risks associated with raw vegetable consumption. Time-dependent dynamics of ARG occurrence highlighted their persistent presence throughout the experiment duration, influenced by the environmental factors and antibiotic residuals. Notably, ciprofloxacin, which was the only one antimicrobial detected in fertilized soil, significantly impacted bovine-amended variants. Soil salinity modifications induced by slurry application correlated with changes in ARG occurrence. Overall, the research underscores the complex relationships between agricultural practices, microbial activity, and antibiotic resistance dissemination, emphasizing the need for a more sustainable and health-conscious farming approaches.
Collapse
Affiliation(s)
- Attanayake Mudiyanselage Ransirini
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Mierzejewska-Sinner Elżbieta
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Giebułtowicz Joanna
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Kózka Bartosz
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Tołoczko Wojciech
- Department of Physical Geography, Faculty of Geography, University of Lodz, Prez. Gabriela Narutowicza 88, 90-139, Lodz, Poland
| | - Bednarek Agnieszka
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Urbaniak Magdalena
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
4
|
Qi Q, Ghaly TM, Rajabal V, Russell DH, Gillings MR, Tetu SG. Vegetable phylloplane microbiomes harbour class 1 integrons in novel bacterial hosts and drive the spread of chlorite resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176348. [PMID: 39304140 DOI: 10.1016/j.scitotenv.2024.176348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Bacterial hosts in vegetable phylloplanes carry mobile genetic elements, such as plasmids and transposons that are associated with integrons. These mobile genetic elements and their cargo genes can enter human microbiomes via consumption of fresh agricultural produce, including uncooked vegetables. This presents a risk of acquiring antimicrobial resistance genes from uncooked vegetables. To better understand horizontal gene transfer of class 1 integrons in these compartments, we applied epicPCR, a single-cell fusion-PCR surveillance technique, to link the class 1 integron integrase (intI1) gene with phylogenetic markers of their bacterial hosts. Ready-to-eat salads carried class 1 integrons from the phyla Bacteroidota and Pseudomonadota, including four novel genera that were previously not known to be associated with intI1. We whole-genome sequenced Pseudomonas and Erwinia hosts of pre-clinical class 1 integrons that are embedded in Tn402-like transposons. The proximal gene cassette in these integrons was identified as a chlorite dismutase gene cassette, which we showed experimentally to confer chlorite resistance. Chlorine-derived compounds such as acidified sodium chlorite and chloride dioxide are used to disinfectant raw vegetables in food processing facilities, suggesting selection for chlorite resistance in phylloplane integrons. The spread of integrons conferring chlorite resistance has the potential to exacerbate integron-mediated antimicrobial resistance (AMR) via co-selection of chlorite resistance and AMR, thus highlighting the importance of monitoring chlorite residues in agricultural produce. These results demonstrate the strength of combining epicPCR and culture-based isolation approaches for identifying hosts and dissecting the molecular ecology of class 1 integrons.
Collapse
Affiliation(s)
- Qin Qi
- School of Natural Sciences, Macquarie University, New South Wales, Australia; Manchester Institute of Biotechnology, The University of Manchester, Greater Manchester, United Kingdom.
| | - Timothy M Ghaly
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Vaheesan Rajabal
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia
| | - Dylan H Russell
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, New South Wales, Australia
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, New South Wales, Australia; ARC Centre of Excellence for Synthetic Biology, Macquarie University, New South Wales, Australia.
| |
Collapse
|
5
|
Gekenidis MT, Vollenweider V, Joyce A, Murphy S, Walser JC, Ju F, Bürgmann H, Hummerjohann J, Walsh F, Drissner D. Unde venis? Bacterial resistance from environmental reservoirs to lettuce: tracking microbiome and resistome over a growth period. FEMS Microbiol Ecol 2024; 100:fiae118. [PMID: 39216995 PMCID: PMC11418651 DOI: 10.1093/femsec/fiae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024] Open
Abstract
Fresh produce is suggested to contribute highly to shaping the gut resistome. We investigated the impact of pig manure and irrigation water quality on microbiome and resistome of field-grown lettuce over an entire growth period. Lettuce was grown under four regimes, combining soil amendment with manure (with/without) with sprinkler irrigation using river water with an upstream wastewater input, disinfected by UV (with/without). Lettuce leaves, soil, and water samples were collected weekly and analysed by bacterial cultivation, 16S rRNA gene amplicon sequencing, and shotgun metagenomics from total community DNA. Cultivation yielded only few clinically relevant antibiotic-resistant bacteria (ARB), but numbers of ARB on lettuce increased over time, while no treatment-dependent changes were observed. Microbiome analysis confirmed a temporal trend. Antibiotic resistance genes (ARGs) unique to lettuce and water included multidrug and β-lactam ARGs, whereas lettuce and soil uniquely shared mainly glycopeptide and tetracycline ARGs. Surface water carried clinically relevant ARB (e.g. ESBL-producing Escherichia coli or Serratia fonticola) without affecting the overall lettuce resistome significantly. Resistance markers including biocide and metal resistance were increased in lettuce grown with manure, especially young lettuce (increased soil contact). Overall, while all investigated environments had their share as sources of the lettuce resistome, manure was the main source especially on young plants. We therefore suggest minimizing soil-vegetable contact to minimize resistance markers on fresh produce.
Collapse
Affiliation(s)
| | - Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Aoife Joyce
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Sinéad Murphy
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Jean-Claude Walser
- Genetic Diversity Centre (GDC), Department of Environmental System Sciences (D-USYS), Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | | | - Fiona Walsh
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - David Drissner
- Department of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany
| |
Collapse
|
6
|
Wickramasinghe N, Vítková M, Zarzsevszkij S, Ouředníček P, Šillerová H, Ojo OE, Beesley L, Grasserová A, Cajthaml T, Moško J, Hušek M, Pohořelý M, Čechmánková J, Vácha R, Kulhánek M, Máslová A, Komárek M. Can pyrolysis and composting of sewage sludge reduce the release of traditional and emerging pollutants in agricultural soils? Insights from field and laboratory investigations. CHEMOSPHERE 2024; 364:143289. [PMID: 39245220 DOI: 10.1016/j.chemosphere.2024.143289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The potential extractability, crop uptake, and ecotoxicity of conventional and emerging organic and metal(loid) contaminants after the application of pre-treated (composted and pyrolysed) sewage sludges to two agricultural soils were evaluated at field and laboratory scale. Metal(loid) extractability varied with sludge types and pre-treatments, though As, Cu, and Ni decreased universally. In the field, the equivalent of 5 tons per hectare of both composted and pyrolysed sludges brought winter wheat grain metal(loid) concentrations below statutory limits. Carbamazepine, diclofenac, and telmisartan were the only detected organic pollutants in crops decreasing in order of root > shoot > grains, whilst endocrine-disrupting chemicals, such as bisphenol A and perfluorochemicals were heavily reduced by composting (up to 71%) or pyrolysis (up to below detection limit) compared to raw sludges. As a consequence, no detectable concentrations were measured in soils 12 months after field application. This study highlights the potential advantages of processing sewage sludge before soil applications, especially in the context of reducing the mobility of emerging contaminants, though further studies are required on a broad range of soils and crops before land application can be considered.
Collapse
Affiliation(s)
- Niluka Wickramasinghe
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Martina Vítková
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Szimona Zarzsevszkij
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Petr Ouředníček
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Hana Šillerová
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Omolola Elizabeth Ojo
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Luke Beesley
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Alena Grasserová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Jaroslav Moško
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 00, Prague, Czech Republic; Department of Power Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Matěj Hušek
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 00, Prague, Czech Republic; Department of Power Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Michael Pohořelý
- Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 00, Prague, Czech Republic; Department of Power Engineering, University of Chemistry and Technology Prague, 166 28, Prague, Czech Republic
| | - Jarmila Čechmánková
- Research Institute for Soil and Water Conservation, Žabovřeská 250, 156 27, Prague, Czech Republic
| | - Radim Vácha
- Research Institute for Soil and Water Conservation, Žabovřeská 250, 156 27, Prague, Czech Republic
| | - Martin Kulhánek
- Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Alena Máslová
- Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic.
| |
Collapse
|
7
|
Xu M, Wang F, Stedtfeld RD, Fu Y, Xiang L, Sheng H, Li Z, Hashsham SA, Jiang X, Tiedje JM. Transfer of antibiotic resistance genes from soil to rice in paddy field. ENVIRONMENT INTERNATIONAL 2024; 191:108956. [PMID: 39190978 DOI: 10.1016/j.envint.2024.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
The global spread and distribution of antibiotic resistance genes (ARGs) has received much attention whereas knowledge about the transmission of ARGs from one matrix to another is still insufficient. In this study, the paddy fields fertilized with chemical fertilizer, swine compost, and no fertilizer were investigated to assess the transfer of ARGs from soil to rice. Soil and plant samples were collected at day 0, 7, 30 and 79 representing various stages of paddy growth. High throughput qPCR was applied to quantify ARGs using a set of 144 primers. Gene copy number of ARGs measured in soil initially decreased and then increased in soil with no fertilizer and chemical fertilizer, indicating that crop planting and flooding conditions did influence the ARGs profiles in soil. Application of swine compost significantly enhanced the relative abundance and gene copy number of ARGs in paddy soil. Rice seedlings contained substantial amount of ARGs and their relative abundance continually decreased after transplant. Compared with initial stage, detection frequencies of ARGs increased in soil without swine compost at harvest time (day 79), indicating the transmission of ARGs from irrigation water to soil. Detection frequencies of ARGs increased in soil and rice root with swine compost at harvest time, indicating the transfer of ARGs from swine compost to soil and rice root. There was no significant difference in abundance and diversity of ARGs in rice grains with these three different fertilizations. The source of the ARGs in rice grain still needs further exploration.
Collapse
Affiliation(s)
- Min Xu
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Plant, Soil and Microbial Sciences, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA.
| | | | - Yuhao Fu
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjie Sheng
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Zhongpei Li
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, MI 48824, USA; Department of Plant, Soil and Microbial Sciences, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA
| | - Xin Jiang
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- CAS State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; Department of Plant, Soil and Microbial Sciences, MI 48824, USA; Center for Microbial Ecology, Michigan State University, MI 48824, USA
| |
Collapse
|
8
|
Piccirillo A, Tolosi R, Mughini-Gras L, Kers JG, Laconi A. Drinking Water and Biofilm as Sources of Antimicrobial Resistance in Free-Range Organic Broiler Farms. Antibiotics (Basel) 2024; 13:808. [PMID: 39334983 PMCID: PMC11429059 DOI: 10.3390/antibiotics13090808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Drinking water distribution systems (DWDSs) represent an ideal environment for biofilm formation, which can harbor pathogenic and antimicrobial-resistant bacteria. This study aimed to assess longitudinally the microbial community composition and antimicrobial resistance (AMR), as determined by 16S rRNA NGS and qPCR, respectively, in drinking water (DW) and biofilm from DWDSs, as well as faeces, of free-range organic broiler farms. The role of DWDSs in AMR gene (ARG) dissemination within the farm environment and transmission to animals, was also assessed. DW and biofilm microbial communities differed from those of faecal samples. Moreover, potentially pathogenic and opportunistic bacteria (e.g., Staphylococcaceae) were identified in water and biofilms. High prevalence and abundance of ARGs conferring resistance to carbapenems (i.e., blaNDM), 3rd and 4th generation cephalosporins (i.e., blaCMY-2), (fluoro)quinolones (i.e., qnrS), and polymyxins (i.e., mcr-3 and mcr-5) were detected in DW, biofilm, and faecal samples, which is of concern for both animal and human health. Although other factors (e.g., feed, pests, and wildlife) may contribute to the dissemination of AMR in free-range organic poultry farms, this study indicates that DWDSs can also play a role.
Collapse
Affiliation(s)
- Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (R.T.); (A.L.)
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (R.T.); (A.L.)
| | - Lapo Mughini-Gras
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 BA Bilthoven, The Netherlands;
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, De Uithof, 3584 CL Utrecht, The Netherlands;
| | - Jannigje G. Kers
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, De Uithof, 3584 CL Utrecht, The Netherlands;
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (R.T.); (A.L.)
| |
Collapse
|
9
|
Chen MM, Zhang YQ, Cheng LC, Zhao FJ, Wang P. Photoaged nanoplastics with multienzyme-like activities significantly shape the horizontal transfer of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134884. [PMID: 38878434 DOI: 10.1016/j.jhazmat.2024.134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/17/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Nanoplastics (NPs), identified as emerging pollutants, pose a great risk to environment and global public health, exerting profound influences on the prevalence and dissemination of antibiotic resistance genes (ARGs). Despite evidence suggesting that nano-sized plastic particles can facilitate the horizontal gene transfer (HGT) of ARGs, it is imperative to explore strategies for inhibiting the transfer of ARGs. Currently, limited information exists regarding the characteristics of environmentally aged NPs and their impact on ARGs propagation. Herein, we investigated the impact of photo-aged NPs on the transfer of ARG-carrying plasmids into Escherichia coli (E. coli) cells. Following simulated sunlight irradiation, photo-aged nano-sized polystyrene plastics (PS NPs) exhibited multiple enzyme-like activities, including peroxidase (POD) and oxidase (OXD), leading to a burst of reactive oxygen species (ROS). At relatively low concentrations (0.1, 1 μg/mL), both pristine and aged PS NPs facilitated the transfer of pUC19 and pHSG396 plasmids within E. coli due to moderate ROS production and enhanced cell membrane permeability. Intriguingly, at relatively high concentrations (5, 10 μg/mL), aged PS NPs significantly suppressed plasmids transformation. The non-unidirectional impact of aged PS NPs involved the overproduction of ROS (•OH and •O2-) via nanozyme activity, directly degrading ARGs and damaging plasmid structure. Additionally, oxidative damage to bacteria resulted from the presence of much toxic free radicals, causing physical damage to cell membranes, reduction of the SOS response and restriction of adenosine-triphosphate (ATP) supply, ultimately leading to inactivation of recipient cells. This study unveils the intrinsic multienzyme-like activity of environmentally aged NPs, highlighting their potential to impede the transfer and dissemination of ARGs.
Collapse
Affiliation(s)
- Ming-Ming Chen
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Qing Zhang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu-Chen Cheng
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Ali I, Naz B, Liu Z, Chen J, Yang Z, Attia K, Ayub N, Ali I, Mohammed AA, Faisal S, Sun L, Xiao S, Chen S. Interplay among manures, vegetable types, and tetracycline resistance genes in rhizosphere microbiome. Front Microbiol 2024; 15:1392789. [PMID: 39011147 PMCID: PMC11246966 DOI: 10.3389/fmicb.2024.1392789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/03/2024] [Indexed: 07/17/2024] Open
Abstract
The rapid global emergence of antibiotic resistance genes (ARGs) is a substantial public health concern. Livestock manure serves as a key reservoir for tetracycline resistance genes (TRGs), serving as a means of their transmission to soil and vegetables upon utilization as a fertilizer, consequently posing a risk to human health. The dynamics and transfer of TRGs among microorganisms in vegetables and fauna are being investigated. However, the impact of different vegetable species on acquisition of TRGs from various manure sources remains unclear. This study investigated the rhizospheres of three vegetables (carrots, tomatoes, and cucumbers) grown with chicken, sheep, and pig manure to assess TRGs and bacterial community compositions via qPCR and high-throughput sequencing techniques. Our findings revealed that tomatoes exhibited the highest accumulation of TRGs, followed by cucumbers and carrots. Pig manure resulted in the highest TRG levels, compared to chicken and sheep manure, in that order. Bacterial community analyses revealed distinct effects of manure sources and the selective behavior of individual vegetable species in shaping bacterial communities, explaining 12.2% of TRG variation. Firmicutes had a positive correlation with most TRGs and the intl1 gene among the dominant phyla. Notably, both the types of vegetables and manures significantly influenced the abundance of the intl1 gene and soil properties, exhibiting strong correlations with TRGs and elucidating 30% and 17.7% of TRG variance, respectively. Our study delineated vegetables accumulating TRGs from manure-amended soils, resulting in significant risk to human health. Moreover, we elucidated the pivotal roles of bacterial communities, soil characteristics, and the intl1 gene in TRG fate and dissemination. These insights emphasize the need for integrated strategies to reduce selection pressure and disrupt TRG transmission routes, ultimately curbing the transmission of tetracycline resistance genes to vegetables.
Collapse
Affiliation(s)
- Izhar Ali
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Beenish Naz
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ziyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Jingwei Chen
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Zi Yang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Kotb Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nasir Ayub
- Korean Environmental Microorganism Resource Center, Department of Integrative Biotechnology, Sungkyuankwan University, Seoul, Republic of Korea
| | - Ikram Ali
- Center for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Kowloon Tong, China
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shah Faisal
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, China
| | - Likun Sun
- College of Animal Sciences, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Sa Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Shuyan Chen
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Yu T, Liu Z, Hu B, Zhu L. Field-based investigation reveals selective enrichment of companion microbes in vegetables leading to specific accumulation of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172636. [PMID: 38653418 DOI: 10.1016/j.scitotenv.2024.172636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Vegetables capture antibiotic resistance genes (ARGs) from the soil and then pass them on to consumers through the delivery chain and food chain, and are therefore the key node that may increase the risk of human exposure to ARGs. This study investigates the patterns and driving forces behind the transmission of ARGs from soil to vegetables by the commonly planted cash crops in the coastal region of southern China, i.e. broccoli, pumpkin, and broad bean, to investigate. The study used metagenomic data to reveal the microbial and ARGs profiles of various vegetables and the soil they are grown. The results indicate significant differences in the accumulation of ARGs among different vegetables harvested in the same area at the same time frame, and the ARGs accumulation ability of the three vegetables was in the order of broccoli, broad bean, and pumpkin. In addition, broccoli collected the highest number of ARGs in types (n = 14), while pumpkin (n = 13) does not obtain trimethoprim resistance genes and broad beans (n = 10) do not obtain chloramphenicol, fosmidomycin, quinolone, rifamycin, or trimethoprim resistance genes. Host tracking analysis shows a strong positive correlation (|rho| > 0.8, p < 0.05) between enriched ARGs and plant companion microbes. Enrichment analysis of metabolic pathways of companion microbes shows that vegetables exhibit a discernible enrichment of companion microbes, with significant differences among vegetables. This phenomenon is primarily due to the screening of carbohydrate metabolism capabilities among companion microbes and leads varied patterns of ARGs that spread from the soil to vegetables. This offers a novel insight into the intervention of foodborne transmission of ARGs.
Collapse
Affiliation(s)
- Tao Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
12
|
Shrivas VL, Choudhary AK, Hariprasad P, Sharma S. Transmission of antibiotic resistance through organic amendments in arable land: A 3-year field study with pigeonpea-wheat cropping system. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134378. [PMID: 38691926 DOI: 10.1016/j.jhazmat.2024.134378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The worldwide emergence of antimicrobial resistance (AMR) poses a substantial risk to human health and environmental stability. In agriculture, organic amendments (derived from organic sources such as manure, and plant residues) are beneficial in restoring soil properties and providing essential nutrients to crops but raise concerns about harboring antibiotic resistance, which emphasizes the need for vigilant monitoring and strategic interventions in their application. The current study assessed the impact of farming practices (organic and conventional) in a three-year field experiment with pigeonpea-wheat cropping system, focusing on the transmission of AMR using culture-dependent and -independent approaches, and soil nutrient content. Markers for antibiotic resistance genes (ARGs) (aminoglycoside-aacA, β-lactam-blaTEM, chloramphenicol-cmlA1, macrolide-ermB, sulfonamides-sul1, sul2, and tetracycline-tetO) and integrons (intl1 and intl2) were targeted using qPCR. Manure amendments, particularly FYM1, exhibited a higher abundance of copies of ARGs compared to the rhizospheric soil. Organic farming was associated with higher copies of intl2, sul1, blaTEM, and tetO genes, while conventional farming showed increased copies of sul2 and ermB genes in the rhizosphere. Significant positive correlations were observed among soil nutrient contents, ARGs, and MGEs. The notable prevalence of ARGs linked to manure amendments serves as a cautionary note, demanding responsible management practices.
Collapse
Affiliation(s)
- Vijay Laxmi Shrivas
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India; Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anil K Choudhary
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - P Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
13
|
Alkorta I, Garbisu C. Expanding the focus of the One Health concept: links between the Earth-system processes of the planetary boundaries framework and antibiotic resistance. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0013. [PMID: 38815132 DOI: 10.1515/reveh-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
The scientific community warns that our impact on planet Earth is so acute that we are crossing several of the planetary boundaries that demarcate the safe operating space for humankind. Besides, there is mounting evidence of serious effects on people's health derived from the ongoing environmental degradation. Regarding human health, the spread of antibiotic resistant bacteria is one of the most critical public health issues worldwide. Relevantly, antibiotic resistance has been claimed to be the quintessential One Health issue. The One Health concept links human, animal, and environmental health, but it is frequently only focused on the risk of zoonotic pathogens to public health or, to a lesser extent, the impact of contaminants on human health, i.e., adverse effects on human health coming from the other two One Health "compartments". It is recurrently claimed that antibiotic resistance must be approached from a One Health perspective, but such statement often only refers to the connection between the use of antibiotics in veterinary practice and the antibiotic resistance crisis, or the impact of contaminants (antibiotics, heavy metals, disinfectants, etc.) on antibiotic resistance. Nonetheless, the nine Earth-system processes considered in the planetary boundaries framework can be directly or indirectly linked to antibiotic resistance. Here, some of the main links between those processes and the dissemination of antibiotic resistance are described. The ultimate goal is to expand the focus of the One Health concept by pointing out the links between critical Earth-system processes and the One Health quintessential issue, i.e., antibiotic resistance.
Collapse
Affiliation(s)
- Itziar Alkorta
- Department of Biochemistry and Molecular Biology, 16402 University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Carlos Garbisu
- NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
14
|
Zalewska M, Błażejewska A, Szadziul M, Ciuchciński K, Popowska M. Effect of composting and storage on the microbiome and resistome of cattle manure from a commercial dairy farm in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30819-30835. [PMID: 38616224 PMCID: PMC11096248 DOI: 10.1007/s11356-024-33276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Manure from food-producing animals, rich in antibiotic-resistant bacteria and antibiotic resistance genes (ARGs), poses significant environmental and healthcare risks. Despite global efforts, most manure is not adequately processed before use on fields, escalating the spread of antimicrobial resistance. This study examined how different cattle manure treatments, including composting and storage, affect its microbiome and resistome. The changes occurring in the microbiome and resistome of the treated manure samples were compared with those of raw samples by high-throughput qPCR for ARGs tracking and sequencing of the V3-V4 variable region of the 16S rRNA gene to indicate bacterial community composition. We identified 203 ARGs and mobile genetic elements (MGEs) in raw manure. Post-treatment reduced these to 76 in composted and 51 in stored samples. Notably, beta-lactam, cross-resistance to macrolides, lincosamides and streptogramin B (MLSB), and vancomycin resistance genes decreased, while genes linked to MGEs, integrons, and sulfonamide resistance increased after composting. Overall, total resistance gene abundance significantly dropped with both treatments. During composting, the relative abundance of genes was lower midway than at the end. Moreover, higher biodiversity was observed in samples after composting than storage. Our current research shows that both composting and storage effectively reduce ARGs in cattle manure. However, it is challenging to determine which method is superior, as different groups of resistance genes react differently to each treatment, even though a notable overall reduction in ARGs is observed.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Szadziul
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karol Ciuchciński
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
15
|
Batuman O, Britt-Ugartemendia K, Kunwar S, Yilmaz S, Fessler L, Redondo A, Chumachenko K, Chakravarty S, Wade T. The Use and Impact of Antibiotics in Plant Agriculture: A Review. PHYTOPATHOLOGY 2024; 114:885-909. [PMID: 38478738 DOI: 10.1094/phyto-10-23-0357-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Growers have depended on the specificity and efficacy of streptomycin and oxytetracycline as a part of their plant disease arsenal since the middle of the 20th century. With climate change intensifying plant bacterial epidemics, the established success of these antibiotics remains threatened. Our strong reliance on certain antibiotics for devastating diseases eventually gave way to resistance development. Although antibiotics in plant agriculture equal to less than 0.5% of overall antibiotic use in the United States, it is still imperative for humans to continue to monitor usage, environmental residues, and resistance in bacterial populations. This review provides an overview of the history and use, resistance and mitigation, regulation, environmental impact, and economics of antibiotics in plant agriculture. Bacterial issues, such as the ongoing Huanglongbing (citrus greening) epidemic in Florida citrus production, may need antibiotics for adequate control. Therefore, preserving the efficacy of our current antibiotics by utilizing more targeted application methods, such as trunk injection, should be a major focus. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kellee Britt-Ugartemendia
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Sanju Kunwar
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Lauren Fessler
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Ana Redondo
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kseniya Chumachenko
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | - Shourish Chakravarty
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Tara Wade
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| |
Collapse
|
16
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
17
|
Cabrera-Aguas M, Chidi-Egboka N, Kandel H, Watson SL. Antimicrobial resistance in ocular infection: A review. Clin Exp Ophthalmol 2024; 52:258-275. [PMID: 38494451 DOI: 10.1111/ceo.14377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/19/2024]
Abstract
Antimicrobial resistance (AMR) is a global public health threat with significant impact on treatment outcomes. The World Health Organization's Global Action Plan on AMR recommended strengthening the evidence base through surveillance programs and research. Comprehensive, timely data on AMR for organisms isolated from ocular infections are needed to guide treatment decisions and inform researchers and microbiologists of emerging trends. This article aims to provide an update on the development of AMR in ocular organisms, AMR in bacterial ocular infections and on AMR stewardship programs globally. The most common ocular pathogens are Pseudomonas aeruginosa, Staphylococcus spp., Streptococcus pneumoniae, and Haemophilus influenzae in ocular infections. A variety of studies and a few surveillance programs worldwide have reported on AMR in these infections over time. Fluoroquinolone resistance has increased particularly in Asia and North America. For conjunctivitis, the ARMOR cumulative study in the USA reported a slight decrease in resistance to ciprofloxacin. For keratitis, resistance to methicillin has remained stable for S. aureus and CoNS, while resistance to ciprofloxacin has decreased for MRSA globally. Methicillin-resistance and multidrug resistance are also emerging, requiring ongoing monitoring. Antimicrobial stewardship (AMS) programmes have a critical role in reducing the threat of AMR and improving treatment outcomes. To be successful AMS must be informed by up-to-date AMR surveillance data. As a profession it is timely for ophthalmology to act to prevent AMR leading to greater visual loss through supporting surveillance programmes and establishing AMS.
Collapse
Affiliation(s)
- Maria Cabrera-Aguas
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Eye Hospital, Sydney, New South Wales, Australia
| | - Ngozi Chidi-Egboka
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Himal Kandel
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Stephanie L Watson
- Faculty of Medicine and Health, Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Eye Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
19
|
Saechue B, Atwill ER, Jeamsripong S. Occurrence and molecular characteristics of antimicrobial resistance, virulence factors, and extended-spectrum β-lactamase (ESBL) producing Salmonella enterica and Escherichia coli isolated from the retail produce commodities in Bangkok, Thailand. Heliyon 2024; 10:e26811. [PMID: 38444485 PMCID: PMC10912461 DOI: 10.1016/j.heliyon.2024.e26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
The incidence of antimicrobial resistance (AMR) in the environment is often overlooked and leads to serious health threats under the One Health paradigm. Infection with extended-spectrum β-lactamase (ESBL) producing bacteria in humans and animals has been widely examined, with the mode of transmission routes such as food, water, and contact with a contaminated environment. The purpose of this study was to determine the occurrence and molecular characteristics of resistant Salmonella enterica (S. enterica) (n = 59) and Escherichia coli (E. coli) (n = 392) isolated from produce commodities collected from fresh markets and supermarkets in Bangkok, Thailand. In this study, the S. enterica isolates exhibited the highest prevalence of resistance to tetracycline (11.9%) and streptomycin (8.5%), while the E. coli isolates were predominantly resistant to tetracycline (22.5%), ampicillin (21.4%), and sulfamethoxazole (11.5%). Among isolates of S. enterica (6.8%) and E. coli (15.3%) were determined as multidrug resistant (MDR). The prevalence of ESBL-producing isolates was 5.1% and 1.0% in S. enterica and E. coli, respectively. A minority of S. enterica isolates, where a single isolate exclusively carried blaCTX-M-55 (n = 1), and another isolate harbored both blaCTX-M-55 and blaTEM-1 (n = 1); similarly, a minority of E. coli isolates contained blaCTX-M-55 (n = 2) and blaCTX-M-15 (n = 1). QnrS (11.9%) and blaTEM (20.2%) were the most common resistant genes found in S. enterica and E. coli, respectively. Nine isolates resistant to ciprofloxacin contained point mutations in gyrA and parC. In addition, the odds of resistance to tetracycline among isolates of S. enterica were positively associated with the co-occurrence of ampicillin resistance and the presence of tetB (P = 0.001), while the E. coli isolates were positively associated with ampicillin resistance, streptomycin resistance, and the presence of tetA (P < 0.0001) in this study. In summary, these findings demonstrate that fresh vegetables and fruits, such as cucumbers and tomatoes, can serve as an important source of foodborne AMR S. enterica and E. coli in the greater Bangkok area, especially given the popularity of these fresh commodities in Thai cuisine.
Collapse
Affiliation(s)
- Benjawan Saechue
- Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
| | - Edward R. Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Saharuetai Jeamsripong
- Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
- Research Unit in Microbial Food Safety and Antimicrobial resistance, Department of Veterinary Public Health, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Sher C, Fusco C. Sports and sustainable development: the troubling absence of meat sourcing policies in the sports sector. Front Sports Act Living 2024; 6:1341810. [PMID: 38504689 PMCID: PMC10948448 DOI: 10.3389/fspor.2024.1341810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024] Open
Abstract
The excessive use of antibiotics in industrial meat production in the U.S. incurs severe health implications for animals, humans, and the environment, thereby threatening the integrated health of the ecosystem and sustainable development. While the consumption of meat, including hot dogs, chicken wings, and hamburgers, is a hallmark of attending professional sports events in North America, the sourcing policies for meat in the realm of professional sports remain relatively obscure. We conducted a content analysis case study on the four major sports leagues in North America, their teams and stadium practices. Our objective was twofold: first, to investigate existing sustainability initiatives at the league, team, and stadium levels; and second, to examine whether there are any food sourcing programs, specifically meat sourcing policies that might encourage the consumption of meat produced without the use of antibiotics, in the sports sector that are designed to mitigate ecological ramifications of meat consumption within sports contexts. Results show that existing sustainability initiatives at the three levels are focused primarily on reducing carbon emissions and waste. There is, however, a notable neglect of food sourcing policies, which is concerning given that industrial animal agriculture is a leading cause of antibiotic resistance and environmental degradation. This suggests that meat sourcing policy is a missing piece in current sustainability initiatives. The major sports leagues should therefore consider incorporating pertinent policies, such as procuring meat-based products produced without the use of antibiotics to help strengthen their existing efforts in achieving their sustainable development goals.
Collapse
Affiliation(s)
- Chloe Sher
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Caroline Fusco
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Manaia CM, Aga DS, Cytryn E, Gaze WH, Graham DW, Guo J, Leonard AFC, Li L, Murray AK, Nunes OC, Rodriguez-Mozaz S, Topp E, Zhang T. The Complex Interplay Between Antibiotic Resistance and Pharmaceutical and Personal Care Products in the Environment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:637-652. [PMID: 36582150 DOI: 10.1002/etc.5555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2024;43:637-652. © 2022 SETAC.
Collapse
Affiliation(s)
- Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle, UK
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Anne F C Leonard
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Olga C Nunes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research, Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Wang T, Xu Y, Ling W, Mosa A, Liu S, Lin Z, Wang H, Hu X. Dissemination of antibiotic resistance genes is regulated by iron oxides: Insight into the influence on bacterial transformation. ENVIRONMENT INTERNATIONAL 2024; 185:108499. [PMID: 38368718 DOI: 10.1016/j.envint.2024.108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/27/2023] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
The transportation of antibiotic resistance genes (ARGs) in manure-soil-plant continuums poses risks to human health. Horizontal gene transfer, particularly for bacterial transformation, is an important way for ARG dissemination. As crucial components in soils, iron oxides impacted the fates of various abiotic and biotic contaminants due to their active properties. However, whether they can influence the transformation of ARGs is unknown, which waits to be figured out to boost the assessment and control of ARG spread risks. In this study, we have investigated the effects of goethite, hematite, and magnetite (0-250 mg/L, with sizes < 100 nm and > 100 nm) on the transfer of ampicillin resistance genes to Escherichia coli cells. At lower iron oxide concentrations, the transformation of ARGs was first facilitated (transformation frequency reached up to 3.38-fold higher), but the facilitating effects gradually weakened and eventually disappeared as concentrations further increased. Particle size and iron oxide type were not the universal determinants controlling the transformation. At lower concentrations, iron oxides interacted with proteins and phospholipids in E. coli envelope structures, and induced the overgeneration of intracellular reactive oxygen species. Consequently, they led to pore formation and permeability enhancement on the cell membrane, thus promoting the transformation. The facilitation was also associated with the carrier-like effect of iron oxides for antibiotic resistance plasmids. At higher concentrations, the weakened facilitations were attributed to the aggregation of iron oxides. In this study, we highlight the crucial roles of the concentrations (contents) of iron oxides on the dissemination of ARGs in soils; this study may serve as a reference for ARG pollution control in future agricultural production.
Collapse
Affiliation(s)
- Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yanxing Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhipeng Lin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
23
|
Lau CHF, Capitani S, Tien YC, Verellen LA, Kithama M, Kang H, Kiarie EG, Topp E, Diarra MS, Fruci M. Dynamic effects of black soldier fly larvae meal on the cecal bacterial microbiota and prevalence of selected antimicrobial resistant determinants in broiler chickens. Anim Microbiome 2024; 6:6. [PMID: 38360706 PMCID: PMC10868003 DOI: 10.1186/s42523-024-00293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND We had earlier described the growth-promoting and -depressive effects of replacing soybean meal (SBM) with low (12.5% and 25%) and high (50% and 100%) inclusion levels of black soldier fly larvae meal (BSFLM), respectively, in Ross x Ross 708 broiler chicken diets. Herein, using 16S rRNA gene amplicon sequencing, we investigated the effects of replacing SBM with increasing inclusion levels (0-100%) of BSFLM in broiler diets on the cecal bacterial community composition at each growth phase compared to broilers fed a basal corn-SBM diet with or without the in-feed antibiotic, bacitracin methylene disalicylate (BMD). We also evaluated the impact of low (12.5% and 25%) inclusion levels of BSFLM (LIL-BSFLM) on the prevalence of selected antimicrobial resistance genes (ARGs) in litter and cecal samples from 35-day-old birds. RESULTS Compared to a conventional SBM-based broiler chicken diet, high (50 to100%) inclusion levels of BSFLM (HIL-BSFLM) significantly altered the cecal bacterial composition and structure, whereas LIL-BSFLM had a minimal effect. Differential abundance analysis further revealed that the ceca of birds fed 100% BSFLM consistently harbored a ~ 3 log-fold higher abundance of Romboutsia and a ~ 2 log-fold lower abundance of Shuttleworthia relative to those fed a BMD-supplemented control diet at all growth phases. Transient changes in the abundance of several potentially significant bacterial genera, primarily belonging to the class Clostridia, were also observed for birds fed HIL-BSFLM. At the finisher phase, Enterococci bacteria were enriched in the ceca of chickens raised without antibiotic, regardless of the level of dietary BSFLM. Additionally, bacitracin (bcrR) and macrolide (ermB) resistance genes were found to be less abundant in the ceca of chickens fed antibiotic-free diets, including either a corn-SBM or LIL-BSFLM diet. CONCLUSIONS Chickens fed a HIL-BSFLM presented with an imbalanced gut bacterial microbiota profile, which may be linked to the previously reported growth-depressing effects of a BSFLM diet. In contrast, LIL-BSFLM had a minimal effect on the composition of the cecal bacterial microbiota and did not enrich for selected ARGs. Thus, substitution of SBM with low levels of BSFLM in broiler diets could be a promising alternative to the antibiotic growth promoter, BMD, with the added-value of not enriching for bacitracin- and macrolide-associated ARGs.
Collapse
Affiliation(s)
- Calvin Ho-Fung Lau
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada.
| | - Sabrina Capitani
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Yuan-Ching Tien
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Lou Ann Verellen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Munene Kithama
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Hellen Kang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Agroécologie research unit, INRAE, Université de Bourgogne, Dijon, France
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Michael Fruci
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
24
|
Musiyiwa K, Simbanegavi TT, Marumure J, Makuvara Z, Chaukura N, Gwenzi W. The soil-microbe-plant resistome: A focus on the source-pathway-receptor continuum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12666-12682. [PMID: 38253827 DOI: 10.1007/s11356-023-31788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
The One World, One Health concept implies that antibiotic resistance (AR) in the soil-microbe-plant resistome is intricately linked to the human resistome. However, the literature is mainly confined to sources and types of AR in soils or microbes, but comprehensive reviews tracking AR in the soil-microbe-plant resistome are limited. The present review applies the source-pathway-receptor concept to understand the sources, behaviour, and health hazards of the soil-microbe-plant resistome. The results showed that the soil-microbe-plant system harbours various antibiotic-resistance genes (ARGs), antibiotic-resistant bacteria (ARB), and mobile genetic elements (MGEs). Anthropogenic sources and drivers include soil application of solid waste, wastewater, biosolids, and industrial waste. Water-, wind-, and human-driven processes and horizontal gene transfer circulate AR in the soil-microbe-plant resistome. The AR in bulk soil, soil components that include soil microorganisms, soil meso- and macro-organisms, and possible mechanisms of AR transfer to soil components and ultimately to plants are discussed. The health risks of the soil-microbe-plant resistome are less studied, but potential impacts include (1) the transfer of AR to previously susceptible organisms and other resistomes, including the human resistome. Overall, the study tracks the behaviour and health risks of AR in the soil-plant system. Future research should focus on (1) ecological risks of AR at different levels of biological organization, (2) partitioning of AR among various phases of the soil-plant system, (3) physico-chemical parameters controlling the fate of AR, and (4) increasing research from low-income regions particularly Africa as most of the available literature is from developed countries.
Collapse
Affiliation(s)
- Kumbirai Musiyiwa
- Department of Crop Science and Post-Harvest Technology, School of Agricultural Science and Technology, Chinhoyi University of Technology, Private Bag 7724, Chinhoyi, Zimbabwe
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mt. Pleasant, P.O. Box MP167, Harare, Zimbabwe
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, P.O. Box 1235, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, P.O. Box 1235, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Universitat Kassel, Steinstraβe 19, 37213, Witzenhausen, Germany.
| |
Collapse
|
25
|
Kläui A, Bütikofer U, Naskova J, Wagner E, Marti E. Fresh produce as a reservoir of antimicrobial resistance genes: A case study of Switzerland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167671. [PMID: 37813266 DOI: 10.1016/j.scitotenv.2023.167671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Antimicrobial resistance (AMR) can be transferred to humans through food and fresh produce can be an ideal vector as it is often consumed raw or minimally processed. The production environment of fresh produce and the agricultural practices and regulations can vary substantially worldwide, and consequently, the contamination sources of AMR. In this study, 75 imported and 75 non-imported fresh produce samples purchased from Swiss retailers were tested for the presence of antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Moreover, the plasmidome of 4 selected samples was sequenced to have an insight on the diversity of mobile resistome. In total, 91 ARB were isolated from fresh produce, mainly cephalosporin-resistant Enterobacterales (n = 64) and carbapenem-resistant P. aeruginosa (n = 13). All P. aeruginosa, as well as 16 Enterobacterales' isolates were multidrug-resistant. No differences between imported and Swiss fresh produce were found regarding the number of ARB. In 95 % of samples at least one ARG was detected, being the most frequent sul1, blaTEM, and ermB. Abundance of sul1 and intI1 correlated strongly with the total amount of ARGs, suggesting they could be good indicators for AMR in fresh produce. Furthermore, sul1 correlated with the fecal marker yccT, indicating that fecal contamination could be one of the sources of AMR. The gene sulI was significantly higher in most imported samples, suggesting higher anthropogenic contamination in the food production chain of imported produce. The analyses of the plasmidome of coriander and carrot samples revealed the presence of several ARGs as well as genes conferring resistance to antiseptics and disinfectants in mobile genetic elements. Overall, this study demonstrated that fresh produce contributes to the dissemination of ARGs and ARB.
Collapse
Affiliation(s)
- Anita Kläui
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Ueli Bütikofer
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Javorka Naskova
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Elvira Wagner
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Elisabet Marti
- Food Microbial Systems, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| |
Collapse
|
26
|
Liu S, Han Z, Zhu D, Luan X, Deng L, Dong L, Yang M, Zhang Y. Field-based evidence for the enrichment of intrinsic antibiotic resistome stimulated by plant-derived fertilizer in agricultural soil. J Environ Sci (China) 2024; 135:728-740. [PMID: 37778843 DOI: 10.1016/j.jes.2022.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 10/03/2023]
Abstract
Animal manures have been demonstrated to enhance antibiotic resistance in agricultural soils. However, little is known about the effects of plant-derived fertilizer on soil antibiotic resistome. Herein, metagenomic sequencing was used to investigate the effects of a plant-derived fertilizer processed from sugarcane and beet on soil antibiotic resistance genes (ARGs) in a soybean field along crop growth stages. ARG profiles in the soils amended by plant-derived fertilizer were compared with those in the soils amended by chicken manure. The abundance and diversity of total ARGs in the soils amended by plant-derived fertilizer were significantly (P < 0.05) elevated at the sprout stage, to a level comparable to that in the manured soils. Whereas, unlike chicken manure mainly introducing manure-borne ARGs to soil, the plant-derived fertilizer was indicated to mainly enrich multidrug resistance genes in soil by nourishing indigenous bacteria. ARGs with abundances in amended soils significantly (P < 0.05) higher than in unamended soils at the sprout stage of soybean were considered as enriched ARGs. Decrease in the abundance of the enriched ARGs was observed in both the amended soils from the sprout to the harvest. Network analysis further identified Proteobacteria and Bacteroidetes as the primary bacterial taxa involved in the temporal variation of the enriched ARGs in the soils amended by plant-derived fertilizer, while in manured soils were Firmicutes and Actinobacteria. As revealed by multivariate statistical analyses, variation of the enriched ARGs in the soils amended by plant-derived fertilizer was majorly attributed to the response of co-occurred bacteria to depleting nutrients, which was different from the failed establishment of manure-borne bacteria in the manured soils. Our study provided field-based evidence that plant-derived fertilizer stimulated the intrinsic antibiotic resistome, and proposed attention to the un-perceived risk since some clinically relevant ARGs originate and evolve from natural resistome.
Collapse
Affiliation(s)
- Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liujie Deng
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Khorgos 835007, China
| | - Liping Dong
- State Environmental Protection Engineering Center for Harmless Treatment and Resource Utilization of Antibiotic Residues, Khorgos 835007, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Zhang C, Lin X, Lin D, Liang T, Huang L, Zheng L, Xu Y. Study on toxicity responses and their mechanisms in Xenopus tropicalis long-term exposure to Shigella flexneri and ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167040. [PMID: 37709083 DOI: 10.1016/j.scitotenv.2023.167040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The abuse and overuse of antibiotics increased not only the exposure of aquatic animals to antibiotics but also the development of resistance in pathogenic bacteria. To investigate the effects and mechanisms of exposure, a long-term experiment lasting 120 days was conducted in which Xenopus tropicalis was exposed to single and combined stress factors of multiresistant pathogenic Shigella flexneri and ciprofloxacin (CIP). The intestinal oxidative stress, immune factors and flora, as well as the brain-gut axis correlation factors of X. tropicalis, were tracked to account for the response of aquatic animals to the exogenous pollutants. SOD activity and MDA content were significantly increased in stressed X. tropicalis (p < 0.001), while the levels of proinflammatory factors (IL-1β, IFN-γ) were significantly reduced (p < 0.01). The content of intestinal beneficial bacteria decreased and that of harmful bacteria increased in the intestinal flora of the stressed X. tropicalis (p < 0.001). These results suggested that S. flexneri and CIP disturbed the intestinal flora and caused oxidative damage in the host, and the body produced a series of responses, such as oxidative stress responses and regulation of the expression of immune factors, to maintain the balance of antioxidant inflammation. Significant changes in the expression of intestinal neurotransmitters (5-HT, CGRP) and brain peptides (BDNF, NCAM, NPY) (p < 0.05) also indicated that the brain-gut axis interaction was disrupted. In addition, although the coexisting CIP could reduce intestinal toxicity caused by S. flexneri, the amount of intestinal pathogenic bacteria Desulfovibrio increased significantly. Moreover, compared with the single exposure group, SOD activity, CAT activity and MDA content were significantly reduced in the dual exposure group. Therefore, the health risks of multiresistant pathogenic bacteria on the intestinal and brain-gut axis interaction should be given more attention, and the interaction of brain-gut axis is more important when antibiotics coexist.
Collapse
Affiliation(s)
- Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dawu Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taojie Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lu Huang
- Instrumental Analysis Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
28
|
Danilova N, Galieva G, Kuryntseva P, Selivanovskaya S, Galitskaya P. Influence of the Antibiotic Oxytetracycline on the Morphometric Characteristics and Endophytic Bacterial Community of Lettuce ( Lactuca sativa L.). Microorganisms 2023; 11:2828. [PMID: 38137972 PMCID: PMC10746115 DOI: 10.3390/microorganisms11122828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Antibiotics enter the soil with compost prepared from livestock manures and other sources. There is concern that they may influence plant growth and cause antibiotic resistance in soil and plant endospheric microbiomes. In the present work, lettuce plants were cultivated in soil and hydroponics spiked with oxytetracycline (0, 15, and 300 mg × kg-1 and 0, 15, and 50 mg × L-1, respectively) during a 28-day greenhouse experiment. It was revealed that the antibiotic reduced the chlorophyll content, the biomass, and the length of the roots and stems by 1.4-4.7, 1.8-39, 2.5-3.2, and 1.8-6.3 times in soil and in hydroponics. The copy numbers of the tet(A) and tet(X) genes were revealed to be 4.51 × 103-1.58 × 105 and 8.36 × 106-1.07 × 108 copies × g-1, respectively, suggesting the potential migration of these genes from soil/hydroponics to plant roots and leaves. According to a non-metric multidimensional scaling (NMDS) analysis of the 16S rRNA amplicon sequencing data, endospheric bacterial communities were similar in leaves and roots independent of the growing substrate and antibiotic concentration. While soil bacterial communities were unaffected by the presence of antibiotics, hydroponic communities exhibited dependency, likely attributable to the absence of the mitigating effect of soil particle absorption.
Collapse
Affiliation(s)
| | | | | | | | - Polina Galitskaya
- Institute of Environmental Sciences, Kazan Federal University, Kazan 420008, Russia; (N.D.); (G.G.); (P.K.); (S.S.)
| |
Collapse
|
29
|
Wang Z, Zhang N, Li C, Shao L. Diversity of antibiotic resistance genes in soils with four different fertilization treatments. Front Microbiol 2023; 14:1291599. [PMID: 37928655 PMCID: PMC10623414 DOI: 10.3389/fmicb.2023.1291599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Although the enrichment of resistance genes in soil has been explored in recent years, there are still some key questions to be addressed regarding the variation of ARG composition in soil with different fertilization treatments, such as the core ARGs in soil after different fertilization treatments, the correlation between ARGs and bacterial taxa, etc. For soils after different fertilization treatments, the distribution and combination of ARG in three typical fertilization methods (organic fertilizer alone, chemical fertilizer alone, and conventional fertilizer) and non-fertilized soils were investigated in this study using high-throughput fluorescence quantitative PCR (HT-qPCR) technique. The application of organic fertilizers significantly increased the abundance and quantity of ARGs and their subtypes in the soil compared to the non-fertilized soil, where sul1 was the ARGs specific to organic fertilizers alone and in higher abundance. The conventional fertilizer application also showed significant enrichment of ARGs, which indicated that manure addition often had a more decisive effect on ARGs in soil than chemical fertilizers, and three bacteria, Pseudonocardia, Irregularibacter, and Castllaniella, were the key bacteria affecting ARG changes in soil after fertilization. In addition, nutrient factors and heavy metals also affect the distribution of ARGs in soil and are positively correlated. This paper reveals the possible reasons for the increase in the number of total soil ARGs and their relative abundance under different fertilization treatments, which has positive implications for controlling the transmission of ARGs through the soil-human pathway.
Collapse
Affiliation(s)
- Zhuoran Wang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, China
- National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, China
| | - Na Zhang
- Jilin Bishuiyuan Water Science and Technology Ltd., Co., Changchun, Jilin, China
| | - Chunming Li
- Jilin Bishuiyuan Water Science and Technology Ltd., Co., Changchun, Jilin, China
| | - Liang Shao
- Jilin Bishuiyuan Water Science and Technology Ltd., Co., Changchun, Jilin, China
| |
Collapse
|
30
|
Akinduro A, Onyekwelu CI, Oyelumade T, Ajibade OA, Odetoyin B, Olaniyi OO. Impact of soil supplemented with pig manure on the abundance of antibiotic resistant bacteria and their associated genes. J Antibiot (Tokyo) 2023; 76:548-562. [PMID: 37308603 DOI: 10.1038/s41429-023-00633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 06/14/2023]
Abstract
This study was conducted to evaluate the abundance of antibiotic resistant bacteria and their resistance genes from agriculture soil supplemented with pig manure. Uncultivable soil sample was supplemented with pig manure samples under microcosm experimental conditions and plated on Luria-Bertani (LB) agar incorporated with commercial antibiotics. The supplementation of soil with 15% pig manure resulted in the highest increase in the population of antibiotic resistant bacteria (ARB)/multiple antibiotic resistant bacteria (MARB). Seven genera that included Pseudomonas, Escherichia, Providencia, Salmonella, Bacillus, Alcaligenes and Paenalcaligenes were the cultivable ARB identified. A total of ten antibiotic resistant bacteria genes (ARGs) frequently used in clinical or veterinary settings and two mobile genetic elements (MGEs) (Class 1 and Class 2 integrons) were detected. Eight heavy metal, copper, cadmium, chromium, manganese, lead, zinc, iron, and cobalt were found in all of the manure samples at different concentrations. Tetracycline resistance genes were widely distributed with prevalence of 50%, while aminoglycoside and quinolone-resistance gene had 16% and 13%, respectively. Eighteen ARB isolates carried more than two ARGs in their genome. Class 1 integron was detected among all the 18 ARB with prevalence of 90-100%, while Class 2 integron was detected among 11 ARB. The two classes of integron were found among 10 ARB. Undoubtedly, pig manure collected from farms in Akure metropolis are rich in ARB and their abundance might play a vital role in the dissemination of resistance genes among clinically-relevant pathogens.
Collapse
Affiliation(s)
- Adebayonle Akinduro
- Department of Microbiology, Federal University of Technology, Akure, Nigeria
| | | | - Tomisin Oyelumade
- Department of Microbiology, Federal University of Technology, Akure, Nigeria
- Department of Biomedical Sciences, University of East London, London, UK
| | | | - Babatunde Odetoyin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
31
|
Todman H, Arya S, Baker M, Stekel DJ. A model of antibiotic resistance genes accumulation through lifetime exposure from food intake and antibiotic treatment. PLoS One 2023; 18:e0289941. [PMID: 37590256 PMCID: PMC10434901 DOI: 10.1371/journal.pone.0289941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023] Open
Abstract
Antimicrobial resistant bacterial infections represent one of the most serious contemporary global healthcare crises. Acquisition and spread of resistant infections can occur through community, hospitals, food, water or endogenous bacteria. Global efforts to reduce resistance have typically focussed on antibiotic use, hygiene and sanitation and drug discovery. However, resistance in endogenous infections, e.g. many urinary tract infections, can result from life-long acquisition and persistence of resistance genes in commensal microbial flora of individual patients, which is not normally considered. Here, using individual based Monte Carlo models calibrated using antibiotic use data and human gut resistomes, we show that the long-term increase in resistance in human gut microbiomes can be substantially lowered by reducing exposure to resistance genes found food and water, alongside reduced medical antibiotic use. Reduced dietary exposure is especially important during patient antibiotic treatment because of increased selection for resistance gene retention; inappropriate use of antibiotics can be directly harmful to the patient being treated for the same reason. We conclude that a holistic approach to antimicrobial resistance that additionally incorporates food production and dietary considerations will be more effective in reducing resistant infections than a purely medical-based approach.
Collapse
Affiliation(s)
- Henry Todman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, United Kingdom
| | - Sankalp Arya
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, United Kingdom
| | - Michelle Baker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, United Kingdom
| | - Dov Joseph Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, United Kingdom
- Department of Mathematics and Applied Mathematics, University of Johannesburg, Rossmore, South Africa
| |
Collapse
|
32
|
Xie H, Yamada K, Tamai S, Shimamoto H, Nukazawa K, Suzuki Y. Disappearance and prevalence of extended-spectrum β-lactamase-producing Escherichia coli and other coliforms in the wastewater treatment process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83950-83960. [PMID: 37351753 DOI: 10.1007/s11356-023-28382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Antibiotic-resistant bacteria (ARBs) can now be detected not only in clinical institutions but also in wastewater treatment plants (WWTPs), extending the range of emergence to residential areas. In this study, we investigated the change of antibiotic-resistant Escherichia coli (E. coli) and other coliforms in each treatment process at WWTPs. Throughout the treatment process, the numbers of E. coli and other coliforms were significantly reduced to less than 5.7 ± 0.5 CFU/100 ml and 2.4 ± 0.0×102 CFU/100 ml, respectively. However, ESBL-producing E. coli and other coliforms were detected in each treatment process (even after chlorination) at 5.6% and 4.8%, compared to the total E. coli and other coliforms counts. Then, ESBL-producing-related genes were identified via PCR analyses, and the most predominant gene was CTX-M-9 in both E. coli (47.2%) and other coliforms (47.3%). Although actual WWTPs greatly reduced the number of bacteria, the relative prevalence of ESBL-producing bacteria was increased, suggesting that ESBL-producing bacteria remain in the effluent at minimal concentrations and could be diffusing to water bodies.
Collapse
Affiliation(s)
- Hui Xie
- Department of Environment and Resource Sciences, Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan
| | - Kana Yamada
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Soichiro Tamai
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Shimamoto
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Kei Nukazawa
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
33
|
Wu J, Guo S, Li K, Li Z, Xu P, Jones DL, Wang J, Zou J. Effect of fertilizer type on antibiotic resistance genes by reshaping the bacterial community and soil properties. CHEMOSPHERE 2023; 336:139272. [PMID: 37343633 DOI: 10.1016/j.chemosphere.2023.139272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Conventional and bio-organic fertilizers play an important role in maintaining soil health and promoting crop growth. However, the effect of organic fertilizers on the prevalence of antibiotic resistance genes (ARGs) in the vegetable cropping system has been largely overlooked. In this study, we investigated the impacts of soil properties and biotic factors on ARG profiles by analyzing ARG and bacterial communities in vegetable copping soils with a long-term history of manure and bio-organic fertilizer application. The ARG abundance in the soil was significantly increased by 116% with manure application compared to synthetic NPK fertilizer application. This finding was corroborated by our meta-analysis that the longer the duration of manure application, the greater the response of increased soil ARG abundance. However, bio-organic fertilizers containing Trichoderma spp. Significantly reduced ARG contamination by 31% compared to manure application. About half of the ARG variation was explained by changes in bacterial abundance and structure, followed by soil properties. The mitigation of ARG by Trichoderma spp. Is achieved by altering the structure of the bacterial community and weakening the close association between bacteria and ARG prevalence. Taken together, these findings shed light on the contribution of bio-organic fertilizers in mitigating ARG contamination in agricultural soils, which can help manage the ecological risk posed by ARG inputs associated with manure application.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shumin Guo
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kejie Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhutao Li
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pinshang Xu
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA, 6105, Australia
| | - Jinyang Wang
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Jianwen Zou
- Key Laboratory of Green and Low-carbon Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| |
Collapse
|
34
|
Chen P, Yu K, He Y. The dynamics and transmission of antibiotic resistance associated with plant microbiomes. ENVIRONMENT INTERNATIONAL 2023; 176:107986. [PMID: 37257204 DOI: 10.1016/j.envint.2023.107986] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Antibiotic resistance genes (ARGs) have been widely found and studied in soil and water environments. However, the propagation of ARGs in plant microbiomes has attracted insufficient attention. Plant microbiomes, especially the rhizosphere microorganisms, are closely connected with water, soil, and air, which allows ARGs to spread widely in ecosystems and pose a threat to human health after entering the human body with bacteria. Therefore, it is necessary to deeply understand and explore the dynamics and the transmission of ARGs in rhizosphere microorganisms and endophytes of plants. In this review, the transmission and influencing factors of ARGs in the microorganisms associated with plants, especially the influence of root exudates on plant microbiomes, are analyzed. Notably, the role of intrinsic genes of plants in determining root exudates and their potential effects on ARGs are proposed and analyzed. The important role of phyllosphere microorganisms and endophytes in the transmission of ARGs and co-resistance of antibiotics and other substances are also emphasized. The proliferation and transmission of ARGs associated with plant microbiomes addressed in this review is conducive to revealing the fate of ARGs in plant microorganisms and alleviating ARG pollution.
Collapse
Affiliation(s)
- Ping Chen
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiliang He
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
35
|
Huygens J, Rasschaert G, Cottyn B, Dewulf J, Van Coillie E, Willekens K, Quataert P, Becue I, Daeseleire E, Heyndrickx M. The impact of antibiotic residues on resistance patterns in leek at harvest. Heliyon 2023; 9:e16052. [PMID: 37215782 PMCID: PMC10192768 DOI: 10.1016/j.heliyon.2023.e16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
When crops are cultivated on fields fertilized with animal manure, the risk exists that plants may take up antibiotic residues and may be exposed to antibiotic resistance genes and antibiotic resistant bacteria. During cultivation in a greenhouse pot experiment, leek (Allium porrum) was fertilized with either pig slurry or mineral fertilizer and exposed to either no antibiotics, doxycycline (10,000 μg/kg manure), sulfadiazine (1000 μg/kg manure), or lincomycin (1000 μg/kg manure). At harvest, 4.5 months later, lincomycin, sulfadiazine or doxycycline were not detected in any of the leek samples nor in their corresponding soil samples. Further, antimicrobial susceptibility testing was performed on 181 Bacillus cereus group isolates and 52 Pseudomonas aeruginosa isolates from the grown leek. For the B. cereus group isolates, only a small shift in MIC50 for lincomycin was observed among isolates from the lincomycin and control treatment. For P. aeruginosa, only in the setup with doxycycline treatment a higher MIC50 for doxycycline was observed compared to the control, specifically the isolates selected from growth media supplemented with 8 mg/L doxycycline. Nine antibiotic resistance genes (tet(B), tet(L), tet(M), tet(O), tet(Q), tet(W), erm(B), erm(F) and sul2) were investigated at harvest in the leek and soil samples. In the leek samples, none of the antibiotic resistance genes were detected. In the soil samples fertilized with pig slurry, the genes erm(B), erm(F), tet(M), sul2, tet(W) and tet(O) were detected in significantly higher copy numbers in the lincomycin treatment as compared to the other antibiotic treatments. This could be due to a shift in soil microbiota induced by the addition of lincomycin. The results of this study indicate that consumption of leek carries a low risk of exposure to antibiotic residues or antibiotic resistance to doxycycline, sulfadiazine or lincomycin.
Collapse
Affiliation(s)
- Judith Huygens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Bart Cottyn
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Jeroen Dewulf
- Ghent University, Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction an Population Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Els Van Coillie
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Koen Willekens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Paul Quataert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Science Unit, Caritasstraat 39, 9090 Melle, Belgium
| | - Ilse Becue
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Els Daeseleire
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
- Ghent University, Faculty of Veterinary Medicine, Department of Pathobiology, Pharmacology and Zoological Medicine, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
36
|
Liu Y, Feng M, Johansen A, Cheng D, Xue J, Feng Y, Fan S, Li Z. Composting reduces the risks of antibiotic resistance genes in maize seeds posed by gentamicin fermentation waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161785. [PMID: 36736399 DOI: 10.1016/j.scitotenv.2023.161785] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Using high-throughput quantitative PCR and next generation sequencing, the impact of land application of raw and composted gentamicin fermentation waste (GFW) on antibiotic resistance genes (ARGs) in maize seeds was studied in a three-year field trial. The raw and composted GFW changed both the bacterial community composition and the ARGs diversity in the maize seeds compared to non-amended controls and chemical fertilizer. The abundance of ARGs after raw GFW amendment was significantly higher than other treatments because of a high abundance of aadA1, qacEdeltal and aph(2')-Id-02; probably induced by gentamicin selection pressure in maize tissues. Meanwhile, the potential host of these three ARGs, pathogenic bacteria Tenacibaculum, also increased significantly in maize seeds after the application of raw GFW. But our result proved that composting could weaken the risk posed by GFW. We further reveal that the key biotic driver for shaping the ARG profiles in maize seeds is bacterial community followed by heavy metal resistance genes, and ARGs are more likely located on bacterial chromosomes. Our findings provide new insight into ARGs dispersal mechanism in maize seeds after long-term GFW application, demonstrate the potential benefits of composting the GFW to reduce risks as well as the potential efficient management method to GFW.
Collapse
Affiliation(s)
- Yuanwang Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minmin Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Anders Johansen
- Department of Environmental Science, Faculty of Technical Sciences, Aarhus University, Roskilde 4000, Denmark
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Scion, Private Bag 29237, Christchurch 8440, New Zealand
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuanghu Fan
- College of Life Science, Langfang Normal University, Langfang 065000, China
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
37
|
Yue Z, Zhang J, Ding C, Wang Y, Zhou Z, Yu X, Zhang T, Wang X. Transfer and distribution of antibiotic resistance genes in the soil-peanut system receiving manure for years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161742. [PMID: 36690118 DOI: 10.1016/j.scitotenv.2023.161742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Antibiotic resistance gene (ARG)-contaminated food from manure application is gaining widespread interest, but little is known about the distribution and uptake of ARGs in peanuts that are subjected to manure routinely. In this study, the ARG profile and bacterial community in soil and peanut plants from a 7-year manure-fertilized field were investigated using high-throughput qPCR and 16S rRNA gene sequencing. Manure application increased the abundance of ARGs in soil and peanuts by 59-72 and 4-10 fold, respectively. The abundance of ARGs from high to low was as follows: manure, shell-sphere soil, rhizosphere soil, bulk soil, stems, shells, needles, kernels, and roots. Source-tracker analyses were used to investigate the potential source of ARGs in peanut kernels, which revealed that the ARGs in peanut kernels may be primarily absorbed by the roots from the soil. The horizontal gene transfer (HGT) of ARGs was the primary factor in the spread of ARGs, and Proteobacteria were the primary agents of HGT between different parts of peanut plants. Additionally, norank_Chloroplast from the phylum Cyanobacteria was the most important contributor to the abundance of ARGs in peanut kernels. Overall, our findings fill a gap in our understanding of the distribution patterns of ARGs in peanut plants and the migratory pathways of ARGs from soil to peanut kernels.
Collapse
Affiliation(s)
- Zhengfu Yue
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changfeng Ding
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurong Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigao Zhou
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolan Yu
- Key Laboratory of Low-carbon Green Agriculture in Tropical region of China, Ministry of Agriculture and Rural Affairs, Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Taolin Zhang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Shay JA, Haniford LSE, Cooper A, Carrillo CD, Blais BW, Lau CHF. Exploiting a targeted resistome sequencing approach in assessing antimicrobial resistance in retail foods. ENVIRONMENTAL MICROBIOME 2023; 18:25. [PMID: 36991496 PMCID: PMC10052294 DOI: 10.1186/s40793-023-00482-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/15/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND With the escalating risk of antimicrobial resistance (AMR), there are limited analytical options available that can comprehensively assess the burden of AMR carried by clinical/environmental samples. Food can be a potential source of AMR bacteria for humans, but its significance in driving the clinical spread of AMR remains unclear, largely due to the lack of holistic-yet-sensitive tools for surveillance and evaluation. Metagenomics is a culture-independent approach well suited for uncovering genetic determinants of defined microbial traits, such as AMR, present within unknown bacterial communities. Despite its popularity, the conventional approach of non-selectively sequencing a sample's metagenome (namely, shotgun-metagenomics) has several technical drawbacks that lead to uncertainty about its effectiveness for AMR assessment; for instance, the low discovery rate of resistance-associated genes due to their naturally small genomic footprint within the vast metagenome. Here, we describe the development of a targeted resistome sequencing method and demonstrate its application in the characterization of the AMR gene profile of bacteria associated with several retail foods. RESULT A targeted-metagenomic sequencing workflow using a customized bait-capture system targeting over 4,000 referenced AMR genes and 263 plasmid replicon sequences was validated against both mock and sample-derived bacterial community preparations. Compared to shotgun-metagenomics, the targeted method consistently provided for improved recovery of resistance gene targets with a much-improved target detection efficiency (> 300-fold). Targeted resistome analyses conducted on 36 retail-acquired food samples (fresh sprouts, n = 10; ground meat, n = 26) and their corresponding bacterial enrichment cultures (n = 36) reveals in-depth features regarding the identity and diversity of AMR genes, most of which were otherwise undetected by the whole-metagenome shotgun sequencing method. Furthermore, our findings suggest that foodborne Gammaproteobacteria could be the major reservoir of food-associated AMR genetic determinants, and that the resistome structure of the selected high-risk food commodities are, to a large extent, dictated by microbiome composition. CONCLUSIONS For metagenomic sequencing-based surveillance of AMR, the target-capture method presented herein represents a more sensitive and efficient approach to evaluate the resistome profile of complex food or environmental samples. This study also further implicates retail foods as carriers of diverse resistance-conferring genes indicating a potential impact on the dissemination of AMR.
Collapse
Affiliation(s)
- Julie A Shay
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Laura S E Haniford
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Ashley Cooper
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Catherine D Carrillo
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Burton W Blais
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Calvin Ho-Fung Lau
- Ottawa Laboratory (Carling), Canadian Food Inspection Agency, Ottawa, ON, Canada.
| |
Collapse
|
39
|
Zhang MS, Liang SZ, Zhang WG, Chang YJ, Lei Z, Li W, Zhang GL, Gao Y. Field ponding water exacerbates the dissemination of manure-derived antibiotic resistance genes from paddy soil to surrounding waterbodies. Front Microbiol 2023; 14:1135278. [PMID: 37007487 PMCID: PMC10065064 DOI: 10.3389/fmicb.2023.1135278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Farmlands fertilized with livestock manure-derived amendments have become a hot topic in the dissemination of antibiotic resistance genes (ARGs). Field ponding water connects rice paddies with surrounding water bodies, such as reservoirs, rivers, and lakes. However, there is a knowledge gap in understanding whether and how manure-borne ARGs can be transferred from paddy soil into field ponding water. Our studies suggest that the manure-derived ARGs aadA1, bla1, catA1, cmlA1-01, cmx(A), ermB, mepA and tetPB-01 can easily be transferred into field ponding water from paddy soil. The bacterial phyla Crenarchaeota, Verrucomicrobia, Cyanobacteria, Choloroflexi, Acidobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are potential hosts of ARGs. Opportunistic pathogens detected in both paddy soil and field ponding water showed robust correlations with ARGs. Network co-occurrence analysis showed that mobile genetic elements (MGEs) were strongly correlated with ARGs. Our findings highlight that manure-borne ARGs and antibiotic-resistant bacteria in paddy fields can conveniently disseminate to the surrounding waterbodies through field ponding water, posing a threat to public health. This study provides a new perspective for comprehensively assessing the risk posed by ARGs in paddy ecosystems.
Collapse
Affiliation(s)
- Ming-Sha Zhang
- School of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Si-Zhou Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wei-Guo Zhang
- School of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- *Correspondence: Wei-Guo Zhang, ; Ya-Jun Chang,
| | - Ya-Jun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
- *Correspondence: Wei-Guo Zhang, ; Ya-Jun Chang,
| | - Zhongfang Lei
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Wen Li
- School of Life Sciences, Nanjing University, Nanjing, China
| | | | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
40
|
He T, Li J, Gong L, Wang Y, Li R, Ji X, Luan F, Tang M, Zhu L, Wei R, Wang R. Comprehensive Analysis of Antimicrobial, Heavy Metal, and Pesticide Residues in Commercial Organic Fertilizers and Their Correlation with Tigecycline-Resistant tet(X)-Variant Genes. Microbiol Spectr 2023; 11:e0425122. [PMID: 36916994 PMCID: PMC10100909 DOI: 10.1128/spectrum.04251-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
With the issue of the antimicrobial additive ban in feed in Chinese animal husbandry, it is important to determine the potential drivers of the spread of the newly discovered tigecycline-resistant tet(X)-variant genes. Here, we investigated the correlations between residues of heavy metals, antimicrobials, and pesticides and the relative abundance of tet(X)-variant genes in 94 commercial organic-fertilizer samples collected from 9 Chinese provinces. A total of 5 heavy metals (mercury, lead, arsenic, chromium, and cadmium), 10 antimicrobials, and 18 pesticides were detected. The tet(X)-variant genes, including tet(X)/(X2), tet(X3), tet(X4), tet(X5), and tet(X6) were detected in 39 (41.5%) samples. Although tet(X)-variant-carrying bacteria were not isolated from these samples, the tet(X4)-carrying plasmids could be captured by exogenous Escherichia coli. Correlation analysis revealed that heavy metals, other than antimicrobials, showed a significant positive association with the relative abundance of the tet(X)-variant genes, especially tet(X3) and tet(X4) (R = 0.346 to 0.389, P < 0.001). The correlation was attributed to the coselection of the tet(X3)/tet(X4) gene on the same plasmid and the conjugation-promoting effect of tet(X3)/tet(X4)-carrying plasmids by subinhibitory concentrations of heavy metals. The heavy metals increased the permeability of the bacterial outer membrane and upregulated the transcription of type IV secretion system (T4SS)-encoding genes on tet(X)-variant-carrying plasmids, therefore enhancing the bacterial conjugation rates. Taken together, our findings have indicated that heavy metals may play an important role in spreading tet(X)-variant genes within the animal manure-related environment. IMPORTANCE An antimicrobial resistance gene (ARG) is considered a novel contaminant for the environment. Most animal feces are usually made into commercial organic fertilizers in China and will pose a threat to the farmland soil and agricultural product if fertilizers harboring clinically significant antimicrobial-resistant (AMR) genes are applied on farmland. This study has indicated that heavy metals may play an important role in the transmission of transferable tigecycline resistance genes [tet(X3) and tet(X4)]. The mechanism was that heavy metals posed a coselection effect of the tet(X3)/tet(X4) gene on the same plasmid and could increase the conjugation ability of tet(X3)/tet(X4)-carrying plasmids. The conjugation-promoting concentrations of heavy metals are lower than the maximal limits defined in the national standard for fertilizers, indicating a high transmission risk of tet(X3)/tet(X4) genes within the animal manure-related environment. The findings in this study will provide scientific evidence for the future development of effective measures to reduce AMR dissemination.
Collapse
Affiliation(s)
- Tao He
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Li
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lan Gong
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xing Ji
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengting Luan
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Minmin Tang
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Zhu
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruicheng Wei
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
41
|
Cao H, Jiao Q, Cheng L, Song L, Xun M, Yang H. Occurrence and prevalence of antibiotic resistance genes in apple orchard after continual application of anaerobic fermentation residues of pig manure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:29229-29242. [PMID: 36409412 DOI: 10.1007/s11356-022-24320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Fermented organic fertilizers made from pig manure contaminated with antibiotics are widely used in fruit tree production. However, their effects on the residual antibiotics and the spread of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in apple orchards are still largely unknown. In the present study, we detected 100 ARGs and 10 MGEs that were transferred from pig manure to an apple orchard. Compared with the original pig manure, significantly greater concentrations of tetracycline, chlortetracycline, oxytetracycline, sulfadiazine, and salfamethyldiazine were observed in anaerobic fermentation residues of the pig manure. The total relative abundance levels of ARGs on the apple pericarp surface, in the orchard soil treated with biogas slurry, and in the orchard soil treated with biogas residue were 122.5, 5.2, 1.4 times higher than those in pristine soil, respectively, which were primarily attributed to the increase in the relative abundance of some ARG subtypes, including blaCTX-M, blaTEM, ermC, sul2, tetO, vgaB, and vgb. Long-term biogas slurry and biogas residue applications to orchard soil enriched bioaccumulation of 10 ARGs and 1 MGEs on the apple pericarp surface with 67.98 the highest factor. This research indicates that the application of anaerobic fermentation residues of pig manure promoted the spread of ARGs in the soil and fruits and increased the level of ARG pollution in the orchard. Results of this study highlight the importance of assessing the ecological safety of organic fertilizers from the perspective of ARGs and indicate that efforts should be devoted to further reducing ARG levels in pig manure before its application to farmland.
Collapse
Affiliation(s)
- Hui Cao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Qian Jiao
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Liangmei Cheng
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Linhui Song
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, Shandong Province, China
| | - Mi Xun
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China
| | - Hongqiang Yang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong Province, China.
| |
Collapse
|
42
|
Jütte M, Abdighahroudi MS, Waldminghaus T, Lackner S, V Lutze H. Bacterial inactivation processes in water disinfection - mechanistic aspects of primary and secondary oxidants - A critical review. WATER RESEARCH 2023; 231:119626. [PMID: 36709565 DOI: 10.1016/j.watres.2023.119626] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/14/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water disinfection during drinking water production is one of the most important processes to ensure safe drinking water, which is gaining even more importance due to the increasing impact of climate change. With specific reaction partners, chemical oxidants can form secondary oxidants, which can cause additional damage to bacteria. Cases in point are chlorine dioxide which forms free available chlorine (e.g., in the reaction with phenol) and ozone which can form hydroxyl radicals (e.g., during the reaction with natural organic matter). The present work reviews the complex interplay of all these reactive species which can occur in disinfection processes and their potential to affect disinfection processes. A quantitative overview of their disinfection strength based on inactivation kinetics and typical exposures is provided. By unifying the current data for different oxidants it was observable that cultivated wild strains (e.g., from wastewater treatment plants) are in general more resistant towards chemical oxidants compared to lab-cultivated strains from the same bacterium. Furthermore, it could be shown that for selective strains chlorine dioxide is the strongest disinfectant (highest maximum inactivation), however as a broadband disinfectant ozone showed the highest strength (highest average inactivation). Details in inactivation mechanisms regarding possible target structures and reaction mechanisms are provided. Thereby the formation of secondary oxidants and their role in inactivation of pathogens is decently discussed. Eventually, possible defense responses of bacteria and additional effects which can occur in vivo are discussed.
Collapse
Affiliation(s)
- Mischa Jütte
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Mohammad Sajjad Abdighahroudi
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Torsten Waldminghaus
- Technical University of Darmstadt, Centre for synthetic biology, Chair of molecular microbiology, Schnittspahnstraße 12, D-64287 Darmstadt, Germany
| | - Susanne Lackner
- Technical University of Darmstadt, Institute IWAR, Chair of water and environmental biotechnology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Holger V Lutze
- Technical University of Darmstadt, Institute IWAR, Chair of environmental analytics and pollutants, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, D-45476 Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, D-45141 Essen, Germany.
| |
Collapse
|
43
|
Characterization of Escherichia coli and Other Enterobacterales Resistant to Extended-Spectrum Cephalosporins Isolated from Dairy Manure in Ontario, Canada. Appl Environ Microbiol 2023; 89:e0186922. [PMID: 36695602 PMCID: PMC9972979 DOI: 10.1128/aem.01869-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Extended-spectrum cephalosporins (ESCs) resistance genes, such as blaCTX-M, blaCMY, and blaSHV, have been found regularly in bacteria from livestock. However, information on their distribution in dairy cattle in Canada and on the associated genome sequences of ESC-resistant Enterobacterales is sparse. In this study, the diversity and distribution of ESC-resistant Escherichia coli throughout manure treatments in six farms in Southern Ontario were assessed over a one-year period, and their ESC-resistance plasmids were characterized. The manure samples were enriched using selective media. The resulting isolates were screened via polymerase chain reaction for blaCTX-M, blaCMY, and blaSHV. No E. coli carrying blaSHV were detected. Escherichia coli (n = 248) carrying blaCTX-M or blaCMY underwent whole-genome sequencing using an Illumina MiSeq/NextSeq. These isolates were typed using multilocus sequence typing (MLST) and their resistance gene profiles. A subset of E. coli (n = 28) were sequenced using Oxford Nanopore Technologies. Plasmids were assembled using Unicycler and characterized via the resistance genes pattern, replicon type, plasmid MLST, phylogenetic analysis, and Mauve alignments. The recovery of ESC-resistant Enterobacterales (18 species, 8 genera) was drastically reduced in manure outputs. However, multiple treatment stages were needed to attain a significant reduction. 62 sequence types were identified, with ST10, ST46, ST58, ST155, ST190, ST398, ST685, and ST8761 being detected throughout the treatment pipeline. These STs overlapped with those found on multiple farms. The ESC-resistance determinants included CTX-M-1, -14, -15, -17, -24, -32, -55, and CMY-2. The plasmids carrying blaCTX-M were more diverse than were the plasmids carrying blaCMY. Known "epidemic plasmids" were detected for both blaCTX-M and blaCMY. IMPORTANCE The increase in antimicrobial resistance is of concern for human and animal health, especially when resistance is conferred to extended-spectrum cephalosporins, which are used to treat serious infections in both human and veterinary medicine. Bacteria carrying extended-spectrum cephalosporin resistance genes, including blaCTX-M and blaCMY, are frequently found in dairy manure. Manure treatment influences the loads and diversity of bacteria, including those carrying antimicrobial resistance genes, such as Enterobacterales and Escherichia coli. Any bacteria that survive the treatment process are subsequently applied to the environment. Enterobacterales carrying blaCTX-M or blaCMY can contaminate soil and crops consumed by humans and animals, thereby increasing the potential for antimicrobial resistance genes to integrate into the human gut microflora through horizontal gene transfer. This furthers the dissemination of resistance. Therefore, it is imperative to understand the effects manure treatments have on ESC-resistance in environmentally applied manure.
Collapse
|
44
|
Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Antibiotics (Basel) 2023; 12:antibiotics12020387. [PMID: 36830297 PMCID: PMC9952115 DOI: 10.3390/antibiotics12020387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Fresh fruits and vegetables are potential reservoirs for antimicrobial resistance determinants, but few studies have focused specifically on organic vegetables. The present study aimed to determine the presence of third-generation cephalosporin (3GC)- and carbapenem-resistant Gram-negative bacteria on fresh organic vegetables produced in the city of Valencia (Spain). Main expanded spectrum beta-lactamase (ESBL)- and carbapenemase-encoding genes were also detected in the isolates. One hundred and fifteen samples were analyzed using selective media supplemented with cefotaxime and meropenem. Resistance assays for twelve relevant antibiotics in medical use were performed using a disc diffusion test. A total of 161 isolates were tested. Overall, 33.5% presented multidrug resistance and 16.8% were resistant to all β-lactam antibiotics tested. Imipenem resistance was observed in 18% of isolates, and low resistance levels were found to ceftazidime and meropenem. Opportunistic pathogens such as Acinetobacter baumannii, Enterobacter spp., Raoultella sp., and Stenotrophomonas maltophilia were detected, all presenting high rates of resistance. PCR assays revealed blaVIM to be the most frequently isolated ESBL-encoding gene, followed by blaTEM and blaOXA-48. These results confirm the potential of fresh vegetables to act as reservoirs for 3GC- and carbapenem-producing ARB. Further studies must be carried out to determine the impact of raw organic food on the spread of AMRs into the community.
Collapse
|
45
|
Kim H, Kim ES, Cho JH, Song M, Cho JH, Kim S, Keum GB, Kwak J, Doo H, Pandey S, Park SH, Lee JH, Jung H, Hur TY, Kim JK, Oh KK, Kim HB, Lee JH. Exploring the Microbial Community and Functional Characteristics of the Livestock Feces Using the Whole Metagenome Shotgun Sequencing. J Microbiol Biotechnol 2023; 33:51-60. [PMID: 36517072 PMCID: PMC9896000 DOI: 10.4014/jmb.2209.09013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The foodborne illness is the important public health concerns, and the livestock feces are known to be one of the major reservoirs of foodborne pathogens. Also, it was reported that 45.5% of foodborne illness outbreaks have been associated with the animal products contaminated with the livestock feces. In addition, it has been known that the persistence of a pathogens depends on many potential virulent factors including the various virulent genes. Therefore, the first step to understanding the public health risk of livestock feces is to identify and describe microbial communities and potential virulent genes that contribute to bacterial pathogenicity. We used the whole metagenome shotgun sequencing to evaluate the prevalence of foodborne pathogens and to characterize the virulence associated genes in pig and chicken feces. Our data showed that the relative abundance of potential foodborne pathogens, such as Bacillus cereus was higher in chickens than pigs at the species level while the relative abundance of foodborne pathogens including Campylobacter coli was only detected in pigs. Also, the microbial functional characteristics of livestock feces revealed that the gene families related to "Biofilm formation and quorum sensing" were highly enriched in pigs than chicken. Moreover, the variety of gene families associated with "Resistance to antibiotics and toxic compounds" were detected in both animals. These results will help us to prepare the scientific action plans to improve awareness and understanding of the public health risks of livestock feces.
Collapse
Affiliation(s)
- Hyeri Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jinok Kwak
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Hyunok Doo
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Sriniwas Pandey
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Tai Young Hur
- Animal Diseases & Health Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Kwang Kyo Oh
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea,Corresponding authors H.B. Kim Phone: +82-41-550-3653 E-mail:
| | - Ju-Hoon Lee
- Department of Food Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea,J.H. Lee Phone: +82-2-880-4854 E-mail:
| |
Collapse
|
46
|
Do TT, Smyth C, Crispie F, Burgess C, Brennan F, Walsh F. Comparison of soil and grass microbiomes and resistomes reveals grass as a greater antimicrobial resistance reservoir than soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159179. [PMID: 36191722 DOI: 10.1016/j.scitotenv.2022.159179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Grasslands cover a large proportion of global agricultural landmass used to feed herbivores and ruminants and link the environment to the food chain via animals onto humans. However, most scientific studies of antimicrobial resistance and microbiomes at the environmental - animal nexus have focused on soil or vegetables rather than grasslands. Based on previous microbiome phyllosphere-soil studies we hypothesised that the microbiome and resistomes across soil and grass would have a core of shared taxa and antimicrobial resistance genes (ARGs), but that in addition each would also have a minority of unique signatures. Our data indicated grass contained a wider variety and higher relative abundance of ARGs and mobile genetic elements (MGEs) than soil with or without slurry amendments. The microbiomes of soil and grass were similar in content but varied in the composition proportionality. While there were commonalities across many of the ARGs present in soil and on grass their correlations with MGEs and bacteria differed, suggesting a source other than soil is also relevant for the resistome of grass. The variations in the relative abundances of ARGs in soil and on grass also indicated that either the MGEs or the bacteria carrying the ARGs comprised a higher relative abundance on grass than in soil. We conclude that while soil may be a source of some of these genes it cannot be the source for all ARGs and MGEs. Our data identifies grass as a more diverse and abundant reservoir of ARGs and MGEs in the environment than soil, which is significant to human and animal health when viewed in the context of grazing food animals.
Collapse
Affiliation(s)
- Thi Thuy Do
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Cian Smyth
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | | | - Fiona Brennan
- Teagasc, Crops, Environment and Land-Use Programme, Johnstown Castle, Co. Wexford Y35 Y521, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
47
|
Jalil A, Gul S, Bhatti MF, Siddiqui MF, Adnan F. High Occurrence of Multidrug-Resistant Escherichia coli Strains in Bovine Fecal Samples from Healthy Cows Serves as Rich Reservoir for AMR Transmission. Antibiotics (Basel) 2022; 12:antibiotics12010037. [PMID: 36671238 PMCID: PMC9855024 DOI: 10.3390/antibiotics12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Antibiotics are valuable therapeutics. However, the unwarranted and excessive use of these antimicrobials in food animals and the consequent contamination of the environment have been associated with the emergence and spread of antimicrobial resistance. Continuous surveillance and monitoring of antimicrobial resistance among E. coli isolates is recommended, not only for bovine health but also for public health. This study aims to assess the antimicrobial resistance profile, virulence potential, and genetic characterization of fecal E. coli isolates from healthy cows. METHODOLOGY The in vitro, phenotypic antibiotic resistance of isolates was measured via the Kirby-Bauer disc-diffusion method against twenty-seven antibiotics. The β-lactamase enzymatic activities of the strains were also investigated. For the assessment of virulence potential, fecal E. coli isolates were subjected to several in vitro pathogenicity assays, including biofilm formation ability, blood hemolysis, complement resistance, and growth in human urine. Phylogroup determination and virulence-associated genes were detected via multiplex PCR. RESULTS In vitro antibiotic resistance profiling showed that 186/200 (93%) of the isolates were multidrug-resistant (MDR), with the highest resistance against penicillin, tetracycline, fluoroquinolone, and macrolide classes of antibiotics. Of particular concern was the phenotypic resistance to colistin in 52/200 isolates (26%), though 16% of the total isolates harbored mcr1, the genetic determinant of colistin. Despite the scarce use of fluoroquinolone, cephalosporin, and carbapenem in the agricultural sector, resistance to these classes was evident due to the presence of extended-spectrum β-lactamase (ESBL) in 41% of E. coli isolates. The β-lactamase genotyping of E. coli isolates showed that 47% of isolates harbored either blaCTX or blaTEM. Approximately 32% of isolates were resistant to serum complement, and their growth in human urine was evident in 18% of isolates, indicating a possible infection of these isolates in high nitrogenous condition. Phylogrouping showed that the most prevalent phylogenetic group among fecal E. coli isolates was phylogroup B1 (57%), followed by phylogroups A (33%), D (6%), and B2 (4%). The most prevalent virulence-associated genes in fecal E. coli were fimH, iss and tatT. Results showed that ten isolates (5%) harbored the stx1 gene, the genetic marker of enterohemorrhagic E. coli. This study provides insights into the antibiotic resistance and virulence profiling of the fecal E. coli isolates from healthy cows. These results emphasize the need for imposing regulations on the proper use of antibiotics and growth promoters in food-producing animals.
Collapse
Affiliation(s)
- Amna Jalil
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Shabana Gul
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Faraz Bhatti
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | | | - Fazal Adnan
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence:
| |
Collapse
|
48
|
Xu F, Sun G, Du W, Ai F, Yin Y, Guo H. Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 110:20. [PMID: 36547725 DOI: 10.1007/s00128-022-03642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored.
Collapse
Affiliation(s)
- Fen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210046, Nanjing, China
| | - Guofeng Sun
- Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environments, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, 210036, Nanjing, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210046, Nanjing, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210046, Nanjing, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, 210046, Nanjing, China.
| |
Collapse
|
49
|
Impact of Swine and Cattle Manure Treatment on the Microbial Composition and Resistome of Soil and Drainage Water. Microorganisms 2022; 11:microorganisms11010017. [PMID: 36677309 PMCID: PMC9865870 DOI: 10.3390/microorganisms11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Evaluating potential environmental and clinical impacts of industrial antibiotic use is critical in mitigating the spread of antimicrobial resistance. Using soil columns to simulate field application of swine or cattle manure and subsequent rain events, and a targeted qPCR-based approach, we tracked resistance genes from source manures and identified important differences in antimicrobial resistance gene transport and enrichment over time in the soil and water of artificially drained cropland. The source manures had distinct microbial community and resistance gene profiles, and these differences were also reflected in the soil columns after manure application. Antibiotic resistance genes (ARGs) were only significantly enriched in effluent samples following the first rain event (day 11) for both soil types compared to the control columns, illustrating the high background level of resistance present in the control soils chosen. For swine, the genes tetQ, tet(36), tet44, tetM, sul2 and ant(6)-ib persisted in the soil columns, whereas tetO, strB and sul1 persisted in effluent samples. Conversely, for cattle manure sul2 and strB persisted in both soil and effluent. The distinct temporal dynamics of ARG distribution between soil and effluent water for each manure type can be used to inform potential mitigation strategies in the future.
Collapse
|
50
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|